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A class of new nonlinear impulsive set dynamic equations is considered based on a new generalized derivative of set-valued
functions developed on time scales in this paper. Some novel criteria are established for the existence and stability of solutions of
suchmodel.The approaches generalize and incorporate as special cases many known results for set (or fuzzy) differential equations
and difference equations when the time scale is the set of the real numbers or the integers, respectively. Finally, some examples show
the applicability of our results.

1. Introduction

One of the most convenient generalizations of differential
equations is the notion of set differential equations (SDEs).
The main objects in this framework are set-valued functions
of the form 𝑈 : 𝐽 → 𝐾

𝑛

𝑐
, where 𝐽 is an interval of real axis

R and 𝐾𝑛

𝑐
is the space of all nonempty compact and convex

subsets of R𝑛. The increasing need of theoretical models for
the study of other problems emerging in optimal control
theory, dynamic economy, and biological theory motivated
the advance in SDEs. In the last decade, the study of SDEs
has attracted the attention of many researches [1–28]. In [21–
23] the authors extended SDEs to set dynamic equations on
time scales in order to unify such problems in the framework
of set dynamic equations on a time scale.

Hukuhara derivative (𝐻-derivative, for short) of set-
valued functions is the starting point for the topic of SDEs
[29] and later also for fuzzy differential equations (FDEs)
[30]. In [17, 18] the authors were concerned with the
interrelation between SDEs and FDEs. However, Hukuhara
differentiability concept has some drawbacks as pointed
out in [31, 32]. For instance, 𝐻-derivative depends on the
existence of Hukuhara difference but the latter does not
always exist. Recently, several generalized 𝐻-derivatives are
proposed to overcome some shortcomings of this approach.

Let us mention that the strongly generalized differentiability
(𝐺-differentiability) was defined by considering lateral 𝐻-
derivatives (four cases) in [32]. In [33] the authors have
introduced the concept of𝑔𝐻-differentiability, which is based
on a generalization of the Hukuhara difference between
two intervals. Chalco-Cano et al. in [34] defined 𝑔𝐻-
differentiability of set-valued functions from the real axis
R into 𝐾𝑛

𝑐
and studied its relationship to 𝐺-differentiability.

In this paper we shall adopt 𝑔-differentiability of set-valued
functions on time scales, which is corresponding in character
with the above-mentioned 𝑔𝐻-differentiability and is an
extension of the 𝐻-derivative on time scales introduced by
[21].

A number of processes in physics, biology, and control
theory during their evolutionary development are subject
to the action of short-time forces in the form of impulses.
In most cases the duration of the action of these forces is
negligibly small, as a result of which one can assume that
the forces act only at certain moments of time.The impulsive
differential equations represent amathematicalmodel of such
processes. The theory of impulsive differential equations has
attracted the attention of many scientists; see, for instance,
[18, 20, 22] and [35–38].

In the present paper, we investigative the existence and
stability theory for impulsive set dynamic equations on
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time scales by introducing the notion of the exponential
dichotomy and using fixed point theorems. Our main contri-
bution of the paper lies in showing how the basic properties
of exponential dichotomy theory for homogeneous linear set
dynamic equations can be used to establish the existence and
stability of nonlinear set dynamic equations on time scales,
proposing the possibility to get some insight into and better
understanding of the subtle difference between discrete and
continuous systems and building a unified study framework
of the corresponding problems.

The paper contains five sections. In Section 2 several
basic definitions and properties of time scales and set-valued
analysis are collected; especially, the 𝑔-derivative of set-
valued functions on time scales is defined. Subsequently, in
Section 3, the exponential dichotomy of the homogeneous
linear set dynamic equation is introduced and the existence
and uniqueness of solutions to a class of linear impulsive
set dynamic equations under 𝑔-derivative of set-valued func-
tions and the existence of bounded solutions to its nonlinear
counterpart are presented. In Section 4 several preliminary
results concerning stability are given by applying a fixed point
theorem. In the final section, several examples are given to
show the applicability of our main results.

2. Preliminaries

In this section, we recall briefly the necessary background
material for a self-contained presentation of our study. We
first recall the notion of the time scale built by Hilger and
Bohner. For more details, we refer the reader to [39, 40].

A closed nonempty subset T of real axisR is called a time
scale or measure chain. For 𝑡 ∈ T we define the forward jump
operator 𝜎 : T → T by 𝜎(𝑡) = inf{𝜏 ∈ T : 𝜏 > 𝑡}, while
the backward jump operator 𝜌 : T → T is defined by 𝜌(𝑡) =
sup{𝜏 ∈ T : 𝜏 < 𝑡}. The function 𝜇 : T → [0,∞) called the
graininess function is defined by 𝜇(𝑡) = 𝜎(𝑡) − 𝑡 for 𝑡 ∈ T .
In this definition we put inf 0 = sup T (i.e., 𝜎(𝑡) = 𝑡 if T has
a maximum 𝑡) and sup 0 = inf T (i.e., 𝜌(𝑡) = 𝑡 if T has a
minimum 𝑡), where 0 denotes the empty set. 𝑡 is said to be
right scattered if 𝜎(𝑡) > 𝑡 and 𝑡 is said to be right dense (rd)
if 𝜎(𝑡) = 𝑡. 𝑡 is said to be left scattered if 𝜌(𝑡) < 𝑡 and 𝑡 is said
to be left dense (ld) if 𝜌(𝑡) = 𝑡. A point is said to be isolated
(dense) if it is right scattered (right dense) and left scattered
(left sense) at the same time. In this paper we stipulate that
the time scale T is T − {𝑀} if T has a left scattered maximum
𝑀.

We continue with a description of the basic known results
for Hausdorff metrics, continuity, and differentiability for
set-valued mappings on time scales and their corresponding
properties within the framework of time scales. We refer
readers to [18, 21] for details. The following operations can
be naturally defined on it:

𝑋+ 𝑌 = {𝑥 + 𝑦 : 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌} ,

𝜆𝑋 = {𝜆𝑥 : 𝑥 ∈ 𝑋} , 𝜆 ∈ R,

𝑋𝑌 = {𝑥𝑦 : 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌} for 𝑋,𝑌 ∈ 𝐾
𝑛

𝑐
.

(1)

Here, assume that some product operation is defined on R𝑛.
The set𝑍 ∈ 𝐾

𝑛

𝑐
satisfying𝑋 = 𝑌+𝑍 is known as the geometric

difference (Hukuhara difference) of the set 𝑋 and set 𝑌 and
is denoted by the symbol𝑋−

𝐻
𝑌. It is worthy to note that the

geometric difference of two sets does not always exist but if
it does, it is unique. A generalization of geometric difference
proposed in [33] aims to guarantee the existence of difference
for any two intervals in 𝐾1

𝑐
. In the light of this, a generalized

difference called the 𝑔-difference, “−
𝑔
”, can be defined for any

𝑋,𝑌 ∈ 𝐾
𝑛

𝑐
; that is,

𝑋−
𝑔
𝑌 = 𝑍 ⇐⇒ {

(𝑎) 𝑋 = 𝑌 + 𝑍, or
(𝑏) 𝑌 = 𝑋 + (−1)𝑍.

(2)

It is clear that if the 𝑔-difference exists, it is unique and it
is a generalization of the geometric difference since 𝑋−

𝑔
𝑌 =

𝑋−
𝐻
𝑌, whenever 𝑋−

𝐻
𝑌 exists. In addition, the authors in

[33] enumerated the following properties.

Lemma 1. Let𝑋,𝑌 ∈ 𝐾
𝑛

𝑐
be two compact convex sets. Then,

(i) 𝑋−
𝑔
𝑋 = {0}; (𝑋 + 𝑌)−

𝑔
𝑌 = 𝑋; {0}−

𝑔
(𝑋−

𝑔
𝑌) =

(−𝑌)−
𝑔
(−𝑋);

(ii) if𝑋−
𝑔
𝑌 exists in the sense (a), then 𝑌−

𝑔
𝑋 exists in the

sense (b) and vice versa;
(iii) 𝑋−

𝑔
𝑌 = 𝑌−

𝑔
𝑋 = 𝑍 if and only if 𝑍 = {0} and 𝑋 = 𝑌;

(iv) 𝑋−
𝑔
𝑌 exists if and only if𝑌−

𝑔
𝑋 and (−𝑌)−

𝑔
(−𝑋) exist

and −(𝑋−
𝑔
𝑌) = (−𝑌)−

𝑔
(−𝑋) = 𝑌−

𝑔
𝑋.

Proof. (i)–(iii) for the proof we refer to [41]. To prove the first
part of (iv) let𝑍 = 𝑋−

𝑔
𝑌; that is,𝑋 = 𝑌+𝑍 or𝑌 = 𝑋+(−)𝑍.

Then −𝑋 = −𝑌 + (−𝑍) or −𝑌 = −𝑋 − (−𝑍) and this means
(−𝑌)−

𝑔
(−𝑋) = −𝑍; the second part is immediate.

Throughout this paper, we always assume that the 𝑔-
difference of any two elements under consideration in 𝐾

𝑛

𝑐

exists. We remark that the assumption may be valid; for
instance, in the unidimensional case (with 𝐾1

𝑐
= I, a class of

all closed bounded intervals of the real line) the 𝑔-difference
exists for any two compact intervals.

We define the Hausdorff metric as

𝐷 [𝑋, 𝑌] = max{sup
𝑦∈𝑌

𝑑 (𝑦,𝑋) , sup
𝑥∈𝑋

𝑑 (𝑥, 𝑌)} , (3)

where 𝑑(𝑥, 𝑌) = inf{𝑑(𝑥, 𝑦) : 𝑦 ∈ 𝑌} and 𝑋,𝑌 are bounded
subsets of R𝑛.

Notice that 𝐾𝑛

𝑐
with this distance is a complete metric

space. On the other hand, the Hausdorff metric 𝐷 is com-
patible with the operations defined on it as described by the
following properties: for any𝑋,𝑌, 𝑍,𝑊 ∈ 𝐾

𝑛

𝑐
and 𝜇, ] ∈ R,

𝐷[𝑋±
𝑔
𝑍,𝑌±

𝑔
𝑍] = 𝐷 [𝑋, 𝑌] ,

𝐷 [𝑋±
𝑔
𝑍,𝑌±

𝑔
𝑊] ≤ 𝐷 [𝑋, 𝑌] + 𝐷 [𝑍,𝑊] ;

𝐷 [𝜇𝑋, 𝜇𝑌] =
𝜇
 𝐷 [𝑋, 𝑌] ,

𝐷 [𝑋𝑍, 𝑌𝑍] ≤ ‖𝑍‖𝐷 [𝑋, 𝑌] ;

𝐷 (𝜇𝑋, ]𝑋) = 𝜇 − ] ‖𝑋‖ for 𝜇, ] ≥ 0 or 𝜇, ] ≤ 0.

(4)

Here ‖𝑉‖ = 𝐷[𝑉, {0}] = sup{‖V‖ : V ∈ 𝑉} for 𝑉 ∈ 𝐾
𝑛

𝑐
.
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In order to define the continuity and regularity of set-
valued functions on time scales, we first need the notion of
selectors of set-valued functions; that is, a function 𝑓 : D ⊂

T → R is called a selector of the set-valued function 𝐹 :

D → 𝐾
𝑛

𝑐
if 𝑓(𝑡) ∈ 𝐹(𝑡) for all 𝑡 ∈ D.

Definition 2. A set-valued mapping 𝐹 : 𝐽T → 𝐾
𝑛

𝑐
, where

𝐽T = 𝐽 ∩ T with 𝐽 ⊂ R, is said to have the limit at 𝑡
0
∈ 𝐽T if

there exists an elementA ∈ 𝐾
𝑛

𝑐
such that, for any 𝜀 > 0, there

exists a 𝛿 = 𝛿(𝜀, 𝑡
0
) > 0 such that𝐷(𝐹(𝑡),A) < 𝜀, for all 𝑡 ∈ 𝐽T

with |𝑡 − 𝑡
0
| < 𝛿. We denote the limit by lim

𝑡→ 𝑡0
𝐹(𝑥); that is,

A = lim
𝑡→ 𝑡0

𝐹(𝑡).
Let 𝐹(𝑡

0
) be well defined. 𝐹 is called continuous at 𝑡

0
∈ 𝐽T

if its limit at 𝑡
0
exists and equals 𝐹(𝑡

0
).

𝐹 : T → 𝐾
𝑛

𝑐
is called regulated provided its right-sided

limit exists at any right-dense point in T , its left-sided limit
exists at any left-dense point in T , and its regulated selector
exists.

𝐹 is called right dense continuous, denoted 𝑟𝑑-
continuous, provided 𝐹 is continuous at each right-dense
point in T , its left-sided limits exist at each left-dense points
in T , and its 𝑟𝑑-continuous selector exists. Similarly we can
define 𝑙𝑑-continuity.

𝐹 is said to be uniformly 𝑟𝑑-continuous on D ⊂ T if it is
𝑟𝑑-continuous and for any 𝜀 > 0, there exists 𝛿 > 0 such that
𝐷[𝐹(𝑡), 𝐹(𝑠)] < 𝜀 for each right-dense point 𝑡 ∈ D and any
𝑠 ∈ D with |𝑠 − 𝑡| < 𝛿.

Lemma 3. Let the set-valued function 𝐹 : [𝑎, 𝑏]T → 𝐾
𝑛

𝑐

be regulated, where [𝑎, 𝑏]T is a compact interval. Then 𝐹 is
bounded; that is, there exists a positive number 𝑀 such that
‖𝐹(𝑡)‖ ≤ 𝑀 for each 𝑡 ∈ [𝑎, 𝑏]T .

The following definition we refer to the 𝑔𝐻-
differentiability in [34] which can be regarded as an
improvement of𝐻-differentiability introduced in [21].

