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Here, some extensions of Darbo fixed point theorem associated with measures of noncompactness are proved. Then, as
an application, our attention is focused on the existence of solutions of the integral equation 𝑥(𝑡) = 𝐹(𝑡, 𝑓(𝑡, 𝑥(𝛼

1
(𝑡)),

𝑥(𝛼
2
(𝑡))), ((𝑇𝑥)(𝑡)/Γ(𝛼)) × ∫

𝑡

0
(𝑢(𝑡, 𝑠,max

[0,𝑟(𝑠)]
|𝑥(𝛾
1
(𝜏))|,max

[0,𝑟(𝑠)]
|𝑥(𝛾
2
(𝜏))|) /(𝑡 − 𝑠)

1−𝛼
)𝑑𝑠, ∫

∞

0
V(𝑡, 𝑠, 𝑥(𝑡))𝑑𝑠), 0 < 𝛼 ≤ 1, 𝑡 ∈

[0, 1] in the space of real functions defined and continuous on the interval [0, 1].

1. Introduction

Theconcept ofmeasure of noncompactness plays very impor-
tant role in describing differential and integral equations. It
was introduced by Kuratowski [1] as follows:

𝛼 (𝑆) = inf {𝛿 > 0 :

𝑆 =

𝑛

⋃

𝑖=1

𝑆
𝑖
, diam (𝑆

𝑖
) ≤ 𝛿 , 1 ≤ 𝑖 ≤ 𝑛 < ∞} ,

(1)

for bounded subsets 𝑆 of a metric space 𝑋. Darbo [2]
used Kuratowski measure of noncompactness to generalize
Shauder fixed point theorem to 𝑘-set contractive operators,
which satisfy the condition 𝛼(𝑇(𝐴)) ≤ 𝑘𝛼(𝐴) for some 𝑘 ∈

[0, 1). Up to now, other measures of noncompactness have
been defined. In recent years many papers have been devoted
to the problem of existence of solutions of integral equations,
using the technique of measures of noncompactness and
Darbofixed point theorem (cf. [3–6]). Recently, the technique
of measure of noncompactness has been used to obtain some
extensions of Darbo fixed point theorem and the obtained
results have important applications [3, 4]. As some applica-
tions of the technique of measures of noncompactness and

Darbo fixed point theorem, the following integral equations
have been considered in [5, 6], respectively:

𝑥 (𝑡) = 𝑓 (𝑡) +

(𝑇𝑥) (𝑡)

Γ (𝛼)

∫

𝑡

0

𝑢 (𝑡, 𝑠,max
[0,𝑟(𝑠)] |

𝑥 (𝜏)|)

(𝑡 − 𝑠)
1−𝛼

𝑑𝑠,

0 < 𝛼 ≤ 1, 𝑡 ∈ [0, 1] ,

(2)

𝑥 (𝑡) = 𝐹(𝑡, 𝑓 (𝑡, 𝑥 (𝛼 (𝑡))) ,

∫

𝛽(𝑡)

0

𝑢 (𝑡, 𝑠, 𝑥 (𝛾 (𝑠))) 𝑑
𝑠
(𝑡, 𝑠) ,

∫

∞

0

V (𝑡, 𝑠, 𝑥 (𝛿 (𝑠))) 𝑑𝑠) , 𝑡 ∈ R
+
.

(3)

Huang and Cao [7] have given a result to find the solution of
the integral equation

𝑥 (𝑡) = 𝑞 (𝑡) + 𝑓
1
(𝑡, 𝑥 (𝛼

1
(𝑡)) , 𝑥 (𝛼

2
(𝑡)))

+

𝑓
2
(𝑡, 𝑥 (𝛽

1
(𝑡)) , 𝑥 (𝛽

2
(𝑡)))

Γ (𝛼)

×∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1
𝑓
3
(𝑡, 𝑠, 𝑥 (𝛾

1
(𝑠)) , 𝑥 (𝛾

2
(𝑠))) 𝑑𝑠.

(4)
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2 Abstract and Applied Analysis

In this paper, motivated and inspired by the integral
equations (2), (3), and (4), we are going to prove a theorem
on the existence of solutions of the integral equation

𝑥 (𝑡) = 𝐹(𝑡, 𝑓 (𝑡, 𝑥 (𝛼
1
(𝑡)) , 𝑥 (𝛼

2
(𝑡))) ,

(𝑇𝑥) (𝑡)

Γ (𝛼)

× ∫

𝑡

0

𝑢 (𝑡, 𝑠,max
[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))





)

× ((𝑡 − 𝑠)
1−𝛼
)

−1

𝑑𝑠,

∫

∞

0

V (𝑡, 𝑠, 𝑥 (𝑡)) 𝑑𝑠) ,

0 < 𝛼 ≤ 1, 𝑡 ∈ [0, 1] ,

(5)

in the Banach space 𝐶(𝐼) = 𝐶[0, 1]. Note that (5) has a rather
general form and extends the integral equation (2). Our aim
will be realized with help of the technique of measure of
noncompactness. In Section 2, we present some definitions
and preliminary results about the concept of measure of
noncompactness. In Section 3, using the existent contractive
condition in [8, Theorem 3.1] and the notion of shifting
distance functions of [9], some generalizations of Darbo fixed
point theoremare proved. In the last section, a result is proved
concerning the existence of solutions for the integral equation
(5).

2. Preliminaries

In this section, some definitions, notions, and results are
presented which will be used in the next sections.

Assume that 𝐸 is a real Banach space with zero element 𝜃.
The closed ball centered at 𝑥with radius 𝑟 and the ball 𝐵(𝜃, 𝑟)
are denoted by𝐵(𝑥, 𝑟) and𝐵

𝑟
, respectively. If𝑋 is a nonempty

subset of 𝐸, then we denote by 𝑋 and conv(𝑋) the closure
and closed convex hull of 𝑋, respectively. Moreover, let 𝑀

𝐸

indicate the family of all nonempty bounded subsets of 𝐸 and
𝑁
𝐸
its subfamily consisting of all relatively compact subsets

of 𝐸.
In our considerations, we use the following definition of

the concept of measure of noncompactness.

Definition 1 (see [10]). Amapping 𝜇 : 𝑀
𝐸
→ [0,∞) is called

a measure of noncompactness if it satisfies the following
conditions.

(1) The family Ker𝜇 = {𝑋 ∈ 𝑀
𝐸
: 𝜇(𝑋) = 0} is nonempty

and Ker𝜇 ⊆ 𝑁
𝐸
.

(2) 𝑋 ⊆ 𝑌 ⇒ 𝜇(𝑋) ≤ 𝜇(𝑌).

(3) 𝜇(𝑋) = 𝜇(𝑋).

(4) 𝜇(Conv(𝑋)) = 𝜇(𝑋).

(5) 𝜇(𝜆𝑋+(1−𝜆)𝑌) ≤ 𝜆𝜇(𝑋)+ (1−𝜆)𝜇(𝑌) for 𝜆 ∈ [0, 1].

(6) If {𝑋
𝑛
} is a sequence of closed sets from𝑀

𝐸
such that

𝑋
𝑛+1

⊆ 𝑋
𝑛
for 𝑛 = 1, 2, . . . and lim

𝑛→∞
𝜇(𝑋
𝑛
) = 0,

then𝑋
∞
= ⋂
∞

𝑛=1
𝑋
𝑛
is nonempty.

The family Ker𝜇 described in (1) is said to be the kernel
of the measure of noncompactness 𝜇 and since 𝜇(𝑋

∞
) =

𝜇(⋂
∞

𝑛=1
𝑋
𝑛
) ≤ 𝜇(𝑋

𝑛
), we infer that 𝜇(⋂∞

𝑛=1
𝑋
𝑛
) = 0. So,

𝑋
∞
∈ Ker 𝜇.
Let 𝐶(𝐼) = 𝐶([0, 1]) denote the Banach space of all

real functions defined and continuous on the interval [0, 1]
equipped with the norm

‖𝑥‖ = max {|𝑥 (𝑡)| ; 𝑡 ∈ [0, 1]} . (6)

Fix a nonempty subset 𝑋 of 𝐶([0, 1]). For 𝜀 > 0 and 𝑥 ∈ 𝑋

define
𝜔 (𝑥, 𝜀) = sup {


𝑥 (𝑡
1
) − 𝑥 (𝑡

2
)




;

𝑡
1
, 𝑡
2
∈ [0, 1] ,





𝑡
2
− 𝑡
1





≤ 𝜀} ,

𝜔
0
(𝑋, 𝜀) = sup {𝜔 (𝑥, 𝜀) ; 𝑥 ∈ 𝑋} ,

𝜔
0
(𝑋) = lim

𝜀→0

𝜔 (𝑋, 𝜀) .

