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Let {𝑎
𝑛
, 𝑛 ≥ 1} be a sequence of positive constants with 𝑎

𝑛
/𝑛 ↑ and let {𝑋,𝑋

𝑛
, 𝑛 ≥ 1} be a sequence of pairwise negatively quadrant

dependent random variables. The complete convergence for pairwise negatively quadrant dependent random variables is studied
under mild condition. In addition, the strong laws of large numbers for identically distributed pairwise negatively quadrant
dependent random variables are established, which are equivalent to the mild condition ∑∞

𝑛=1
𝑃 (|𝑋| > 𝑎

𝑛
) < ∞. Our results

obtained in the paper generalize the corresponding ones for pairwise independent and identically distributed random variables.

1. Introduction

Throughout the paper, let {𝑎
𝑛
, 𝑛 ≥ 1} be a sequence of positive

constants with 𝑎
𝑛
/𝑛 ↑, and let {𝑋,𝑋

𝑛
, 𝑛 ≥ 1} be a sequence of

pairwise i.i.d. randomvariables. Denote 𝑆
𝑛
= ∑𝑛
𝑖=1

𝑋
𝑖
for each

𝑛 ≥ 1. Now, we consider the following assumptions:

(i) ∑∞
𝑛=1

𝑃(|𝑋| > 𝑎
𝑛
) < ∞;

(ii) 𝑆
𝑛
/𝑎
𝑛

→ 0 a.s.;
(iii) ∑𝑛

𝑖=1
|𝑋
𝑖
|/𝑎
𝑛

→ 0 a.s.

Recently, Sung [1] proved that the three assumptions
above are equivalent for pairwise i.i.d. random variables. In
addition, he presented some results on complete convergence
for pairwise i.i.d. random variables. For more details about
the strong law of large numbers and complete convergence
for independent random variables or dependent random
variables, one can refer to Etemadi [2], Wang et al. [3], Chen
et al. [4], Tang [5], and so forth.

We point out that the keys to the proofs of the main
results of Sung [1] are the Khintchine-Kolmogorov-type
convergence theorem and the second Borel-Cantelli lemma
for pairwise independent events (e.g., see Theorem 4.2.5 in
[6] or Theorem 2.18.5 in [7]), while these are not proved
for pairwise negatively quadrant dependent randomvariables

(pairwise NQD, in short; see Definition 1). If we want to
generalize the main results of Sung [1] to the case of pairwise
NQD random variables, we should propose new methods or
prove the Khintchine-Kolmogorov-type convergence theo-
rem and the second Borel-Cantelli lemma for pairwise NQD
random variables. The answer is positive.

Firstly, let us recall the concept of pairwise negatively
quadrant dependent random variables as follows.

Definition 1. The pair (𝑋, 𝑌) of random variables 𝑋 and 𝑌 is
said to be negatively quadrant dependent (NQD, in short), if,
for all 𝑥, 𝑦 ∈ R,

𝑃 (𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) ≤ 𝑃 (𝑋 ≤ 𝑥) 𝑃 (𝑌 ≤ 𝑦) . (1)

A sequence of random variables {𝑋
𝑛
, 𝑛 ≥ 1} is said to be

pairwise NQD, if (𝑋
𝑖
, 𝑋
𝑗
) is NQD for every 𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1,

2, . . ..
An array {𝑋

𝑛𝑖
, 𝑖 ≥ 1, 𝑛 ≥ 1} of random variables is called

rowwise pairwise NQD random variables if for every 𝑛 ≥ 1,
{𝑋
𝑛𝑖
, 𝑖 ≥ 1} is a sequence of pairwise NQD random variables.

The concept of pairwise NQD random variables was
introduced by Lehmann [8], which includes pairwise inde-
pendent random sequence and some negatively dependent
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sequences, such as negatively associated sequences (see [9–
13]), negatively orthant dependent sequences (see [9, 14–
18]), and linearly negative quadrant dependent sequences (see
[19–21]). Hence, studying the probability limiting behavior
of pairwise NQD random variables and its applications in
probability theory and mathematical statistics are of great
interest. Many authors have dedicated themselves to the
study of it. Matula [10] gained the Kolmogorov-type strong
law of large numbers for the identically distributed pair-
wise NQD sequences; Wu [22] gave the generalized three-
series theorem for pairwise NQD sequences and proved
the Marcinkiewicz strong law of large numbers; Chen [23]
discussed Kolmogorov-Chung strong law of large numbers
for the nonidentically distributed pairwise NQD sequences
under very mild conditions; Wan [24] and Huang et al.
[25] obtained the complete convergence for pairwise NQD
random sequences; Wang et al. [26], Li and Yang [27],
Gan and Chen [28], Shi [29], Xu and Tang [30], and Tang
[31] studied the strong convergence properties for pairwise
NQD random variables; Sung [21] established the 𝐿

𝑟
con-

vergence for weighted sums of arrays of rowwise pairwise
NQD random variables under weaker uniformly integrable
conditions; and so on. The main purpose of the paper is to
establish the second Borel-Cantelli lemma for pairwise NQD
random variables and generalize the main results of Sung [1]
to the case of pairwiseNQDrandomvariableswithout adding
any extra conditions.

Our main results are as follows. The first two results are
the complete convergence for pairwise NQD random vari-
ables.