Definition 4. Suppose that 𝐹 : T → 𝐾
𝑛

𝑐
is a set-valued

function. Let 𝑡 ∈ T andΔ
𝑔
𝐹(𝑡) be an element of𝐾𝑛

𝑐
(provided

it exists) with the property that, for given any 𝜀 > 0, there
exists a neighborhood 𝑈T of 𝑡 (i.e., 𝑈T = (𝑡 − 𝛿, 𝑡 + 𝛿) ∩ T for
some 𝛿 > 0) such that

𝐷[𝐹 (𝑡 + ℎ) −
𝑔
𝐹 (𝜎 (𝑡)) , Δ

𝑔
𝐹 (𝑡) (ℎ − 𝜇 (𝑡))] ≤ 𝜀

ℎ − 𝜇 (𝑡)


(5)

for all 𝑡+ℎ ∈ 𝑈T with |ℎ| < 𝛿. We callΔ
𝑔
𝐹(𝑡) the 𝑔-derivative

of 𝐹 at 𝑡.
We say that 𝐹 is 𝑔-differentiable at 𝑡 if its 𝑔-derivative

exists at 𝑡. Moreover, we say 𝐹 is 𝑔-differentiable on T if its
𝑔-derivative exists at each 𝑡 ∈ T . The set-valued function
Δ
𝑔
𝐹 : T → 𝐾

𝑛

𝑐
is then called the 𝑔-derivative of 𝐹 on T .

We denote the sets of all 𝑟𝑑-continuous set-valued func-
tions 𝐹 : D ⊂ T → 𝐾

𝑛

𝑐
and all set-valued functions 𝐹 : D →

𝐾
𝑛

𝑐
whose 𝑟𝑑-continuous 𝑔-derivative exists, respectively, by

C
𝑟𝑑
= C

𝑟𝑑
(D) = C

𝑟𝑑
(D, 𝐾𝑛

𝑐
) ,

C
1

𝑟𝑑
= C

1

𝑟𝑑
(D) = C

1

𝑟𝑑
(D, 𝐾𝑛

𝑐
) .

(6)

It is significant to refer that if we restrict ourselves to
single valued mappings, then the previous notions reduce to
their classical counterparts, that is, to ordinary 𝑟𝑑-continuity
and Δ-differentiability in T (in the sense, Δ

𝑔
𝑓(𝑡) = 𝑓

Δ

(𝑡)

defined as [40] if𝑓 is a single valued function).We enumerate
the following properties for the g-differentiable set-valued
functions.

Proposition 5. Assume that 𝐹 : T → 𝐾
𝑛

𝑐
is a set-valued

function and 𝑡 ∈ T ; then we have the following.

(I) If 𝐹 is 𝑔-differentiable at 𝑡, then 𝐹 is continuous at 𝑡.

(II) If 𝐹 is continuous at 𝑡 and 𝑡 is right scattered, then 𝐹 is
𝑔-differentiable at 𝑡. Moreover, we have

Δ
𝑔
𝐹 (𝑡) =

𝐹 (𝜎 (𝑡)) −
𝑔
𝐹 (𝑡)

𝜇 (𝑡)
. (7)

(III) If 𝑡 is right dense, then 𝐹 is 𝑔-differentiable at 𝑡 if and
only if

lim
ℎ→0

𝐹 (𝑡 + ℎ) −
𝑔
𝐹 (𝑡)

ℎ
= Δ

𝑔
𝐹 (𝑡) . (8)

Proof. (I) Assume that 𝐹 is 𝑔-differentiable at 𝑡. Let 𝜀 ∈ (0, 1).
Define

𝜀
∗

= 𝜀[

Δ
𝑔
𝐹(𝑡)


+ 2𝜇(𝑡) + 1]

−1

. (9)

Clearly, 𝜀∗ ∈ (0, 1). Note that 𝐷[𝑋, 𝑌] ≤ ‖𝑋−
𝑔
𝑌‖ and by

Definition 4 there exists a neighborhood 𝑈T of 𝑡 such that

𝐷[𝐹 (𝑡 + ℎ) −
𝑔
𝐹 (𝜎 (𝑡)) , Δ

𝑔
𝐹 (𝑡) (ℎ − 𝜇 (𝑡))] ≤ 𝜀

∗ ℎ − 𝜇 (𝑡)


(10)

for all ℎ with 𝑡 + ℎ ∈ 𝑈T . Therefore, we have for all 𝑡 + ℎ ∈

𝑈T ∩ (𝑡 − 𝜀
∗

, 𝑡 + 𝜀
∗

) with |ℎ| < 𝜀
∗

𝐷 [𝐹 (𝑡 + ℎ) , 𝐹 (𝑡)]

= 𝐷 [𝐹 (𝑡 + ℎ) −
𝑔
𝐹 (𝜎 (𝑡)) + 𝐹 (𝜎 (𝑡)) −

𝑔
𝐹 (𝑡) ,

Δ
𝑔
𝐹 (𝑡) (ℎ − 𝜇 (𝑡)) −

𝑔
Δ
𝑔
𝐹 (𝑡) (ℎ − 𝜇 (𝑡))]

≤ 𝐷 [𝐹 (𝑡 + ℎ) −
𝑔
𝐹 (𝜎 (𝑡)) , Δ

𝑔
𝐹 (𝑡) (ℎ − 𝜇 (𝑡))]
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+ 𝐷 [𝐹 (𝜎 (𝑡)) −
𝑔
𝐹 (𝑡) , {0} −

𝑔
Δ
𝑔
𝐹 (𝑡) (ℎ − 𝜇 (𝑡))]

≤ 𝐷 [𝐹 (𝑡 + ℎ) −
𝑔
𝐹 (𝜎 (𝑡)) , Δ

𝑔
𝐹 (𝑡) (ℎ − 𝜇 (𝑡))]

+ 𝐷 [𝐹 (𝜎 (𝑡)) −
𝑔
𝐹 (𝑡) , Δ

𝑔
𝐹 (𝑡) 𝜇 (𝑡)]

+ 𝐷 [Δ
𝑔
𝐹 (𝑡) 𝜇 (𝑡) , {0} −

𝑔
Δ
𝑔
𝐹 (𝑡) (ℎ − 𝜇 (𝑡))]

= 𝐷 [𝐹 (𝑡 + ℎ) −
𝑔
𝐹 (𝜎 (𝑡)) , Δ

𝑔
𝐹 (𝑡) (ℎ − 𝜇 (𝑡))]

+ 𝐷 [𝐹 (𝜎 (𝑡)) −
𝑔
𝐹 (𝑡) , Δ

𝑔
𝐹 (𝑡) 𝜇 (𝑡)]

+ 𝐷 [Δ
𝑔
𝐹 (𝑡) 𝜇 (𝑡) , Δ

𝑔
𝐹 (𝑡) (𝜇 (𝑡) − ℎ)]

(see Lemma 1 (iv))

≤ 𝜀
∗ ℎ − 𝜇 (𝑡)

 + 𝜀
∗

𝜇 (𝑡) +
𝜇 (𝑡) − (𝜇 (𝑡) − ℎ)




Δ
𝑔
𝐹 (𝑡)



≤ 𝜀
∗

(|ℎ| + 2𝜇 (𝑡))

+ |ℎ|

Δ
𝑔
𝐹 (𝑡)


< 𝜀

∗

(1 + 2𝜇 (𝑡) +

Δ
𝑔
𝐹 (𝑡)


) = 𝜀.

(11)

This implies that 𝐹 is continuous at 𝑡.
(II) Assume that 𝐹 is continuous at 𝑡 and 𝑡 is right

scattered. By the continuity, we have

lim
ℎ→0

𝐹 (𝑡 + ℎ) −
𝑔
𝐹 (𝜎 (𝑡))

ℎ − 𝜇 (𝑡)
=

𝐹 (𝑡) −
𝑔
𝐹 (𝜎 (𝑡))

𝑡 − 𝜎 (𝑡)

=

𝐹 (𝑡) −
𝑔
𝐹 (𝜎 (𝑡))

−𝜇 (𝑡)
.

(12)

This guarantees the existence of (𝐹(𝑡)−
𝑔
𝐹(𝜎(𝑡)))/ − 𝜇(𝑡). By

virtue of Lemma 1(iv), the difference (𝐹(𝜎(𝑡))−
𝑔
𝐹(𝑡))/𝜇(𝑡)

exists and

𝐹 (𝑡) −
𝑔
𝐹 (𝜎 (𝑡))

−𝜇 (𝑡)
=

− (𝐹 (𝑡) −
𝑔
𝐹 (𝜎 (𝑡)))

𝜇 (𝑡)
=

𝐹 (𝜎 (𝑡)) −
𝑔
𝐹 (𝑡)

𝜇 (𝑡)
.

(13)

Hence, given 𝜀 > 0, there exists a neighborhood 𝑈T of 𝑡 such
that

𝐷[

𝐹 (𝑡 + ℎ) −
𝑔
𝐹 (𝜎 (𝑡))

ℎ − 𝜇 (𝑡)
,

𝐹 (𝜎 (𝑡)) −
𝑔
𝐹 (𝑡)

𝜇 (𝑡)
] ≤ 𝜀 (14)

for all ℎ with 𝑡 + ℎ ∈ 𝑈T . It follows that

𝐷[𝐹 (𝑡 + ℎ) −
𝑔
𝐹 (𝜎 (𝑡)) ,

𝐹 (𝜎 (𝑡)) −
𝑔
𝐹 (𝑡)

𝜇 (𝑡)
(ℎ − 𝜇 (𝑡))]

≤ 𝜀
ℎ − 𝜇 (𝑡)



(15)

for all ℎ with 𝑡 + ℎ ∈ 𝑈T . According to Definition 4, (II) is
valid as desired.

(III) Assume that 𝐹 is 𝑔-differentiable at 𝑡 and 𝑡 is right
dense. Let 𝜀 > 0 be given. Since 𝐹 is 𝑔-differentiable at 𝑡, there
exists a neighborhood 𝑈T of 𝑡 such that

𝐷[𝐹 (𝑡 + ℎ) −
𝑔
𝐹 (𝜎 (𝑡)) , Δ

𝑔
𝐹 (𝑡) (ℎ − 𝜇 (𝑡))] ≤ 𝜀

ℎ − 𝜇 (𝑡)


(16)

for all ℎ with 𝑡 + ℎ ∈ 𝑈T . Since 𝜎(𝑡) = 𝑡, that is, 𝜇(𝑡) = 0, we
have that

𝐷[𝐹 (𝑡 + ℎ) −
𝑔
𝐹 (𝑡) , ℎΔ

𝐻
𝐹 (𝑡)] ≤ 𝜀 |ℎ| (17)

for all ℎ with 𝑡 + ℎ ∈ 𝑈T . This yields

𝐷[

𝐹 (𝑡 + ℎ) −
𝑔
𝐹 (𝑡)

ℎ
, Δ

𝑔
𝐹 (𝑡)] ≤ 𝜀 (18)

for all ℎ ̸= 0 with 𝑡 + ℎ ∈ 𝑈T . Therefore, from the arbitrariness
of 𝜀 we get

Δ
𝑔
𝐹 (𝑡) = lim

ℎ→0

𝐹 (𝑡 + ℎ) −
𝑔
𝐹 (𝑡)

ℎ
. (19)

Conversely, suppose that 𝑡 is right dense, the limit exists in
Part (III). Then, for any given 𝜀 > 0, there is a neighborhood
𝑈T of 𝑡 such that

𝐷[

𝐹 (𝑡 + ℎ) −
𝑔
𝐹 (𝑡)

ℎ
, Δ

𝑔
𝐹 (𝑡)] ≤ 𝜀 (20)

for all ℎ ̸= 0 with 𝑡 + ℎ ∈ 𝑈T . This easily infers the desired
result.

Proposition 6. Assume that set-valued functions 𝐹, 𝐺 : T →

𝐾
𝑛

𝑐
are 𝑔-differentiable; then one has the following.

(d1) The sum 𝐹 + 𝐺 defined by (𝐹 + 𝐺)(𝑡) = 𝐹(𝑡) + 𝐺(𝑡) =

{𝑥 + 𝑦 : 𝑥 ∈ 𝐹(𝑡), 𝑦 ∈ 𝐺(𝑡)} for each 𝑡 ∈ T and the
difference 𝐹−

𝑔
𝐺 defined by (𝐹−

𝑔
𝐺)(𝑡) = 𝐹(𝑡)−

𝑔
𝐺(𝑡)

are 𝑔-differentiable at 𝑡 ∈ T . Moreover,

Δ
𝑔
(𝐹 + 𝐺) (𝑡) = Δ

𝑔
𝐹 (𝑡) + Δ

𝑔
𝐺 (𝑡) ,

Δ
𝑔
(𝐹−

𝑔
𝐺) (𝑡) = Δ

𝑔
𝐹 (𝑡) −

𝑔
Δ
𝑔
𝐺 (𝑡) .

(21)

(d2) For any constant 𝜆, 𝜆𝐹 is 𝑔-differentiable at 𝑡 with

Δ
𝑔
(𝜆𝐹) (𝑡) = 𝜆Δ

𝑔
𝐹 (𝑡) . (22)

(d3) The product function 𝐹𝐺 defined by (𝐹𝐺)(𝑡) =

𝐹(𝑡)𝐺(𝑡) for 𝑡 is 𝑔-differentiable at 𝑡 ∈ T with

Δ
𝑔
(𝐹𝐺) (𝑡) = 𝐹 (𝜎 (𝑡)) Δ

𝑔
𝐺 (𝑡) + 𝐺 (𝑡) Δ

𝑔
𝐹 (𝑡)

= 𝐹 (𝑡) Δ
𝑔
𝐺 (𝑡) + 𝐺 (𝜎 (𝑡)) Δ

𝑔
𝐹 (𝑡) .

(23)

Proof. (d1) Since 𝐹 and𝐺 are 𝑔-differentiable at 𝑡 ∈ T , for any
𝜀 > 0, there exist neighborhoods 𝑈T and 𝑉T of 𝑡 such that

𝐷[𝐹 (𝑡 + ℎ) −
𝑔
𝐹 (𝜎 (𝑡)) , Δ

𝑔
𝐹 (𝑡) (ℎ − 𝜇 (𝑡))] ≤

𝜀

2

ℎ − 𝜇 (𝑡)


(24)

for all ℎ with 𝑡 + ℎ ∈ 𝑈T and

𝐷[𝐺 (𝑡 + ℎ) −
𝑔
𝐺 (𝜎 (𝑡)) , Δ

𝑔
𝐺 (𝑡) (ℎ − 𝜇 (𝑡))] ≤

𝜀

2

ℎ − 𝜇 (𝑡)


(25)
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for all ℎ with 𝑡 + ℎ ∈ 𝑉T . Let𝑊T = 𝑈T ∩ 𝑉T . Then we have for
all ℎ with 𝑡 + ℎ ∈ 𝑊T

𝐷[(𝐹 + 𝐺) (𝑡 + ℎ) −
𝑔
(𝐹 + 𝐺) (𝜎 (𝑡)) ,

(Δ
𝑔
𝐹 (𝑡) + Δ

𝑔
𝐺 (𝑡)) (ℎ − 𝜇 (𝑡))]

≤ 𝐷 [𝐹 (𝑡 + ℎ) −
𝑔
𝐹 (𝜎 (𝑡)) , Δ

𝑔
𝐹 (𝑡) (ℎ − 𝜇 (𝑡))]

+ 𝐷 [𝐺 (𝑡 + ℎ) −
𝑔
𝐺 (𝜎 (𝑡)) , Δ

𝑔
𝐺 (𝑡) (ℎ − 𝜇 (𝑡))]

≤
𝜀

2

ℎ − 𝜇 (𝑡)
 +

𝜀

2

ℎ − 𝜇 (𝑡)
 = 𝜀

ℎ − 𝜇 (𝑡)
 .

