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We investigate the exponential Radon transform on a certain function space of generalized functions. We establish certain space
of generalized functions for the cited transform. The transform that is obtained is well defined. More properties of consistency,
convolution, analyticity, continuity, and sufficient theorems have been established.

1. Introduction

TheRadon transform of a sufficiently nice function𝑓 defined
on R𝑛 is given by

(R
𝜗
𝑓) (𝜂) ≡ (R𝑓) (𝜗, 𝜂) ≡ ∫

𝜗
⊥

𝑓 (𝜂𝜗 + 𝑢) d𝑢, (1)

where (𝜗, 𝜂) ∈ R̃𝑛 = ∑
𝑛−1

𝑥𝑝, ∑
𝑛−1

is the unit sphere in
R𝑛, and d𝑢 is the Euclidean measure on the subspace 𝜗⊥
orthogonal to 𝜗.

Applications of the Radon transform occur in a number
of areas, such as seismic signal processing, remote sensing,
and system identification from output data [1, 2]. The Radon
transform is extended to various spaces of distributions,
rapidly decreasing and integrable Boehmians [3, 4]. More
about the Radon transform is given in [5–9].

The discrete Radon transform is defined by [10, 11]. The
attenuated Radon transform is defined in Mikusiński et al.
[12, 13]. For a uniform attenuation coefficient 𝜇 ∈ C, the
exponential Radon transform of a compactly supported real
valued function 𝑓, defined on R2, is given by Kurusa and
Hertle [7, 8]:

T𝑒
𝜇
𝑓 (𝜗, 𝑡) = ∫

R2
𝑓 (x) 𝛿 (x ⋅ 𝜗 − 𝑡) 𝑒𝜇x⋅𝜗

⊥

dx, 𝑡 ∈ R, (2)

where 𝜗 = (cos𝜑, sin𝜑)𝜏 is a unit vector on S1, 𝜑 ∈
[0, 2𝜋), 𝜗⊥ = (− sin𝜑, cos𝜑).

The exponential Radon transform constitutes a mathe-
maticalmodel for imagingmodalities such as X-ray tomogra-
phy for 𝜇 = 0, single photon emission tomography for 𝜇 ∈ R,
and optical polarization tomography of trass tensor field [14].
However, if in addition 𝜇 is unknown, then one firstmust find
𝜇 and then find 𝑓. This is the identification problem.

The exponential Radon transform, as a generalization of
the Radon transform, is defined as a mapping of function
spaces and is also represented in terms of Fourier transforms
of its domain and range, and this leads to a characterization of
the range of the transform. For more information about the
exponential Radon transform, we refer to [15, 16].

2. General Construction of Boehmians

The minimal structure necessary for the construction of
Boehmians consists of the following elements:

(i) a set a and a commutative semigroup (g, ∗);
(ii) an operation ⊙ : a × g → a such that for each 𝑥 ∈ a

and 𝜐
1
, 𝜐
2
, ∈ g,

𝑥 ⊙ (𝜐
1
∗ 𝜐
2
) = (𝑥 ⊙ 𝜐

1
) ⊙ 𝜐
2
; (3)
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(iii) a collection Δ ⊂ gN satisfying the following:

(1) if 𝑥, 𝑦 ∈ a, (𝜐
𝑛
) ∈ Δ, 𝑥 ⊙ 𝜐

𝑛
= 𝑦 ⊙ 𝜐

𝑛
for all 𝑛,

then 𝑥 = 𝑦;
(2) if (𝜐

𝑛
), (𝜎
𝑛
) ∈ Δ, then (𝜐

𝑛
∗𝜎
𝑛
) ∈ Δ, Δ being the

set of all delta sequences.

Consider

A = {(𝑥
𝑛
, 𝜐
𝑛
) : 𝑥
𝑛
∈ a, (𝜐

𝑛
) ∈ Δ, 𝑥

𝑛
⊙ 𝜐
𝑚

= 𝑥
𝑚
⊙ 𝜐
𝑛
, ∀𝑚, 𝑛 ∈ N} .

(4)

If (𝑥
𝑛
, 𝜐
𝑛
), (𝑦
𝑛
, 𝜎
𝑛
) ∈ A, 𝑥

𝑛
⊙ 𝜎
𝑚
= 𝑦
𝑚
⊙ 𝜐
𝑛
, ∀𝑚, 𝑛 ∈ N, then

we say (𝑥
𝑛
, 𝜐
𝑛
) ∼ (𝑦

𝑛
, 𝜎
𝑛
). The relation ∼ is an equivalence

relation inA.The space of equivalence classes inA is denoted
by 𝛿(a, (g, ∗), ⊙, Δ). Elements of 𝛿(a, (g, ∗), ⊙, Δ) are called
Boehmians.