Theorem 2. Let {𝑎
𝑛
, 𝑛 ≥ 1} be a sequence of positive constants

with 𝑎
𝑛
/𝑛 ↑. Let {𝑋,𝑋

𝑛
, 𝑛 ≥ 1} be a sequence of pairwise NQD

random variables with identical distribution. If ∑∞
𝑛=1

𝑃(|𝑋| >
𝑎
𝑛
) < ∞, then

∞

∑
𝑛=1

𝑛−1𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

[𝑋
𝑖
− 𝐸𝑋
𝑖
𝐼 (󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑛
)]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
> 𝑎
𝑛
𝜀) < ∞

∀𝜀 > 0.

(2)

Theorem 3. Let {𝑎
𝑛
, 𝑛 ≥ 1} be a sequence of positive constants

with 𝑎
𝑛
/𝑛 ↑ ∞. Let {𝑋,𝑋

𝑛
, 𝑛 ≥ 1} be a sequence of

pairwise NQD random variables with identical distribution. If
∑∞
𝑛=1

𝑃(|𝑋| > 𝑎
𝑛
) < ∞, then

∞

∑
𝑛=1

𝑛−1𝑃(max
1≤𝑘≤𝑛

󵄨󵄨󵄨󵄨𝑆𝑘
󵄨󵄨󵄨󵄨 > 𝑎
𝑛
𝜀) < ∞ ∀𝜀 > 0. (3)

The following two theorems are the results on strong
convergence for pairwise NQD random variables.

Theorem 4. Let {𝑎
𝑛
, 𝑛 ≥ 1} be a sequence of positive constants

with 𝑎
𝑛
/𝑛 ↑. Let {𝑋,𝑋

𝑛
, 𝑛 ≥ 1} be a sequence of pairwise

NQD random variables with identical distribution. Then, the
following statements are equivalent:

(i) ∑∞
𝑛=1

𝑃(|𝑋| > 𝑎
𝑛
) < ∞,

(ii) (1/𝑎
𝑛
) ∑𝑛
𝑖=1

[𝑋
𝑖
− 𝐸𝑋
𝑖
𝐼(|𝑋
𝑖
| ≤ 𝑎
𝑛
)] → 0 a.s.

Theorem 5. Let {𝑎
𝑛
, 𝑛 ≥ 1} be a sequence of positive constants

with 𝑎
𝑛
/𝑛 ↑ ∞. Let {𝑋,𝑋

𝑛
, 𝑛 ≥ 1} be a sequence of pairwise

NQD random variables with identical distribution. Then, the
following statements are equivalent:

(i) ∑∞
𝑛=1

𝑃(|𝑋| > 𝑎
𝑛
) < ∞,

(ii) 𝑆
𝑛
/𝑎
𝑛

→ 0 a.s.,
(iii) ∑𝑛

𝑖=1
|𝑋
𝑖
|/𝑎
𝑛

→ 0 a.s.

WithTheorem 5 and the second Borel-Cantelli lemma for
pairwise NQD random variables (see Corollary 16) in hand,
we can get the following result for pairwise NQD random
variables.

Corollary 6. Let {𝑎
𝑛
, 𝑛 ≥ 1} be a sequence of positive constants

with 𝑎
𝑛
/𝑛 ↑. Let {𝑋,𝑋

𝑛
, 𝑛 ≥ 1} be a sequence of pairwise NQD

random variables with identical distribution and 𝐸|𝑋| = ∞.
Then,

lim
𝑛→∞

1

𝑎
𝑛

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑋𝑖
󵄨󵄨󵄨󵄨 = 0 𝑎.𝑠. 𝑖𝑓𝑓

∞

∑
𝑛=1

𝑃 (|𝑋| > 𝑎
𝑛
) < ∞;

lim sup
𝑛→∞

󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨

𝑎
𝑛

= ∞ 𝑎.𝑠. 𝑖𝑓𝑓
∞

∑
𝑛=1

𝑃 (|𝑋| > 𝑎
𝑛
) = ∞.

(4)

Remark 7. Theorems 2 and 3 deal with the complete conver-
gence for pairwise NQD random variables. Theorems 4 and
5 deal with the strong laws of large numbers for pairwise
NQD random variables, which are equivalent to the mild
condition ∑∞

𝑛=1
𝑃(|𝑋| > 𝑎

𝑛
) < ∞. Pairwise NQD is a

verywide dependence structure, which includes independent
sequence as a special case. Hence, Theorems 2–5 generalize
the corresponding ones for pairwise i.i.d. random variables
to the case of pairwise NQD random variables.

Remark 8. Under the conditions ofTheorem 3 and 𝑎
2𝑛

≤ 𝐶𝑎
𝑛
,

we can get the Marcinkiewicz-Zygmund-type strong law of
large numbers for pairwiseNQD randomvariables as follows:

1

𝑎
𝑛

𝑛

∑
𝑖=1

𝑋
𝑖
󳨀→ 0 as 𝑛 󳨀→ ∞. (5)

Remark 9. For a sequence {𝑋,𝑋
𝑛
, 𝑛 ≥ 1} of pairwise i.i.d.

random variables with 𝐸|𝑋| < ∞, Etemadi [2] proved
that ∑𝑛

𝑖=1
(𝑋
𝑖
− 𝐸𝑋

𝑖
)/𝑛 → 0 a.s. Note that 𝐸|𝑋| < ∞ is

equivalent to ∑∞
𝑛=1

𝑃(|𝑋| > 𝑛) < ∞ and 𝐸|𝑋| < ∞ implies
∑𝑛
𝑖=1

𝐸𝑋
𝑖
𝐼(|𝑋
𝑖
| > 𝑖)/𝑛 → 0. Hence, Etemadi’s strong law of

large numbers follows fromTheorem 4 with 𝑎
𝑛
= 𝑛.

