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This paper is concernedwith iterative solution to a class of the real coupledmatrix equations. By using the hierarchical identification
principle, a gradient-based iterative algorithm is constructed to solve the real coupled matrix equations 𝐴
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2
. The range of the convergence factor is derived to guarantee that the iterative algorithm is convergent for any

initial value.The analysis indicates that if the coupledmatrix equations have a unique solution, then the iterative solution converges
fast to the exact one for any initial value under proper conditions. A numerical example is provided to illustrate the effectiveness of
the proposed algorithm.

1. Introduction

For systems with certain parameters, the controllability and
stability are the important topics which are worth studying
[1–3]. If the parameters of systems are uncertain, then how to
identify these parameters is to put on the agenda. To identify
the parameters of the large-scale systems, the hierarchical
identification principle was proposed in [4–6]. The hierar-
chical gradient-based and least squares based identifications
were presented for multivariable system [7]. The fruits of
these effective strategies include identifications and adaptive
control for dual-rate systems [8] andHammerstein nonlinear
systems [9].

Many publications have studied the solutions to matrix
equations from the different points of view [10–14]. Zhou
et al. proposed the positive definite solutions of the nonlinear
matrix equation X + A𝐻X−1A = I [15]; Li et al. discussed
a class of iterative methods for the generalized Sylvester
equation [16]; the Riccati equation and a class of the coupled
transpose matrix equations are investigated in [17, 18].

Unlike the above methods and just like the Jacobi
and Gauss-Seidel iterations, Ding and Chen proposed the
gradient-based and least squares based iterations for solving
Ax = b and AXB = F [19, 20] and a large family of iter-
ations. These iterations include the gradient iteration,

the least squares iteration, and some classical iterations as
their special cases [21, 22]. By using the hierarchical identifi-
cation principle, the gradient-based iterative algorithms were
derived for solving different real matrix equations, such as
the generalized Sylvester matrix equations and general linear
matrix equations [23–25].

Ding’s strategy has receivedmuch attention.With the real
representations of complexmatrices as tools,Wu et al. applied
the Ding’s strategy to solve the extended Sylvester-conjugate
matrix equations AXB + CXD = F [26], the complex conju-
gate and transpose matrix equations [27], and the extended
coupled Sylvester conjugate matrix equations [28]; Song and
Chen presented the gradient based iterative algorithm for
solving the extended Sylvester-conjugate transpose matrix
equations [29].

Different from the various single real matrix equations
in [21–25] and the complex matrix equations in [26–29],
the iterative algorithm for the real coupled matrix equations
A
1
XB
1
+A
2
XB
2
= F
1
andC

1
XD
1
+C
2
XD
2
= F
2
is discussed

by using the hierarchical identification principle, and the
gradient-based iterative algorithm is proposed.Moreover, the
gradient-based iteration is reported for solving the general
real coupled matrix equations. We prove that the iterative
solution always converges to the exact one for any initial
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value, if there exists a unique solution of these kinds of real
coupled matrix equations.

The iterative methods can be applied to nonlinear system
identification [30, 31]. The proposed methods of this paper
can combine the iterative identification methods [32–35], the
auxiliary model identification methods [36–39], the multi-
innovation identification methods [40–44], and the two-
stage or multistage identification methods [45] to study
identification problems for other linear systems [46–50] or
nonlinear systems [51–54] and other systems with colored
noises [55–58].

This paper is organized as follows. Section 2 offers some
notation and basic lemmas. Section 3 derives the gradient-
based iterative algorithm for solving the matrix equations
A
1
XB
1
+ A
2
XB
2
= F
1
and C

1
XD
1
+ C
2
XD
2
= F
2
. The

iteration of real general coupledmatrix equations is discussed
in Section 4. Section 5 presents a numerical example to
illustrate the effectiveness of the proposed algorithm. Finally,
we offer some concluding remarks in Section 6.

2. Notations and Basic Lemmas

Some notation and lemmas are introduced first. The symbol
A𝑇 represents the transpose of A. For a square matrix A,
𝜆max[A] indicates themaximumeigenvalue ofA. ‖A‖ denotes
the norm of A and is defined as ‖A‖2 := tr[A𝑇 A]. For an
𝑚 × 𝑛matrix

X = [x
1
, x
2
, . . . , x

𝑛
] ∈ R
𝑚×𝑛

, x
𝑖
∈ R
𝑚 (1)

col[X] is defined as

col [X] = [x𝑇
1
, x𝑇
2
, . . . , x𝑇

𝑛
]
𝑇

∈ R
𝑚𝑛
. (2)

If A = [𝑎
𝑖𝑗
] ∈ R𝑚×𝑛 and B ∈ R𝑝×𝑞, then their Kronecker

product is defined as

A ⊗ B = [𝑎
𝑖𝑗
B] =

[
[
[
[

[

𝑎
11
B 𝑎
12
B ⋅ ⋅ ⋅ 𝑎

1𝑛
B

𝑎
21
B 𝑎
22
B ⋅ ⋅ ⋅ 𝑎

2𝑛
B

...
...

...
𝑎
𝑚1
B 𝑎
𝑚2
B ⋅ ⋅ ⋅ 𝑎

𝑚𝑛
B

]
]
]
]

]

∈ R
(𝑚𝑝)×(𝑛𝑞)

.

(3)

The relationship between the vec-operator col and the
Kronecker product can be expressed as the following lemma
[59].