Between a and 𝛿(a, (g, ∗), ⊙, Δ) there is a canonical
embedding expressed as

𝑥 󳨀→
𝑥 ⊙ 𝑠
𝑛

𝑠
𝑛

as 𝑛 󳨀→ ∞. (5)

The operation ⊙ can be extended to 𝛿(a, (g, ∗), ⊙, Δ) × a
by

𝑥
𝑛

𝜐
𝑛

⊙ 𝑡 =
𝑥
𝑛
⊙ 𝑡

𝜐
𝑛

. (6)

In 𝛿(a, (g, ∗), Δ), two types of convergence exist:

(1) a sequence (ℎ
𝑛
) in 𝛿(a, (g, ∗), ⊙, Δ) is said to be 𝛿-

convergent to ℎ in 𝛿(a, (g, ∗), ⊙, Δ), denoted by ℎ
𝑛

𝛿

󳨀→
ℎ as 𝑛 → ∞, if there exists a delta sequence (𝜐

𝑛
)

such that (ℎ
𝑛
⊙ 𝜐
𝑛
), (ℎ ⊙ 𝜐

𝑛
) ∈ a, ∀𝑘, 𝑛 ∈ N, and

(ℎ
𝑛
⊙ 𝜐
𝑘
) → (ℎ ⊙ 𝜐

𝑘
) as 𝑛 → ∞, in a, for every

𝑘 ∈ N;
(2) a sequence (ℎ

𝑛
) in 𝛿(a, (g, ∗), ⊙, Δ) is said to be Δ-

convergent to ℎ in 𝛿(a, (g, ∗), ⊙, Δ), denoted by ℎ
𝑛

Δ

󳨀→
ℎ as 𝑛 → ∞, if there exists a (𝜐

𝑛
) ∈ Δ such that (ℎ

𝑛
−

ℎ)⊙𝜐
𝑛
∈ a, ∀𝑛 ∈ N, and (ℎ

𝑛
−ℎ)⊙𝜐

𝑛
→ 0 as 𝑛 → ∞

in a.

The following theorem is equivalent to the statement of
𝛿-convergence.

Theorem 1. ℎ
𝑛

𝛿

󳨀→ ℎ (𝑛 → ∞) in 𝛿(a, (g, ∗), ⊙, Δ) if and
only if there is 𝑓

𝑛,𝑘
, 𝑓
𝑘
∈ a and 𝜐

𝑘
∈ Δ such that ℎ

𝑛
= [𝑓
𝑛,𝑘
/𝜐
𝑘
],

ℎ = [𝑓
𝑘
/𝜐
𝑘
] and for each 𝑘 ∈ N, 𝑓

𝑛,𝑘
→ 𝑓
𝑘
as 𝑛 → ∞ in a.

For further discussion see [3, 17–21].

3. Necessary and Sufficient Conditions

Denote by l1(S1 × R) the space of Lebesgue complex-valued
measurable functions of bounded support defined onS1 ×R
and satisfying

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝜓 ((𝜗, 𝑡))

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩 = ∫

S1
∫
R

󵄨󵄨󵄨󵄨𝜓 ((𝜗, 𝑡))
󵄨󵄨󵄨󵄨
2

𝑒𝜇y⋅𝜗
⊥

d𝜗 d𝑡 < ∞ (7)

then T𝑒
𝜇
𝜓 ∈ l1(S1 × R), 𝜇 ∈ R, y ∈ R2 being arbitrary but

fixed.
By 𝜅(R2) denote the space of test functions of bounded

support defined on R2.
Let Δ be the set of sequences (𝜇

𝑛
(x)) ∈ 𝜅(R2) such that

[3, (2.6)–(2.8)]

∫
R2
𝜇𝑛 (x) dx = 1,

∫
R2

󵄨󵄨󵄨󵄨𝜇𝑛 (x)
󵄨󵄨󵄨󵄨 dx < 𝑀, 0 < 𝑀 ∈ R,

supp (𝜇
𝑛
(x)) 󳨀→ 0 as 𝑛 󳨀→ ∞.

(8)

The convolution product between two functions is
defined by the integral equation

(𝑓 ∗ 𝑔) (x) = ∫
R2
𝑓 (x − y) 𝑔 (y) dy, (9)

where x ∈ R2.
Now we construct the space 𝛿(l1, (𝜅, ∗), ×, Δ) of Boehmi-

ans.
We have the following definition.

Definition 2. Let 𝜓 ∈ l1(S1 × R) and 𝜉 ∈ 𝜅(R2); then we
define the mapping × as

(𝜓 × 𝜉) (𝜗, 𝑡) = ∫
R2
𝜓 (𝜗, 𝑡 − y ⋅ 𝜗) 𝜉 (y) 𝑒𝜇y⋅𝜗

⊥

dy

(𝜗, 𝑡) ∈ S
1 ×R.

(10)

Theorem 3. Let 𝜓 ∈ l1(S1 × R) and 𝜉 ∈ 𝜅(R2); then 𝜓 × 𝜉 ∈

l1(S1 ×R).

Proof. Let 𝜓 ∈ l1(S1 × R) and 𝜉 ∈ 𝜅(R2). By using (10),
Fubini’s theorem, and Jensen’s inequality we get
󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨(𝜓 × 𝜉) (𝜗, 𝑡)

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩
2

= ∫
S1
∫
R

󵄨󵄨󵄨󵄨(𝜓 × 𝜉) (𝜗, 𝑡)
󵄨󵄨󵄨󵄨
2d𝜗 d𝑡

= ∫
S1
∫
R

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
R2
𝜓 (𝜗, 𝑡 − y ⋅ 𝜃) 𝜉 (y) 𝑒𝜇y⋅𝜗

⊥

dy
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

d𝜗 d𝑡

= ∫
R2

󵄨󵄨󵄨󵄨𝜉 (y)
󵄨󵄨󵄨󵄨 ∫

S1
∫
R

󵄨󵄨󵄨󵄨𝜓 (𝜗, 𝑡 − y ⋅ 𝜗)󵄨󵄨󵄨󵄨
2

𝑒𝜇y⋅𝜗
⊥

d𝜗 d𝑡 dy

< 𝑀
󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩
2

,

(11)

where𝑀 is a positive constant.
The proof is therefore completed.