(26)

Therefore 𝐹 + 𝐺 is 𝑔-differentiable at 𝑡 and Δ
𝐻
(𝐹 + 𝐺)(𝑡) =

Δ
𝑔
𝐹(𝑡) + Δ

𝑔
𝐺(𝑡) as desired. The proof of the second formula

is similar.
(d2) We assume that 𝜆 ̸= 0. Otherwise, the desired result

trivially holds. The differentiability of 𝐹 at 𝑡 ∈ T guarantees
that there exists the neighborhood 𝑈T of 𝑡 such that, for any
given 𝜀 > 0, we have

𝐷[𝐹 (𝑡 + ℎ) −
𝑔
𝐹 (𝜎 (𝑡)) , Δ

𝑔
𝐹 (𝑡) (ℎ − 𝜇 (𝑡))] ≤

𝜀

|𝜆|

ℎ − 𝜇 (𝑡)


(27)

for all ℎ with 𝑡 + ℎ ∈ 𝑈T . This implies that

𝐷[𝜆𝐹 (𝑡 + ℎ) −
𝑔
𝜆𝐹 (𝜎 (𝑡)) , 𝜆Δ

𝑔
𝐹 (𝑡) (ℎ − 𝜇 (𝑡))]

= |𝜆|𝐷 [𝐹 (𝑡 + ℎ) −
𝑔
𝐹 (𝜎 (𝑡)) , Δ

𝑔
𝐹 (𝑡) (ℎ − 𝜇 (𝑡))]

≤ |𝜆|
𝜀

|𝜆|

ℎ − 𝜇 (𝑡)
 = 𝜀

ℎ − 𝜇 (𝑡)


(28)

for all ℎ with 𝑡 + ℎ ∈ 𝑈T . Therefore, 𝜆𝐹 is 𝑔-differentiable at 𝑡
and Δ

𝑔
(𝜆𝐹)(𝑡) = 𝜆Δ

𝑔
𝐹(𝑡) as desired.

(d3) Let 𝜀 ∈ (0, 1). Define 𝜀
1

=

𝜀(1 + ‖𝐺(𝑡)‖ + ‖𝐹(𝜎(𝑡))‖ + ‖Δ
𝑔
𝐹(𝑡)‖)

−1. Then 𝜀
1

∈ (0, 1)

and there exist neighborhoods 𝑈1

T , 𝑈
2

T , and 𝑈
3

T of 𝑡 such that

𝐷[𝐹 (𝑡 + ℎ) −
𝑔
𝐹 (𝜎 (𝑡)) , Δ

𝑔
𝐹 (𝑡) (ℎ − 𝜇 (𝑡))] ≤ 𝜀

1

ℎ − 𝜇 (𝑡)


(29)

for all ℎ with 𝑡 + ℎ ∈ 𝑈1

T and

𝐷[𝐺 (𝑡 + ℎ) −
𝑔
𝐺 (𝜎 (𝑡)) , Δ

𝑔
𝐺 (𝑡) (ℎ − 𝜇 (𝑡))] ≤ 𝜀

1

ℎ − 𝜇 (𝑡)


(30)

for all ℎ with 𝑡 + ℎ ∈ 𝑈2

T . From Proposition 5(I) it follows that

𝐷[𝐺 (𝑡 + ℎ) , 𝐺 (𝑡)] ≤ 𝜀
1
, ‖𝐺 (𝑡 + ℎ)‖ ≤ ‖𝐺 (𝑡)‖ + 1 (31)

for all ℎwith 𝑡+ℎ ∈ 𝑈3

T . Let𝑈T = 𝑈
1

T ∩𝑈
2

T ∩𝑈
3

T and 𝑡+ℎ ∈ 𝑈T .
Then

𝐷[(𝐹𝐺) (𝑡 + ℎ) −
𝑔
(𝐹𝐺) (𝜎 (𝑡)) ,

(𝐹 (𝜎 (𝑡)) Δ
𝑔
𝐺 (𝑡) + 𝐺 (𝑡) Δ

𝑔
𝐹 (𝑡)) (ℎ − 𝜇 (𝑡))]

≤ 𝐷 [(𝐺 (𝑡 + ℎ) −
𝑔
𝐺 (𝜎 (𝑡))) 𝐹 (𝜎 (𝑡)) ,

𝐹 (𝜎 (𝑡)) Δ
𝑔
𝐺 (𝑡) (ℎ − 𝜇 (𝑡))]

+ 𝐷 [(𝐹 (𝑡 + ℎ) −
𝑔
𝐹 (𝜎 (𝑡))) 𝐺 (𝑡 + ℎ) ,

𝐺 (𝑡 + ℎ) Δ
𝑔
𝐹 (𝑡) (ℎ − 𝜇 (𝑡))]

+ 𝐷 [𝜃, 𝐺 (𝑡) Δ
𝑔
𝐹 (𝑡) (ℎ − 𝜇 (𝑡))

−
𝑔
𝐺 (𝑡 + ℎ) Δ

𝑔
𝐹 (𝑡) (ℎ − 𝜇 (𝑡))]

≤ 𝐷 [𝐺 (𝑡 + ℎ) −
𝑔
𝐺 (𝜎 (𝑡)) , Δ

𝑔
𝐺 (𝑡) (ℎ − 𝜇 (𝑡))]

× ‖𝐹 (𝜎 (𝑡))‖

+ 𝐷 [𝐹 (𝑡 + ℎ) −
𝑔
𝐹 (𝜎 (𝑡)) , Δ

𝑔
𝐹 (𝑡) (ℎ − 𝜇 (𝑡))]

× ‖𝐺 (𝑡 + ℎ)‖

+ 𝐷 [𝐺 (𝑡 + ℎ) , 𝐺 (𝑡)]

Δ
𝑔
𝐹 (𝑡)



ℎ − 𝜇 (𝑡)


≤ 𝜀
1
‖𝐹 (𝜎 (𝑡))‖

ℎ − 𝜇 (𝑡)
 + 𝜀1 (‖𝐺 (𝑡)‖ + 1)

ℎ − 𝜇 (𝑡)


+ 𝜀
1


Δ
𝑔
𝐹 (𝑡)



ℎ − 𝜇 (𝑡)


= 𝜀
1
(1 + ‖𝐹 (𝜎 (𝑡))‖ + ‖𝐺 (𝑡)‖ +


Δ
𝑔
𝐹 (𝑡)


)
ℎ − 𝜇 (𝑡)



= 𝜀
ℎ − 𝜇 (𝑡)

 .

(32)

Thus, Δ
𝑔
(𝐹𝐺)(𝑡) = 𝐹(𝜎(𝑡))Δ

𝑔
𝐺(𝑡) + 𝐺(𝑡)Δ

𝑔
𝐹(𝑡). The second

product rule follows from this last equation by interchanging
the set-valued functions 𝐹 and 𝐺.

From [40] it follows that if a single valued function 𝑔 is
Δ-differentiable and 𝑔Δ(𝑡) = 𝑓(𝑡), then we define the Cauchy
integral by

∫

𝑡

𝑎

𝑓 (𝑠) Δ𝑠 = 𝑔 (𝑡) − 𝑔 (𝑎) . (33)

In this case, we say 𝑓 to be Δ-integrable on interval D =

[𝑎, 𝑡]T ⊂ T . In particular, by ∫∞
𝑎

𝑓(𝑡)Δ𝑡 := lim
𝑏→∞

∫
𝑏

𝑎

𝑓(𝑡)Δ𝑡

we mean that 𝑓 is Δ-integrable onD = [𝑎,∞)T provided this
limit exists.

Similarly, we can introduce the integral of the set-valued
functions. By 𝑆

𝐹
(D) we mean the set of all Δ-integrable

selectors of 𝐹 onD.

Definition 7 (see [21]). A set-valued function 𝐹 : T → 𝐾
𝑛

𝑐
is

called Δ
𝑔
-integrable onD ⊂ T if 𝐹 has at least a Δ-integrable
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selector on D. In this case, we define the Δ
𝑔
-integral of 𝐹 on

D, denoted by ∫D 𝐹(𝑠)Δ𝑠, as the set

∫
D
𝐹 (𝑠) Δ𝑠 = {∫

D
𝑓 (𝑠) Δ𝑠 : 𝑓 ∈ 𝑆

𝐹
(D)} . (34)

Lemma 8 (see [21]). Assume that 𝑡
0
, 𝑇 ∈ T , and 𝐹, 𝐺 :

[𝑡
0
, 𝑇]T → 𝐾

𝑛

𝑐
are Δ

𝑔
-integrable and have 𝑟𝑑-continuous

selectors; then we have the following.

(i) ∫𝑇
𝑡0

[𝐹(𝑠)±
𝑔
𝐺(𝑠)]Δ𝑠 = ∫

𝑇

𝑡0

𝐹(𝑠)Δ𝑠±
𝑔
∫
𝑇

𝑡0

𝐺(𝑠)Δ𝑠.

(ii) ∫𝑡
𝑡0

𝜆𝐹(𝑠)Δ𝑠 = 𝜆 ∫
𝑡

𝑡0

𝐹(𝑠)Δ𝑠, 𝜆 ∈ R, 𝑡 ∈ [𝑡
0
, 𝑇]T .

(iii) ∫𝑇
𝑡0

𝐹(𝑠)Δ𝑠 = ∫
𝑡

𝑡0

𝐹(𝑠)Δ𝑠+∫
𝑇

𝑡

𝐹(𝑠)𝑠Δ𝑠, 𝑡 ∈ [𝑡
0
, 𝑇]T with

𝑡
0
≤ 𝑡 ≤ 𝑇.

(iv) ∫𝜎(𝑡)
𝑡

𝐹(𝑠)Δ𝑠 = 𝜇(𝑡)𝐹(𝑡). Specially, ∫𝑡
𝑡

𝐹(𝑠)Δ𝑠 = {0} for
𝑡 ∈ [𝑡

0
, 𝑇]T .

(v) If 𝐺 ∈ C
𝑟𝑑
(T , 𝐾𝑛

𝑐
), then, for any 𝑡

1
, 𝑡
2
∈ T , we have

∫

𝑡2

𝑡1

𝐺 (𝑠) Δ𝑠 = {0} −
𝑔
∫

𝑡1

𝑡2

𝐺 (𝑠) Δ𝑠. (35)

(vi) Let 𝐺 ∈ C1

𝑟𝑑
(T × T , 𝐾𝑛

𝑐
). IfF(𝑡) = ∫

𝑡

𝑡0

𝐺(𝑡, 𝑠)Δ𝑠, then

Δ
𝑔
F (𝑡) = 𝐺 (𝜎 (𝑡) , 𝑡) + ∫

𝑡

𝑡0

Δ
𝑡

𝑔
𝐺 (𝑡, 𝑠) Δ𝑠, (36)

where Δ𝑡
𝑔
𝐺(𝑡, 𝑠) stands for the 𝑔-derivative of 𝐺 with

respect to the first variable 𝑡.
(vii) If 𝑓 ∈ 𝑆

𝐹
([𝑡

0
, 𝑇]T ) implies that 𝑓 ∈ 𝐶

𝑟𝑑
([𝑡

0
, 𝑇]T ), then

‖𝐹(⋅)‖ : [𝑡
0
, 𝑇]T → R

+
is Δ-integrable and



∫

𝑇

𝑡0

𝐹 (𝑠) Δ𝑠



≤ ∫

𝑇

𝑡0

‖𝐹 (𝑠)‖ Δ𝑠. (37)

(viii) If 𝑓 ∈ 𝑆
𝐹
([𝑡

0
, 𝑇]T ) and 𝑔 ∈ 𝑆

𝐺
([𝑡

0
, 𝑇]T ) imply that

𝑓 ∈ 𝐶
𝑟𝑑
([𝑡

0
, 𝑇]T ) and 𝑔 ∈ 𝐶

𝑟𝑑
([𝑡

0
, 𝑇]T ), respectively,

then𝐷[𝐹(⋅), 𝐺(⋅)] : [𝑡
0
, 𝑇]T → R

+
isΔ-integrable and

𝐷[∫

𝑇

𝑡0

𝐹 (𝑠) Δ𝑠, ∫

𝑇

𝑡0

𝐺 (𝑠) Δ𝑠] ≤ ∫

𝑇

𝑡0

𝐷 [𝐹 (𝑠) , 𝐺 (𝑠)] Δ𝑠. (38)

Proof. We only prove (vi). Let 𝜀 > 0. By assumption there
exists a neighborhood𝑈1

T of 𝑡 such that for all ℎwith 𝑡+ℎ ∈ 𝑈
1

T

𝐷[𝐺 (𝑡 + ℎ, 𝑠) −
𝑔
𝐺 (𝜎 (𝑡) , 𝑠) , Δ

𝑡

𝑔
𝐺 (𝑡, 𝑠) (ℎ − 𝜇 (𝑡))]

≤
𝜀

3 (𝑡 − 𝑡
0
)

ℎ − 𝜇 (𝑡)
 .