(7)

Banas and Lecko [11] showed that the function 𝜔
0
(𝑋) is

a measure of noncompactness in 𝐶(𝐼). Now, we state the
following two important theorems which play a key role in
the fixed point theory.

Theorem 2 (Schauder [12]). Let 𝑈 be a nonempty, bounded,
closed, and convex subset of a Banach space E. Then, every
continuous and compact map 𝐹 : 𝑈 → 𝑈 has at least one
fixed point in 𝑈.

Theorem 3 (Darbo [10]). Let 𝑄 be a nonempty, closed,
bounded, and convex subset of a Banach space 𝐸 and let 𝐹 :

𝑄 → 𝑄 be a continuous mapping. Assume that there exists a
constant 𝑘 ∈ [0, 1) such that 𝜇(𝐹𝑋) ≤ 𝑘𝜇(𝑋) for any nonempty
subset𝑋 of 𝑄. Then, 𝐹 has a fixed point in 𝑄.

The following definition of the concept of shifting dis-
tance functions will be used to generalize Darbo fixed point
theorem.

Definition 4 (see [9]). Let 𝜓, 𝜙 : [0,∞) → R be two
functions. The pair of functions (𝜙, 𝜓) is said to be a pair of
shifting distance functions, if the following conditions hold:

(i) for 𝑢, V ∈ [0,∞) if 𝜓(𝑢) ≤ 𝜙(V), then 𝑢 ≤ V;
(ii) for {𝑢

𝑛
}, {V
𝑛
} ⊂ [0,∞) with lim

𝑛→∞
𝑢
𝑛

=

lim
𝑛→∞

V
𝑛
= 𝑤, if 𝜓(𝑢

𝑛
) ≤ 𝜙(V

𝑛
) for all 𝑛, then𝑤 = 0.

Example 5 (see [9]). The conditions (i) and (ii) of the above
definition are fulfilled for the functions 𝜓, 𝜙 : [0,∞) → R

defined by 𝜓(𝑡) = ln((1 + 2𝑡)/2) and 𝜙(𝑡) = ln((1 + 𝑡)/2).

3. Some Generalizations of
Darbo Fixed Point Theorem

In this section, we prove some generalizations of Darbo fixed
point theorem.
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Now, using the notion of shifting distance functions
of [9], we obtain our generalization of Darbo fixed point
theorem as follows.

Theorem 6. Let 𝑈 be a nonempty, bounded, closed, and
convex subset of the Banach space 𝐸. Moreover, assume that
𝑇 : 𝑈 → 𝑈 is a continuous function such that

𝜓 (𝜇 (𝑇𝑋)) ≤ 𝜙 (𝜇 (𝑋)) (8)

for any nonempty subset 𝑋 of 𝑈, where 𝜇 is an arbitrary
measure of noncompactness and 𝜓, 𝜙 : [0,∞) → 𝑅 are the
pair of shifting distance functions. Then, 𝑇 has a fixed point in
𝑈.

Proof. Define the sequence {𝑈
𝑛
} by 𝑈

0
= 𝑈 and 𝑈

𝑛
=

Conv(𝑇𝑈
𝑛−1
) for all 𝑛 ≥ 1. If there exists an integer 𝑛

0
≥ 0

such that 𝜇(𝑈
𝑛0
) = 0, then𝑈

𝑛0
is relatively compact and since

𝑇𝑈
𝑛0
⊆ 𝑈
𝑛0
, thus Theorem 2 implies that 𝑇 has a fixed point.

So suppose that 𝜇(𝑈
𝑛
) > 0 for all 𝑛 ≥ 0. Using (8) we get

𝜓 (𝜇 (𝑈
𝑛+1
)) = 𝜓 (𝜇 (Conv (𝑇𝑈

𝑛
)))

= 𝜓 (𝜇 (𝑇𝑈
𝑛
)) ≤ 𝜙 (𝜇 (𝑈

𝑛
)) .

(9)

Due to condition (i) of Definition 4 and (9) we infer that
{𝜇(𝑈
𝑛
)} is a decreasing sequence of positive real numbers.

Thus, there exists 𝑟 ≥ 0 such that 𝜇(𝑈
𝑛
) → 𝑟 as 𝑛 → ∞.

So, in view of (9) and condition (ii) of Definition 4, we get
𝑟 = 0 and hence lim

𝑛→∞
𝜇(𝑈
𝑛
) = 0. Now, since 𝑈

𝑛+1
⊆ 𝑈
𝑛
,

𝑇𝑈
𝑛
⊆ 𝑈
𝑛
, and 𝜇(𝑈

𝑛
) → 0 as 𝑛 → ∞, condition (6) of

Definition 1 implies that 𝑈
∞
= ⋂
∞

𝑛=1
𝑈
𝑛
is nonempty, closed,

convex, and invariant under the operator 𝑇 and belongs to
Ker 𝜇. So, Theorem 2 completes the proof.

Taking 𝜓 = 𝐼 in Theorem 6, we have the following result.

Corollary 7. Let 𝑈 be a nonempty, bounded, closed, and
convex subset of the Banach space 𝐸. Moreover, assume that
𝑇 : 𝑈 → 𝑈 is a continuous function such that

𝜇 (𝑇𝑋) ≤ 𝜙 (𝜇 (𝑋)) (10)

for any nonempty subset 𝑋 of 𝑈, where 𝜇 is an arbitrary
measure of noncompactness and 𝜙 : [0,∞) → R is a function
such that

(a) for {𝑢
𝑛
}, {V
𝑛
} ⊂ [0,∞) with lim

𝑛→∞
𝑢
𝑛

=

lim
𝑛→∞

V
𝑛
= 𝑤, if 𝑢

𝑛
≤ 𝜙(V
𝑛
) for all n, then 𝑤 = 0;

(b) for 𝑢, V ∈ [0,∞) if 𝑢 ≤ 𝜙(V), then 𝑢 ≤ V.

Then, T has a fixed point in 𝑈.

Using Proposition 9 proved in [9] and Theorem 6, we
have the following result.

Corollary 8. Let 𝑈 be a nonempty, bounded, closed, and
convex subset of the Banach space 𝐸. Moreover, assume that
𝑇 : 𝑈 → 𝑈 is a continuous function such that

𝜓 (𝜇 (T𝑋)) ≤ 𝜓 (𝜇 (𝑋)) − 𝜑 (𝜇 (𝑋)) (11)

for any nonempty subset 𝑋 of 𝑈, where 𝜇 is an arbitrary
measure of noncompactness and 𝜙, 𝜓 : [0,∞) → [0,∞) are
two nondecreasing and continuous functions satisfying 𝜓(𝑡) =
𝜑(𝑡) = 0 if and only if 𝑡 = 0. Then, T has a fixed point in 𝑈.

Now,motivated and inspired by the contractive condition
in [8, Theorem 3.1], we present another generalization of
Darbo fixed point theorem as follows.

Theorem9. Let𝑈 be a nonempty, bounded, closed, and convex
subset of the Banach space 𝐸. Moreover, assume that 𝑇 : 𝑈 →

𝑈 is a continuous function such that

𝜓 (𝜇 (𝑇𝑋)) ≤ 𝜑 (𝜇 (𝑋)) − 𝜃 (𝜇 (𝑋)) (12)

for any nonempty subset 𝑋 of 𝑈, where 𝜇 is an arbitrary
measure of noncompactness and 𝜓, 𝜙, 𝜃 : [0,∞) → [0,∞)

are three functions such that 𝜑 and 𝜃 are bounded on any
bounded interval in [0,∞) and 𝜓 is continuous. Moreover,
assume that

(1) 𝜓(𝑥) ≤ 𝜑(𝑦) ⇒ 𝑥 ≤ 𝑦;
(2) for any sequence {𝑥

𝑛
} in [0,∞) with 𝑥

𝑛
→ 𝑡 >

0, 𝜓(𝑡) − lim sup
𝑛→∞

𝜑(𝑥
𝑛
) + lim inf

𝑛→∞
𝜃(𝑥
𝑛
) > 0.