Theorem 4. Let 𝜓
𝑛
→ 𝜓 in l1(S1 × R) and 𝜉 ∈ 𝜅(R2); then

𝜓
𝑛
× 𝜉 → 𝜓 × 𝜉 as 𝑛 → ∞.

Proof of this theorem follows fromTheorem 3.

Theorem 5. Let 𝜓 ∈ l1(S1 × R) and 𝜉
1
, 𝜉
2
∈ 𝜅(R2); then one

has
𝜓 × (𝜉

1
∗ 𝜉
2
) = (𝜓 × 𝜉

1
) × 𝜉
2
. (12)
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Proof. Let (𝜗, 𝑡) ∈ S1 ×R. Using (10) and (9) we write

(𝜓 × (𝜉
1
∗ 𝜉
2
)) (𝜗, 𝑡)

= ∫
R2
𝜓 (𝜗, 𝑡 − y ⋅ 𝜗) (𝜉

1
∗ 𝜉
2
) (y) 𝑒𝜇y⋅𝜗

⊥

dy

= ∫
R2
𝜓 (𝜗, 𝑡 − y ⋅ 𝜗) (∫

R2
𝜉
1
(y − x) 𝜉

2
(x) dx) 𝑒𝜇y⋅𝜗

⊥

dy

= ∫
R2
(∫

R2
𝜓 (𝜗, 𝑡 − y ⋅ 𝜗) 𝜉

1
(y − x) 𝑒𝜇y⋅𝜗

⊥

dy) 𝜉
2
(x) dx.

(13)

The substitution y − x = z, y, x, z ∈ R2, implies

(𝜓 × (𝜉
1
∗ 𝜉
2
)) (𝜗, 𝑡)

= ∫
R2
(∫

R2
𝜓 (𝜗, 𝑡 − (z + x) ⋅ 𝜗) 𝜉

1
(z) 𝑒𝜇(z+x)𝜗

⊥

dz)

× 𝜉
2
(x) dx

= ∫
R2
(∫

R2
𝜓 (𝜗, (𝑡 − x ⋅ 𝜗) − z ⋅ 𝜗) 𝜉

1
(z) 𝑒𝜇x⋅𝜗

⊥

dz)

× 𝜉
2
(x) 𝑒𝜇x⋅𝜗

⊥

dx

= ∫
R2
(𝜓 × 𝜉

1
) (𝜗, 𝑡 − x ⋅ 𝜗) 𝜉

2
(x) 𝑒𝜇x⋅𝜗

⊥

dx

= ((𝜓 × 𝜉
1
) × 𝜉
2
) (𝜗, 𝑡) .

(14)

This completes the proof of the theorem.

Theorem 6. Let 𝜓
1
, 𝜓
2
∈ l1(S1 ×R) and 𝜉 ∈ 𝜅(R2); then

(𝜓
1
+ 𝜓
2
) × 𝜉 = 𝜓

1
× 𝜉 + 𝜓

2
× 𝜉
2
. (15)

Theorem 7. Let 𝛼 ∈ C, 𝜓 ∈ l1(S1 ×R) and 𝜉 ∈ 𝜅(R2); then

𝛼 (𝜓 × 𝜉) = (𝛼𝜓) × 𝜉. (16)

Proof of Theorems 6 and 7 follows from simple integra-
tion. Detailed proof is thus avoided.

Theorem 8. Let 𝜓 ∈ l1(S1 ×R) and (𝜇
𝑛
) ∈ Δ; then 𝜓×𝜇

𝑛
→

𝜓 as 𝑛 → ∞.

Proof. Let𝜓 ∈ l1(S1×R). Since𝜅(R×R) is dense in l1(S1×R),
we can choose 𝛼 ∈ 𝜅(R ×R) such that

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝜓 − 𝛼

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩 < 𝜖, 𝜖 > 0. (17)

From the analysis applied for proving Theorem 3 and by
applying (17) we get

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨(𝜓 − 𝛼) × 𝜇

𝑛

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩 ≤ 𝑀

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝜓 − 𝛼

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩 < 𝑀𝜖. (18)

Also, for each fixed (𝜗, 𝑡) ∈ S1 ×R define

𝑔 (y) = 𝛼 (𝜗, 𝑡 − y ⋅ 𝜗) 𝑒𝜇y⋅𝜗
⊥

, y ∈ R
2; (19)

then 𝑔(y) ∈ 𝜅(R2) and hence 𝑔(y) uniformly continuous on
R2. Thus, there is 𝛿 > 0 such that |𝑔(y) − 𝑔(x)| < 𝜖 whenever
|y − x| ≤ 𝛿.

Moreover supp𝛼 (𝜗, 𝑡) ⊆ [𝑎, 𝑏] × 𝕜, 𝕜 ⊆ R − {0} implies
𝛼 (𝜗, 𝑡) = 0, ∀(𝜗, 𝑡) ∉ [𝑎 − 𝛿, 𝑏 + 𝛿] × 𝕜.