Remark 10. Note that lim sup
𝑛→∞

(|𝑆
𝑛
|/𝑎
𝑛
) = ∞ a.s. is

equivalent to 𝑃(|𝑆
𝑛
| > 𝛼 𝑎

𝑛
, i.o.) = 1 for any 𝛼 > 0. Hence,

Corollary 6 improves the corresponding result of Kruglov
[32].

Throughout the paper, let 𝐼(𝐴) be the indicator function
of the set 𝐴. 𝐶 denotes a positive constant not depending on
𝑛, which may be different in various places. Denote 𝑎

0
= 0,

𝑥+ = 𝑥𝐼 (𝑥 ≥ 0), and 𝑥− = −𝑥𝐼 (𝑥 < 0).
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2. Preliminaries

In this section, wewill present some important lemmaswhich
will be used to prove the main results of the paper.

The first three lemmas come from Sung [1].

Lemma 11 (cf.[1]). Let {𝑎
𝑛
, 𝑛 ≥ 1} be a sequence of positive

constants with 𝑎
𝑛
/𝑛 ↑. Then the following properties hold.

(i) {𝑎
𝑛
, 𝑛 ≥ 1} is a strictly increasing sequence with an 𝑎

𝑛
↑

∞.
(ii) ∑∞

𝑛=1
𝑃(𝑋 > 𝑎

𝑛
) < ∞ if and only if∑∞

𝑛=1
𝑃(𝑋 > 2𝑎

𝑛
) <

∞.
(iii) ∑∞

𝑛=1
𝑃(𝑋 > 𝑎

𝑛
) < ∞ if and only if∑∞

𝑛=1
𝑃(𝑋 > 𝛼𝑎

𝑛
) <

∞ for any 𝛼 > 0.

Lemma 12 (cf. [1]). If {𝑎
𝑛
, 𝑛 ≥ 1} is a sequence of positive

constants with 𝑎
𝑛
/𝑛 ↑ and 𝑋 is a random variable, then

𝑛

𝑎
𝑛

𝐸 |𝑋| 𝐼 (|𝑋| ≤ 𝑎
𝑛
) ≤
∞

∑
𝑛=0

𝑃 (|𝑋| > 𝑎
𝑛
) . (6)

Lemma 13 (cf. [1]). Let {𝑎
𝑛
, 𝑛 ≥ 1} be a sequence of positive

constants with 𝑎
𝑛
/𝑛 ↑ ∞ and 𝑋 is a random variable. If

∑∞
𝑛=1

𝑃(|𝑋| > 𝑎
𝑛
) < ∞, then (𝑛/𝑎

𝑛
)𝐸|𝑋|𝐼(|𝑋| ≤ 𝑎

𝑛
) → 0.

The next one is the basic property for pairwise NQD
random variables, which was given by Lehmann [8] as
follows.

Lemma 14 (cf. [8]). Let 𝑋 and 𝑌 be NQD; then

(i) 𝐸𝑋𝑌 ≤ 𝐸𝑋𝐸𝑌;
(ii) 𝑃(𝑋 > 𝑥, 𝑌 > 𝑦) ≤ 𝑃(𝑋 > 𝑥)𝑃(𝑌 > 𝑦), for any

𝑥, 𝑦 ∈ 𝑅;
(iii) if 𝑓 and 𝑔 are both nondecreasing (or nonincreasing)

functions, then 𝑓(𝑋) and 𝑔(𝑌) are NQD.

The following one is the generalized Borel-Cantelli
lemma, which was obtained by Matula [10].

Lemma 15 (cf. [10]). Let {𝐴
𝑛
, 𝑛 ≥ 1} be a sequence of events.

(i) If ∑∞
𝑛=1

𝑃(𝐴
𝑛
) < ∞, then 𝑃(𝐴

𝑛
, 𝑖.𝑜.) = 0.

(ii) If 𝑃(𝐴
𝑘
𝐴
𝑚
) ≤ 𝑃(𝐴

𝑘
)𝑃(𝐴
𝑚
) for 𝑘 ̸=𝑚 and

∑∞
𝑛=1

𝑃(𝐴
𝑛
) = ∞, then 𝑃(𝐴

𝑛
, 𝑖.𝑜.) = 1.

With the generalized Borel-Cantelli lemma accounted
for, we can establish the second Borel-Cantelli lemma for
pairwise NQD random variables as follows.

Corollary 16 (second Borel-Cantelli lemma for pairwise
NQD random variables). Let {𝑎

𝑛
, 𝑛 ≥ 1} be a sequence of

positive constants with 𝑎
𝑛
/𝑛 ↑. Let {𝑋

𝑛
, 𝑛 ≥ 1} be a sequence of

pairwise NQD random variables. Then

𝑋
𝑛

𝑎
𝑛

󳨀→ 0 𝑎.𝑠. ⇐⇒
∞

∑
𝑛=1

𝑃 (󵄨󵄨󵄨󵄨𝑋𝑛
󵄨󵄨󵄨󵄨 > 𝑎
𝑛
) < ∞. (7)