Then, 𝑇 has a fixed point.

Proof. Similarly as in the proof of Theorem 6, we construct
the sequence {𝑈

𝑛
} by 𝑈

0
= 𝑈 and 𝑈

𝑛
= Conv(𝑇𝑈

𝑛−1
) for all

𝑛 ≥ 1. If there exists an integer 𝑛
0
≥ 0 such that 𝜇(𝑈

𝑛0
) =

0, then 𝑈
𝑛0
is relatively compact. Hence, fromTheorem 2 we

conclude that𝑇 has a fixed point in𝑈. Assume that 𝜇(𝑈
𝑛
) > 0

for all 𝑛 ≥ 0. By applying (12) we get

𝜓 (𝜇 (𝑈
𝑛+1
)) = 𝜓 (𝜇 (Conv (𝑇𝑈

𝑛
)))

= 𝜓 (𝜇 (𝑇𝑈
𝑛
)) ≤ 𝜑 (𝜇 (𝑈

𝑛
)) − 𝜃 (𝜇 (𝑈

𝑛
)) .

(13)

Since 𝜃 ≥ 0, thus from (13) we get 𝜓(𝜇(𝑈
𝑛+1
)) ≤ 𝜑(𝜇(𝑈

𝑛
)),

which by condition (1) implies that 𝜇(𝑈
𝑛+1
) ≤ 𝜇(𝑈

𝑛
). Hence,

{𝜇(𝑈
𝑛
} is a decreasing sequence of positive real numbers. So,

there exists 𝑟 ≥ 0 such that

lim
𝑛→∞

𝜇 (𝑈
𝑛
) = 𝑟. (14)

We will prove that 𝜇(𝑈
𝑛
) → 0 as 𝑛 → ∞. Taking limit

supremum on both sides of (13) and using the properties of
the functions 𝜓, 𝜑, and 𝜃, we have

𝜓 (𝑟) ≤ lim sup
𝑛→∞

𝜑 (𝜇𝑈
𝑛
) + lim sup
𝑛→∞

(−𝜃 (𝜇𝑈
𝑛
)) . (15)

Consequently,

𝜓 (𝑟) ≤ lim sup
𝑛→∞

𝜑 (𝜇𝑈
𝑛
) − lim inf
𝑛→∞

𝜃 (𝜇𝑈
𝑛
) , (16)

which implies that

𝜓 (𝑟) − lim sup
𝑛→∞

𝜑 (𝜇𝑈
𝑛
) + lim inf
𝑛→∞

𝜃 (𝜇𝑈
𝑛
) ≤ 0. (17)

So, from condition (2) we conclude that 𝑟 = 0.Thus,𝜇(𝑈
𝑛
) →

0 as 𝑛 → ∞ and lim
𝑛→∞

𝜇(𝑈
𝑛
) = 0. Now, since 𝑈

𝑛+1
⊆ 𝑈
𝑛
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and 𝑇𝑈
𝑛
⊆ 𝑈
𝑛
, thus from condition (6) of Definition 1 we

conclude that 𝑈
∞

= ⋂
∞

𝑛=1
𝑈
𝑛
is nonempty, closed, convex,

and invariant under the operator 𝑇 and belongs to Ker𝜇.
Consequently, Theorem 2 implies that 𝑇 has a fixed point in
𝑈.

Corollary 10 (Darbo [10]). Let 𝑄 be a nonempty, closed,
bounded, and convex subset of a Banach space 𝐸 and let 𝐹 :

𝑄 → 𝑄 be a continuous mapping. Assume that there exists a
constant 𝑘 ∈ [0, 1) such that 𝜇(𝐹𝑋) ≤ 𝑘𝜇(𝑋) for any nonempty
subset𝑋 of 𝑄. Then, 𝐹 has a fixed point in 𝑄.

Proof. Take 𝜓, 𝜙 = 𝐼 and 𝜃(𝑡) = (1 − 𝑘)𝑡 in Theorem 9.

Taking 𝜓 = 𝐼 and 𝜃 = 0 in Theorem 9, we have the
following corollary.

Corollary 11. Let 𝑈 be a nonempty, bounded, closed, and
convex subset of the Banach space 𝐸. Moreover, assume that
𝑇 : 𝑈 → 𝑈 is a continuous function such that

𝜇 (𝑇𝑋) ≤ 𝜑 (𝜇 (𝑋)) (18)

for any nonempty subset 𝑋 of 𝑈, where 𝜇 is an arbitrary
measure of noncompactness and 𝜑 : [0,∞) → [0,∞) is
bounded on any bounded interval in [0,∞). Moreover, assume
that 𝑥 ≤ 𝜑(𝑦) ⇒ 𝑥 ≤ 𝑦 and, for any sequence {𝑥

𝑛
} in [0,∞)

with 𝑥
𝑛
→ 𝑡 > 0,

lim sup
𝑛→∞

𝜑 (𝑥
𝑛
) < 𝑡. (19)

Then, 𝑇 has a fixed point.

4. The Solutions of the Integral Equation of
Mixed Type

In this section, we consider the integral equation (5) and
prove an existence theorem of solutions of that equation.
First, we recall the following twoLemmas of [13]whichwill be
used to prove the existence theorem of the integral equation
(5).

Lemma 12. Suppose 𝑥 ∈ 𝐶(𝐼) and 𝑟 : 𝐼 → 𝐼 is a continuous
function. Define (𝐹𝑥)(𝑡) = max

[0,𝑟(𝑡)]
|𝑥(𝜏)| for 𝑡 ∈ 𝐼. Then,

𝐹𝑥 ∈ 𝐶(𝐼).

Lemma 13. Let (𝑥
𝑛
) ⊂ 𝐶(𝐼) and 𝑥 ∈ 𝐶(𝐼). Suppose that 𝑥

𝑛
→

𝑥 in 𝐶(𝐼). Then, 𝐹𝑥
𝑛
→ 𝐹𝑥 uniformly on 𝐼.

Now, we list the hypotheses which will be used to prove
the existence theorem of the integral equation (5).

(𝐻
1
) The functions 𝛼

1
, 𝛼
2
, 𝛾
1
, 𝛾
2
: [0, 1] → [0, 1] are

continuous.

(𝐻
2
) 𝑟 : [0, 1] → [0, 1] is continuous and nondecreasing
on [0, 1].

(𝐻
3
) 𝐹 : [0, 1] ×R ×R ×R → R is a continuous function
and there exist positive real numbers 𝐿

1
, 𝐿
2
, 𝐿
3
< 1

such that




𝐹 (𝑡, 𝑥

1
, 𝑥
2
, 𝑥
3
) − 𝐹 (𝑡, 𝑦

1
, 𝑦
2
, 𝑦
3
)





≤ 𝐿
1





𝑥
1
− 𝑦
1





+ 𝐿
2





𝑥
2
− 𝑦
2





+ 𝐿
3





𝑥
3
− 𝑦
3





,

(20)

for 𝑡 ∈ [0, 1] and 𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑦
1
, 𝑦
2
, 𝑦
3
∈ R. Moreover,

assume that 𝐹 = sup
𝑡∈[0,1]

|𝐹(𝑡, 0, 0, 0)|.
(𝐻
4
) 𝑓 : [0, 1] × R × R → R is continuous with
𝑓
0
= sup{|𝑓(𝑡, 0, 0)|; 𝑡 ∈ [0, 1]}. Further, there exists

continuous and nondecreasing function 𝜓
1
: R
+
→

R
+
with 𝜓

1
(0) = 0 so that

(a) |𝑓(𝑡, 𝑥
1
, 𝑦
1
)−𝑓(𝑡, 𝑥

2
, 𝑦
2
)| ≤ 𝜓

1
((|𝑥
1
−𝑥
2
| + |𝑦
1
−

𝑦
2
|)/2), for 𝑡 ∈ [0, 1] and 𝑥

1
, 𝑥
2
, 𝑦
1
, 𝑦
2
∈ R.