Hence, by (8) and the fact that |(𝑔(𝑦) − 𝑔(0))| < 𝜖, by
Jensen’s inequality, we have

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨(𝛼 × 𝜇𝑛 − 𝛼) (𝜗, 𝑡)

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩
2

= ∫
S1
∫
R

󵄨󵄨󵄨󵄨(𝛼 × 𝜇𝑛 − 𝛼) (𝜗, 𝑡)
󵄨󵄨󵄨󵄨
2d𝜗 d𝑡

= ∫
S1
∫
R

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
R2
(𝛼 (𝜗, 𝑡 − y ⋅ 𝜗) 𝜇

𝑛
(y) 𝑒𝜇y⋅𝜗

⊥

− 𝛼 (𝜗, 𝑡) 𝜇
𝑛
(y) ) dy

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

d𝜗 d𝑡

= ∫
S1
∫
R

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
R2
(𝑔 (y) − 𝑔 (0)) 𝜇

𝑛
(y) dy

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

d𝜗 d𝑡

≤ ∫
𝕜

∫
𝑏+𝛿

𝑎−𝛿

∫
R2

󵄨󵄨󵄨󵄨(𝑔 (y) − 𝑔 (0))
󵄨󵄨󵄨󵄨
2 󵄨󵄨󵄨󵄨𝜇𝑛 (y)

󵄨󵄨󵄨󵄨 dy d𝜗 d𝑡

≤ 𝜖2 ∫
𝕜

∫
𝑏+𝛿

𝑎−𝛿

∫
R2

󵄨󵄨󵄨󵄨𝜇𝑛 (y)
󵄨󵄨󵄨󵄨 dy d𝜗 d𝑡

= 𝜖2𝑀𝑚(𝕜) (𝑏 − 𝑎 + 2𝛿) ,

(20)

where𝑚(𝕜) is the Lebesgue measure of 𝕜.
Hence, using (17), (18), and (20) we, for large values of 𝑛,

get
󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝜓 × 𝜇

𝑛
− 𝜓

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨(𝜓 − 𝛼) × 𝜇

𝑛

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼 × 𝜇𝑛 − 𝛼

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼 − 𝜓

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩

< 𝑀𝜖 + 𝜖2𝑀𝑚(𝕜) (𝑏 − 𝑎 + 2𝛿) + 𝜖

= (𝑀 + 𝜖2𝑀𝑚(𝕜) (𝑏 − 𝑎 + 2𝛿) + 1) 𝜖.

(21)

Hence 𝜓 × 𝜇
𝑛
→ 𝜓 as 𝑛 → ∞.

The Boehmian space 𝛿(l1, (𝜅, ∗), ×, Δ) is constructed.
The sum andmultiplication by a scalar of two Boehmians

are naturally defined in the respective ways:

[
(𝑓
𝑛
)

(𝜙
𝑛
)
] + [

(𝑔
𝑛
)

(𝜏
𝑛
)
] = [

(𝑓
𝑛
× 𝜏
𝑛
) + (𝑔

𝑛
× 𝜙
𝑛
)

(𝜙
𝑛
∗ 𝜏
𝑛
)

] ,

𝜂 [
(𝑓
𝑛
)

(𝜙
𝑛
)
] = [

(𝜂𝑓
𝑛
)

(𝜙
𝑛
)
] ,

(22)

𝜂 being complex number.
The operations × and the derivative are defined by

[
(𝑓
𝑛
)

(𝜙
𝑛
)
] × [

(𝑔
𝑛
)

(𝜏
𝑛
)
] = [

(𝑓
𝑛
× 𝑔
𝑛
)

(𝜖
𝑛
∗ 𝜏
𝑛
)
] ,

D
𝛼 [

(𝑓
𝑛
)

(𝜙
𝑛
)
] = [

(D𝛼𝑓
𝑛
)

(𝜙
𝑛
)

] .

(23)



4 Abstract and Applied Analysis

Between l1(S1 × R) and 𝛿(l1, (𝜅, ∗), ×, Δ) the canonical
embedding admits

𝑓 󳨀→ [
(𝑓 × 𝜙

𝑛
)

(𝜙
𝑛
)

] as 𝑛 󳨀→ ∞. (24)

The operation × can be extended to 𝛿(l1, (𝜅, ∗), ×, Δ) ×
l1(S1 ×R) by

[
(𝑓
𝑛
)

(𝜙
𝑛
)
] × 𝑓 = [

(𝑓
𝑛
× 𝑓)

(𝜙
𝑛
)

] . (25)

By 𝛿(l1, (𝜅, ∗), ∗, Δ) denote the corresponding Boehmian
space obtained from l1(S1 × R), 𝜅(R2), Δ and the product
∗.