(39)

Since 𝐺 is continuous at (𝑡, 𝑡), there exists a neighborhood of
𝑡𝑉

2

T such that for 𝑠 ∈ 𝑈2

T

𝐷 (𝐺 (𝜎 (𝑡) , 𝑠) , 𝐺 (𝜎 (𝑡) , 𝑡)) <
𝜀

3
. (40)

Now define 𝑈T = 𝑈
1

T ∩ 𝑈
2

T and let ℎ satisfy |ℎ| <

1, | ∫
𝑡+ℎ

𝑡

Δ
𝑡

𝑔
𝐺(𝑡, 𝑠)Δ𝑠| < 𝜀/3, and 𝑡 + ℎ ∈ 𝑈T . Then

𝐷[F (𝑡 + ℎ) −
𝑔
F (𝜎 (𝑡)) , (𝐺 (𝜎 (𝑡) , 𝑡) + ∫

𝑡

𝑡0

Δ
𝑡

𝑔
𝐺 (𝑡, 𝑠) Δ𝑠)

× (ℎ − 𝜇 (𝑡)) ]

= 𝐷[∫

𝑡+ℎ

𝑡0

𝐺 (𝑡 + ℎ, 𝑠) Δ𝑠

−
𝑔
∫

𝜎(𝑡)

𝑡0

𝐺 (𝜎 (𝑡) , 𝑠) Δ𝑠, 𝐺 (𝜎 (𝑡) , 𝑡) (ℎ − 𝜇 (𝑡))

+ (ℎ − 𝜇 (𝑡)) ∫

𝑡

𝑡0

Δ
𝑡

𝑔
𝐺 (𝑡, 𝑠) Δ𝑠]

= 𝐷[∫

𝑡+ℎ

𝑡0

(𝐺 (𝑡 + ℎ, 𝑠) −
𝑔
𝐺 (𝜎 (𝑡) , 𝑠)) Δ𝑠

+ ∫

𝑡+ℎ

𝜎(𝑡)

𝐺 (𝜎 (𝑡) , 𝑠) Δ𝑠, 𝐺 (𝜎 (𝑡) , 𝑡) (ℎ − 𝜇 (𝑡))

+ (ℎ − 𝜇 (𝑡)) ∫

𝑡+ℎ

𝑡0

Δ
𝑡

𝑔
𝐺 (𝑡, 𝑠) Δ𝑠

−
𝑔
(ℎ − 𝜇 (𝑡)) ∫

𝑡+ℎ

𝑡

Δ
𝑡

𝑔
𝐺 (𝑡, 𝑠) Δ𝑠]

≤ 𝐷[∫

𝑡+ℎ

𝑡0

(𝐺 (𝑡 + ℎ, 𝑠) −
𝑔
𝐺 (𝜎 (𝑡) , 𝑠)) Δ𝑠,

(ℎ − 𝜇 (𝑡)) ∫

𝑡+ℎ

𝑡0

Δ
𝑡

𝑔
𝐺 (𝑡, 𝑠) Δ𝑠]

+ 𝐷[∫

𝑡+ℎ

𝜎(𝑡)

𝐺 (𝜎 (𝑡) , 𝑠) Δ𝑠, 𝐺 (𝜎 (𝑡) , 𝑡) (ℎ − 𝜇 (𝑡))

−
𝑔
(ℎ − 𝜇 (𝑡)) ∫

𝑡+ℎ

𝑡

Δ
𝑡

𝑔
𝐺 (𝑡, 𝑠) Δ𝑠]

≤ 𝐷[∫

𝑡+ℎ

𝑡0

(𝐺 (𝑡 + ℎ, 𝑠) −
𝑔
𝐺 (𝜎 (𝑡) , 𝑠)) Δ𝑠,

(ℎ − 𝜇 (𝑡)) ∫

𝑡+ℎ

𝑡0

Δ
𝑡

𝑔
𝐺 (𝑡, 𝑠) Δ𝑠]

+ 𝐷[∫

𝑡+ℎ

𝜎(𝑡)

𝐺 (𝜎 (𝑡) , 𝑠) Δ𝑠, ∫

𝑡+ℎ

𝜎(𝑡)

𝐺 (𝜎 (𝑡) , 𝑡) Δ𝑠]

+



(ℎ − 𝜇 (𝑡)) ∫

𝑡+ℎ

𝑡

Δ
𝑡

𝑔
𝐺 (𝑡, 𝑠) Δ𝑠



≤



∫

𝑡+ℎ

𝑡0

𝐷[𝐺 (𝑡 + ℎ, 𝑠) −
𝑔
𝐺 (𝜎 (𝑡) , 𝑠) ,
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(ℎ − 𝜇 (𝑡)) Δ
𝑡

𝑔
𝐺 (𝑡, 𝑠)] Δ𝑠



+



∫

𝑡+ℎ

𝜎(𝑡)

𝐷 [𝐺 (𝜎 (𝑡) , 𝑠) , 𝐺 (𝜎 (𝑡) , 𝑡)] Δ𝑠



+
ℎ − 𝜇 (𝑡)





∫

𝑡+ℎ

𝑡

Δ
𝑡

𝑔
𝐺 (𝑡, 𝑠) Δ𝑠



<
𝜀

3

ℎ − 𝜇 (𝑡)
 +

𝜀

3

ℎ − 𝜇 (𝑡)
 +

𝜀

3

ℎ − 𝜇 (𝑡)
 = 𝜀.

(41)

Here, we also have used Lemma 8 (viii).

Definition 9. A set-valued function 𝐹 : T → 𝐾
𝑛

𝑐
is called

predifferentiable with (region of differentiation) D, provided
D ⊂ T , T \ D is countable and contains no right-scattered
elements of T , and 𝐹 is 𝑔-differentiable at each 𝑡 ∈ D.

Lemma 10. (i) Let 𝐽 ⊂ R be an interval. If 𝑡
0
∈ T , then F

defined by

F (𝑡) = 𝑋
0
+ ∫

𝑡

𝑡0

𝐹 (𝑠) Δ𝑠 for 𝑡 ∈ 𝐽T , 𝑋0
∈ 𝐾

𝑛

𝑐
,

𝐹 ∈ C
𝑟𝑑
(D, 𝐾𝑛

𝑐
)

(42)

is 𝑔-differentiable and one has

Δ
𝑔
F (𝑡) = 𝐹 (𝑡) , 𝑎.𝑒. 𝑜𝑛 𝐽T . (43)

(ii) If 𝐹 is 𝑟𝑑-continuous and 𝑡 ∈ T , then

∫

𝜎(𝑡)

𝑡

𝐹 (𝑠) Δ𝑠 = 𝜇 (𝑡) 𝐹 (𝑡) . (44)

Proof. We only prove (i). Let 𝐺(𝑡) = ∫
𝑡

𝑡0

𝐹(𝑠)Δ𝑠. By virtue
of Proposition 6(d1) Δ

𝑔
F(𝑡) exists and Δ

𝑔
F(𝑡) = Δ

𝑔
𝐺(𝑡)

provided𝐺(𝑡) is 𝑔-differentiable.Thus, it is sufficient to check
the 𝑔-differentiability of 𝐺(𝑡) and Δ

𝑔
𝐺(𝑡) = 𝐹(𝑡).

It is evident that 𝐹 is regulated provided 𝐹 is 𝑟𝑑-
continuous. As similar argument to Theorems 8.12 and 8.13
in [40], we can show that the set-valued function 𝐺(𝑡) is
predifferentiable with region of differentiation D such that
Δ
𝑔
𝐺(𝑡) = 𝐹(𝑡) for all 𝑡 ∈ D. If 𝑡 ∈ 𝐽T \ D, then 𝑡 is a right-

dense point of T . On the other hand, for nay 𝜀 > 0, let 𝑈T be

a neighborhood of 𝑡 such that | ∫𝑡+ℎ
𝑡

𝐷[𝐹(𝑠), 𝐹(𝑡)]Δ𝑠| < 𝜀 for
all ℎ with 𝑡 + ℎ ∈ 𝑈T . So we have

𝐷[𝐺 (𝑡 + ℎ) −
𝑔
𝐺 (𝜎 (𝑡)) , 𝐹 (𝑡) (ℎ − 𝜇 (𝑡))]

= 𝐷[∫

𝑡+ℎ

𝑡0

𝐹 (𝑠) Δ𝑠, −
𝑔
∫

𝜎(𝑡)

𝑡0

𝐹 (𝑠) Δ𝑠, ∫

𝑡+ℎ

𝜎(𝑡)

𝐹 (𝑡) Δ𝑠]

= 𝐷[∫

𝑡+ℎ

𝜎(𝑡)

𝐹 (𝑠) Δ𝑠, ∫

𝑡+ℎ

𝜎(𝑡)

𝐹 (𝑡) Δ𝑠]

≤



∫

𝑡+ℎ

𝜎(𝑡)

𝐷 [𝐹 (𝑠) , 𝐹 (𝑡)] Δ𝑠



=



∫

𝑡+ℎ

𝑡

𝐷 [𝐹 (𝑠) , 𝐹 (𝑡)] Δ𝑠



< 𝜀.

(45)

This implies that Δ
𝑔
𝐺(𝑡) exists and Δ

𝑔
𝐺(𝑡) = 𝐹(𝑡) on 𝐽T \D.

This proof is complete.

Finally, we recall the concept of the matrix-valued func-
tions introduced by [40]. An𝑚×𝑛-matrix-valued function𝐴
is said to be Δ-differentiable on T provided each entry of 𝐴 is
Δ-differentiable on T . In this case we put

𝐴
Δ

= (𝑎
Δ

𝑖𝑗
)
1≤𝑖≤𝑚, 𝑖≤𝑗≤𝑛

, where 𝐴 = (𝑎
𝑖𝑗
) . (46)

An 𝑛 × 𝑛-matrix-valued function 𝐴 on T is called
regressive provided

𝐼 + 𝜇 (𝑡) 𝐴 (𝑡) is invertible for all 𝑡 ∈ 𝑇. (47)

Here, 𝐼 stands for 𝑛 × 𝑛-identity matrix.The sets of regressive
and 𝑟𝑑-continuous matrix-valued functions will be denoted
by R. The set R+

1
consists of all positively regressive and

𝑟𝑑-continuous functions 𝑝 satisfying 1 + 𝜇(𝑡)𝑝(𝑡) > 0 for
𝑡 ∈ T . Fromnow on, unless otherwisementioned, thematrix-
valued functions involved in equations are always assumed to
belong toR.

For 𝐴, 𝐵 ∈ R, the “circle plus” and “circle minus” of
matrix-valued functions are referred to as, respectively,

(𝐴 ⊕ 𝐵) (𝑡) = 𝐴 (𝑡) + 𝐵 (𝑡) + 𝜇 (𝑡) 𝐴 (𝑡) 𝐵 (𝑡) ,

(𝐴 ⊖ 𝐵) (𝑡) = (𝐴 ⊕ (⊖𝐵)) (𝑡) with

(⊖𝐴) (𝑡) = −[𝐼 + 𝜇(𝑡)𝐴(𝑡)]
−1

𝐴 (𝑡) = −𝐴 (𝑡) [𝐼 + 𝜇(𝑡)𝐴(𝑡)]
−1

.

(48)

A matrix exponential function 𝑒
𝐴
(𝑡, 𝑡

0
) is defined as a

unique matrix-valued solution of the following initial value
problem:

𝑌
Δ

= 𝐴 (𝑡) 𝑌, 𝑌 (𝑡
0
) = 𝐼, (49)

where 𝐴 ∈ R is an 𝑛 × 𝑛-matrix-valued function and 𝑡
0
∈ T .

Denote

A = {𝑒
𝐵
(𝑢, V) : 𝐵 is an 𝑛 × 𝑛-matrix-valued

function from T into R and 𝑢, V ∈ T} .
(50)
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Assume𝐴 is a constant 𝑛×𝑛matrix. If T = R, then 𝑒
𝐴
(𝑢, V) =

𝑒
𝐴(𝑢−V), while if T = Z and 𝐼 + 𝐴 is invertible, then 𝑒

𝐴
(𝑢, V) =

(𝐼 + 𝐴)
𝑢−V, where Z stands for the integral number set and

𝑒
𝐴
(𝑢, V) ∈ A. In [40] the elements ofA have been proved to

possess the following properties.

Lemma 11. If 𝑒
𝐴
(⋅, ⋅), 𝑒

𝐵
(⋅, ⋅) ∈ A, then

(i) 𝑒
0
(𝑡, 𝑠) ≡ 𝐼, 𝑒

𝐴
(𝑡, 𝑡) ≡ 𝐼, 𝑒

𝐴
(𝜎(𝑡), 𝑠) = (𝐼 +

𝜇(𝑡)𝐴(𝑡))𝑒
𝐴
(𝑡, 𝑠);

(ii) 𝑒
𝐴
(𝑠, 𝑡) = 𝑒

−1

𝐴
(𝑡, 𝑠) = 𝑒

∗

⊖𝐴
∗(𝑡, 𝑠), where𝐴∗ stands for the

conjugate transpose of the matrix 𝐴;
(iii) 𝑒

𝐴
(𝑡, 𝑠)𝑒

𝐴
(𝑠, 𝑟) = 𝑒

𝐴
(𝑡, 𝑟);

(iv) 𝑒
𝐴⊕𝐵

(𝑡, 𝑠) = 𝑒
𝐴
(𝑡, 𝑠)𝑒

𝐵
(𝑡, 𝑠) if 𝑒

𝐴
(𝑡, 𝑠) and 𝐵(𝑡) com-

mute;
(v) 𝑒Δ

𝐴
(𝑐, ⋅) = −𝑒

𝐴
(𝑐, 𝜎(⋅))𝐴 for 𝑐 ∈ T ;

(vi) ∫𝑏
𝑎

𝑒
𝐴
(𝑐, 𝜎(𝑡))𝐴(𝑡)Δ𝑡 = 𝑒

𝐴
(𝑐, 𝑎)−𝑒

𝐴
(𝑐, 𝑏) for 𝑎, 𝑏, 𝑐 ∈ T .