(𝐻
5
) 𝑇 : 𝐶(𝐼) → 𝐶(𝐼) is a continuous operator such that




(𝑇𝑥) (𝑡

1
) − (𝑇𝑥) (𝑡

2
)




≤ 𝜓
1
(




𝑥 (𝑡
2
) − 𝑥 (𝑡

1
)




) ,

|(𝑇𝑥) (𝑡)| ≤ 𝑎 + 𝑏 ‖𝑥‖ ,

(21)

for 𝑥 ∈ 𝐶(𝐼) and 𝑡, 𝑡
1
, 𝑡
2
∈ [0, 1], where 𝜓

1
is the

existent function in the assumption (𝐻
4
) and 𝑎, 𝑏 are

positive real numbers.
(𝐻
6
) 𝑢 : [0, 1] × [0, 1] × R

+
× R
+
→ R is a continuous

function and there exists a function 𝑛 : [0, 1] →

[0, 1] being continuous on [0, 1] and a function 𝜙
1
:

R
+
→ R

+
being continuous and nondecreasing on

R
+
with 𝜙

1
(0) = 0 such that





𝑢 (𝑡, 𝑠, 𝑥

1
, 𝑦
1
)




≤ 𝑛 (𝑡) 𝜙

1
(





𝑥
1
− 𝑦
1






2

) ,





𝑢 (𝑡, 𝑠, 𝑥

1
, 𝑦
1
) − 𝑢 (𝑡, 𝑠, 𝑥

2
, 𝑦
2
)





≤ 𝑛 (𝑡) 𝜙
1
(





𝑥
1
− 𝑥
2





+




𝑦
1
− 𝑦
2






2

) ,

(22)

for 𝑡, 𝑠 ∈ [0, 1] and 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
∈ R
+
.

(𝐻
7
) V : [0, 1] ×R

+
×R → R is a continuous function and

there exists a continuous function𝑚 : R
+
→ R
+
and

a continuous function 𝑘 : [0, 1]×R
+
→ R
+
such that

𝑚 and 𝑠 → 𝑘(𝑡, 𝑠) are integrable over R
+
. Moreover,

there exists the function 𝜙
2
: R
+
→ R
+
such that 𝜙

2

is continuous and nondecreasing with 𝜙
2
(0) = 0 and

the following conditions hold.

(a) |V(𝑡
1
, 𝑠, 𝑥) − V(𝑡

2
, 𝑠, 𝑥)| ≤ 𝑚(𝑠)𝜙

2
(|𝑡
2
− 𝑡
1
|),

|V(𝑡, 𝑠, 𝑥)| ≤ 𝜙
2
(|𝑥|)𝑘(𝑡, 𝑠), |V(𝑡, 𝑠, 𝑥)−V(𝑡, 𝑠, 𝑦)| ≤

𝜙
2
(|𝑥 − 𝑦|)𝑘(𝑡, 𝑠), for all 𝑡, 𝑡

1
, 𝑡
2
∈ [0, 1], 𝑠 ∈ R

+
,

and 𝑥, 𝑦 ∈ R.
(b) 𝜙
2
(𝑡) + 𝜓

1
(𝑡) ≤ 𝜙(𝑡) for all 𝑡 ≥ 0, where 𝜓

1
and

𝜙 are the existent functions in the assumption
(𝐻
4
) and Corollary 7, respectively. Moreover,

assume that𝑀 = sup
𝑡∈[0,1]

∫

∞

0
𝑘(𝑡, 𝑠)𝑑𝑠.
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(𝐻
8
) There exists a positive solution 𝑟

0
such that

𝐿
1
𝜓
1
(𝑟
0
) + 𝐿
2
𝑛

(𝑎 + 𝑏𝑟
0
)

Γ (𝛼 + 1)

𝜙
1
(𝑟
0
)

+ 𝐿
3
𝑀𝜙
2
(𝑟
0
) + 𝐿
1
𝑓
0
+ 𝐹 ≤ 𝑟

0
,

𝐿
3
𝑀 ≤ 𝐿

1
+ 𝐿
2
𝜙
1
(𝑟
0
) ×

1

Γ (𝛼 + 1)

≤ 1,

(23)

where 𝑓
0
= sup{𝑓(𝑡, 0, 0); 𝑡 ∈ [0, 1]} and 𝑛 =

sup{𝑛(𝑡)𝑡𝛼; 𝑡 ∈ [0, 1]}.

Now, we can present and prove the main result of this
section.

Theorem 14. Under the assumptions (𝐻
1
)–(𝐻
8
), (5) has at

least one solution 𝑥 = 𝑥(𝑡) belonging to the Banach space𝐶(𝐼).

Proof. Define the operator𝐺 on the Banach space𝐶(𝐼) by the
formula

(𝐺𝑥) (𝑡) = 𝐹(𝑡, 𝑓 (𝑡, 𝑥 (𝛼
1
(𝑡)) , 𝑥 (𝛼

2
(𝑡))) ,

(𝑇𝑥) (𝑡)

Γ (𝛼)

× ∫

𝑡

0

𝑢 (𝑡, 𝑠,max
[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))





)

× ((𝑡 − 𝑠)
1−𝛼
)

−1

𝑑𝑠,

∫

∞

0

V (𝑡, 𝑠, 𝑥 (𝑡)) 𝑑𝑠) ,

0 < 𝛼 ≤ 1, 𝑡 ∈ [0, 1] .

(24)

Using the imposed assumptions we infer that 𝐺𝑥 is con-
tinuous on 𝐼 for each 𝑥 ∈ 𝐶(𝐼). Moreover, by using our
assumptions, for any 𝑡 ∈ 𝐼, we get

|(𝐺𝑥) (𝑡)|

=










𝐹 (𝑡, 𝑓 (𝑡, 𝑥 (𝛼
1
(𝑡)) , 𝑥 (𝛼

2
(𝑡))) ,

(𝑇𝑥) (𝑡)

Γ (𝛼)

∫

𝑡

0

𝑢 (𝑡, 𝑠,max
[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))





)

× ((𝑡 − 𝑠)
1−𝛼
)

−1

𝑑𝑠,

∫

∞

0

V (𝑡, 𝑠, 𝑥 (𝑡)) 𝑑𝑠)









≤










𝐹 (𝑡, 𝑓 (𝑡, 𝑥 (𝛼
1
(𝑡)) , 𝑥 (𝛼

2
(𝑡))) ,

(𝑇𝑥) (𝑡)

Γ (𝛼)

∫

𝑡

0

𝑢 (𝑡, 𝑠,max
[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))





)

× ((𝑡 − 𝑠)
1−𝛼
)

−1

𝑑𝑠,

∫

∞

0

V (𝑡, 𝑠, 𝑥 (𝑡)) 𝑑𝑠) − 𝐹 (𝑡, 0, 0, 0)









+ |𝐹 (𝑡, 0, 0, 0)|

≤ 𝐿
1





𝑓 (𝑡, 𝑥 (𝛼

1
(𝑡)) , 𝑥 (𝛼

2
(𝑡))) − 𝑓 (𝑡, 0, 0)






+ 𝐿
1





𝑓 (𝑡, 0, 0)






+ 𝐿
2










(𝑇𝑥) (𝑡)

Γ (𝛼)

∫

𝑡

0

𝑢 (𝑡, 𝑠,max
[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))





)

×((𝑡 − 𝑠)
1−𝛼
)

−1

𝑑𝑠










+ 𝐿
3










∫

∞

0

V (𝑡, 𝑠, 𝑥 (𝑡)) 𝑑𝑠









+ 𝐹

≤ 𝐿
1
𝜓
1
(





𝑥 (𝛼
1
(𝑡))





+




𝑥 (𝛼
2
(𝑡))






2

) + 𝐿
2

(𝑎 + 𝑏 ‖𝑥‖)

Γ (𝛼)

𝑛 (𝑡)

× ∫

𝑡

0

𝜙
1
(




max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))






−max
[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))











1

2

)

× (𝑡 − 𝑠)
𝛼−1
𝑑𝑠

+ 𝐿
3
∫

∞

0

𝜙
2
(|𝑥 (𝑡)|) 𝑘 (𝑡, 𝑠) 𝑑𝑠 + 𝐹 + 𝐿

1
𝑓
0
.