Lemma 1. If A ∈ R𝑚×𝑛, B ∈ R𝑝×𝑞, and X ∈ R𝑛×𝑝, then we
have

col [AXB] = (B𝑇 ⊗ A) col [X] . (4)

The gradient-based iterative algorithm for solving matrix
equation AXB = F is listed as follows [22].

Lemma 2. For AXB = F, if A is a full-column rank matrix
and B is a full-row rank matrix, then the iterative solution
X(𝑘) given by the following gradient-based iterative algorithm

converges to the exact solution X (i.e., lim
𝑘→∞

X(𝑘) = X) for
any initial values X(0) [22]:

X (𝑘) = X (𝑘 − 1) + 𝜇A𝑇 [F − AX (𝑘 − 1)B]B𝑇,

0 < 𝜇 <
2

𝜆max [AA𝑇] 𝜆max [B𝑇B]
𝑜𝑟 0 < 𝜇 ⩽

2

‖A‖2‖B‖2
.

(5)

3. The Coupled Matrix Equations

In this section, we consider the following real coupled matrix
equations:

A
1
XB
1
+ A
2
XB
2
= F
1
,

C
1
XD
1
+ C
2
XD
2
= F
2
,

(6)

where A
𝑖
,C
𝑖
∈ R𝑚×𝑚, B

𝑖
,D
𝑖
∈ R𝑛×𝑛, and F

𝑖
∈ R𝑚×𝑛, 𝑖 = 1, 2,

are the given matrices, and X ∈ R𝑚×𝑛 is the unknown matrix
to be determined.

3.1.The Exact Solution. According to Lemma 1, we rewrite (6)
as

[
B𝑇
1
⊗ A
1
+ B𝑇
2
⊗ A
2

D𝑇
1
⊗ C
1
+D𝑇
2
⊗ C
2

] col [X] = col [F
1
, F
2
] , (7)

where [F
1
, F
2
] is a block matrix.The exact solution of (6) can

be given by the following theorem.

Theorem 3. Equation (6) has a unique solution if and only if
S
1
is a full-column rankmatrix; in this case, the unique solution

is

col [X] = (S𝑇
1
S
1
)
−1

S𝑇
1
col [F

1
, F
2
] , (8)

where

S
1
:= [

B𝑇
1
⊗ A
1
+ B𝑇
2
⊗ A
2

D𝑇
1
⊗ C
1
+D𝑇
2
⊗ C
2

] ∈ R
(2𝑚𝑛)×(𝑚𝑛)

. (9)

If F
1
= F
2
= 0, then (6) has a unique solution X = 0.

3.2. The Gradient Iterative Algorithm. The hierarchical iden-
tification principle implies that the related system can be
decomposed into several subsystems, so we introduce four
intermediate matrices:

M
1
:= F
1
− A
2
XB
2
,

M
2
:= F
1
− A
1
XB
1
,

N
1
:= F
2
− C
2
XD
2
,

N
2
:= F
2
− C
1
XD
1
.

(10)

Using these four intermediate matrices, we decompose (6)
into four subsystems

𝑆
1
: A
1
XB
1
= M
1
,

𝑆
2
: A
2
XB
2
= M
2
,

𝑆
3
: C
1
XD
1
= N
1
,

𝑆
4
: C
2
XD
2
= N
2
.

(11)
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According to Lemma 2, it is not hard to get the iterative solu-
tionsX

1
(𝑘),X

2
(𝑘),X

3
(𝑘), andX

4
(𝑘) of these four subsystems

𝑆
1
, 𝑆
2
, 𝑆
3
, and 𝑆

4
as follows:

X
1
(𝑘) = X

1
(𝑘 − 1) + 𝜇A𝑇

1
[M
1
− A
1
X
1
(𝑘 − 1)B

1
]B𝑇
1
,

X
2
(𝑘) = X

2
(𝑘 − 1) + 𝜇A𝑇

2
[M
2
− A
2
X
2
(𝑘 − 1)B

2
]B𝑇
2
,

X
3
(𝑘) = X

3
(𝑘 − 1) + 𝜇C𝑇

1
[N
1
− C
1
X
3
(𝑘 − 1)D

1
]D𝑇
1
,

X
4
(𝑘) = X

4
(𝑘 − 1) + 𝜇C𝑇

2
[N
2
− C
2
X
4
(𝑘 − 1)D

2
]D𝑇
2
.

(12)

We will determine the convergence factor 𝜇 later. Using (10),
we have

X
1
(𝑘) = X

1
(𝑘 − 1)

+ 𝜇A𝑇
1
[F
1
− A
2
XB
2
− A
1
X
1
(𝑘 − 1)B

1
]B𝑇
1
,

X
2
(𝑘) = X

2
(𝑘 − 1)

+ 𝜇A𝑇
2
[F
1
− A
1
XB
1
− A
2
X
2
(𝑘 − 1)B

2
]B𝑇
2
,

X
3
(𝑘) = X

3
(𝑘 − 1)

+ 𝜇C𝑇
1
[F
2
− C
2
XD
2
− C
1
X
3
(𝑘 − 1)D

1
]D𝑇
1
,

X
4
(𝑘) = X

4
(𝑘 − 1)

+ 𝜇C𝑇
2
[F
2
− C
1
XD
1
− C
2
X
4
(𝑘 − 1)D

2
]D𝑇
2
.