3. Solvability of ISDE

We emphasize that T
+
= {𝑡 ∈ T | 𝑡 ≥ 0} and 𝐹 ∈ C

𝑘
means

that, at each point (𝑡, 𝑈) ∈ (𝑡
𝑘−1

, 𝑡
𝑘
] × C

𝑟𝑑
, 𝐹 : (𝑡

𝑘−1
, 𝑡
𝑘
] ×

C
𝑟𝑑

→ 𝐾
𝑛

𝑐
is continuous if 𝑡 is a right-dense point and has

the limit if 𝑡 is a left-dense point. Moreover, let 𝑈
𝑡
+

𝑘

= 𝑈(𝑡
+

𝑘
)

represent the right limit of 𝑈(𝑡) at 𝑡
𝑘
if 𝑡

𝑘
is right dense and

𝑈
𝑡
+

𝑘

= 𝑈(𝜎(𝑡
𝑘
)) if 𝑡

𝑘
is right scattered for 𝑘 = 1, 2, . . .. Let

𝑃𝐶[T
+
× C

𝑟𝑑
, 𝐾

𝑛

𝑐
] = {𝐹 : T

+
× C

𝑟𝑑
→ 𝐾

𝑛

𝑐
| 𝐹 ∈ C

𝑘
and

lim
(𝑡,𝑉)→ (𝑡

+

𝑘
,𝑈)
𝐹(𝑡, 𝑉) = 𝐹(𝑡

+

𝑘
, 𝑈) exists for each 𝑈 ∈ C

𝑟𝑑
and

𝑘 = 1, 2, . . .}, and 𝐵𝐶 = 𝐵𝐶[T
+
, 𝐾

𝑛

𝑐
] = {𝑈 ∈ 𝑃𝐶[T

+
, 𝐾

𝑛

𝑐
] |

‖𝑈(𝑡)‖ is bounded in T
+
} and 𝑃𝐶

1

= 𝑃𝐶
1

[T
+
, 𝐾

𝑛

𝑐
] = {𝑈 ∈

𝐵𝐶 | 𝑈 is 𝑔-differentiable in each interval (𝑡
𝑘−1

, 𝑡
𝑘
)}. It is clear

that (𝐵𝐶,𝐷
0
) is a complete metric space if it is endowed with

the distance𝐷
0
(𝑈, 𝑉) = sup

𝑡∈T+
𝐷(𝑈(𝑡), 𝑉(𝑡)).

Consider the impulsive set dynamic equation (ISDE)

Δ
𝑔
𝑈 (𝑡) = 𝐴 (𝑡) 𝑈 (𝑡) + 𝐹 (𝑡, 𝑈) , 𝑡 ̸= 𝑡

𝑘
, 𝑡 ∈ T

+
,

𝑈
𝑡
+

𝑘

= 𝐽
𝑘
𝑈 (𝑡

𝑘
) , 𝑡 = 𝑡

𝑘
∈ T

+
(𝑘 = 0, 1, 2, . . .) ,

𝑈
𝑡0
= 𝑈

0
∈ 𝐾

𝑛

𝑐
, 𝑡

0
∈ T

+
,

(51)

where 𝐹 ∈ 𝑃𝐶[T
+
×C

𝑟𝑑
, 𝐾

𝑛

𝑐
], 𝐽

𝑘
: 𝐾

𝑛

𝑐
→ 𝐾

𝑛

𝑐
is a continuous

linear operator; that is, for any 𝑈,𝑉 ∈ 𝐾
𝑛

𝑐
, and 𝑎, 𝑏 ∈ R,

one has 𝐽
𝑘
(𝑎𝑈±

𝑔
𝑏𝑉) = 𝑎𝐽

𝑘
(𝑈)±

𝑔
𝑏𝐽
𝑘
(𝑉), and {𝑡

𝑘
} ⊂ T

+
is a

sequence of points such that 0 ≤ 𝑡
0
< 𝑡

1
< 𝑡

2
< ⋅ ⋅ ⋅ < 𝑡

𝑘
< ⋅ ⋅ ⋅

and lim
𝑘→∞

𝑡
𝑘
= ∞. By a solution of ISDE (51) we mean that

a set-valued function 𝑈 ∈ 𝑃𝐶
1

[T
+
, 𝐾

𝑛

𝑐
] satisfies (51).

To explore the existence of solutions to ISDE, we intro-
duce the exponential dichotomy of set dynamic equations.
We define the product of a matrix and a subset in R𝑛 as
follows:

𝐴 (𝑡)𝑈 = {𝐴 (𝑡) 𝑢 : 𝑢 ∈ 𝑈} (52)

for any 𝑚 × 𝑛-matrix-valued function 𝐴(𝑡) on T and subset
𝑈 ⊂ R𝑛.

By an analogue of the proofs of Theorems 5.24 and
5.27 in [40], respectively, together with the product rule of
differential and Lemma 8, it is easy to prove the following
results.

Lemma 12. Let 𝐴 ∈ R, 𝐹 : T → 𝐾
𝑛

𝑐
𝑟𝑑-conditions, 𝑡

0
∈ T ,

and 𝑈
0
∈ 𝐾

𝑛

𝑐
. Then the initial problem

Δ
𝑔
𝑈 (𝑡) = 𝐴 (𝑡) 𝑈 (𝑡) + 𝐹 (𝑡) , 𝑡 ∈ T ,

𝑈 (𝑡
0
) = 𝑈

0
,

(53)

with 𝐹 ∈ C
𝑟𝑑
(T , 𝐾𝑛

𝑐
) having a unique solution 𝑈 : T → 𝐾

𝑛

𝑐

given by

U
0
(𝑡, 𝑡

0
, 𝑈

0
) = 𝑒

𝐴
(𝑡, 𝑡

0
) 𝑈

0
+ ∫

𝑡

𝑡0

𝑒
𝐴
(𝑡, 𝜎 (𝑠)) 𝐹 (𝑠) Δ𝑠. (54)

Lemma 13. Let𝐴 ∈ R, 𝐹 ∈ C
𝑟𝑑
(T , 𝐾𝑛

𝑐
), 𝑡

0
∈ T , and𝑈

0
∈ 𝐾

𝑛

𝑐
.

Then the initial problem

Δ
𝑔
𝑈 (𝑡) = −𝐴

∗

(𝑡) 𝑈 (𝜎 (𝑡)) + 𝐹 (𝑡) , 𝑡 ∈ T

𝑈(𝑡
0
) = 𝑈

0

(55)

has a unique solution 𝑈 : T𝑘 → 𝐾
𝑛

𝑐
given by

U
∗

0
(𝑡, 𝑡

0
, 𝑈

0
) = 𝑒

⊖𝐴
∗ (𝑡, 𝑡

0
) 𝑈

0
+ ∫

𝑡

𝑡0

𝑒
⊖𝐴
∗ (𝑡, 𝑠) 𝐹 (𝑠) Δ𝑠. (56)

In what follows, by means of 𝑒
𝐴
(𝑡, 𝑠)𝑈

𝑠
we denote the

unique solution 𝑈(𝑡, 𝑠, 𝑈
𝑠
) of the linear homogeneous set

equation

Δ
𝑔
𝑈 (𝑡) = 𝐴 (𝑡) 𝑈 (𝑡) , 𝑡 ∈ T

+
,

𝑈 (𝑠) = 𝑈
𝑠
∈ 𝐾

𝑛

𝑐

(57)

with initial point 𝑠 ∈ T
+
fixed.We call 𝑒

𝐴
(𝑡, 𝑠) the fundamental

matrix of (57).

Definition 14. Equation (57) is said to admit an exponential
dichotomy on T if there exist positive constants 𝑘, 𝑎 and a
continuous projection (matrix) 𝑃(𝑠) (i.e., 𝑃2(𝑠) = 𝑃(𝑠)) on
R𝑛 such that
𝑒𝐴 (𝑡, 𝑠) 𝑃 (𝑠) 𝑒

∗

⊖𝐴
∗ (𝜎 (𝜏) , 𝑠)

 ≤ 𝑘𝑒
⊖𝑎
(𝑡, 𝜎 (𝜏)) ,

𝜏, 𝑡 ∈ T
+
, 𝑡 ≥ 𝜎 (𝜏) ≥ 𝑠,

𝑒𝐴 (𝑡, 𝑠) (𝐼 − 𝑃 (𝑠)) 𝑒
∗

⊖𝐴
∗ (𝜎 (𝜏) , 𝑠)

 ≤ 𝑘𝑒
⊖𝑎
(𝜎 (𝜏) , 𝑡) ,

𝜏, 𝑡 ∈ T
+
, 𝑠 ≤ 𝑡 ≤ 𝜏,

(58)

where 𝑒
𝐴
(𝑡, 𝑠) is the fundamental matrix of (57) and |𝐵| is the

norm of the 𝑛 × 𝑛-matrix 𝐵 = (𝑏
𝑖𝑗
)
𝑛×𝑛

, say, for example, |𝐵| =

(∑
𝑛

𝑖=1
∑
𝑛

𝑗=1
|𝑏
𝑖𝑗
|
2

)
1/2.

We need the following hypotheses.

(H1) 𝑒
𝐴
(𝑡, 𝑠)(𝐼 − 𝑃(𝑠))𝑒

∗

⊖𝐴
∗(𝜏, 𝑠)𝐹(𝜏) = 𝑒

𝐴
(𝑡, 𝑠)𝑒

∗

⊖𝐴
∗(𝜏, 𝑠)

𝐹(𝜏)−
𝑔
𝑒
𝐴
(𝑡, 𝑠)𝑃(𝑠)𝑒

∗

⊖𝐴
∗(𝜏, 𝑠)𝐹(𝜏) with any 𝑡, 𝜏 ∈ T

+
.

(In general, (𝑎 − 𝑏)𝑈 ̸= 𝑎𝑈−
𝑔
𝑏𝑈 for 𝑎, 𝑏 ∈ R and

𝑈 ∈ 𝐾
𝑛

𝑐
).
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(H2) There exists a constant 0 < 𝜒 < 1 such that
𝑒
𝑎
(𝜎(𝑡

𝑘
), 𝜎(𝑡

𝑘+1
)) ≤ 𝜒 for 𝑘 = 0, 1, 2, . . ., where 𝑎 is

given as in Definition 14.

Let H
𝑛
= {H = {𝐻

𝑚
} | 𝐻

𝑚
∈ 𝐾

𝑛

𝑐
, sup

𝑚∈N‖𝐻𝑚
‖ < ∞},

𝐷
∞
(H1

,H2

) = sup
𝑚∈N𝐷(𝐻

1

𝑚
, 𝐻

2

𝑚
) with H𝑖

= {𝐻
𝑖

𝑚
} ∈ H

𝑛

for 𝑖 = 1, 2 and ‖H‖
∞

= 𝐷
∞
(H, Θ), where Θ is the zero

element of H
𝑛
. It is easy to see that (H

𝑛
, 𝐷

∞
) is a complete

metric space.

Theorem 15. Let 𝐴 ∈ R be a 𝑛 × 𝑛-matrix-valued function,
the linear homogenous set dynamic equation (57) with 𝑠 = 𝑡

0

admits the exponential dichotomy on T
+
with positive constants

𝑘, 𝑎, and the projection 𝑃 and the conditions (H1) and (H2)
hold. If 𝐹 ∈ 𝐵𝐶[T

+
, 𝐾

𝑛

𝑐
] andH = {𝐻

𝑚
} ∈ H

𝑛
, then the linear

ISDE

Δ
𝑔
𝑈 (𝑡) = 𝐴 (𝑡) 𝑈 (𝑡) + 𝐹 (𝑡) , 𝑡 ̸= 𝑡

𝑘
(𝑘 = 0, 1, 2, . . .) ,

𝑈
𝑡
+

𝑘

= 𝐽
𝑘
𝑈 (𝑡

𝑘
) + 𝐻

𝑘
, 𝑘 = 0, 1, 2, . . . ,

𝑈 (𝑡
0
) = 𝑈

0

(59)

has a unique bounded solutionU(𝐹,H) on T
+
satisfying

U (𝐹,H) = {
U
0
(𝑡, 𝑡

0
, 𝑈

0
) , 𝑡 ∈ [0, 𝑡

0
]
T+
,

U
1
(𝑡) , 𝑡 ∈ (𝑡

0
,∞)

T+

(60)

with

U
1
(𝑡) = ∫

𝑡

𝑡0

𝑒
0

𝐴
(𝑡) 𝑃𝑒

0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹 (𝜏) Δ𝜏

−
𝑔
∫

∞

𝑡

𝑒
0

𝐴
(𝑡) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹 (𝜏) Δ𝜏

+ ∑

𝑡𝑗<𝑡

𝑒
0

𝐴
(𝑡) 𝑃𝑒

0

⊖𝐴
∗ (𝑡

+

𝑗
)𝐻

𝑗
−
𝑔
∑

𝑡𝑗≥𝑡

𝑒
0

𝐴
(𝑡) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝑡

+

𝑗
)𝐻

𝑗

(61)

with 𝑡 ∈ T
+
, 𝑒
0

𝐴
(𝑡) = 𝑒

𝐴
(𝑡, 𝑡

0
), 𝑒

0

⊖𝐴
∗(𝑡) = 𝑒

∗

⊖𝐴
∗(𝑡, 𝑡

0
), 𝑃 = 𝑃(𝑡

0
)

and 𝑃
1
= (𝐼 − 𝑃).

Proof. To show that the operator U : 𝐵𝐶 × H
𝑛
→ 𝐵𝐶 is

continuous and U(𝐹,H) ∈ 𝑃𝐶
1, we shall first estimate the

‖ ⋅ ‖ of the addends in (61) for 𝑡 ∈ (𝑡
0
,∞)T+

. Let 𝑑 be a positive
constant such that ‖𝐹(𝑡)‖ ≤ 𝑑 for all 𝑡 ∈ T

+
. By Definition 14

and Lemma 8(vii) we have



∫

𝑡

𝑡0

𝑒
0

𝐴
(𝑡) 𝑃𝑒

0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹 (𝜏) Δ𝜏



≤ ∫

𝑡

𝑡0


𝑒
0

𝐴
(𝑡) 𝑃𝑒

0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹 (𝜏)


Δ𝜏

= ∫

𝑡

𝑡0


𝑒
0

𝐴
(𝑡) 𝑃𝑒

0

⊖𝐴
∗ (𝜎 (𝜏))


‖𝐹 (𝜏)‖ Δ𝜏

≤ 𝑘∫

𝑡

𝑡0

𝑒
⊖𝑎
(𝑡, 𝜎 (𝜏)) ‖𝐹 (𝜏)‖ Δ𝜏

= 𝑘𝑒
⊖𝑎
(𝑡, 0) ∫

𝑡

𝑡0

𝑒
⊖𝑎
(0, 𝜎 (𝜏)) ‖𝐹 (𝜏)‖ Δ𝜏

≤ 𝑘𝑑∫

𝑡

0

𝑒
⊖𝑎
(0, 𝜎 (𝜏)) Δ𝜏 ≤

𝑘𝑑

𝑎
,



∫

∞

𝑡

𝑒
0

𝐴
(𝑡) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹 (𝜏) Δ𝜏



≤ ∫

∞

𝑡


𝑒
0

𝐴
(𝑡) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹 (𝜏)


Δ𝜏

= ∫

∞

𝑡


𝑒
0

𝐴
(𝑡) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝜎 (𝜏))


‖𝐹 (𝜏)‖ Δ𝜏

≤ 𝑘∫

∞

𝑡

𝑒
⊖𝑎
(𝜎 (𝜏) , 𝑡) ‖𝐹 (𝜏)‖ Δ𝜏

≤ 𝑘𝑑𝑒
𝑎
(𝑡, 0) ∫

∞

𝑡

𝑒
𝑎
(0, 𝜎 (𝜏)) Δ𝜏 ≤

𝑘𝑑

𝑎

(62)

and analogously (noting that 𝑒0
⊖𝐴
∗(𝑡

+

𝑗
) = 𝑒

0

⊖𝐴
∗(𝜎(𝑡

𝑗
)))



∑

𝑡𝑗<𝑡

𝑒
0

𝐴
(𝑡) 𝑃𝑒

0

⊖𝐴
∗ (𝑡

+

𝑗
)𝐻

𝑗



≤ ∑

𝑡𝑗<𝑡

𝑘𝑒
⊖𝑎
(𝑡, 𝜎 (𝑡

𝑗
))

𝐻
𝑗


≤ 𝑘‖H‖

∞
∑

𝑡𝑗<𝑡

𝑒
⊖𝑎
(𝑡, 𝜎 (𝑡

𝑗
)) ,

(63)


∑

𝑡≤𝑡𝑗

𝑒
0

𝐴
(𝑡) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝑡

+

𝑗
)𝐻

𝑗



≤ ∑

𝑡≤𝑡𝑗

𝑘𝑒
⊖𝑎
(𝜎 (𝑡

𝑗
) , 𝑡)


𝐻
𝑗


≤ 𝑘‖H‖

∞
∑

𝑡≤𝑡𝑗

𝑒
⊖𝑎
(𝜎 (𝑡

𝑗
) , 𝑡) .