Proof. “⇐”. By Lemma 11, ∑∞
𝑛=1

𝑃(|𝑋
𝑛
| > 𝑎
𝑛
) < ∞ is equiv-

alent to ∑∞
𝑛=1

𝑃(|𝑋
𝑛
| > 𝑎
𝑛
𝜀) < ∞ for all 𝜀 > 0, which yields

that𝑋
𝑛
/𝑎
𝑛

→ 0 a.s. by Borel-Cantelli lemma.
⇒. Let 𝑋

𝑛
/𝑎
𝑛

→ 0 a.s., which implies that 𝑋+
𝑛
/𝑎
𝑛

→ 0
a.s. and𝑋−

𝑛
/𝑎
𝑛

→ 0 a.s.
For any 𝜀 > 0, denote

𝐴
𝑛
(1) = {

𝑋+
𝑛

𝑎
𝑛

>
𝜀

2
} , 𝐴

𝑛
(2) = {

𝑋−
𝑛

𝑎
𝑛

>
𝜀

2
} . (8)

Hence,

𝑃 {𝐴
𝑛
(𝑗) , i.o.} = 0, 𝑗 = 1, 2. (9)

By Lemma 14(iii), we can see that {𝑋+
𝑛
, 𝑛 ≥ 1} and {𝑋−

𝑛
, 𝑛 ≥

1} are both sequences of pairwise NQD random variables. It
follows by Lemma 14(ii) that, for any 𝑘 ̸=𝑚,

𝑃 (𝐴
𝑘
(𝑗) 𝐴
𝑚
(𝑗)) ≤ 𝑃 (𝐴

𝑘
(𝑗)) 𝑃 (𝐴

𝑚
(𝑗)) , 𝑗 = 1, 2.

(10)

By Lemma 15(ii) and (9)-(10), we can see that
∑∞
𝑛=1

𝑃(𝐴
𝑛
(𝑗)) < ∞ for 𝑗 = 1, 2. Hence,

∞

∑
𝑛=1

𝑃 (󵄨󵄨󵄨󵄨𝑋𝑛
󵄨󵄨󵄨󵄨 > 𝑎
𝑛
𝜀) ≤
∞

∑
𝑛=1

𝑃 (𝐴
𝑛
(1)) +

∞

∑
𝑛=1

𝑃 (𝐴
𝑛
(2)) < ∞

for any 𝜀 > 0,
(11)

which is equivalent to ∑∞
𝑛=1

𝑃(|𝑋
𝑛
| > 𝑎
𝑛
) < ∞ by Lemma 11.

This completes the proof of the corollary.

The last one is the Kolmogorov-type strong law of large
numbers for pairwise NQD random variables obtained by
Chen [23], which plays an important role in proving themain
results of the paper.

Lemma 17 (cf. [23]). Let {𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of pairwise

NQD random variables with Var(𝑋
𝑛
) < ∞ for each 𝑛 ≥ 1. Let

{𝑎
𝑛
, 𝑛 ≥ 1} be a sequence of real numbers satisfying 0 < 𝑎

𝑛
↑

∞. Suppose that

(i) sup
𝑛≥1

𝑎−1
𝑛

∑𝑛
𝑖=1

𝐸|𝑋
𝑖
− 𝐸𝑋
𝑖
| < ∞;

(ii) ∑∞
𝑛=1

Var(𝑋
𝑛
)/𝑎2
𝑛
< ∞.

Then 𝑎−1
𝑛

∑𝑛
𝑖=1

(𝑋
𝑖
− 𝐸𝑋
𝑖
) → 0 a.s.

3. Proofs of Theorems 2–5

Proof of Theorem 2. Note that the condition 𝑎
𝑛
/𝑛 ↑ implies

that
∞

∑
𝑛=𝑖

1

𝑎2
𝑛

≤
∞

∑
𝑛=𝑖

𝑖2

𝑎2
𝑖
𝑛2

≤
𝑖2

𝑎2
𝑖

∞

∑
𝑛=𝑖

1

𝑛2
≤

𝑖2

𝑎2
𝑖

⋅
2

𝑖
=

2𝑖

𝑎2
𝑖

. (12)

For fixed 𝑛 ≥ 1, denote for 1 ≤ 𝑖 ≤ 𝑛 that

𝑌
𝑖
= −𝑎
𝑛
𝐼 (𝑋
𝑖
< −𝑎
𝑛
) + 𝑋
𝑖
𝐼 (󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑛
) + 𝑎
𝑛
𝐼 (𝑋
𝑖
> 𝑎
𝑛
) .
(13)
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It is easily checked that

∞

∑
𝑛=1

𝑛−1𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

[𝑋
𝑖
− 𝐸𝑋
𝑖
𝐼 (󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑛
)]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
> 𝑎
𝑛
𝜀)

≤
∞

∑
𝑛=1

𝑛−1𝑃(
𝑛

⋃
𝑖=1

(󵄨󵄨󵄨󵄨𝑋𝑖
󵄨󵄨󵄨󵄨 > 𝑎
𝑛
))

+
∞

∑
𝑛=1

𝑛−1𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

(𝑌
𝑖
− 𝐸𝑋
𝑖
𝐼 (󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑛
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
> 𝑎
𝑛
𝜖)

≤
∞

∑
𝑛=1

𝑃 (|𝑋| > 𝑎
𝑛
) +
∞

∑
𝑛=1

𝑛−1𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

(𝑌
𝑖
− 𝐸𝑌
𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
>

𝑎
𝑛
𝜖

2
)

+
∞

∑
𝑛=1

𝑛−1𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

(𝐸𝑌
𝑖
− 𝐸𝑋
𝑖
𝐼 (󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑛
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
>

𝑎
𝑛
𝜖

2
)

=̇ 𝐼
1
+ 𝐼
2
+ 𝐼
3
.

(14)

To prove the desired result (2), it suffices to show 𝐼
𝑗
< ∞ for

𝑗 = 1, 2, 3. Note that 𝐼
1
< ∞; we only need to prove 𝐼

2
< ∞

and 𝐼
3
< ∞.