(13)

Because the unknown matrix X appears in the right-hand
side, this algorithm is impossible to realize. By using the
hierarchical identification principle, we replace the unknown
matrixX with its estimate at iteration 𝑘−1. Hence, we obtain

X
1
(𝑘) = X

1
(𝑘 − 1) + 𝜇A𝑇

1

× [F
1
− A
2
X
1
(𝑘 − 1)B

2
− A
1
X
1
(𝑘 − 1)B

1
]B𝑇
1
,

X
2
(𝑘) = X

2
(𝑘 − 1) + 𝜇A𝑇

2

× [F
1
− A
1
X
2
(𝑘 − 1)B

1
− A
2
X
2
(𝑘 − 1)B

2
]B𝑇
2
,

X
3
(𝑘) = X

3
(𝑘 − 1) + 𝜇C𝑇

1

× [F
2
− C
2
X
3
(𝑘 − 1)D

2
− C
1
X
3
(𝑘 − 1)D

1
]D𝑇
1
,

X
4
(𝑘) = X

4
(𝑘 − 1) + 𝜇C𝑇

2

× [F
2
− C
1
X
4
(𝑘 − 1)D

1
− C
2
X
4
(𝑘 − 1)D

2
]D𝑇
2
.

(14)

In fact, only an iterative solution X(𝑘) is needed in this
algorithm; we take the average of X

1
(𝑘), X

2
(𝑘), X

3
(𝑘),

and X
4
(𝑘) as X(𝑘) and obtain the gradient-based iterative

algorithm:

X (𝑘) =
X
1
(𝑘) + X

2
(𝑘) + X

3
(𝑘) + X

4
(𝑘)

4
, (15)

X
1
(𝑘) = X (𝑘 − 1) + 𝜇A𝑇

1

× [F
1
− A
2
X (𝑘 − 1)B

2
− A
1
X (𝑘 − 1)B

1
]B𝑇
1
,

(16)

X
2
(𝑘) = X (𝑘 − 1) + 𝜇A𝑇

2

× [F
1
− A
1
X (𝑘 − 1)B

1
− A
2
X (𝑘 − 1)B

2
]B𝑇
2
,

(17)

X
3
(𝑘) = X (𝑘 − 1) + 𝜇C𝑇

1

× [F
2
− C
2
X (𝑘 − 1)D

2
− C
1
X (𝑘 − 1)D

1
]D𝑇
1
,

(18)

X
4
(𝑘) = X (𝑘 − 1) + 𝜇C𝑇

2

× [F
2
− C
1
X (𝑘 − 1)D

1
− C
2
X (𝑘 − 1)D

2
]D𝑇
2
,

(19)

0 < 𝜇 <
2

𝜇
0

, 𝜇
0
:= max{

2

∑

𝑖=1

A𝑖


2B𝑖


2

,

2

∑

𝑖=1

C𝑖


2D𝑖


2

} .

(20)

Theorem 4. If (6) has a unique solution X, then the iterative
solution X(𝑘) given by (15)–(20) converges to X, that is,
lim
𝑘→∞

X(𝑘) = X, or the error matrix X(𝑘) − X converges
to zero for any initial value X(0).

Proof. We define estimation error matrices:

X̃
𝑖
(𝑘) := X

𝑖
(𝑘) − X, 𝑖 = 1, 2, 3, 4,

X̃ (𝑘) := X (𝑘) − X.
(21)

From this definition and (15)–(19), we have the following
error formulas:

X̃
1
(𝑘) = X̃ (𝑘 − 1)

− 𝜇A𝑇
1
[A
1
X̃ (𝑘 − 1)B

1
+ A
2
X̃ (𝑘 − 1)B

2
]B𝑇
1
,

X̃
2
(𝑘) = X̃ (𝑘 − 1)

− 𝜇A𝑇
2
[A
1
X̃ (𝑘 − 1)B

1
+ A
2
X̃ (𝑘 − 1)B

2
]B𝑇
2
,

X̃
3
(𝑘) = X̃ (𝑘 − 1)

− 𝜇C𝑇
1
[C
1
X̃ (𝑘 − 1)D

1
+ C
2
X̃ (𝑘 − 1)D

2
]D𝑇
1
,

X̃
4
(𝑘) = X̃ (𝑘 − 1)

− 𝜇C𝑇
2
[C
1
X̃ (𝑘 − 1)D

1
+ C
2
X̃ (𝑘 − 1)D

2
]D𝑇
2
,

(22)

X̃ (𝑘) =

[X̃
1
(𝑘) + X̃

2
(𝑘) + X̃

3
(𝑘) + X̃

4
(𝑘)]

4
. (23)
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Set

�̃� (𝑘 − 1) := A
1
X̃ (𝑘 − 1)B

1
+ A
2
X̃ (𝑘 − 1)B

2
,

�̃� (𝑘 − 1) := C
1
X̃ (𝑘 − 1)D

1
+ C
2
X̃ (𝑘 − 1)D

2
.