(25)

Since 𝜓
1
, 𝜙
1
, and 𝜙

2
are nondecreasing, then from (25) we

conclude that

‖(𝐺𝑥) (𝑡)‖ ≤ 𝐿1
𝜓
1
(‖𝑥‖) + 𝐿

2
𝑛

(𝑎 + 𝑏 ‖𝑥‖)

Γ (𝛼 + 1)

𝜙
1
(‖𝑥‖)

+ 𝐿
3
𝑀𝜙
2
(‖𝑥‖) + 𝐹 + 𝐿1

𝑓
0
.

(26)

So, in view of assumption (𝐻
8
), the operator 𝐺 transforms

𝐵
𝑟0
into itself. Next, we show that 𝐺 is continuous on the ball

𝐵
𝑟0
. To do this, assume that {𝑥

𝑛
} is a sequence in 𝐵

𝑟0
such that

𝑥
𝑛
→ 𝑥 and show that 𝐺𝑥

𝑛
→ 𝐺𝑥. Indeed, for each 𝑡 ∈ 𝐼,

we have




(𝐺𝑥
𝑛
) (𝑡) − (𝐺𝑥) (𝑡)






=










𝐹 (𝑡, 𝑓 (𝑡, 𝑥
𝑛
(𝛼
1
(𝑡)) , 𝑥

𝑛
(𝛼
2
(𝑡))) ,
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(𝑇𝑥
𝑛
) (𝑡)

Γ (𝛼)

∫

𝑡

0

𝑢 (𝑡, 𝑠,max
[0,𝑟(𝑠)]





𝑥
𝑛
(𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥
𝑛
(𝛾
2
(𝜏))





)

× ((𝑡 − 𝑠)
1−𝛼
)

−1

𝑑𝑠,

∫

∞

0

V (𝑡, 𝑠, 𝑥
𝑛
(𝑡)) 𝑑𝑠)

− 𝐹(𝑡, 𝑓 (𝑡, 𝑥 (𝛼
1
(𝑡)) , 𝑥 (𝛼

2
(𝑡))) ,

(𝑇𝑥) (𝑡)

Γ (𝛼)

∫

𝑡

0

𝑢 (𝑡, 𝑠,max
[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))





)

× ((𝑡 − 𝑠)
1−𝛼
)

−1

𝑑𝑠,

∫

∞

0

V (𝑡, 𝑠, 𝑥 (𝑡)) 𝑑𝑠)









≤ 𝐿
1





𝑓 (𝑡, 𝑥

𝑛
(𝛼
1
(𝑡)) , 𝑥

𝑛
(𝛼
2
(𝑡)))

−𝑓 (𝑡, 𝑥 (𝛼
1
(𝑡)) , 𝑥 (𝛼

2
(𝑡)))






+ 𝐿
2











(𝑇𝑥
𝑛
) (𝑡)

Γ (𝛼)

∫

𝑡

0

𝑢 (𝑡, 𝑠,max
[0,𝑟(𝑠)]





𝑥
𝑛
(𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥
𝑛
(𝛾
2
(𝜏))





)

× ((𝑡 − 𝑠)
1−𝛼
)

−1

𝑑𝑠

−

(𝑇𝑥) (𝑡)

Γ (𝛼)

∫

𝑡

0

𝑢 (𝑡, 𝑠,max
[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))





)

×((𝑡 − 𝑠)
1−𝛼
)

−1

𝑑𝑠











+ 𝐿
3










∫

∞

0

V (𝑡, 𝑠, 𝑥
𝑛
(𝑡)) 𝑑𝑠 − ∫

∞

0

V (𝑡, 𝑠, 𝑥 (𝑡)) 𝑑𝑠









.

(27)

On the other hand, we have










(𝑇𝑥
𝑛
) (𝑡)

Γ (𝛼)

∫

𝑡

0

𝑢 (𝑡, 𝑠,max
[0,𝑟(𝑠)]





𝑥
𝑛
(𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥
𝑛
(𝛾
2
(𝜏))





)

× ((𝑡 − 𝑠)
1−𝛼
)

−1

𝑑𝑠

−

(𝑇𝑥) (𝑡)

Γ (𝛼)

∫

𝑡

0

𝑢 (𝑡, 𝑠,max
[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))





)

×((𝑡 − 𝑠)
1−𝛼
)

−1

𝑑𝑠











≤











(𝑇𝑥
𝑛
) (𝑡)

Γ (𝛼)

∫

𝑡

0

𝑢 (𝑡, 𝑠,max
[0,𝑟(𝑠)]





𝑥
𝑛
(𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥
𝑛
(𝛾
2
(𝜏))





)

× ((𝑡 − 𝑠)
1−𝛼
)

−1

𝑑𝑠

−

(𝑇𝑥
𝑛
) (𝑡)

Γ (𝛼)

∫

𝑡

0

𝑢 (𝑡, 𝑠,max
[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))





)

× ((𝑡 − 𝑠)
1−𝛼
)

−1

𝑑𝑠











+











(𝑇𝑥
𝑛
) (𝑡)

Γ (𝛼)

∫

𝑡

0

𝑢 (𝑡, 𝑠,max
[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))





)

× ((𝑡 − 𝑠)
1−𝛼
)

−1

𝑑𝑠

−

(𝑇𝑥) (𝑡)

Γ (𝛼)

∫

𝑡

0

𝑢 (𝑡, 𝑠,max
[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))





)

×((𝑡 − 𝑠)
1−𝛼
)

−1

𝑑𝑠











≤

(𝑎 + 𝑏




𝑥
𝑛





)

Γ (𝛼 + 1)

𝑡
𝛼
𝑛 (𝑡) 𝜙

1

× (

1

2

[




max
[0,𝑟(𝑠)]





𝑥
𝑛
(𝛾
1
(𝜏))






−max
[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))











+




max
[0,𝑟(𝑠)]





𝑥
𝑛
(𝛾
2
(𝜏))






−max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))










] )

+





𝑇𝑥
𝑛
− 𝑇𝑥






Γ (𝛼 + 1)

𝑛 (𝑡) 𝑡
𝛼
𝜙
1
(




max
[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))






−max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))











1

2

) .

(28)

Due to (27), (28), and our assumptions, we derive that





(𝐺𝑥
𝑛
) (𝑡) − (𝐺𝑥) (𝑡)






≤ 𝐿
1
𝜓
1
( (




𝑥
𝑛
(𝛼
1
(𝑡)) − 𝑥 (𝛼

1
(𝑡))






+




𝑥
𝑛
(𝛼
2
(𝑡)) − 𝑥 (𝛼

2
(𝑡))





)

1

2

)
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+ 𝐿
2

(𝑎 + 𝑏




𝑥
𝑛





)

Γ (𝛼 + 1)

𝑡
𝛼
𝑛 (𝑡) 𝜙

1

× (




max
[0,𝑟(𝑠)]





𝑥
𝑛
(𝛾
1
(𝜏))






−max
[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))











+




max
[0,𝑟(𝑠)]





𝑥
𝑛
(𝛾
2
(𝜏))






−max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))










)

+





𝑇𝑥
𝑛
− 𝑇𝑥






Γ (𝛼 + 1)

𝑛 (𝑡) 𝑡
𝛼
𝜙
1

× (




max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))






−max
[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))






−max
[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))










)

+ 𝐿
3
𝜙
2
(




𝑥
𝑛
(𝑡) − 𝑥 (𝑡)





) ∫

∞

0

𝑘 (𝑡, 𝑠) 𝑑𝑠.

(29)

Using (29), Lemma 13, and the imposed assumptions, we have
‖𝐺𝑥
𝑛
− 𝐺𝑥‖ → 0 as 𝑛 → ∞.