Theorem 9. Let 𝜓 ∈ l1(S1 ×R) and 𝜉 ∈ 𝜅(R2); then

T𝑒
𝜇
(𝜓 ∗ 𝜉) (𝜗, 𝑡) = (T𝑒

𝜇
𝜓 × 𝜉) (𝜗, 𝑡) , (𝜗, 𝑡) ∈ S

1 ×R. (26)

Proof. Let (𝜗, 𝑡) ∈ (S1 ×R). By employing (2) for (9) we get

T𝑒
𝜇
(𝜓 ∗ 𝜉) (𝜗, 𝑡)

= ∫
R2
(𝜓 ∗ 𝜉) (x) 𝛿 (x ⋅ 𝜗 − 𝑡) 𝑒𝜇x⋅𝜗

⊥

dx

= ∫
R2
(∫

R2
𝜓 (x − y) 𝜉 (y) dy) 𝛿 (x ⋅ 𝜗 − 𝑡) 𝑒𝜇x⋅𝜗

⊥

dx

= ∫
R2
(∫

R2
𝜓 (x − y) 𝛿 (x ⋅ 𝜗 − 𝑡) 𝑒𝜇x⋅𝜗

⊥

dx) 𝜉 (y) dy.
(27)

The substitution x − y = z implies x = y + z and dx = dz.
Thus we get

T𝑒
𝜇
(𝜓 ∗ 𝜉) (𝜗, 𝑡)

= ∫
R2
∫
R2
𝜓 (z) 𝛿 (z ⋅ 𝜗 − (𝑡 − y𝜗)) 𝑒𝜇z⋅𝜗

⊥

𝑒𝜇y⋅𝜗
⊥

dz𝜉 (y) dy

= ∫
R2
∫
R2

T𝑒
𝜇
𝜓 (𝑡 − y ⋅ 𝜗) 𝑒𝜇y⋅𝜗

⊥

𝜉 (y) dy

= (T𝑒
𝜇
𝜓 × 𝜉) (𝜗, 𝑡) .

(28)

This completes the proof of the theorem.

4. The Exponential Radon
Transform of Boehmians

Definition 10. Let 𝛽
𝑛
= [𝜓
𝑛
/𝜇
𝑛
] ∈ 𝛿(l1, (𝜅, ∗), ∗, Δ); then we

define its exponential Radon transform as the mapping

󳨀→
T𝑒
𝜇
[
𝜓
𝑛

𝜇
𝑛

] = [
T𝑒
𝜇
𝜓
𝑛

𝜇
𝑛

] (29)

in the space 𝛿(l1, (𝜅, ∗), ×, Δ).

Definition 10 is well defined byTheorem 9.
To show that (29) is well defined, let [𝜓

𝑛
/𝜇
𝑛
], [𝜉
𝑛
/𝜖
𝑛
] ∈

𝛿(l1, (𝜅, ∗), ∗, Δ) and [𝜓
𝑛
/𝜇
𝑛
] = [𝜉

𝑛
/𝜖
𝑛
]; then

𝜓
𝑛
∗ 𝜖
𝑚
= 𝜉
𝑚
∗ 𝜇
𝑛
. (30)

Employing T𝑒
𝜇
for (30) and usingTheorem 9 imply that

T𝑒
𝜇
𝜓
𝑛
× 𝜖
𝑚
= T𝑒
𝜇
𝜉
𝑚
× 𝜇
𝑛
. (31)

From (31) we see that T𝑒
𝜇
𝜓
𝑛
/𝜇
𝑛
∼ T𝑒
𝜇
𝜉
𝑛
/𝜖
𝑛
in the sense of

𝛿(l1, (𝜅, ∗), ×, Δ).
This completes the proof of the theorem.

Theorem 11. Let𝛽
1
, 𝛽
2
∈ 𝛿(l1, (𝜅, ∗), ∗, Δ); then

󳨀→
T𝑒
𝜇
(𝛽
1
∗𝛽
1
) =

󳨀→
T𝑒
𝜇
𝛽
1
× 𝛽
2
.

Proof. Assume the requirements of the theorem are satisfied
for some 𝛽

1
, 𝛽
2
∈ 𝛿(l1, (𝜅, ∗), ∗, Δ); then there are (𝑓

𝑛
), (𝜅
𝑛
) ∈

l1(S1 × R) and (𝜑
𝑛
), (𝜙
𝑛
) ∈ Δ such that 𝛽

1
= [(𝑓
𝑛
)/(𝜑
𝑛
)] and

𝛽
2
= [(𝜅
𝑛
)/(𝜙
𝑛
)]. Therefore, we write

󳨀→
T𝑒
𝜇
(𝛽
1
∗ 𝛽
2
)

=
󳨀→
T𝑒
𝜇
([

(𝑓
𝑛
) ∗ (𝜅

𝑛
)

(𝜑
𝑛
) ∗ (𝜙

𝑛
)
]) = [

T𝑒
𝜇
((𝑓
𝑛
) ∗ (𝜅

𝑛
))

(𝜑
𝑛
) ∗ (𝜙

𝑛
)

]

= [

[

(T𝑒
𝜇
𝑓
𝑛
) × (𝜅

𝑛
)

(𝜑
𝑛
) × (𝜙

𝑛
)
]

]

= [

[

(T𝑒
𝜇
𝑓
𝑛
)

(𝜑
𝑛
)
]

]

× [
(𝜅
𝑛
)

(𝜙
𝑛
)
] .

(32)

Thus we get that
󳨀→
T𝑒
𝜇
(𝛽
1
∗ 𝛽
2
) =

󳨀→
T𝑒
𝜇
(𝛽
1
) × 𝛽
2
.

This completes the proof.

Theorem 12.
󳨀→
T𝑒
𝜇
defines a linear mapping from 𝛿(l1, (𝜅, ∗),

∗, Δ) into 𝛿(l1, (𝜅, ∗), ×, Δ).

The proof is straightforward.