(24)

By the trace formula ‖A‖2 = tr[A𝑇 A] and from (22), we
obtain


X̃
1
(𝑘)



2

=

X̃ (𝑘 − 1)



2

− 2𝜇 tr [X̃𝑇 (𝑘 − 1)A𝑇
1
�̃� (𝑘 − 1)B𝑇

1
]

+ 𝜇
2
A𝑇
1
�̃� (𝑘 − 1)B𝑇

1



2

,

(25)


X̃
2
(𝑘)



2

=

X̃ (𝑘 − 1)



2

− 2𝜇 tr [X̃𝑇 (𝑘 − 1)A𝑇
2
�̃� (𝑘 − 1)B𝑇

2
]

+ 𝜇
2
A𝑇
2
�̃� (𝑘 − 1)B𝑇

2



2

,

(26)


X̃
3
(𝑘)



2

=

X̃ (𝑘 − 1)



2

− 2𝜇 tr [X̃𝑇 (𝑘 − 1)C𝑇
1
�̃� (𝑘 − 1)D𝑇

1
]

+ 𝜇
2
C𝑇
1
�̃� (𝑘 − 1)D𝑇

1



2

,

(27)


X̃
4
(𝑘)



2

=

X̃ (𝑘 − 1)



2

− 2𝜇 tr [X̃𝑇 (𝑘 − 1)C𝑇
2
�̃� (𝑘 − 1)D𝑇

2
]

+ 𝜇
2
C𝑇
2
�̃� (𝑘 − 1)D𝑇

2



2

.

(28)

Adding (25) to (26) gives

X̃
1
(𝑘)



2

+

X̃
2
(𝑘)



2

= 2

X̃ (𝑘 − 1)



2

− 2𝜇 tr [X̃𝑇 (𝑘 − 1)A𝑇
1
�̃� (𝑘 − 1)B𝑇

1
]

− 2𝜇 tr [X̃𝑇 (𝑘 − 1)A𝑇
2
�̃� (𝑘 − 1)B𝑇

2
]

+ 𝜇
2
A𝑇
1
�̃� (𝑘 − 1)B𝑇

1



2

+ 𝜇
2
A𝑇
2
�̃� (𝑘 − 1)B𝑇

2



2

= 2

X̃ (𝑘 − 1)



2

− 2𝜇 tr {[B𝑇
1
X̃𝑇 (𝑘 − 1)A𝑇

1

+B𝑇
2
X̃𝑇 (𝑘 − 1)A𝑇

2
]

× �̃� (𝑘 − 1)}

+ 𝜇
2
A𝑇
1
�̃� (𝑘 − 1)B𝑇

1



2

+ 𝜇
2
A𝑇
2
�̃� (𝑘 − 1)B𝑇

2



2

= 2

X̃ (𝑘 − 1)



2

− 2𝜇 tr {[A
1
X̃ (𝑘 − 1)B

1

+A
2
X̃ (𝑘 − 1)B

2
]
𝑇

× �̃� (𝑘 − 1)}

+ 𝜇
2
A𝑇
1
�̃� (𝑘 − 1)B𝑇

1



2

+ 𝜇
2
A𝑇
2
�̃� (𝑘 − 1)B𝑇

2



2

= 2

X̃ (𝑘 − 1)



2

− 2𝜇

�̃� (𝑘 − 1)



2

+ 𝜇
2
A𝑇
1
�̃� (𝑘 − 1)B𝑇

1



2

+ 𝜇
2
A𝑇
2
�̃� (𝑘 − 1)B𝑇

2



2

⩽ 2

X̃ (𝑘 − 1)



2

− 2𝜇

�̃� (𝑘 − 1)



2

+ 𝜇
2
(
A1



2B1


2

+
A2



2B2


2

)

×

�̃� (𝑘 − 1)



2

= 2

X̃ (𝑘 − 1)



2

− 𝜇 [2 − 𝜇 (
A1



2B1


2

+
A2



2B2


2

)]

×

�̃� (𝑘 − 1)



2

.

(29)
Similarly, adding (27) to (28) yields

X̃
3
(𝑘)



2

+

X̃
4
(𝑘)



2

= 2

X̃ (𝑘 − 1)



2

− 2𝜇 tr [X̃𝑇 (𝑘 − 1)C𝑇
1
�̃� (𝑘 − 1)D𝑇

1
]

− 2𝜇 tr [X̃𝑇 (𝑘 − 1)C𝑇
2
�̃� (𝑘 − 1)D𝑇

2
]

+ 𝜇
2
C𝑇
1
�̃� (𝑘 − 1)D𝑇

1



2

+ 𝜇
2
C𝑇
2
�̃� (𝑘 − 1)D𝑇

2



2

= 2

X̃ (𝑘 − 1)



2

− 2𝜇
�̃� (𝑘 − 1)



2

+ 𝜇
2
C𝑇
1
�̃� (𝑘 − 1)D𝑇

1



2

+ 𝜇
2
C𝑇
2
�̃� (𝑘 − 1)D𝑇

2



2

⩽ 2

X̃ (𝑘 − 1)



2

− 𝜇 [2 − 𝜇 (
C1



2D1


2

+
C2



2D2


2

)]

×
�̃� (𝑘 − 1)



2

.

(30)
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Using (29) and (30), we have

X̃
1
(𝑘)



2

+

X̃
2
(𝑘)



2

+

X̃
3
(𝑘)



2

+

X̃
4
(𝑘)



2

⩽ 4

X̃ (𝑘 − 1)



2

− 𝜇 [2 − 𝜇 (
A1



2B1


2

+
A2



2B2


2

)]

�̃� (𝑘 − 1)



2

− 𝜇 [2 − 𝜇 (
C1



2D1


2

+
C2



2D2


2

)]
�̃� (𝑘 − 1)



2

.