Note that {𝑌
𝑖
− 𝐸𝑌
𝑖
, 1 ≤ 𝑖 ≤ 𝑛} are pairwise NQD random

variables by Lemma 14(iii); we have by Markov’s inequality,
Lemma 14(i), and the assumption∑∞

𝑛=1
𝑃(|𝑋| > 𝑎

𝑛
) < ∞ that

𝐼
2
=
∞

∑
𝑛=1

𝑛−1𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

(𝑌
𝑖
− 𝐸𝑌
𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
>

𝑎
𝑛
𝜖

2
)

≤ 𝐶
∞

∑
𝑛=1

𝑛−1𝑎−2
𝑛

𝑛

∑
𝑖=1

𝐸(𝑌
𝑖
− 𝐸𝑌
𝑖
)
2

≤ 𝐶
∞

∑
𝑛=1

𝑎−2
𝑛

𝐸𝑌2
1

≤ 𝐶
∞

∑
𝑛=1

𝑎−2
𝑛

𝐸𝑋2𝐼 (|𝑋| ≤ 𝑎
𝑛
) + 𝐶

∞

∑
𝑛=1

𝑃 (|𝑋| > 𝑎
𝑛
)

≤ 𝐶
∞

∑
𝑛=1

𝑎−2
𝑛

𝐸𝑋2𝐼 (|𝑋| ≤ 𝑎
𝑛
) + 𝐶.

(15)

Combining with (12) and (15), we have

𝐼
2
≤ 𝐶
∞

∑
𝑛=1

𝑎−2
𝑛

𝑛

∑
𝑖=1

𝐸𝑋2𝐼 (𝑎
𝑖−1

< |𝑋| ≤ 𝑎
𝑖
) + 𝐶

= 𝐶
∞

∑
𝑖=1

𝐸𝑋2𝐼 (𝑎
𝑖−1

< |𝑋| ≤ 𝑎
𝑖
)
∞

∑
𝑛=𝑖

𝑎−2
𝑛

+ 𝐶

≤ 𝐶
∞

∑
𝑖=1

𝐸𝑋2𝐼 (𝑎
𝑖−1

< |𝑋| ≤ 𝑎
𝑖
) 𝑖𝑎−2
𝑖

+ 𝐶

≤ 𝐶
∞

∑
𝑖=1

𝑖𝑃 (𝑎
𝑖−1

< |𝑋| ≤ 𝑎
𝑖
) + 𝐶

≤ 𝐶
∞

∑
𝑖=0

𝑃 (|𝑋| > 𝑎
𝑖
) + 𝐶 < ∞.

(16)

Finally, we will prove 𝐼
3
< ∞. It is easily seen that

𝐼
3
=
∞

∑
𝑛=1

𝑛−1𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

(𝐸𝑌
𝑖
− 𝐸𝑋
𝑖
𝐼 (󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑛
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
>

𝑎
𝑛
𝜖

2
)

≤
∞

∑
𝑛=1

𝑛−1𝑃(
𝑛

∑
𝑖=1

𝑃 (󵄨󵄨󵄨󵄨𝑋𝑖
󵄨󵄨󵄨󵄨 > 𝑎
𝑛
) >

𝜖

2
)

=
∞

∑
𝑛=1

𝑛−1𝑃(𝑛𝑃 (|𝑋| > 𝑎
𝑛
) >

𝜖

2
) .

(17)

In the following we prove 𝑛𝑃(|𝑋| > 𝑎
𝑛
) → 0. Note that

∑∞
𝑛=1

𝑃(|𝑋| > 𝑎
𝑛
) < ∞ and 0 ≤ 𝑃(|𝑋| > 𝑎

𝑛
) ↓ as 𝑛 ↑; we have

𝑃(|𝑋| > 𝑎
𝑛
) = 𝑜(1/𝑛), which implies that 𝑛𝑃(|𝑋| > 𝑎

𝑛
) → 0.

Hence, 𝐼
3
< ∞. This completes the proof of the theorem.

Proof of Theorem 3. We use the same notations as those in
Theorem 2. It is easy to see that

∞

∑
𝑛=1

𝑛−1𝑃(max
1≤𝑘≤𝑛

󵄨󵄨󵄨󵄨𝑆𝑘
󵄨󵄨󵄨󵄨 > 𝑎
𝑛
𝜀)

≤
∞

∑
𝑛=1

𝑛−1
𝑛

∑
𝑖=1

𝑃 (󵄨󵄨󵄨󵄨𝑋𝑖
󵄨󵄨󵄨󵄨 > 𝑎
𝑛
)

+
∞

∑
𝑛=1

𝑛−1𝑃(max
1≤𝑘≤𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘

∑
𝑖=1

𝑋
𝑖
𝐼 (󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑛
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
> 𝑎
𝑛
𝜖)

≤
∞

∑
𝑛=1

𝑃 (|𝑋| > 𝑎
𝑛
)

+
∞

∑
𝑛=1

𝑛−1𝑃(
𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑋𝑖𝐼 (
󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑛
)󵄨󵄨󵄨󵄨 > 𝑎

𝑛
𝜖)

=
∞

∑
𝑛=1

𝑃 (|𝑋| > 𝑎
𝑛
)

+
∞

∑
𝑛=1

𝑛−1𝑃(
𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑋𝑖𝐼 (
󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑛
) − 𝑌
𝑖
+ 𝑌
𝑖
− 𝐸𝑋
𝑖
𝐼