Now, let 𝑋 be a nonempty subset of the ball 𝐵
𝑟0
, 𝑥 ∈ 𝑋,

and fix arbitrarily 𝜀 > 0. Choose 𝑡
1
, 𝑡
2
∈ [0, 1] such that 𝑡

1
< 𝑡
2

and 𝑡
2
− 𝑡
1
≤ 𝜀. Then, taking into account our assumptions,

we have





(𝐺𝑥) (𝑡

2
) − (𝐺𝑥) (𝑡

1
)





=










𝐹 (𝑡
2
, 𝑓 (𝑡
2
, 𝑥 (𝛼
1
(𝑡
2
)) , 𝑥 (𝛼

2
(𝑡
2
))) ,

(𝑇𝑥) (𝑡
2
)

Γ (𝛼)

∫

𝑡2

0

𝑢 (𝑡
2
, 𝑠,max

[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))





)

× ((𝑡
2
− 𝑠)
1−𝛼

)

−1

𝑑𝑠,

∫

∞

0

V (𝑡
2
, 𝑠, 𝑥 (𝑡

2
)) 𝑑𝑠)

− 𝐹(𝑡
1
, 𝑓 (𝑡
1
, 𝑥 (𝛼
1
(𝑡
1
)) , 𝑥 (𝛼

2
(𝑡
1
))) ,

(𝑇𝑥) (𝑡
1
)

Γ (𝛼)

∫

𝑡1

0

𝑢 (𝑡
1
, 𝑠,max

[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))





)

× ((𝑡
1
− 𝑠)
1−𝛼

)

−1

𝑑𝑠,

∫

∞

0

V (𝑡
1
, 𝑠, 𝑥 (𝑡

1
)) 𝑑𝑠)










≤ 𝐿
1





𝑓 (𝑡
2
, 𝑥 (𝛼
1
(𝑡
2
)) , 𝑥 (𝛼

2
(𝑡
2
)))

−𝑓 (𝑡
2
, 𝑥 (𝛼
1
(𝑡
1
)) , 𝑥 (𝛼

2
(𝑡
1
)))





+ 𝐿
1





𝑓 (𝑡
2
, 𝑥 (𝛼
1
(𝑡
1
)) , 𝑥 (𝛼

2
(𝑡
1
)))

−𝑓 (𝑡
1
, 𝑥 (𝛼
1
(𝑡
1
)) , 𝑥 (𝛼

2
(𝑡
1
)))





+ 𝐿
2











(𝑇𝑥) (𝑡
2
)

Γ (𝛼)

∫

𝑡2

0

𝑢 (𝑡
2
, 𝑠,max

[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))





)

× ((𝑡
2
− 𝑠)
1−𝛼

)

−1

𝑑𝑠

−

(𝑇𝑥) (𝑡
1
)

Γ (𝛼)

∫

𝑡1

0

𝑢 (𝑡
1
, 𝑠,max

[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))





)

×((𝑡
1
− 𝑠)
1−𝛼

)

−1

𝑑𝑠











+ 𝐿
3
∫

∞

0





V (𝑡
2
, 𝑠, 𝑥 (𝑡

2
)) − V (𝑡

1
, 𝑠, 𝑥 (𝑡

2
))




𝑑𝑠

+ 𝐿
3
∫

∞

0





V (𝑡
1
, 𝑠, 𝑥 (𝑡

2
)) − V (𝑡

1
, 𝑠, 𝑥 (𝑡

1
))




𝑑𝑠.

(30)

Moreover, we have











(𝑇𝑥) (𝑡
2
)

Γ (𝛼)

∫

𝑡2

0

𝑢 (𝑡
2
, 𝑠,max

[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))





)

× ((𝑡
2
− 𝑠)
1−𝛼

)

−1

𝑑𝑠

−

(𝑇𝑥) (𝑡
1
)

Γ (𝛼)

∫

𝑡1

0

𝑢 (𝑡
1
, 𝑠,max

[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))





)

×((𝑡
1
− 𝑠)
1−𝛼

)

−1

𝑑𝑠











≤











(𝑇𝑥) (𝑡
2
)

Γ (𝛼)

∫

𝑡2

0

𝑢 (𝑡
2
, 𝑠,max

[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))





)

× ((𝑡
2
− 𝑠)
1−𝛼

)

−1

𝑑𝑠

−

(𝑇𝑥) (𝑡
2
)

Γ (𝛼)

∫

𝑡1

0

𝑢 (𝑡
1
, 𝑠,max

[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))





)
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×((𝑡
1
− 𝑠)
1−𝛼

)

−1

𝑑𝑠











+











(𝑇𝑥) (𝑡
2
)

Γ (𝛼)

∫

𝑡1

0

𝑢 (𝑡
1
, 𝑠,max

[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))





)

× ((𝑡
1
− 𝑠)
1−𝛼

)

−1

𝑑𝑠

−

(𝑇𝑥) (𝑡
1
)

Γ (𝛼)

∫

𝑡1

0

𝑢 (𝑡
1
, 𝑠,max

[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))





)

×((𝑡
1
− 𝑠)
1−𝛼

)

−1

𝑑𝑠











≤

(𝑇𝑥) (𝑡
2
)

Γ (𝛼)

[










∫

𝑡2

0

𝑢 (𝑡
2
, 𝑠,max

[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))





)

× ((𝑡
2
− 𝑠)
1−𝛼

)

−1

𝑑𝑠

− ∫

𝑡1

0

𝑢 (𝑡
2
, 𝑠,max

[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))





)

×((𝑡
2
− 𝑠)
1−𝛼

)

−1

𝑑𝑠










+










∫

𝑡1

0

𝑢 (𝑡
2
, 𝑠,max

[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))





)

× ((𝑡
2
− 𝑠)
1−𝛼

)

−1

𝑑𝑠

− ∫

𝑡1

0

𝑢 (𝑡
1
, 𝑠,max

[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))





)

×((𝑡
2
− 𝑠)
1−𝛼

)

−1

𝑑𝑠










+










∫

𝑡1

0

𝑢 (𝑡
1
, 𝑠,max

[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))





)

× ((𝑡
2
− 𝑠)
1−𝛼

)

−1

𝑑𝑠

− ∫

𝑡1

0

𝑢 (𝑡
1
, 𝑠,max

[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))





)

×((𝑡
1
− 𝑠)
1−𝛼

)

−1

𝑑𝑠










]

+





(𝑇𝑥) (𝑡

2
) − (𝑇𝑥) (𝑡

1
)





Γ (𝛼)

×










∫

𝑡1

0

𝑢 (𝑡
1
, 𝑠,max

[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))





)

×((𝑡
1
− 𝑠)
1−𝛼

)

−1

𝑑𝑠










.

(31)

Thus,











(𝑇𝑥) (𝑡
2
)

Γ (𝛼)

∫

𝑡2

0

𝑢 (𝑡
2
, 𝑠,max

[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))





)

× ((𝑡
2
− 𝑠)
1−𝛼

)

−1

𝑑𝑠

−

(𝑇𝑥) (𝑡
1
)

Γ (𝛼)

∫

𝑡1

0

𝑢 (𝑡
1
, 𝑠,max

[0,𝑟(𝑠)]





𝑥 (𝛾
1
(𝜏))





,

max
[0,𝑟(𝑠)]





𝑥 (𝛾
2
(𝜏))





)

×((𝑡
1
− 𝑠)
1−𝛼

)

−1

𝑑𝑠











≤

(𝑎 + 𝑏 ‖𝑥‖)

Γ (𝛼)

𝑛 (𝑡
2
) 𝜙
1
(‖𝑥‖)

× ∫

𝑡2

𝑡1

(𝑡
2
− 𝑠)
𝛼−1

𝑑𝑠 + 𝜔
𝑟0
(𝑢, 𝜀) ∫

𝑡1

0

(𝑡
2
− 𝑠)
𝛼−1

𝑑𝑠

+ 𝑛 (𝑡
1
) 𝜙
1
(‖𝑥‖) ∫

𝑡1

0

{(𝑡
1
− 𝑠)
𝛼−1

− (𝑡
2
− 𝑠)
𝛼−1

} 𝑑𝑠

+

𝜓
1
(𝜔 (𝑥, 𝜀))