(31)

Taking the norm of both sides of (23) gives


X̃ (𝑘)



2

=


X̃
1
(𝑘) + X̃

2
(𝑘) + X̃

3
(𝑘) + X̃

4
(𝑘)



2

16

⩽


X̃
1
(𝑘)



2

+

X̃
2
(𝑘)



2

+

X̃
3
(𝑘)



2

+

X̃
4
(𝑘)



2

4
.

(32)

Substituting (31) into (32) yields

X̃ (𝑘)



2

⩽

X̃ (𝑘 − 1)



2

−
𝜇

4
[2 − 𝜇 (

A1


2B1


2

+
A2



2B2


2

)]

×

�̃� (𝑘 − 1)



2

−
𝜇

4
[2 − 𝜇 (

C1


2D1


2

+
C2



2D2


2

)]

×
�̃� (𝑘 − 1)



2

⩽

X̃ (0)



2

−
𝜇

4
[2 − 𝜇 (

A1


2B1


2

+
A2



2B2


2

)]

×

𝑘−1

∑

𝑖=0


�̃� (𝑖)



2

−
𝜇

4
[2 − 𝜇 (

C1


2D1


2

+
C2



2D2


2

)]

×

𝑘−1

∑

𝑖=0

�̃� (𝑖)


2

.

(33)

Thus, we have

𝜇

4
(2 − 𝜇

2

∑

𝑖=1

A𝑖


2B𝑖


2

)

𝑘−1

∑

𝑖=0


�̃�(𝑖)



2

+
𝜇

4
(2 − 𝜇

2

∑

𝑖=1

C𝑖


2D𝑖


2

)

𝑘−1

∑

𝑖=0

�̃�(𝑖)


2

⩽

X̃(0)

2

< ∞.

(34)

Since

𝜇
0
= max{

2

∑

𝑖=1

A𝑖


2B𝑖


2

,

2

∑

𝑖=1

C𝑖


2D𝑖


2

} , (35)

that is,

𝜇

4
(2 − 𝜇𝜇

0
) [

𝑘−1

∑

𝑖=0

(

�̃� (𝑖)



2

+
�̃� (𝑖)



2

)] ⩽

X̃ (0)



2

, (36)

if the convergence factor 𝜇 is chosen to satisfy 0 < 𝜇 < 2/𝜇
0
,

then we have
∞

∑

𝑘=1

(

�̃�(𝑘)



2

+
�̃�(𝑘)



2

) ⩽

X̃(0)

2

. (37)

It follows that �̃�(𝑘) → 0 and �̃�(𝑘) → 0, as 𝑖 → ∞ or as
𝑘 → ∞, we obtain

A
1
X̃ (𝑘)B

1
+ A
2
X̃ (𝑘)B

2
→ 0,

C
1
X̃ (𝑘)D

1
+ C
2
X̃ (𝑘)D

2
→ 0.

(38)

From Theorem 3, we have X̃(𝑘) → 0, as 𝑘 → ∞. This
completes the proof of Theorem 4.

4. General Real Coupled Matrix Equations

In this section, we study the general real coupled matrix
equations of form

A
1
XB
1
+ A
2
XB
2
+ ⋅ ⋅ ⋅ + A

𝑝
XB
𝑝
= F
1
,

C
1
XD
1
+ C
2
XD
2
+ ⋅ ⋅ ⋅ + C

𝑞
XD
𝑞
= F
2
,

(39)

where A
𝑖
,C
𝑗
∈ R𝑚×𝑚, B

𝑖
,D
𝑗
∈ R𝑛×𝑛, 𝑖 = 1, 2, . . . , 𝑝, 𝑗 =

1, 2, . . . , 𝑞, and F
1
, F
2
∈ R𝑚×𝑛 are the given matrices, and X ∈

R𝑚×𝑛 is the unknown matrix to be determined.

4.1. The Exact Solution. According to Lemma 1, (39) can be
rewritten as

[
[
[
[
[

[

𝑝

∑

𝑖=1

B𝑇
𝑖
⊗ A
𝑖

𝑞

∑

𝑖=1

D𝑇
𝑖
⊗ C
𝑖

]
]
]
]
]

]

col [X] = col [F
1
, F
2
] , (40)

where [F
1
, F
2
] is a block matrix. Set

S
2
:=

[
[
[
[
[

[

𝑝

∑

𝑖=1

B𝑇
𝑖
⊗ A
𝑖

𝑞

∑

𝑖=1

D𝑇
𝑖
⊗ C
𝑖

]
]
]
]
]

]

∈ R
(2𝑚𝑛)×(𝑚𝑛)

. (41)

The exact solution of (39) can be given by the following
theorem.

Theorem 5. Equation (39) has a unique solution if and only if
S
2
is a full-column rankmatrix; in this case, the unique solution

is

col [X] = (S𝑇
2
S
2
)
−1

S𝑇
2
col [F

1
, F
2
] . (42)

If F
1
= F
2
= 0, then (39) has a unique solution X = 0.
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4.2. The Gradient-Based Iterative Algorithm. We define the
intermediate matrices:

G
𝑖
:= F
1
−

𝑝

∑

𝑟=1,𝑟 ̸= 𝑖

A
𝑟
XB
𝑟
, 𝑖 = 1, 2, . . . , 𝑝,

H
𝑗
:= F
2
−

𝑞

∑

𝑠=1,𝑠 ̸= 𝑗

C
𝑠
XD
𝑠
, 𝑗 = 1, 2, . . . , 𝑞.