× (󵄨󵄨󵄨󵄨𝑋𝑖
󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑛
) + 𝐸𝑋

𝑖
𝐼 (󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑛
)󵄨󵄨󵄨󵄨 > 𝑎

𝑛
𝜖)

≤ 𝐶 +
∞

∑
𝑛=1

𝑛−1𝑃(
𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑛𝐼 (𝑋𝑖 < −𝑎
𝑛
) − 𝑎
𝑛
𝐼 (𝑋
𝑖
> 𝑎
𝑛
)󵄨󵄨󵄨󵄨

>
𝑎
𝑛
𝜖

3
)

+
∞

∑
𝑛=1

𝑛−1𝑃(
𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑌𝑖 − 𝐸𝑋
𝑖
𝐼 (󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑛
)󵄨󵄨󵄨󵄨 >

𝑎
𝑛
𝜖

3
)

+
∞

∑
𝑛=1

𝑛−1𝑃(
𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝐸𝑋𝑖𝐼 (
󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑛
)󵄨󵄨󵄨󵄨 >

𝑎
𝑛
𝜖

3
)
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≤ 𝐶 +
∞

∑
𝑛=1

𝑛−1𝑃(
𝑛

∑
𝑖=1

𝐼 (󵄨󵄨󵄨󵄨𝑋𝑖
󵄨󵄨󵄨󵄨 > 𝑎
𝑛
) >

𝜖

3
)

+
∞

∑
𝑛=1

𝑛−1𝑃(
𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑌𝑖 − 𝐸𝑋
𝑖
𝐼 (󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑛
)󵄨󵄨󵄨󵄨 >

𝑎
𝑛
𝜖

3
)

+
∞

∑
𝑛=1

𝑛−1𝑃(𝑛𝐸 |𝑋| 𝐼 (|𝑋| ≤ 𝑎
𝑛
) >

𝑎
𝑛
𝜖

3
)

=̇ 𝐶 + 𝐽
1
+ 𝐽
2
+ 𝐽
3
.

(18)

To prove the desired result (3), it remains to show 𝐽
𝑖
< ∞ for

𝑖 = 1, 2, 3.
By Markov’s inequality and the assumption∑∞

𝑛=1
𝑃(|𝑋| >

𝑎
𝑛
) < ∞, we have

𝐽
1
≤ 𝐶
∞

∑
𝑛=1

𝑛−1
𝑛

∑
𝑖=1

𝑃 (󵄨󵄨󵄨󵄨𝑋𝑖
󵄨󵄨󵄨󵄨 > 𝑎
𝑛
) = 𝐶

∞

∑
𝑛=1

𝑃 (|𝑋| > 𝑎
𝑛
) < ∞.

(19)

By the assumptions of Theorem 3 and Lemma 13, we have
(𝑛/𝑎
𝑛
)𝐸|𝑋|𝐼(|𝑋| ≤ 𝑎

𝑛
) → 0, which implies that 𝐽

3
< ∞.

In the following, we will prove 𝐽
2
< ∞. It is easily checked

that

𝐽
2
≤
∞

∑
𝑛=1

𝑛−1𝑃(
𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑌𝑖 − 𝐸𝑌
𝑖

󵄨󵄨󵄨󵄨 >
𝑎
𝑛
𝜖

6
)

+
∞

∑
𝑛=1

𝑛−1𝑃(
𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨− 𝑃 (𝑋
𝑖
< −𝑎
𝑛
)

+𝑃 (𝑋
𝑖
> − 𝑎
𝑛
)󵄨󵄨󵄨󵄨 >

𝜖

6
)

≤
∞

∑
𝑛=1

𝑛−1𝑃(
𝑛

∑
𝑖=1

(𝑌
𝑖
− 𝐸𝑌
𝑖
)
+

>
𝑎
𝑛
𝜖

12
)

+
∞

∑
𝑛=1

𝑛−1𝑃(
𝑛

∑
𝑖=1

(𝑌
𝑖
− 𝐸𝑌
𝑖
)
−

>
𝑎
𝑛
𝜖

12
)

+
∞

∑
𝑛=1

𝑛−1𝑃(𝑛𝑃 (|𝑋| > 𝑎
𝑛
) >

𝜖

6
)

=̇𝐽
21

+ 𝐽
22

+ 𝐽
23
.

(20)

Similar to the proof of 𝐼
3
< ∞ in Theorem 2, we can get

that 𝐽
23

< ∞.
Note that, for fixed 𝑛 ≥ 1, {(𝑌

𝑖
−𝐸𝑌
𝑖
)+, 1 ≤ 𝑖 ≤ 𝑛} and {(𝑌

𝑖
−

𝐸𝑌
𝑖
)−, 1 ≤ 𝑖 ≤ 𝑛} are both pairwise NQD random variables.

Hence, similar to the proof of 𝐼
2
< ∞ in Theorem 2, we have

𝐽
21

≤ 𝐶
∞

∑
𝑛=1

𝑛−1𝑎−2
𝑛

𝑛

∑
𝑖=1

𝐸[(𝑌
𝑖
− 𝐸𝑌
𝑖
)
+

]
2

≤ 𝐶
∞

∑
𝑛=1

𝑎−2
𝑛

𝐸𝑌2
1
< ∞.

(21)

Similarly, we have 𝐽
22

< ∞. Therefore, 𝐽
2
< ∞ follows by the

statements above. This completes the proof of the theorem.