Definition 13. Let 𝛽 ∈ 𝛿(l1, (𝜅, ∗), ×, Δ) be such that 𝛽 =
[(T𝑒
𝜇
𝑓
𝑛
)/(𝜙
𝑛
)]. Then we define the inverse transform of T𝑒

𝜇

as

(
󳨀→
T𝑒
𝜇
)
−1

[

[

(T𝑒
𝜇
𝑓
𝑛
)

(𝜙
𝑛
)
]

]

= [
(𝑓
𝑛
)

(𝜙
𝑛
)
] (33)

for each (𝜙
𝑛
) ∈ Δ.

Theorem 14.
󳨀→
T𝑒
𝜇
defines an isomorphism from 𝛿(l1, (𝜅, ∗),

∗, Δ) onto 𝛿(l1, (𝜅, ∗), ×, Δ).

Proof. Assume that [(T𝑒
𝜇
𝑓
𝑛
)/(𝜙
𝑛
)] = [(T𝑒

𝜇
𝑔
𝑛
)/(𝜓
𝑛
)] in 𝛿(l1, (𝜅,

∗), ×, Δ). Using (29) and Theorem 9 we get T𝑒
𝜇
𝑓
𝑛
× 𝜓
𝑚

=

T𝑒
𝜇
𝑔
𝑚
× 𝜙
𝑛
. Once again, Theorem 9 implies T𝑒

𝜇
(𝑓
𝑛
∗ 𝜓
𝑚
) =

T𝑒
𝜇
(𝑔
𝑚
∗𝜙
𝑛
). Hence𝑓

𝑛
∗𝜓
𝑚
= 𝑔
𝑚
∗𝜙
𝑛
.Therefore, [(𝑓

𝑛
)/(𝜙
𝑛
)] =

[(𝑔
𝑛
)/(𝜓
𝑛
)].
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Now, let [(T𝑒
𝜇
𝑓
𝑛
)/(𝜙
𝑛
)] ∈ 𝛿(l1, (𝜅, ∗), ×, Δ); then T𝑒

𝜇
𝑓
𝑛
×

𝜙
𝑚
= T𝑒
𝜇
𝑓
𝑚
× 𝜙
𝑛
, ∀𝑚, 𝑛 ∈ N. Theorem 9 leads to T𝑒

𝜇
(𝑓
𝑛
∗

𝜙
𝑚
) = T𝑒

𝜇
(𝑓
𝑚
∗ 𝜙
𝑛
). Hence [(𝑓

𝑛
)/(𝜙
𝑛
)] ∈ 𝛿(l1, (𝜅, ∗), ∗, Δ) is

the Boehmian that satisfies
󳨀→
T𝑒
𝜇
[(𝑓
𝑛
)/(𝜙
𝑛
)] = [(T𝑒

𝜇
𝑓
𝑛
)/(𝜙
𝑛
)].

This completes the proof of the theorem.

Theorem 15. Let [(𝑓
𝑛
)/(𝜙
𝑛
)] ∈ 𝛿(l1, (𝜅, ∗), ∗, Δ) and 𝜙 ∈

𝜅(R2); then

󳨀→
T𝑒
𝜇
([

(𝑓
𝑛
)

(𝜙
𝑛
)
] ∗ 𝜙) = [

[

(T𝑒
𝜇
𝑓
𝑛
)

(𝜙
𝑛
)
]

]

× 𝜙. (34)

Proof. Applying Definition 10 for each [(𝑓
𝑛
)/(𝜙
𝑛
)] ∈ 𝛿(l1,

(𝜅, ∗), ×, Δ) and 𝜙 ∈ 𝜅(R2) yields

(
󳨀→
T𝑒
𝜇
)([

(𝑓
𝑛
)

(𝜙
𝑛
)
] ∗ 𝜙) = [

[

(T𝑒
𝜇
) ((𝑓
𝑛
) ∗ 𝜙)

(𝜙
𝑛
)

]

]

. (35)

ByTheorem 9 we get

(
󳨀→
T𝑒
𝜇
)([

(𝑓
𝑛
)

(𝜙
𝑛
)
] ∗ 𝜙) = [

(𝑓
𝑛
) × 𝜙

(𝜙
𝑛
)

] = [
(𝑓
𝑛
)

(𝜙
𝑛
)
] × 𝜙. (36)

This completes the proof of the theorem.

Theorem 16. The mappings
󳨀→
T𝑒
𝜇
and (

󳨀→
T𝑒
𝜇
)
−1

are continuous
with respect to 𝛿 and Δ convergence.

Proof. First of all, we show that
󳨀→
T𝑒
𝜇
and (

󳨀→
T𝑒
𝜇
)
−1

are continuous
with respect to 𝛿 convergence.

Let 𝛽
𝑛

𝛿

󳨀→ 𝛽 in 𝛿(l1, (𝜅, ∗), ∗, Δ) as 𝑛 → ∞; then we show
that

󳨀→
T𝑒
𝜇
𝛽
𝑛
→

󳨀→
T𝑒
𝜇
𝛽 as 𝑛 → ∞. By virtue of Theorem 1 we

can find 𝑓
𝑛,𝑘

and 𝑓
𝑘
in l1(R2) such that 𝛽

𝑛
= [𝑓
𝑛,𝑘
/𝜙
𝑘
] and

𝛽 = [𝑓
𝑘
/𝜙
𝑘
] such that 𝑓

𝑛,𝑘
→ 𝑓
𝑘
as 𝑛 → ∞ for every 𝑘 ∈ N.