(43)

By using the hierarchical identification principle, we decom-
pose (39) into

G
𝑖
= A
𝑖
XB
𝑖
, 𝑖 = 1, 2, . . . , 𝑝,

H
𝑗
= C
𝑗
XD
𝑗
, 𝑗 = 1, 2, . . . , 𝑞.

(44)

According to Lemma 2, we have

Y
𝑖
(𝑘) = Y

𝑖
(𝑘 − 1) + 𝜇A𝑇

𝑖
[G
𝑖
− A
𝑖
Y
𝑖
(𝑘 − 1)B

𝑖
]B𝑇
𝑖
, (45)

Z
𝑗
(𝑘) = Z

𝑗
(𝑘 − 1) + 𝜇C𝑇

𝑗
[H
𝑗
− C
𝑗
Z
𝑗
(𝑘 − 1)D

𝑗
]D𝑇
𝑗
, (46)

where Y
𝑖
(𝑘) and Z

𝑗
(𝑘) denote the iterative solutions of

equations G
𝑖
= A
𝑖
XB
𝑖
and H

𝑗
= C
𝑗
XD
𝑗
at iteration 𝑘,

respectively. Substituting G
𝑖
into (45) andH

𝑗
into (46) gives

Y
𝑖
(𝑘) = Y

𝑖
(𝑘 − 1)

+ 𝜇A𝑇
𝑖
[F
1
−

𝑝

∑

𝑟=1,𝑟 ̸= 𝑖

A
𝑟
XB
𝑟
− A
𝑖
Y
𝑖
(𝑘 − 1)B

𝑖
]B𝑇
𝑖
,

Z
𝑗
(𝑘) = Z

𝑗
(𝑘 − 1)

+ 𝜇C𝑇
𝑗
[

[

F
2
−

𝑞

∑

𝑠=1,𝑠 ̸= 𝑗

C
𝑠
XD
𝑠
− C
𝑗
Z
𝑗
(𝑘 − 1)D

𝑗
]

]

D𝑇
𝑗
.

(47)

To realize the above algorithm, we replace the unknown
matrix X in the right-hand side of the above two equations
with Y

𝑖
(𝑘 − 1) and Z

𝑗
(𝑘 − 1), respectively, and obtain

Y
𝑖
(𝑘) = Y

𝑖
(𝑘 − 1) + 𝜇A𝑇

𝑖
[F
1
−

𝑝

∑

𝑟=1

A
𝑟
Y
𝑖
(𝑘 − 1)B

𝑟
]B𝑇
𝑖
,

𝑖 = 1, 2, . . . , 𝑝,

Z
𝑗
(𝑘) = Z

𝑗
(𝑘 − 1) + 𝜇C𝑇

𝑗
[F
2
−

𝑞

∑

𝑠=1

C
𝑠
Z
𝑗
(𝑘 − 1)D

𝑠
]D𝑇
𝑗
,

𝑗 = 1, 2, . . . , 𝑞.

(48)

In fact, only an iterative solution X(𝑘) is needed; taking the
average of Y

𝑖
(𝑘) and Z

𝑗
(𝑘) as X(𝑘), we obtain the gradient

iterative algorithm for solving (39) as follows:

X (𝑘) =

∑
𝑝

𝑖=1
Y
𝑖
(𝑘) + ∑

𝑞

𝑗=1
Z
𝑗
(𝑘)

𝑝 + 𝑞
, (49)

Y
𝑖
(𝑘) = X (𝑘 − 1) + 𝜇A𝑇

𝑖
[F
1
−

𝑝

∑

𝑟=1

A
𝑟
X (𝑘 − 1)B

𝑟
]B𝑇
𝑖
,

(50)

Z
𝑗
(𝑘) = X (𝑘 − 1) + 𝜇C𝑇

𝑗
[F
2
−

𝑞

∑

𝑠=1

C
𝑠
X (𝑘 − 1)D

𝑠
]D𝑇
𝑗
,

(51)

0 < 𝜇 <
2

𝜇
0

, 𝜇
0
:= max

{

{

{

𝑝

∑

𝑖=1

A𝑖


2B𝑖


2

,

𝑞

∑

𝑗=1


C
𝑗



2
D
𝑗



2}

}

}

.

(52)

Theorem 6. If (39) has a unique solution X, then the iterative
solution X(𝑘) given by (49)–(52) converges to X, that is,
lim
𝑘→∞

X(𝑘) = X, or the error matrix X(𝑘) − X converges
to zero for any initial value X(0).

Proof. The estimation error matrices are defined as

Ỹ
𝑖
(𝑘) := Y

𝑖
(𝑘) − X, 𝑖 = 1, 2, . . . , 𝑝,

Z̃
𝑗
(𝑘) := Z

𝑗
(𝑘) − X, 𝑗 = 1, 2, . . . , 𝑞,

X̃ (𝑘) := X (𝑘) − X.