Proof of Theorem 4. Firstly, we will prove that (i)⇒ (ii).
For fixed 𝑛 ≥ 1, denote

𝑌
𝑛
= − 𝑎
𝑛
𝐼 (𝑋
𝑛
< − 𝑎
𝑛
) + 𝑋
𝑛
𝐼 (󵄨󵄨󵄨󵄨𝑋𝑛

󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑛
) + 𝑎
𝑛
𝐼 (𝑋
𝑛
> 𝑎
𝑛
) .
(22)

Similar to the proof of 𝐼
2
< ∞ in Theorem 2, we have

∞

∑
𝑛=1

𝑎−2
𝑛

Var (𝑌
𝑛
) ≤
∞

∑
𝑛=1

𝑎−2
𝑛

𝐸𝑌2
𝑛

≤
∞

∑
𝑛=1

𝑎−2
𝑛

𝐸𝑋2𝐼 (|𝑋| ≤ 𝑎
𝑛
) +
∞

∑
𝑛=1

𝑃 (|𝑋| > 𝑎
𝑛
)

≤ 𝐶
∞

∑
𝑛=0

𝑃 (|𝑋| > 𝑎
𝑛
) + 𝐶 < ∞.

(23)

It follows by Lemma 12 that

sup
𝑛≥1

𝑎−1
𝑛

𝑛

∑
𝑖=1

𝐸 󵄨󵄨󵄨󵄨𝑌𝑖 − 𝐸𝑌
𝑖

󵄨󵄨󵄨󵄨

≤ 2 sup
𝑛≥1

𝑎−1
𝑛

𝑛

∑
𝑖=1

𝐸 󵄨󵄨󵄨󵄨𝑌𝑖
󵄨󵄨󵄨󵄨

≤ 2
∞

∑
𝑖=1

𝑃 (󵄨󵄨󵄨󵄨𝑋𝑖
󵄨󵄨󵄨󵄨 > 𝑎
𝑖
) + 2 sup
𝑛≥1

𝑛𝑎−1
𝑛

𝐸 |𝑋| 𝐼 (|𝑋| ≤ 𝑎
𝑛
)

≤ 𝐶
∞

∑
𝑛=0

𝑃 (|𝑋| > 𝑎
𝑛
) < ∞.

(24)

Since Var(𝑌
𝑛
) ≤ 𝑎2
𝑛
< ∞ for each 𝑛 ≥ 1, we have by (23) and

(24) and Lemma 17 that

1

𝑎
𝑛

𝑛

∑
𝑖=1

(𝑌
𝑖
− 𝐸𝑌
𝑖
) 󳨀→ 0 a.s. (25)

Note that

1

𝑎
𝑛

𝑛

∑
𝑖=1

(𝑌
𝑖
− 𝐸𝑌
𝑖
)

=
1

𝑎
𝑛

𝑛

∑
𝑖=1

[𝑋
𝑖
𝐼 (󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑖
) − 𝐸𝑋

𝑖
𝐼 (󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑖
)]

+
1

𝑎
𝑛

𝑛

∑
𝑖=1

[𝑎
𝑖
𝐼 (𝑋
𝑖
> 𝑎
𝑖
) − 𝑎
𝑖
𝐼 (𝑋
𝑖
< −𝑎
𝑖
) − 𝑎
𝑖
𝑃 (𝑋
𝑖
> 𝑎
𝑖
)

+𝑎
𝑖
𝑃 (𝑋
𝑖
< −𝑎
𝑖
)] ,

(26)
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and the assumption ∑∞
𝑛=1

𝑃(|𝑋| > 𝑎
𝑛
) < ∞ implies that

∑∞
𝑛=1

𝐼(|𝑋
𝑛
| > 𝑎
𝑛
) < ∞ a.s.; we can get that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑
𝑛=1

1

𝑎
𝑛

(𝑎
𝑛
𝐼 (𝑋
𝑛
> 𝑎
𝑛
) − 𝑎
𝑛
𝐼 (𝑋
𝑛
< −𝑎
𝑛
)

− 𝑎
𝑛
𝑃 (𝑋
𝑛
> 𝑎
𝑛
) + 𝑎
𝑛
𝑃 (𝑋
𝑛
< −𝑎
𝑛
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
∞

∑
𝑛=1

𝐼 (󵄨󵄨󵄨󵄨𝑋𝑛
󵄨󵄨󵄨󵄨 > 𝑎
𝑛
) +
∞

∑
𝑛=1

𝑃 (󵄨󵄨󵄨󵄨𝑋𝑛
󵄨󵄨󵄨󵄨 > 𝑎
𝑛
) < ∞ a.s.,

(27)

which together with Kronecker’s lemma yield that

1

𝑎
𝑛

𝑛

∑
𝑖=1

[𝑎
𝑖
𝐼 (𝑋
𝑖
> 𝑎
𝑖
) − 𝑎
𝑖
𝐼 (𝑋
𝑖
< −𝑎
𝑖
) − 𝑎
𝑖
𝑃 (𝑋
𝑖
> 𝑎
𝑖
)

+ 𝑎
𝑖
𝑃 (𝑋
𝑖
< −𝑎
𝑖
)] 󳨀→ 0 a.s.

(28)

By (26) and (28), we have

1

𝑎
𝑛

𝑛

∑
𝑖=1

(𝑋
𝑖
𝐼 (󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑖
) − 𝐸𝑋

𝑖
𝐼 (󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑖
)) 󳨀→ 0 a.s. (29)

It follows by the assumption∑∞
𝑛=1

𝑃(|𝑋| > 𝑎
𝑛
) < ∞ again that

1

𝑎
𝑛

𝑛

∑
𝑖=1

𝑋
𝑖
𝐼 (󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 > 𝑎
𝑖
) 󳨀→ 0 a.s. (30)

Therefore, the desired result (ii) follows by (29) and (30)
immediately.