Employing the continuity condition of T𝑒
𝜇
transform

implies T𝑒
𝜇
𝑓
𝑛,𝑘

→ T𝑒
𝜇
𝑓
𝑘
as 𝑛 → ∞ in the space l1(S1 ×R).

Thus,

[
T𝑒
𝜇
𝑓
𝑛,𝑘

𝜙
𝑘

] 󳨀→ [
T𝑒
𝜇
𝑓
𝑘

𝜙
𝑘

] as 𝑛 󳨀→ ∞ (37)

in 𝛿(l1, (𝜅, ∗), ×, Δ).
To prove the second part, let 𝑔

𝑛

𝛿

󳨀→ 𝑔 in 𝛿(l1, (𝜅, ∗), ×, Δ)
as 𝑛 → ∞.Then, once again, byTheorem 1,𝑔

𝑛
= [T𝑒
𝜇
𝑓
𝑛,𝑘
/𝜙
𝑘
]

and 𝑔 = [T𝑒
𝜇
𝑓
𝑘
/𝜙
𝑘
] and T𝑒

𝜇
𝑓
𝑛,𝑘

→ T𝑒
𝜇
𝑓
𝑘
as 𝑛 → ∞.

Hence 𝑓
𝑛,𝑘

→ 𝑓
𝑘
in 𝛿(l1, (𝜅, ∗), ∗, Δ) as 𝑛 → ∞. That is,

[𝑓
𝑛,𝑘
/𝜙
𝑘
] → [𝑓

𝑘
/𝜙
𝑘
] as 𝑛 → ∞. Using (33) we get

(
󳨀→
T𝑒
𝜇
)
−1

[
T𝑒
𝜇
𝑓
𝑛,𝑘

𝜙
𝑘

] 󳨀→ (
󳨀→
T𝑒
𝜇
)
−1

[
T𝑒
𝜇
𝑓
𝑘

𝜙
𝑘

] as 𝑛 󳨀→ ∞.

(38)

Now, we establish continuity of
󳨀→
T𝑒
𝜇
and (

󳨀→
T𝑒
𝜇
)
−1

with
respect to Δ convergence.

Let 𝛽
𝑛
, 𝛽 ∈ 𝛿(l1, (𝜅, ∗), ∗, Δ) be such that 𝛽

𝑛

Δ

󳨀→ 𝛽 as 𝑛 →

∞. Then, byTheorem 1 we can find that 𝑓
𝑛
∈ l1(S1 ×R) and

(𝜙
𝑛
) ∈ Δ such that (𝛽

𝑛
−𝛽)∗𝜙

𝑛
= [((𝑓

𝑛
)∗𝜙
𝑘
)/𝜙
𝑘
] and𝑓

𝑛
→ 0

as 𝑛 → ∞. Employing (29) we get

󳨀→
T𝑒
𝜇
((𝛽
𝑛
− 𝛽) ∗ 𝜙

𝑛
) = [

T𝑒
𝜇
((𝑓
𝑛
) ∗ 𝜙
𝑘
)

𝜙
𝑘

] . (39)

Hence, we have
󳨀→
T𝑒
𝜇
((𝛽
𝑛
− 𝛽) ∗ 𝜙

𝑛
) = [((T𝑒

𝜇
𝑓
𝑛
) × 𝜙
𝑘
)/𝜙
𝑘
] =

T𝑒
𝜇
𝑓
𝑛
→ 0 as 𝑛 → ∞ in l1(S1 ×R).

Therefore
󳨀→
T𝑒
𝜇
((𝛽
𝑛
− 𝛽) ∗ 𝜙

𝑛
) = (

󳨀→
T𝑒
𝜇
𝛽
𝑛
−
󳨀→
T𝑒
𝜇
𝛽) × 𝜙

𝑛

󳨐⇒ as 𝑛 󳨀→ ∞.

(40)

Hence,
󳨀→
T𝑒
𝜇
𝛽
𝑛

Δ

󳨀→
󳨀→
T𝑒
𝜇
𝛽 as 𝑛 → ∞.

Finally, let 𝑔
𝑛

Δ

󳨀→ 𝑔 in 𝛿(l1, (𝜅, ∗), ∗, Δ) as 𝑛 → ∞; then
we find T𝑒

𝜇
𝑓
𝑘
∈ l1(S1 ×R) such that (𝑔

𝑛
− 𝑔) × 𝜙

𝑛
= [(T𝑒
𝜇
𝑓
𝑘
×

𝜙
𝑘
)/𝜙
𝑘
] and T𝑒

𝜇
𝑓
𝑘
→ 0 as 𝑛 → ∞ for some (𝜙

𝑛
) ∈ Δ.

Now, using (33), we obtain

(
󳨀→
T𝑒
𝜇
)
−1

((𝑔
𝑛
− 𝑔) × 𝜙

𝑛
) = [

[

(T𝑒
𝜇
)
−1

(T𝑒
𝜇
𝑓
𝑘
× 𝜙
𝑘
)

𝜙
𝑘

]

]

. (41)

Theorem 9 implies

(
󳨀→
T𝑒
𝜇
)
−1

((𝑔
𝑛
− 𝑔) × 𝜙

𝑛
) = [

(𝑓
𝑛
) ∗ 𝜙
𝑘

𝜙
𝑘

]

= 𝑓
𝑛
󳨀→ 0 ∈ l1 (S1 ×R) as 𝑛 󳨀→ ∞.