(53)

By using (49)–(51), we have

Ỹ
𝑖
(𝑘) = X̃ (𝑘 − 1) − 𝜇A𝑇

𝑖
[

𝑝

∑

𝑟=1

A
𝑟
X̃ (𝑘 − 1)B

𝑟
]B𝑇
𝑖
,

𝑖 = 1, 2, . . . , 𝑝,

Z̃
𝑗
(𝑘) = X̃ (𝑘 − 1) − 𝜇C𝑇

𝑗
[

𝑞

∑

𝑠=1

C
𝑠
X̃ (𝑘 − 1)D

𝑠
]D𝑇
𝑗
,

𝑗 = 1, 2, . . . , 𝑞,

(54)

X̃ (𝑘) =

∑
𝑝

𝑖=1
Ỹ
𝑖
(𝑘) + ∑

𝑞

𝑗=1
Z̃
𝑖
(𝑘)

𝑝 + 𝑞
. (55)

Set

�̃� (𝑘 − 1) :=

𝑝

∑

𝑟=1

A
𝑟
X̃ (𝑘 − 1)B

𝑟
,

�̃� (𝑘 − 1) :=

𝑞

∑

𝑠=1

C
𝑠
X̃ (𝑘 − 1)D

𝑠
.

(56)
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According to the trace formula ‖X‖2 = tr [X𝑇 X] and using
(54), for 𝑖 = 1, 2, . . . , 𝑝 and 𝑗 = 1, 2, . . . , 𝑞, we obtain


Ỹ
𝑖
(𝑘)



2

=

X̃(𝑘 − 1)

2

− 2𝜇 tr [X̃(𝑘 − 1)𝑇A𝑇
𝑖
�̃� (𝑘 − 1)B𝑇

𝑖
]

+ 𝜇
2
A𝑇
𝑖
�̃�(𝑘 − 1)B𝑇

𝑖



2

,

(57)


Z̃
𝑗
(𝑘)



2

=

X̃ (𝑘 − 1)



2

− 2𝜇 tr [X̃(𝑘 − 1)𝑇C𝑇
𝑗
�̃� (𝑘 − 1)D𝑇

𝑗
]

+ 𝜇
2
C𝑇
𝑗
�̃� (𝑘 − 1)D𝑇

𝑗



2

.

(58)

For 𝑖 = 1, 2, . . . , 𝑝 and 𝑗 = 1, 2, . . . , 𝑞, adding (57) to (58) gives

𝑝

∑

𝑖=1


Ỹ
𝑖
(𝑘)



2

+

𝑞

∑

𝑗=1


Z̃
𝑖
(𝑘)



2

= (𝑝 + 𝑞)

X̃ (𝑘 − 1)



2

− 2𝜇 (

�̃� (𝑘 − 1)



2

+
�̃� (𝑘 − 1)



2

)

+ 𝜇
2

𝑝

∑

𝑖=1


A𝑇
𝑖
�̃� (𝑘 − 1)B𝑇

𝑖



2

+ 𝜇
2

𝑞

∑

𝑗=1


C𝑇
𝑗
�̃� (𝑘 − 1)D𝑇

𝑗



2

⩽ (𝑝 + 𝑞)

X̃ (𝑘 − 1)



2

− 2𝜇 (

�̃� (𝑘 − 1)



2

+
�̃� (𝑘 − 1)



2

)

+ 𝜇
2
�̃� (𝑘 − 1)



2
𝑝

∑

𝑖=1

A𝑖


2B𝑖


2

+ 𝜇
2�̃� (𝑘 − 1)



2

𝑞

∑

𝑗=1


C
𝑗



2
D
𝑗



2

= (𝑝 + 𝑞)

X̃ (𝑘 − 1)



2

− 𝜇(2 − 𝜇

𝑝

∑

𝑖=1

A𝑖


2B𝑖


2

)

�̃� (𝑘 − 1)



2

− 𝜇(2 − 𝜇

𝑞

∑

𝑗=1


C
𝑗



2
D
𝑗



2

)
�̃� (𝑘 − 1)



2

.

(59)

Taking the norm of both sides of (55) and using the norm
inequality ‖∑𝑚

𝑖=1
A
𝑖
‖
2

⩽ 𝑚∑
𝑚

𝑖=1
‖A
𝑖
‖
2 gives


X̃ (𝑘)



2

=


∑
𝑝

𝑖=1
Ỹ
𝑖
(𝑘) + ∑

𝑞

𝑗=1
Z̃
𝑗
(𝑘)



2

(𝑝 + 𝑞)
2

⩽

∑
𝑝

𝑖=1


Ỹ
𝑖
(𝑘)



2

+ ∑
𝑞

𝑗=1


Z̃
𝑗
(𝑘)



2

𝑝 + 𝑞
.

(60)

Dividing (59) by 𝑝 + 𝑞 and using the inequality (60) gives

X̃ (𝑘)



2

⩽

X̃ (𝑘 − 1)



2

−
𝜇

𝑝 + 𝑞
(2 − 𝜇

𝑝

∑

𝑖=1

A𝑖


2B𝑖


2

)

�̃� (𝑘 − 1)



2

−
𝜇

𝑝 + 𝑞
(2 − 𝜇

𝑞

∑

𝑗=1


C
𝑗



2
D
𝑗



2

)
�̃� (𝑘 − 1)



2

⩽

X̃ (𝑘 − 1)



2

−
𝜇

𝑝 + 𝑞
(2 − 𝜇𝜇

0
)

× (

�̃� (𝑘 − 1)



2

+
�̃� (𝑘 − 1)



2

)

⩽

X̃ (0)



2

−
𝜇

𝑝 + 𝑞
(2 − 𝜇𝜇

0
)

𝑘−1

∑

𝑡=0

(

�̃� (𝑡)



2

+
�̃� (𝑡)



2

) .