Next, we will prove that (ii)⇒ (i). Assume that

𝑎−1
𝑛

𝑛

∑
𝑖=1

[𝑋
𝑖
− 𝐸𝑋
𝑖
𝐼 (󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑖
)] 󳨀→ 0 a.s. (31)

Then, we have
𝑋
𝑛
− 𝐸𝑋
𝑛
𝐼 (󵄨󵄨󵄨󵄨𝑋𝑛

󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑛
)

𝑎
𝑛

=
1

𝑎
𝑛

𝑛

∑
𝑖=1

[𝑋
𝑖
− 𝐸𝑋
𝑖
𝐼 (󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑖
)]

−
𝑎
𝑛−1

𝑎
𝑛

1

𝑎
𝑛−1

𝑛−1

∑
𝑖=1

[𝑋
𝑖
− 𝐸𝑋
𝑖
𝐼 (󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑖
)]

󳨀→ 0 a.s.

(32)

Note that
𝐸 󵄨󵄨󵄨󵄨𝑋𝑛

󵄨󵄨󵄨󵄨 𝐼 (
󵄨󵄨󵄨󵄨𝑋𝑛

󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑛
)

𝑎
𝑛

=
𝐸 |𝑋| (𝐼 (|𝑋| ≤ 𝑎

𝑁
) + 𝐼 (𝑎

𝑁
< |𝑋| ≤ 𝑎

𝑛
))

𝑎
𝑛

≤
𝑎
𝑁

𝑎
𝑛

𝑃 (|𝑋| ≤ 𝑎
𝑁
) + 𝑃 (𝑎

𝑁
< |𝑋| ≤ 𝑎

𝑛
)

≤
𝑎
𝑁

𝑎
𝑛

+ 𝑃 (|𝑋| > 𝑎
𝑁
)
𝑛→∞

󳨀󳨀󳨀󳨀󳨀→ 𝑃 (|𝑋| > 𝑎
𝑁
) 󳨀→ 0,

(33)

as𝑁 → ∞, which implies that
𝐸𝑋
𝑛
𝐼 (󵄨󵄨󵄨󵄨𝑋𝑛

󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑛
)

𝑎
𝑛

󳨀→ 0 as 𝑛 󳨀→ ∞. (34)

It follows by (32) and (34) that 𝑋
𝑛
/𝑎
𝑛

→ 0 a.s., which is
equivalent to (i) by Corollary 16.The proof is completed.

Proof of Theorem 5. Firstly, we will prove that (ii) ⇒ (i). It
follows by (ii) that

𝑋
𝑛

𝑎
𝑛

=
1

𝑎
𝑛

𝑛

∑
𝑖=1

𝑋
𝑖
−

𝑎
𝑛−1

𝑎
𝑛

1

𝑎
𝑛−1

𝑛−1

∑
𝑖=1

𝑋
𝑖
󳨀→ 0 a.s., (35)

which together with Corollary 16 imply that (i) holds.
On the other hand, assume that∑∞

𝑛=1
𝑃(|𝑋| > 𝑎

𝑛
) < ∞; it

follows by Lemma 13 that

1

𝑎
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝐸𝑋
𝑖
𝐼 (󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑛
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

𝑛

𝑎
𝑛

𝐸 |𝑋| 𝐼 (|𝑋| ≤ 𝑎
𝑛
) 󳨀→ 0 a.s.

(36)

The desired result (ii) follows by Theorem 4 and (36) imme-
diately.

We have proved that (i) ⇔ (ii); next we prove (i) ⇔ (iii).
It follows by Lemma 11(iii) that, for any 𝜖 > 0,
∞

∑
𝑛=1

𝑃 (|𝑋| > 𝑎
𝑛
) < ∞

⇐⇒
∞

∑
𝑛=1

𝑃 (|𝑋| > 𝑎
𝑛
𝜖) < ∞

⇐⇒
∞

∑
𝑛=1

𝑃 (𝑋+ > 𝑎
𝑛
𝜖) < ∞,

∞

∑
𝑛=1

𝑃 (𝑋− > 𝑎
𝑛
𝜖) < ∞

⇐⇒
∞

∑
𝑛=1

𝑃 (𝑋+ > 𝑎
𝑛
) < ∞,

∞

∑
𝑛=1

𝑃 (𝑋− > 𝑎
𝑛
) < ∞.

(37)

On the other hand, we have proved that (i)⇔ (ii); hence,
∞

∑
𝑛=1

𝑃 (𝑋+ > 𝑎
𝑛
) < ∞,

∞

∑
𝑛=1

𝑃 (𝑋− > 𝑎
𝑛
) < ∞

⇐⇒
𝑛

∑
𝑖=1

𝑋+
𝑖

𝑎
𝑛

󳨀→ 0 a.s.,
𝑛

∑
𝑖=1

𝑋−
𝑖

𝑎
𝑛

󳨀→ 0 a.s.

⇐⇒
𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑋𝑖
󵄨󵄨󵄨󵄨

𝑎
𝑛

󳨀→ 0 a.s.

(38)

Therefore, (i) ⇔ (iii) follows by the statements above imme-
diately. This completes the proof of the theorem.

Proof of Corollary 6. The techniques used here are the second
Borel-Cantelli lemma for pairwise NQD random variables
(see Corollary 16) andTheorem 5.The proof is similar to that
of Corollary 2.1 of Sung [1], so the details of the proof are
omitted.
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