Γ (𝛼)

𝑛 (𝑡
1
) 𝜙
1
(‖𝑥‖) ∫

𝑡1

0

(𝑡
1
− 𝑠)
𝛼−1

𝑑𝑠

=

(𝑎 + 𝑏 ‖𝑥‖)

Γ (𝛼 + 1)

𝑛 (𝑡
2
) 𝜙
1
(‖𝑥‖) (𝑡2

− 𝑡
1
)
𝛼

+ 𝜔
𝑟0
(𝑢, 𝜀) ×

1

𝛼

(−(𝑡
2
− 𝑡
1
)
𝛼

+ 𝑡
𝛼

2
)

+ 𝑛 (𝑡
1
) 𝜙
1
(‖𝑥‖) ((𝑡2

− 𝑡
1
)
𝛼

+ 𝑡
𝛼

1
− 𝑡
𝛼

2
) ×

1

𝛼

+

1

Γ (𝛼 + 1)

× 𝜓
1
(𝜔 (𝑥, 𝜀)) 𝑛 (𝑡

1
) 𝜙
1
(‖𝑥‖) × 𝑡

𝛼

1

≤

(𝑎 + 𝑏𝑟
0
)

Γ (𝛼 + 1)

𝜙
1
(𝑟
0
) × 𝜀
𝛼
+ 𝜔
𝑟0
(𝑢, 𝜀) ×

1

𝛼

× −𝜀
𝛼
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+ 𝜙
1
(𝑟
0
) 𝜀
𝛼
×

1

𝛼

+

1

Γ (𝛼 + 1)

𝜓
1
(𝜔 (𝑥, 𝜀)) 𝜙

1
(𝑟
0
) .

(32)

Using (30), (32), and the assumptions of Theorem 14, we
earn





(𝐺𝑥) (𝑡

2
) − (𝐺𝑥) (𝑡

1
)





≤ 𝐿
1
[𝜓
1
(

𝜔 (𝑥, 𝜔 (𝛼
1
, 𝜀)) + 𝜔 (𝑥, 𝜔 (𝛼

2
, 𝜀))

2

)

+𝜔
𝑟0
(𝑓, 𝜀) ]

+ 𝐿
2
[

(𝑎 + 𝑏𝑟
0
)

Γ (𝛼)

𝜙
1
(𝑟
0
) ×

1

𝛼

𝜀
𝛼

+𝜔
𝑟0
(𝑢, 𝜀) ×

−1

𝛼

𝜀
𝛼
+ 𝜙
1
(𝑟
0
) 𝜀
𝛼
×

1

𝛼

]

+ 𝐿
2
×

1

Γ (𝛼 + 1)

𝜓
1
(𝜔 (𝑥, 𝜀)) 𝜙

1
(𝑟
0
)

+ 𝐿
3
𝜙
2
(𝜀) ∫

∞

0

𝑚(𝑠) 𝑑𝑠

+ 𝐿
3
𝜙
2
(




𝑥 (𝑡
2
) − 𝑥 (𝑡

1
)




) ∫

∞

0

𝑘 (𝑡
1
, 𝑠) 𝑑𝑠,

(33)

where

𝜔
𝑟0
(𝑢, 𝜀) = sup {


𝑢 (𝑡, 𝑠, 𝑥

1
, 𝑥
2
) − 𝑢 (𝜏, 𝑠, 𝑥

1
, 𝑥
2
)




;

𝑡, 𝑠, 𝜏 ∈ [0, 1] ,

𝑥
1
, 𝑥
2
∈ [0, 𝑟

0
] , |𝑡 − 𝜏| ≤ 𝜀} ,

𝜔
𝑟0
(𝑓, 𝜀) = sup {


𝑓 (𝑡
2
, 𝑥, 𝑦) − 𝑓 (𝑡

1
, 𝑥, 𝑦)





:

𝑡
1
, 𝑡
2
∈ [0, 1] ,





𝑡
2
− 𝑡
1





< 𝜀, 𝑥, 𝑦 ∈ [−𝑟

0
, 𝑟
0
]} .

(34)

The estimate (33) implies that

𝜔 (𝐺𝑥, 𝜀)

≤ 𝐿
1
𝜓
1
(

𝜔 (𝑥, 𝜔 (𝛼
1
, 𝜀)) + 𝜔 (𝑥, 𝜔 (𝛼

2
, 𝜀))

2

)

+ 𝐿
1
𝜔
𝑟0
(𝑓, 𝜀)

+ 𝐿
2
[

(𝑎 + 𝑏𝑟
0
)

Γ (𝛼 + 1)

𝜙
1
(𝑟
0
) ×

1

𝛼

𝜀
𝛼

+𝜔
𝑟0
(𝑢, 𝜀) ×

−1

𝛼

𝜀
𝛼
+ 𝜙
1
(𝑟
0
) 𝜀
𝛼
×

1

𝛼

]

+ 𝐿
2
×

1

Γ (𝛼 + 1)

𝜓
1
(𝜔 (𝑥, 𝜀)) 𝜙

1
(𝑟
0
)

+ 𝐿
3
∫

∞

0

𝜙
2
(𝜀)𝑚 (𝑠) 𝑑𝑠 + 𝐿

3
𝜙
2
(𝜔 (𝑥, 𝜀))𝑀.

(35)

It follows from assumptions (𝐻
1
), (𝐻
4
), and (𝐻

6
) that the

functions 𝛼
1
, 𝛼
2
, 𝑓, and 𝑢 are uniformly continuous on the

sets [0, 1], [0, 1], [0, 1]×[−𝑟
0
, 𝑟
0
]×[−𝑟

0
, 𝑟
0
], and [0, 1]×[0, 1]×

[0, 𝑟
0
] × [0, 𝑟

0
], respectively. Consequently, we infer that

lim
𝜀→0

𝜔 (𝛼
1
, 𝜀) = lim

𝜀→0

𝜔 (𝛼
2
, 𝜀)

= lim
𝜀→0

𝜔
𝑟0
(𝑓, 𝜀) = lim

𝜀→0

𝜔
𝑟0
(𝑢, 𝜀) = 0.

(36)

Hence, using assumptions (𝐻
4
) and (𝐻

7
) and estimate (35),

we get

𝜔
0
(𝐺𝑋)

≤ 𝐿
1
lim
𝜀→0

𝜓
1
(

𝜔 (𝑋, 𝜔 (𝛼
1
, 𝜀)) + 𝜔 (𝑋, 𝜔 (𝛼

2
, 𝜀))

2

)

+ lim
𝜀→0

(𝐿
2
×

1

Γ (𝛼 + 1)

𝜓
1
(𝜔 (𝑋, 𝜀)) 𝜙

1
(𝑟
0
)

+𝐿
3
𝑀𝜙
2
(𝜔 (𝑋, 𝜀)) ) .

(37)

Since the functions 𝜓
1
and 𝜙

2
are continuous and 𝜓

1
(𝑡) +

𝜙
2
(𝑡) ≤ 𝜙(𝑡), then from (36), (37), and the assumption (𝐻

8
),

we conclude that

𝜔
0
(𝐺𝑋) ≤ 𝐿

1
𝜓
1
(𝜔
0
(𝑋))

+𝐿
2
×

1

Γ (𝛼 + 1)

𝜙
1
(𝑟
0
) × 𝜓
1
(𝜔
0
(𝑋))

+𝐿
3
𝑀𝜙
2
(𝜔
0
(𝑋))

≤ (𝐿
1
+ 𝐿
2
𝜙
1
(𝑟
0
) ×

1

Γ (𝛼 + 1)

)

× (𝜓
1
(𝜔
0
(𝑋)) + 𝜙

2
(𝜔
0
(𝑋)))

≤ 𝜙 (𝜔
0
(𝑋)) .

(38)

Thus, Corollary 7 completes the proof.