(64)

Assuming 𝑡
𝑚
≤ 𝑡 ≤ 𝑡

𝑚+1
for some positive integer𝑚, in virtue

of (H2), we have

∑

𝑡𝑗<𝑡

𝑒
⊖𝑎
(𝑡, 𝜎 (𝑡

𝑗
))

≤

𝑚

∑

𝑗=0

𝑒
⊖𝑎
(𝜎 (𝑡

𝑚
) , 𝜎 (𝑡

𝑗
))

=

𝑚

∑

𝑗=0

𝑒
𝑎
(𝜎 (𝑡

𝑗
) , 𝜎 (𝑡

𝑗+1
)) 𝑒

𝑎
(𝜎 (𝑡

𝑗+1
) , 𝜎 (𝑡

𝑗+2
))

⋅ ⋅ ⋅ 𝑒
𝑎
(𝜎 (𝑡

𝑚−1
) , 𝜎 (𝑡

𝑚
))
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≤

𝑚

∑

𝑗=0

𝜒
𝑚−𝑗

≤
1

1 − 𝜒
.

∑

𝑡≤𝑡𝑗

𝑒
⊖𝑎
(𝜎 (𝑡

𝑗
) , 𝑡)

≤

∞

∑

𝑗=0

𝑒
⊖𝑎
(𝜎 (𝑡

𝑗
) , 𝜎 (0))

=

∞

∑

𝑗=0

𝑒
𝑎
(𝜎 (0) , 𝜎 (𝑡

1
)) 𝑒

𝑎
(𝜎 (𝑡

1
) , 𝜎 (𝑡

2
))

⋅ ⋅ ⋅ 𝑒
𝑎
(𝜎 (𝑡

𝑗−1
) , 𝜎 (𝑡

𝑗
))

≤ 𝑒
𝑎
(𝜎 (0) , 𝜎 (𝑡

1
))

∞

∑

𝑗=0

𝜒
𝑗−1

=
1

1 − 𝜒
𝑒
𝑎
(𝜎 (0) , 𝜎 (𝑡

1
)) .

(65)

Substituting the above two inequalities into (63) and (64),
respectively, we have



∑

𝑡𝑗<𝑡

𝑒
0

𝐴
(𝑡) 𝑃𝑒

0

⊖𝐴
∗ (𝑡

+

𝑗
)𝐻

𝑗



≤
𝑘

1 − 𝜒
‖H‖

∞
,



∑

𝑡≤𝑡𝑗

𝑒
0

𝐴
(𝑡) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝑡

+

𝑗
)𝐻

𝑗



≤
𝑘𝑒

𝑎
(𝜎 (0) , 𝜎 (𝑡

1
))

1 − 𝜒
‖H‖

∞
.

(66)

From (61) and (62) and (66) it follows that the set-valued
function U(𝐹,H) is bounded on (𝑡

0
,∞)T+

. If 𝑡 ∈ [0, 𝑡
0
]T+

,
from the exponential dichotomy it follows that 𝑒

0

𝐴
(𝑡) is

bounded, say, |𝑒0
𝐴
(𝑡)| ≤ 𝑐 for 𝑐 > 0. Thus,

‖U (𝐹,H) (𝑡)‖

=
U0

(𝑡, 𝑡
0
, 𝑈

0
)


=



𝑒
0

𝐴
(𝑡) [𝑈

0
+ ∫

𝑡

𝑡0

𝑒
𝐴
(𝑡
0
, 𝜎 (𝜏)) 𝐹 (𝜏) Δ𝜏]



≤

𝑒
0

𝐴
(𝑡)


𝑈0
 +


𝑒
0

𝐴
(𝑡)

∫

𝑡0

0

𝑒𝐴 (𝑡0, 𝜎 (𝜏)) 𝐹 (𝜏)
 Δ𝜏

≤ 𝑐 [
𝑈0

 + 𝑑𝑐0]

(67)

with 𝑐
0
= ∫

𝑡0

0

|𝑒
𝐴
(𝑡
0
, 𝜎(𝜏))|Δ𝜏. This implies that U(𝐹,H) is

bounded on [0, 𝑡
0
]T+

, too. Consequently,U(𝐹,H) is bounded
on T

+
.

The continuity of U(𝐹,H) for 𝑡 ̸= 𝑡
𝑘
(𝑘 = 0, 1, 2, . . .) and

the existence of the limit valuesU(𝐹,H)(𝑡
+

𝑘
) (𝑘 = 0, 1, 2, . . .)

are immediately verified by Lemma 8(vii); that is,U(𝐹,H) ∈

𝐵𝐶.
To verify that U(𝐹,H) ∈ 𝑃𝐶

1, by differentiating (61)
for 𝑡

𝑘
̸= 𝑡 ∈ (𝑡

0
,∞)T+

(𝑘 = 0, 1, 2, . . .) and taking into

account Propositions 2.6(d1), (d2) and Lemmas 8(vii), (vi)
and Lemma 11, we obtain

Δ
𝑔
U (𝐹,H) (𝑡)

= 𝑒
0

𝐴
(𝜎 (𝑡)) 𝑃𝑒

0

⊖𝐴
∗ (𝜎 (𝑡)) 𝐹 (𝑡)

+ 𝑒
0

𝐴
(𝜎 (𝑡)) (𝐼 − 𝑃) 𝑒

0

⊖𝐴
∗ (𝜎 (𝑡)) 𝐹 (𝑡)

+ ∫

𝑡

𝑡0

𝐴 (𝑡) 𝑒
0

𝐴
(𝑡) 𝑃𝑒

0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹 (𝜏) Δ𝜏

−
𝑔
∫

∞

𝑡

𝐴 (𝑡) 𝑒
0

𝐴
(𝑡) (𝐼 − 𝑃) 𝑒

0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹 (𝜏) Δ𝜏

+ ∑

𝑡𝑗<𝑡

𝐴 (𝑡) 𝑒
0

𝐴
(𝑡) 𝑃𝑒

0

⊖𝐴
∗ (𝑡

+

𝑗
)𝐻

𝑗

−
𝑔
∑

𝑡𝑗≥𝑡

𝐴 (𝑡) 𝑒
0

𝐴
(𝑡) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝑡

+

𝑗
)𝐻

𝑗

= 𝐹 (𝑡) + 𝐴 (𝑡)U (𝐹,H) (𝑡) , 𝑡
𝑘

̸= 𝑡 ∈ (𝑡
0
,∞)

T+
.

(68)

In the case of 𝑡 ∈ [0, 𝑡
0
)T+

, observing U
0
(𝑡, 𝑡

0
, 𝑈

0
) =

𝑒
0

𝐴
(𝑡)[𝑈

0
+ ∫

𝑡

𝑡0

𝑒
𝐴
(𝑡
0
, 𝜎(𝜏))𝐹(𝜏)Δ𝜏] we have

Δ
𝑔
U (𝐹,H) (𝑡)

= Δ
𝑔
U
0
(𝑡, 𝑡

0
, 𝑈

0
)

= 𝐴 (𝑡) 𝑒
0

𝐴
(𝑡) [𝑈

0
+ ∫

𝑡

𝑡0

𝑒
𝐴
(𝑡
0
, 𝜎 (𝜏)) 𝐹 (𝜏) Δ𝜏]

+ 𝑒
0

𝐴
(𝜎 (𝑡)) 𝑒

𝐴
(𝑡
0
, 𝜎 (𝑡)) 𝐹 (𝑡)

= 𝐴 (𝑡)U
0
(𝑡, 𝑡

0
, 𝑈

0
) + 𝐹 (𝑡)

= 𝐴 (𝑡)U (𝐹,H) (𝑡) + 𝐹 (𝑡) .

(69)

This impliesU(𝐹,H) ∈ 𝑃𝐶
1.

It remains to prove that U(𝐹,H) satisfies (59). We have
proved that the first equation of (59) is met for 𝑡 ̸= 𝑡

𝑘
.

Consider system (51) with 𝐹 ≡ {0} and 𝑈
0
= 𝑉 ∈ 𝐾

𝑛

𝑐
if

any given; it is not hard to see that this system has a unique
solution 𝑒

0

𝐴
(𝑡)𝑉. According to the impulsive condition we

obtain

𝑒
0

𝐴
(𝑡
+

𝑘
) 𝑉 = 𝐽

𝑘
𝑒
0

𝐴
(𝑡
𝑘
) 𝑉 for 𝑉 ∈ 𝐾

𝑛

𝑐
, 𝑘 = 0, 1, 2, . . . . (70)
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Taking into account this and combining (H1), we obtain

U (𝐹,H) (𝑡
+

𝑘
)

= ∫

𝑡𝑘

𝑡0

𝑒
0

𝐴
(𝑡
+

𝑘
) 𝑃𝑒

0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹 (𝜏) Δ𝜏

−
𝑔
∫

∞

𝑡𝑘

𝑒
0

𝐴
(𝑡
+

𝑘
) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹 (𝜏) Δ𝜏

+ ∑

𝑡𝑗≤𝑡𝑘

𝑒
0

𝐴
(𝑡
+

𝑘
) 𝑃𝑒

0

⊖𝐴
∗ (𝑡

+

𝑗
)𝐻

𝑗

−
𝑔
∑

𝑡𝑗>𝑡𝑘

𝑒
0

𝐴
(𝑡
+

𝑘
) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝑡

+

𝑗
)𝐻

𝑗

= 𝐽
𝑘
∫

𝑡𝑘

𝑡0

𝑒
0

𝐴
(𝑡
𝑘
) 𝑃𝑒

0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹 (𝜏) Δ𝜏

−
𝑔
𝐽
𝑘
∫

∞

𝑡𝑘

𝑒
0

𝐴
(𝑡
𝑘
) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹 (𝜏) Δ𝜏

+ 𝐽
𝑘
∑

𝑡𝑗<𝑡𝑘

𝑒
0

𝐴
(𝑡
𝑘
) 𝑃𝑒

0

⊖𝐴
∗ (𝑡

+

𝑗
)𝐻

𝑗

−
𝑔
𝐽
𝑘
∑

𝑡𝑗≥𝑡𝑘

𝑒
0

𝐴
(𝑡
𝑘
) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝑡

+

𝑗
)𝐻

𝑗

+ 𝑒
0

𝐴
(𝑡
+

𝑘
) 𝑃𝑒

0

⊖𝐴
∗ (𝑡

+

𝑘
)𝐻

𝑘
+ 𝑒

0

𝐴
(𝑡
+

𝑘
) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝑡

+

𝑘
)𝐻

𝑘

= 𝐽
𝑘
U (𝐹,H) (𝑡

𝑘
) + 𝐻

𝑘
.

(71)

This shows that the second equation of (59) is met. The
third equation of (59) is straightforwardly met. Conclusively,
U(𝐹,H) is a desired solution.

Finally, under the assumption of the exponential
dichotomy, the zero solution of the linear homogeneous set
dynamic equation Δ

𝑔
𝑈(𝑡) = 𝐴(𝑡)𝑈(𝑡) is the unique solution

that is bounded in T
+
(see, e.g., [42, Lemma 4.13]). Let𝑈

1
,𝑈

2

both be the solutions of ISDE (59). From the first equation of
(59) it follows that

Δ
𝑔
𝑈
1
(𝑡) −

𝑔
𝐴 (𝑡)𝑈

1
(𝑡) = Δ

𝑔
𝑈
2
(𝑡) −

𝑔
𝐴 (𝑡)𝑈

2
(𝑡) = 𝐹 (𝑡) ,

𝑡 ̸= 𝑡
𝑘
.

(72)

By Proposition 6(d1), this yields Δ
𝑔
(𝑈

1
(𝑡)−

𝑔
𝑈
2
(𝑡)) =

𝐴(𝑡)(𝑈
1
(𝑡)−

𝑔
𝑈
2
(𝑡)), which further shows that 𝑈

1
−
𝑔
𝑈
2
is a

solution of Δ
𝑔
𝑈(𝑡) = 𝐴(𝑡)𝑈(𝑡). Hence, 𝑈

1
(𝑡)−

𝑔
𝑈
2
(𝑡) =

{0}; that is, 𝑈
1
(𝑡) = 𝑈

2
(𝑡) for 𝑡 ̸= 𝑡

𝑘
. Since 𝑈

𝑖
(𝑖 = 1, 2)

is left continuous at 𝑡
𝑘
, we have 𝑈

1
(𝑡
𝑘
) = lim

𝑡→ 𝑡
−

𝑘

𝑈
1
(𝑡) =

lim
𝑡→ 𝑡
−

𝑘

𝑈
2
(𝑡) = 𝑈

2
(𝑡
𝑘
) for 𝑘 = 0, 1, 2, . . .. This guarantees the

uniqueness of solutions and the proof is complete.