(61)

In the second “⩽,” the assumption that 𝜇
0

=

max{∑𝑝
𝑖=1

‖A
𝑖
‖
2
‖B
𝑖
‖
2
, ∑
𝑞

𝑗=1
‖C
𝑗
‖
2
‖D
𝑗
‖
2
} is used. Since

‖X̃(𝑘)‖2 ⩾ 0, we have

𝜇

𝑝 + 𝑞
(2 − 𝜇𝜇

0
)

𝑘−1

∑

𝑡=0

(

�̃�(𝑡)



2

+
�̃�(𝑡)



2

) ⩽

X̃(0)

2

< ∞.

(62)

If the convergence factor 𝜇 is chosen to satisfy 0 < 𝜇 < 2/𝜇
0
,

then we have
∞

∑

𝑘=0

(

�̃�(𝑘)



2

+
�̃�(𝑘)



2

) ⩽

X̃(0)

2

. (63)

It follows that ‖�̃�(𝑘)‖2 + ‖�̃�(𝑘)‖2 → 0, as 𝑘 → ∞ or as 𝑘 →

∞, we obtain

A
1
X̃ (𝑘 − 1)B

1
+ A
2
X̃ (𝑘 − 1)B

2

+ ⋅ ⋅ ⋅ + A
𝑝
X̃ (𝑘 − 1)B

𝑝
→ 0,

C
1
X̃ (𝑘 − 1)D

1
+ C
2
X̃ (𝑘 − 1)D

2

+ ⋅ ⋅ ⋅ + C
𝑞
X̃ (𝑘 − 1)D

𝑞
→ 0.

(64)

According to Theorem 5, we have X̃(𝑘) → 0, as 𝑘 → ∞.
This completes the proof of Theorem 6.
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Figure 1: The relative error 𝛿 versus 𝑘 (dots: 𝜇
0
= max{∑2

𝑖=1
‖A
𝑖
‖
2
‖B
𝑖
‖
2
, ∑
2

𝑗=1
‖C
𝑗
‖
2
‖D
𝑗
‖
2
} = 11.12).

5. A Numerical Example

This section offers a numerical example to illustrate the
performance of the proposed algorithm. Consider (6) with

A
1
= [

−0.8 −0.3

−0.2 −2.1
] , B

1
= [

−1.7 0.4

−0.8 −1.5
] ,

A
2
= [

0.9 −1.5

0.6 −0.2
] , B

2
= [

0.3 1.4

1.1 0.9
] ,

C
1
= [

−2.4 1.3

0.4 −0.2
] , D

1
= [

0.6 −0.3

0.6 1
] ,

C
2
= [

0.9 0.6

−0.4 −0.1
] , D

2
= [

0 1.2

0.1 −1.5
] ,

F
1
= [

−24.34 −38.9

25.73 1.74
] , F

2
= [

24.18 31.11

−3.7 −7.52
] .

(65)

FromTheorem 3, the exact solution is

X = [
𝑥
11

𝑥
12

𝑥
21

𝑥
22

] = [
−2 −8

7 6
] . (66)

TakingX(0) = 10−61
2×2

as initial iterative value, we apply
the gradient-based iterative algorithm in (15)–(19) to compute
X(𝑘). The iterative solutionsX(𝑘) are shown in Table 1, where
𝛿 = ‖X(𝑘) −X‖/‖X‖ is the relative error and the convergence
factor 𝜇 is 25/139. The relation of the relative error 𝛿 with
different convergence factors is shown in Figure 1. From
Table 1 and Figure 1, we can find that 𝛿 becomes smaller and
smaller and tends to zero as the iterative times increase. This
demonstrates that the algorithm proposed in this paper is
effective.

A simple calculation indicates that the range of the con-
vergence factor is conservative. Based on the deep analysis
of Figure 1, we find that the rate of convergence increases
when 𝜇 enlarges from 25/556 to 25/278. However, if we
keep enlarging 𝜇 from 25/139 to 125/556, the rate of
convergence will drop. This shows that the best convergence
factor is uncovered in this algorithm. How to find the best
convergence factor subtly is our work in the future.

Table 1: The gradient iterative solution (𝜇 = 25/139).

𝑘 𝑥
11

𝑥
12

𝑥
21

𝑥
22

𝛿 (%)
2 −1.60864 −7.04633 6.47331 5.28946 10.98102
4 −1.89505 −7.89255 6.97696 5.89765 1.48121
6 −1.96855 −7.98772 7.00523 5.98269 0.30968
8 −1.99026 −7.99846 7.00259 5.99669 0.08667
10 −1.99696 −7.99976 7.00084 5.99931 0.02617
12 −1.99905 −7.99995 7.00025 5.99985 0.00805
14 −1.99970 −7.99999 7.00007 5.99996 0.00249
16 −1.99991 −8.00000 7.00002 5.99999 0.00077
18 −1.99997 −8.00000 7.00001 6.00000 0.00024
20 −1.99999 −8.00000 7.00000 6.00000 0.00007
Solution −2.00000 −8.00000 7.00000 6.00000

6. Conclusions

This paper has proposed a gradient-based iterative algorithm
for solving a class of the real coupled matrix equations. By
using the hierarchical identification principle, we prove that
the iterative solution is convergent if the unique solution
exists. An example demonstrates that the algorithm is effec-
tive and indicates that the best convergence factor is existent.
We will find the best convergence factor of this algorithm in
the future.
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