Now, we present the following example which shows that
Theorem 14 can be applied to obtain solutions of the integral
equation (39) but the existent results in [5, 6] are inapplicable.
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Example 15. Now, we investigate the following integral equa-
tion:

𝑥 (𝑡)

=

𝑒
−𝑡

100

cos( 𝑒
−𝑡

800 (1 + 𝑡
2
) (1 + |𝑥 (𝑡)| + |𝑥 (2𝑡)|)

+

1

100

× cos( 1

(1 + (1/8) |𝑥 (𝑡)|)

)

1

Γ (1/2)

× ∫

𝑡

0

(arctan(𝑒−𝑡𝑠 

max
[0,𝑠] |

𝑥 (𝜏)|

− max
[0,𝑠]









𝑥 (2𝜏)

















)

1

8

))

× ((𝑡 − 𝑠)
1/2
)

−1

𝑑𝑠

+

1

100

∫

∞

0

𝑒
−𝑠

1 + 𝑡/8

sin(|𝑥 (𝑡)|
8

) 𝑑𝑠) ,

(39)

for 𝑡 ∈ [0, 1]. Equation (39) is a special case of the integral
equation (5), where

𝐹 (𝑡, 𝑥, 𝑦, 𝑧) =

𝑒
−𝑡

100

cos(
𝑥 + 𝑦 + 𝑧

100

) ,

𝑓 (𝑡, 𝑥, 𝑦) =

𝑒
−𝑡

8 (1 + 𝑡
2
) (1 + |𝑥| +





𝑦




)

,

𝛼
1
(𝑡) = 𝛾

1
(𝑡) = 𝑟 (𝑡) = 𝑡,

𝛼
2
(𝑡) = 𝛾

2
(𝑡) = 2𝑡,

(𝑇𝑥) (𝑡) = cos( 1

(1 + (1/8) |𝑥 (𝑡)|)

) ,

𝑢 (𝑡, 𝑠, 𝑥, 𝑦) = arctan(
𝑒
−𝑡𝑠 


𝑥 − 𝑦






8

) ,

V (𝑡, 𝑠, 𝑥) =
𝑒
−𝑠

1 + 𝑡/8

sin(|𝑥|
8

) .

(40)

Then, it is easily seen that 𝛼
1
, 𝛼
2
, 𝛾
1
, 𝛾
2
, and 𝑟 satisfy the

assumptions (𝐻
1
) and (𝐻

2
) of the Theorem 14. Further, the

function 𝐹 satisfies assumption (𝐻
3
) with 𝐿

1
= 𝐿
2
= 𝐿
3
=

1/10000 and 𝐹 = 1/100. Since 𝑓(𝑡, 𝑥, 𝑦) = 𝑒
−𝑡
/8(1 + 𝑡

2
)(1 +

|𝑥|+|𝑦|), then, for all 𝑡 ∈ [0, 1] and 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
∈ R, we have





𝑓 (𝑡, 𝑥

1
, 𝑦
1
) − 𝑓 (𝑡, 𝑥

2
, 𝑦
2
)





=











𝑒
−𝑡

8 (1 + 𝑡
2
) (1 +





𝑥
1





+




𝑦
1





)

−

𝑒
−𝑡

8 (1 + 𝑡
2
) (1 +





𝑥
2





+




𝑦
2





)











=

𝑒
−𝑡

8 (1 + 𝑡
2
)















𝑥
2





+




𝑦
2





−




𝑥
1





−




𝑦
1






(1 +




𝑥
1





+




𝑦
1





) (1 +





𝑥
2





+




𝑦
2





)











≤

1

8

(




𝑥
2
− 𝑥
1





+




𝑦
2
− 𝑦
1





) .

(41)

So, the assumption (𝐻
4
) is satisfied with 𝜓

1
(𝑡) = (1/4)𝑡 and

𝑓
0
= 1/8. In this example, we have (𝑇𝑥)(𝑡) = cos(1/(1 +

(1/8)|𝑥(𝑡)|)) and this operator satisfies assumption (𝐻
5
) with

𝜓
1
(𝑡) = 𝑡/8, 𝑎 = 1, and 𝑏 = 0. On the other hand, for all

𝑡, 𝑠 ∈ [0, 1] and 𝑥, 𝑦, 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
∈ R
+
, we get





𝑢 (𝑡, 𝑠, 𝑥, 𝑦)





=











arctan(𝑒−𝑡𝑠




𝑥 − 𝑦






8

)











≤ 𝑒
−𝑡















𝑥 − 𝑦






8











,





𝑢 (𝑡, 𝑠, 𝑥

1
, 𝑦
1
) − 𝑢 (𝑡, 𝑠, 𝑥

2
, 𝑦
2
)




=











arctan(
𝑒
−𝑡𝑠 


𝑥
1
− 𝑦
1






8

)

− arctan(
𝑒
−𝑡𝑠 


𝑥
2
− 𝑦
2






8

)











≤ 𝑒
−𝑡















𝑥
1
− 𝑦
1






8

−





𝑥
2
− 𝑦
2






8











= 𝑒
−𝑡















𝑥
1
− 𝑦
1





−




𝑥
2
− 𝑦
2






8











≤ 𝑒
−𝑡





𝑥
1
− 𝑥
2





+




𝑦
1
− 𝑦
2






8

.

(42)

So, 𝜙
1
(𝑡) = (1/4)𝑡 and 𝑛(𝑡) = 𝑒

−𝑡. Moreover, 𝑛 =

sup{√𝑡𝑒−𝑡; 𝑡 ∈ [0, 1]} = 1/𝑒. Thus, assumption (𝐻
6
)

holds. Now, notice that the function V(𝑡, 𝑠, 𝑥) = (𝑒
−𝑠
/(1 +

𝑡/8)) sin(|𝑥|/8) is continuous and satisfies the conditions (a)
and (b) of the assumption (𝐻

7
). Indeed, for all 𝑡, 𝑡

1
, 𝑡
2
∈ [0, 1],

𝑠 ∈ R
+
, and 𝑥, 𝑦 ∈ R, we have




V (𝑡
2
, 𝑠, 𝑥) − V (𝑡

1
, 𝑠, 𝑥)






=










𝑒
−𝑠

1 + 𝑡
2
/8

sin(|𝑥|
8

) −

𝑒
−𝑠

1 + 𝑡
1
/8

sin(|𝑥|
8

)










≤ 𝑒
−𝑠





𝑡
2
− 𝑡
1






8

,

|V (𝑡, 𝑠, 𝑥)| ≤
𝑒
−𝑠

1 + 𝑡/8

×

|𝑥|

8

,





V (𝑡, 𝑠, 𝑥) − V (𝑡, 𝑠, 𝑦)



=











𝑒
−𝑠

1 + 𝑡/8

sin(|𝑥|
8

) −

𝑒
−𝑠

1 + 𝑡/8

sin(




𝑦





8

)











≤

𝑒
−𝑠

1 + 𝑡/8

(





𝑥 − 𝑦






8

) .

(43)
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So, 𝜙
2
(𝑡) = 𝑡/8, 𝑚(𝑠) = 𝑒

−𝑠, and 𝑘(𝑡, 𝑠) = 𝑒
−𝑠
/(1 + 𝑡/8).

Moreover, 𝑀 = sup
𝑡∈[0,1]

∫

∞

0
𝑘(𝑡, 𝑠)𝑑𝑠 = 1, 𝜓

1
(𝑡) + 𝜙

2
(𝑡) =

𝑡/4 = 𝜙(𝑡), and the condition (b) of the assumption (𝐻
7
)

holds with 𝜙(𝑡) = 𝑡/4. Thus, the existent inequalities in
assumption (𝐻

8
) have the forms

1

40000

𝑟
0
+

1

40000𝑒

×

1

Γ (3/2)

𝑟
0
+

1

10000

×

𝑟
0

8

+

1

8

×

1

10000

+

1

100

≤ 𝑟
0
,

1

10000

≤

1

10000

+

1

10000

×

𝑟
0

4

×

1

Γ (3/2)

≤ 1.

(44)

It is easily seen that the last inequalities have a positive
solution. For example, 𝑟

0
= 1/2. We see that all assumptions

of Theorem 14 are satisfied. Consequently, from Theorem 14
the integral equation (39) has a solution in the space 𝐶(𝐼).
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