Corollary 16. Assume that the conditions of Theorem 15 are
valid. If 𝐹 ∈ 𝐵𝐶[T

+
, 𝐾

𝑛

𝑐
], then ISDE

Δ
𝐺
𝑈 (𝑡) = 𝐴 (𝑡) 𝑈 (𝑡) + 𝐹 (𝑡) , 𝑡 ̸= 𝑡

𝑘
(𝑘 = 0, 1, 2, . . .) ,

𝑈
𝑡
+

𝑘

= 𝐽
𝑘
𝑈 (𝑡

𝑘
) , 𝑘 = 0, 1, 2, . . . ,

𝑈 (𝑡
0
) = 𝑈

0

(73)

has a unique bounded solutionU(𝐹,H) on T
+
satisfying

U (𝐹,H) (𝑡)

=

{{{{{

{{{{{

{

U
0
(𝑡, 𝑡

0
, 𝑈

0
) , 𝑡 ∈ [0, 𝑡

0
]
T+
,

∫

𝑡

𝑡0

𝑒
0

𝐴
(𝑡) 𝑃𝑒

0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹 (𝜏) Δ𝜏

−
𝑔
∫

∞

𝑡

𝑒
0

𝐴
(𝑡) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹 (𝜏) Δ𝜏, 𝑡 ∈ (𝑡

0
,∞)

T+

(74)

with 𝑡 ∈ T𝑘
+
and 𝑃

1
= (𝐼 − 𝑃). Especially, ISDE (73) except for

the initial condition has a unique solution

U (𝐹,H) (𝑡) = ∫

𝑡

0

𝑒
0

𝐴
(𝑡) 𝑃𝑒

0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹 (𝜏) Δ𝜏

−
𝑔
∫

∞

𝑡

𝑒
0

𝐴
(𝑡) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹 (𝜏) Δ𝜏.

(75)

Proof. This is an immediate result by taking 𝐻
𝑘
= 0 (𝑘 =

0, 1, 2, . . .), that is,H = Θ, in Theorem 15.

Remark 17. If we consider the complete metric space 𝐵𝐶
0
=

𝐵𝐶
0
[T

+
, 𝐾

𝑛

𝑐
] consisting of the functions which belong to 𝐵𝐶

and satisfy 𝑈
𝑡
+

𝑘

= 𝐽
𝑘
(𝑈(𝑡

𝑘
)), then, under the assumptions

of Corollary 16 without the condition (H2), the result of
Corollary 16 is still valid.

We are in a position to discuss the existence of solutions
to nonlinear ISDE (51). We need the following well-known
fixed point theorem which is the foundational tool to prove
our main results.

Lemma 18. Let 𝑓 from (𝐾
𝑛

𝑐
, 𝐷) into itself be a continuous and

compact mapping. If the set

M = {𝐴 ∈ 𝐾
𝑛

𝑐
| there exists a constant 𝜆 ∈ (0, 1)

such that 𝐴 = 𝜆𝑓 (𝐴)}

(76)

is bounded; that is, there exists a positive constant 𝑐 such that
‖𝐴‖ ≤ 𝑐 for all𝐴 ∈ M, then the operator 𝑓 has a fixed point in
C = {𝐴 ∈ 𝐾

𝑛

𝑐
: ‖𝐴‖ ≤ 𝑐}.

Proof. LetD = {𝐴 ∈ 𝐾
𝑛

𝑐
: ‖𝐴‖ < 𝑟} with 𝑟 > 0. Then, by [18,

Proposition 1.3.4], there exists a compact, convex setN ⊂ 𝐾
𝑛

𝑐

such thatD is an open subset ofN and {0} ∈ D. Suppose that
𝑓 has no fixed point on 𝜕D (otherwise we are finished) and
𝐵 ̸= 𝜆𝑓(𝐵) for all 𝐵 ∈ 𝜕D and 𝜆 ∈ [0, 1]. Consider

E = {𝐴 ∈ D : 𝐴 = 𝑡𝑓 (𝐴) for some 𝑡 ∈ [0, 1]} . (77)
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Now E ̸= 0 since {0} ∈ D. In addition, the continuity of 𝑓
implies thatE is closed. Note thatE ∩ 𝜕D = 0, and therefore
by Urysohn’s lemma there exists a continuous function 𝜂 :

D → [0, 1] with 𝜂(E) = 1 and 𝜂(𝜕D) = 0. Let

𝑔 (𝐴) = {
𝜂 (𝐴) 𝑓 (𝐴) , 𝐴 ∈ D,

{0} , 𝐴 ∈ N \D.
(78)

Now it is immediate that 𝑔 : N → N is a continuous,
compact map since 𝜂, 𝑓 are continuous and 𝑓 is compact. By
Tychonoff ’s fixed point theorem, 𝑔 has a fixed point 𝐴 ∈ N.
Note that 𝐴 ∈ E and hence 𝐴 = 𝑔(𝐴) = 𝜂(𝐴)𝑓(𝐴) = 𝑓(𝐴).
As a result, 𝑓 has a fixed point inD.

Now consider C
𝑘
= {𝐴 ∈ 𝐾

𝑛

𝑐
| ‖𝐴‖ < 𝑐 + 1/𝑘}. The

above result guarantees that 𝑓 has a fixed point 𝐴
𝑘
∈ C

𝑘
for

𝑘 = 1, 2, . . .. In view of the compactness of 𝑓 there exists a
subsequence {𝐴

𝑘𝑖
} of {𝐴

𝑘
} such that 𝑓(𝐴

𝑘𝑖
) → 𝐴; that is,

𝐴
𝑘𝑖
→ 𝐴. From the continuity of 𝑓 it follows that𝐴 = 𝑓(𝐴).

Obviously, 𝐴 ∈ C.

Theorem 19. Suppose that (57) admits an exponential
dichotomy on (𝑡

0
,∞)T+

with positive constants 𝑘, 𝑎, a projec-
tion 𝑃, and the 𝑛×𝑛-matrix function𝐴which satisfy condition
(H2), and 𝐹 ∈ 𝑃𝐶[T

+
×C

𝑟𝑑
, 𝐾

𝑛

𝑘
] satisfies the following.

(i) For each Φ ∈ 𝑃𝐶
1, the set-valued function 𝐹

Φ
(𝑠) =

𝐹(𝑠, Φ(𝑠)) satisfies the hypothesis (H1).

(ii) There exists a function ℎ : [0, 𝑡
0
]T+

→ R
+
satisfying

sup
𝑡∈[0,𝑡0]T+

∫
𝑡

0

|𝑒
𝐴
(𝑡, 𝜏)|ℎ(𝜏)Δ𝜏 < 1 such that

𝐷 (𝐹 (𝑡, 𝑈) , 𝐹 (𝑡, 𝑉))

≤ ℎ (𝑡)𝐷 (𝑈,𝑉) , ∀𝑡 ∈ [0, 𝑡
0
]
T+
, 𝑈, 𝑉 ∈ 𝑃𝐶

1

.

(79)

(iii) There exists a function 𝜓 : (𝑡
0
,∞)T+

→ R
+
which is

Δ-integrable on [𝑡
0
,∞)T such that

‖𝐹 (𝑡, Φ (𝑡))‖ ≤ 𝜓 (𝑡) ,

for each (𝑡, Φ) ∈ (𝑡
0
,∞)

T+
× 𝐵𝐶, 𝑡 ̸= 𝑡

𝑘
.

(80)

Then nonlinear ISDE

Δ
𝐺
𝑈 (𝑡) = 𝐴 (𝑡) 𝑈 (𝑡) + 𝐹 (𝑡, 𝑈) , 𝑡 ̸= 𝑡

𝑘
(𝑘 = 0, 1, 2, . . .) ,

𝑈
𝑡
+

𝑘

= 𝐽
𝑘
𝑈 (𝑡

𝑘
) + 𝐻

𝑘
, 𝑘 = 0, 1, 2, . . . ,

𝑈 (𝑡
0
) = 𝑈

0

(81)

has a bounded solution on T
+
denoted by

𝑈 (𝑡) =

{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{

{

𝑒
0

𝐴
(𝑡) 𝑈

0

+∫

𝑡

𝑡0

𝑒
𝐴
(𝑡, 𝜎 (𝜏)) 𝐹 (𝜏, 𝑈) Δ𝜏, 𝑡 ∈ [0, 𝑡

0
]
T+
,

∫

𝑡

𝑡0

𝑒
0

𝐴
(𝑡) 𝑃𝑒

0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹 (𝜏, 𝑈) Δ𝜏

−
𝑔
∫

∞

𝑡

𝑒
0

𝐴
(𝑡) 𝑃

1
𝑒
0

⊖𝐴
∗

× (𝜎 (𝜏)) 𝐹 (𝜏, 𝑈) Δ𝜏

+∑

𝑡𝑗<𝑡

𝑒
0

𝐴
(𝑡) 𝑃𝑒

0

⊖𝐴
∗ (𝑡

+

𝑗
)𝐻

𝑗

−
𝑔
∑

𝑡𝑗≥𝑡

𝑒
0

𝐴
(𝑡) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝑡

+

𝑗
)𝐻

𝑗
, 𝑡 ∈ (𝑡

0
,∞)

T+
.

(82)

Proof. For any fixed Φ ∈ 𝑃𝐶
1, consider ISDE(81) with

𝐹(𝑡, Φ) = 𝐹
Φ
(𝑡) instead of 𝐹(𝑡, 𝑈), fromTheorem 15 it follows

that the linear ISDEhas a unique solutionU(𝐹
Φ
,H) such that

U(𝐹
Φ
,H) = 𝛿

1
(𝑡)U

0
(𝑡, Φ) + 𝛿

2
(𝑡)U

1
(𝑡, Φ), whereU

0
(𝑡, Φ) =

𝑒
0

𝐴
(𝑡)𝑈

0
+ ∫

𝑡

𝑡0

𝑒
𝐴
(𝑡, 𝜎(𝜏))𝐹

Φ
(𝜏)Δ𝜏, U

1
(𝑡) is analogously given

by (61) with 𝐹 replaced by 𝐹
Φ
, and

𝛿
1
(𝑡) = {

1, 𝑡 ∈ [0, 𝑡
0
]
T+
,

0, 𝑡 ∈ (𝑡
0
,∞)

T+
,

𝛿
2
(𝑡) = {

0, 𝑡 ∈ [0, 𝑡
0
]
T+
,

1, 𝑡 ∈ (𝑡
0
,∞)

T+
.

(83)

Let 𝑓(Φ,Ψ) = 𝑓
1
(Φ) + 𝑓

2
(Ψ) with 𝑓

1
(Φ)(𝑡) = 𝛿

1
(𝑡)U

0
(𝑡, Φ)

and 𝑓
2
(Ψ)(𝑡) = 𝛿

2
(𝑡)U

1
(𝑡, Ψ). It is clear that 𝑓 is a map from

𝑃𝐶
1

×𝑃𝐶
1 into𝑃𝐶1 and any of its fixed point (i.e., there exists

Γ ∈ 𝑃𝐶
1 such that Γ = 𝑓(Γ, Γ)) is a solution of nonlinear ISDE

(81). To this end, we have to prove that 𝑓
1
and 𝑓

2
have a fixed

point in 𝑃𝐶
1, respectively. We first observe that assumption

(ii) guarantees 𝑓
1
to be a contractive mapping, and therefore,

by Banach fixed point theorem, 𝑓
1
has a unique fixed point

Φ̂
1
∈ 𝑃𝐶

1

[[0, 𝑡
0
]T+

, 𝐾
𝑛

𝑐
]. Let Φ̂(𝑡) be a set-valued function

whose value is Φ̂
1
(𝑡) for 𝑡 ∈ [0, 𝑡

0
]T+

and {0} for 𝑡 ∈ (𝑡
0
,∞)T+

.
Then Φ̂ is a unique fixed point of 𝑓

1
in 𝑃𝐶1.

We next prove𝑓
2
has a fixed point in𝑃𝐶1. As an analogue

of the arguments of the proof ofTheorem 15, we easily see that
𝑓
2
is bounded and continuous on 𝑃𝐶

1. We shall verify that
𝑓
2
is equicontinuous. In fact, for any 𝑡

1
, 𝑡
2
∈ (𝑡

0
,∞)T+

with
𝑡
1
< 𝑡

2
and Φ ∈ 𝑃𝐶

1, in virtue of the properties of Hausdorff
distance and Lemma 8, combining our hypotheses, we have

𝐷(𝑓
2
(Ψ) (𝑡

2
) , 𝑓

2
(Ψ) (𝑡

1
))

= 𝐷(∫

𝑡2

𝑡0

𝑒
0

𝐴
(𝑡
2
) 𝑃𝑒

0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹

Ψ
(𝜏) Δ𝜏
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−
𝑔
∫

∞

𝑡2

𝑒
𝐴
(𝑡
2
) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹

Ψ
(𝜏) Δ𝜏

+ ∑

𝑡𝑗<𝑡2

𝑒
0

𝐴
(𝑡
2
) 𝑃𝑒

0

⊖𝐴
∗ (𝑡

+

𝑗
)𝐻

𝑗

−
𝑔
∑

𝑡𝑗≥𝑡2

𝑒
0

𝐴
(𝑡
2
) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝑡

+

𝑗
)𝐻

𝑗
,

∫

𝑡1

𝑡0

𝑒
0

𝐴
(𝑡
1
) 𝑃𝑒

0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹

Ψ
(𝜏) Δ𝜏

−
𝑔
∫

∞

𝑡1

𝑒
0

𝐴
(𝑡
1
) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹

Ψ
(𝜏) Δ𝜏

+ ∑

𝑡𝑗<𝑡1

𝑒
0

𝐴
(𝑡
1
) 𝑃𝑒

0

⊖𝐴
∗ (𝑡

+

𝑗
)𝐻

𝑗

−
𝑔
∑

𝑡𝑗≥𝑡1

𝑒
0

𝐴
(𝑡
1
) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝑡

+

𝑗
)𝐻

𝑗
)