(42)

Thus

(
󳨀→
T𝑒
𝜇
)
−1

((𝑔
𝑛
− 𝑔) × 𝜙

𝑛
)

= ((
󳨀→
T𝑒
𝜇
)
−1

𝑔
𝑛
− (

󳨀→
T𝑒
𝜇
)
−1

𝑔) ∗ 𝜙
𝑛
→ 0 ∈ l1 (S1 ×R)

as 𝑛 󳨀→ ∞.

(43)

From this we find that (
󳨀→
T𝑒
𝜇
)
−1

𝑔
𝑛

Δ

󳨀→ (
󳨀→
T𝑒
𝜇
)
−1

𝑔 ∈ 𝛿(l1, (𝜅, ∗),
∗, Δ) as 𝑛 → ∞.

This completes the proof of the theorem.

Theorem 17. The transform
󳨀→
T𝑒
𝜇
is consistent with

󳨀→
T𝑒
𝜇
: l1(S1 ×

R) → l1(S1 ×R).

Proof. For every𝑓 ∈ l1(S1×R), let𝛽 ∈ 𝛿(l1, (𝜅, ∗), ∗, Δ) be its
representative; then ∀𝑛 ∈ N, (𝜑

𝑛
) ∈ Δ, 𝛽 = [(𝑓 ∗ (𝜑

𝑛
))/(𝜑
𝑛
)].

For all 𝑛 ∈ N it is clear that (𝜑
𝑛
) is independent of the

representative.
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We have

󳨀→
T𝑒
𝜇
(𝛽) =

󳨀→
T𝑒
𝜇
([

𝑓 ∗ (𝜑
𝑛
)

(𝜑
𝑛
)

]) = [
T𝑒
𝜇
(𝑓 ∗ (𝜑

𝑛
))

(𝜑
𝑛
)

]

= [
T𝑒
𝜇
𝑓 × (𝜑

𝑛
)

(𝜑
𝑛
)

]

(44)

which is the representative of T𝑒
𝜇
𝑓 in the space l1(S1 ×R).

Hence the proof is completed.

Theorem 18. The necessary and sufficient condition for
[(𝑔
𝑛
)/(𝜓
𝑛
)] ∈ 𝛿(l1, (𝜅, ∗), ×, Δ) to be in the range of

󳨀→
T𝑒
𝜇
is that

𝑔
𝑛
belongs to range of T𝑒

𝜇
for every 𝑛 ∈ N.

Proof. Let [(𝑔
𝑛
)/(𝜓
𝑛
)] be in the range of

󳨀→
T𝑒
𝜇
; then of course 𝑔

𝑛

belongs to the range of T𝑒
𝜇
, ∀𝑛 ∈ N.

To establish the converse, let 𝑔
𝑛
be in the range of T𝑒

𝜇
,

∀𝑛 ∈ N. Then there is 𝑓
𝑛
∈ l1(S1 × R) such that T𝑒

𝜇
𝑓
𝑛
=

𝑔
𝑛
, 𝑛 ∈ N.
Since [(𝑔

𝑛
)/(𝜓
𝑛
)] ∈ 𝛿(l1, (𝜅, ∗), ×, Δ) we get 𝑔

𝑛
× 𝜓
𝑚
=

𝑔
𝑚
× 𝜓
𝑛
, ∀𝑚, 𝑛 ∈ N.

Therefore, Theorem 9 yields

T𝑒
𝜇
(𝑓
𝑛
∗ 𝜑
𝑛
) = T𝑒
𝜇
(𝑓
𝑚
∗ 𝜑
𝑛
) , ∀𝑚, 𝑛 ∈ N, (45)

where 𝑓
𝑛
∈ l1(S1 ×R) and 𝜑

𝑛
∈ Δ, ∀𝑛 ∈ N.

Thus 𝑓
𝑛
∗ 𝜑
𝑚
= 𝑓
𝑚
∗ 𝜑
𝑛
,𝑚, 𝑛 ∈ N. Hence,

[
(𝑓
𝑛
)

(𝜑
𝑛
)
] ∈ 𝛿 (l1, (𝜅, ∗) , ∗, Δ) ,

󳨀→
T𝑒
𝜇
([

(𝑓
𝑛
)

(𝜑
𝑛
)
]) = [

(𝑔
𝑛
)

(𝜓
𝑛
)
] .

(46)

The theorem is therefore completely proved.
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[3] P. Mikusiński and A. Zayed, “The Radon transform of Boehmi-
ans,” Proceedings of the American Mathematical Society, vol. 118,
no. 2, pp. 561–570, 1993.

[4] R. Roopkumar, “Generalized Radon transform,”TheRockyMoun-
tain Journal of Mathematics, vol. 36, no. 4, pp. 1375–1390, 2006.

[5] D. Ludwig, “The Radon transform on euclidean space,” Com-
munications on Pure and Applied Mathematics, vol. 19, pp. 49–
81, 1966.

[6] S. R. Deans,The Radon Transform and Some of Its Applications,
John Wiley & Sons, New York, NY, USA, 1973.
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