= 𝐷(∫

𝑡1

𝑡0

𝑒
0

𝐴
(𝑡
2
) 𝑃𝑒

0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹

Ψ
(𝜏) Δ𝜏

+ ∫

𝑡2

𝑡1

𝑒
0

𝐴
(𝑡
2
) 𝑃𝑒

0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹

Ψ
(𝜏) Δ𝜏

−
𝑔
∫

∞

𝑡2

𝑒
𝐴
(𝑡
2
) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹

Φ
(𝜏) Δ𝜏

+ ∑

𝑡𝑗<𝑡2

𝑒
0

𝐴
(𝑡
2
) 𝑃𝑒

0

⊖𝐴
∗ (𝑡

+

𝑗
)𝐻

𝑗

−
𝑔
∑

𝑡𝑗≥𝑡2

𝑒
0

𝐴
(𝑡
2
) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝑡

+

𝑗
)𝐻

𝑗
,

∫

𝑡1

𝑡0

𝑒
0

𝐴
(𝑡
1
) 𝑃𝑒

0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹

Φ
(𝜏) Δ𝜏

−
𝑔
∫

𝑡2

𝑡1

𝑒
0

𝐴
(𝑡
1
) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹

Φ
(𝜏) Δ𝜏

−
𝑔
∫

∞

𝑡2

𝑒
𝐴
(𝑡
1
) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹

Φ
(𝜏) Δ𝜏

+ ∑

𝑡𝑗<𝑡1

𝑒
0

𝐴
(𝑡
1
) 𝑃𝑒

0

⊖𝐴
∗ (𝑡

+

𝑗
)𝐻

𝑗

−
𝑔
∑

𝑡𝑗≥𝑡1

𝑒
0

𝐴
(𝑡
1
) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝑡

+

𝑗
)𝐻

𝑗
)

≤ D
1
+D

2
+D

3
+D

4
,

(84)

where

D
1
= 𝐷(∫

𝑡1

𝑡0

𝑒
0

𝐴
(𝑡
2
) 𝑃𝑒

0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹

Ψ
(𝜏) Δ𝜏,

∫

𝑡1

𝑡0

𝑒
0

𝐴
(𝑡
1
) 𝑃𝑒

0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹

Ψ
(𝑠) Δ𝑠)

≤ ∫

𝑡1

𝑡0

𝐷[𝑒
0

𝐴
(𝑡
2
) 𝑃𝑒

0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹

Ψ
(𝜏) ,

𝑒
0

𝐴
(𝑡
1
) 𝑃𝑒

0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹

Ψ
(𝜏)] Δ𝜏,

D
2
= 𝐷(∫

𝑡2

𝑡1

𝑒
0

𝐴
(𝑡
2
) 𝑃𝑒

0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹

Ψ
(𝜏) Δ𝜏,

−
𝑔
∫

𝑡2

𝑡1

𝑒
0

𝐴
(𝑡
1
) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹

Ψ
(𝜏) Δ𝜏)

≤ ∫

𝑡2

𝑡1

[

𝑒
0

𝐴
(𝑡
2
) 𝑃𝑒

0

⊖𝐴
∗ (𝜎 (𝜏))



+

𝑒
0

𝐴
(𝑡
1
) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝜎 (𝜏))


]
𝐹Ψ (𝜏)

 Δ𝜏,

D
3
= 𝐷(∫

∞

𝑡2

𝑒
0

𝐴
(𝑡
2
) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹

Ψ
(𝜏) Δ𝜏,

∫

∞

𝑡2

𝑒
0

𝐴
(𝑡
1
) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹

Ψ
(𝜏) Δ𝜏)

≤ ∫

∞

𝑡2

𝐷[𝑒
0

𝐴
(𝑡
2
) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹

Ψ
(𝜏) ,

𝑒
0

𝐴
(𝑡
1
) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹

Ψ
(𝜏)] Δ𝜏,

D
4
= 𝐷(∑

𝑡𝑗<𝑡2

𝑒
0

𝐴
(𝑡
2
) 𝑃𝑒

0

⊖𝐴
∗ (𝑡

+

𝑗
)𝐻

𝑗

−
𝑔
∑

𝑡𝑗≥𝑡2

𝑒
0

𝐴
(𝑡
2
) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝑡

+

𝑗
)𝐻

𝑗
,

∑

𝑡𝑗<𝑡1

𝑒
0

𝐴
(𝑡
1
) 𝑃𝑒

0

⊖𝐴
∗ (𝑡

+

𝑗
)𝐻

𝑗

−
𝑔
∑

𝑡𝑗≥𝑡1

𝑒
0

𝐴
(𝑡
1
) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝑡

+

𝑗
)𝐻

𝑗
) .

(85)

Let 𝑡
2
→ 𝑡

1
, and from assumption (iii), together with the

continuity of 𝑒0
𝐴
(𝑡) and Δ-integrable of 𝜓, it follows that 𝑓

2
is

equicontinuous with respect to Ψ ∈ 𝑃𝐶
1. In virtue of Ascoli-

Arzela theorem we obtain that 𝑓
2
is a continuous compact

operator.
Now we prove that the setM defined by (76) is bounded.

If it is contrary, there exist (𝜆
𝑚
, 𝑈

𝑚
) ∈ (0, 1) × 𝑃𝐶

1 such that
𝑈
𝑚
= 𝜆

𝑚
𝑓
2
(𝑈

𝑚
) and ‖𝑈

𝑚
‖
0
> 𝑚 for𝑚 = 1, 2 . . .. On the other

hand, for any 𝑡 ∈ (𝑡
0
,∞)T+

, from (61) and (66), Definition 14,
and assumption (iii) we have
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𝑈𝑚 (𝑡)


≤ 𝜆
𝑚
∫

𝑡

𝑡0


𝑒
0

𝐴
(𝑡) 𝑃𝑒

0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹

𝑈𝑚
(𝜏)


Δ𝜏

+ 𝜆
𝑚
∫

∞

𝑡


𝑒
0

𝐴
(𝑡) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹

𝑈𝑚
(𝜏)


Δ𝜏

+ 𝜆
𝑚



∑

𝑡𝑗<𝑡

𝑒
0

𝐴
(𝑡) 𝑃𝑒

0

⊖𝐴
∗ (𝑡

+

𝑗
)𝐻

𝑗



+ 𝜆
𝑚



∑

𝑡𝑗≥𝑡

𝑒
0

𝐴
(𝑡, 0) 𝑃

1
𝑒
0

⊖𝐴
∗ (𝑡

+

𝑗
)𝐻

𝑗



≤ 𝑘∫

𝑡

0

𝑒
⊖𝑎
(𝑡, 𝜎 (𝜏))


𝐹
𝑈𝑚

(𝜏)

Δ𝜏

+ 𝑘∫

∞

𝑡

𝑒
⊖𝑎
(𝜎 (𝜏) , 𝑡)


𝐹
𝑈𝑚

(𝜏)

Δ𝜏

+
𝑘

1 − 𝜒
‖H‖

∞
+
𝑘𝑒

𝑎
(𝜎 (0) , 𝜎 (𝑡

1
))

1 − 𝜒
‖H‖

∞

≤ 𝑘∫

𝑡

0

𝑒
⊖𝑎
(𝑡, 𝜎 (𝑠)) 𝜓 (𝑠) Δ𝑠

+ 𝑘∫

∞

𝑡

𝑒
⊖𝑎
(𝜎 (𝑠) , 𝑡) 𝜓 (𝑠) Δ𝑠

+
𝑘

1 − 𝜒
‖H‖

∞
+
𝑘𝑒

𝑎
(𝜎 (0) , 𝜎 (𝑡

1
))

1 − 𝜒
‖H‖

∞

≤ 2𝑘∫

∞

0

𝜓 (𝜏) Δ𝜏 +
𝑘

1 − 𝜒
‖H‖

∞

+
𝑘𝑒

𝑎
(𝜎 (0) , 𝜎 (𝑡

1
))

1 − 𝜒
‖H‖

∞

(86)

in view of the arbitrariness of 𝑡 ∈ (𝑡
0
,∞)T+

, we obtain

𝑈𝑚
0
≤ 2𝑘∫

∞

0

𝜓 (𝜏) Δ𝜏 +
𝑘

1 − 𝜒
‖H‖

∞

+
𝑘𝑒

𝑎
(𝜎 (0) , 𝜎 (𝑡

1
))

1 − 𝜒
‖H‖

∞
.

(87)

Let us take 𝑚 to be large enough, say, larger than the right
hand side of the above inequality; we have a contradiction.
Consequently, the set M is bounded. Lemma 18 guarantees
that 𝑓

2
has a fixed point Ψ̂

1
∈ 𝑃𝐶

1

[(𝑡
0
,∞)T+

, 𝐾
𝑛

𝑐
]. Set a

set-valued function Ψ̂(𝑡) such that its value is Ψ̂
1
(𝑡) for 𝑡 ∈

(𝑡
0
,∞)T+

and {0} for 𝑡 ∈ [0, 𝑡
0
]T+

. Then Ψ̂ is a fixed point of
𝑓
2
in 𝑃𝐶1.
We finally prove that𝑓 has a fixed point in𝑃𝐶1×𝑃𝐶1. Let

Ψ ∈ 𝑃𝐶
1 be fixed and define the mapping

𝐺 (Ψ) = 𝑓 (Φ,Ψ) = 𝑓
1
(Φ) + 𝑓

2
(Ψ) . (88)

Then from the fact that 𝑓
1
has a unique fixed point Φ̂

satisfying Φ̂(𝑡) = {0} for 𝑡 ∈ (𝑡
0
,∞)T+

and 𝑓
2
(Ψ)(𝑡) = {0}

for 𝑡 ∈ [0, 𝑡
0
]T+

, it follows that Φ̂ + 𝑓
2
(Ψ) = 𝐺(Ψ). Similarly,

we can check that 𝐺 : 𝑃𝐶
1

→ 𝑃𝐶
1 meets all conditions of

Lemma 18; therefore, 𝐺 has a fixed point Υ ∈ 𝑃𝐶
1 satisfying

Υ(𝑡) = Φ̂(𝑡) for 𝑡 ∈ [0, 𝑡
0
]T+

. This further implies that Υ =

𝑓(Φ̂, Υ) = 𝑓(Υ, Υ); that is, 𝑓 has a fixed point in 𝑃𝐶
1. This

completes the proof.

Corollary 20. Assume that all conditions of Theorem 19 are
satisfied, except for (H2). In addition, instead of 𝑃𝐶1 we
consider the complete metric space 𝑃𝐶0[T

+
, 𝐾

𝑛

𝑐
] consisting of

the functions 𝑈 ∈ 𝐵𝐶
0
and their 𝑔-derivatives exist; then

nonlinear ISDE (51) has at least bounded solution.

4. Some Stability Criteria

In this section, we assume that 𝐹(𝑡, {0}) ≡ {0}, 𝐽
𝑘
({0}) + 𝐻

𝑘
=

{0} for 𝑡 ∈ T
+
and 𝑘 = 0, 1, 2, . . .. Moreover, by 𝐹 ∈ Lip(ℎ) we

mean that 𝐹 ∈ 𝑃𝐶[T
+
×C

𝑟𝑑
, 𝐾

𝑛

𝑘
] and

𝐷 (𝐹 (𝑡, 𝑈) , 𝐹 (𝑡, 𝑉))

≤ ℎ (𝑡)𝐷 (𝑈,𝑉) , ∀𝑡 ∈ T
+
, 𝑈, 𝑉 ∈ 𝑃𝐶

1

,

(89)

where the function ℎ : T
+
→ R

+
satisfies 𝑘(1+𝑎𝜇(𝑡))ℎ(𝑡) < 𝑎

and ∫∞
0

𝑘(1+𝑎𝜇(𝜏))ℎ(𝜏)Δ𝜏 < ∞with the constants 𝑘, 𝑎 given
as in Definition 14 and 𝜇 a graininess function. For the sake
of convenience, we assume the projection 𝑃 ≡ 𝐼.

Under the assumptions of 𝐹 ∈ Lip(ℎ), employing the
procedure used in the proof ofTheorem 19, we can obtain that
the set dynamic equation

Δ
𝑔
𝑈 (𝑡) = 𝐴 (𝑡) 𝑈 (𝑡) + 𝐹 (𝑡, 𝑈) , 𝑡 ∈ 𝐼

𝑘
= (𝑡

𝑘
, 𝑡

𝑘+1
]
T+
,

𝑈
𝑡
+

𝑘

= Φ
𝑘
= 𝐽

𝑘
(𝑈 (𝑡

𝑘
)) + 𝐻

𝑘

(90)

has a solution

𝑉
𝑘
(𝑡) = 𝑉

𝑘
(𝑡
𝑘
, Φ

𝑘
) (𝑡)

= 𝑒
𝐴
(𝑡, 𝑡

+

𝑘
)Φ

𝑘
+ ∫

𝑡

𝑡𝑘

𝑒
𝐴
(𝑡, 𝜎 (𝜏)) 𝐹 (𝜏, 𝑉

𝑘
) Δ𝜏, 𝑡 ∈ 𝐼

𝑘

(91)

for 𝑘 = 0, 1, 2, . . .. Additionally define 𝑉
0
(𝑡
0
) = 𝑈

0
, 𝑉

𝑘
(𝑡
𝑘
) =

𝑉
𝑘−1

(𝑡
𝑘
) for 𝑘 = 1, 2, . . .. We now obtain a solution of ISDE

(81)𝑈(𝑡
0
, 𝑈

0
) on T

+
which is left continuous on 𝐼

𝑘
and defined

by

𝑈 (𝑡
0
, 𝑈

0
) (𝑡) =

{{{{{{{{{

{{{{{{{{{

{

U
0
(𝑡, 𝑡

0
, 𝑈

0
) , 𝑡 ∈ [0, 𝑡

0
]
T+
,

𝑉
0
(𝑡) , 𝑡 ∈ 𝐼

0
,

...
...

𝑉
𝑘
(𝑡) , 𝑡 ∈ 𝐼

𝑘
.

...
...

(92)
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On the other hand, with the additional assumption that
𝑃 ≡ 𝐼, from (82) we obtain a bounded solution of ISDE (81)

𝑈 (𝑡) =

{{{{{{{{{{

{{{{{{{{{{

{

𝑒
0

𝐴
(𝑡) 𝑈

0

+∫

𝑡

𝑡0

𝑒
𝐴
(𝑡, 𝜎 (𝜏)) 𝐹 (𝜏, 𝑈)Δ𝜏, 𝑡 ∈ [0, 𝑡

0
]
T+
,

∫

𝑡

𝑡0

𝑒
0

𝐴
(𝑡) 𝑒

0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹 (𝜏, 𝑈)Δ𝜏

+∑

𝑡𝑗<𝑡

𝑒
0

𝐴
(𝑡) 𝑒

0

⊖𝐴
∗ (𝑡

+

𝑗
)𝐻

𝑗
, 𝑡 ∈ (𝑡

0
,∞)

T+
.

(93)

Since 𝑒0
𝐴
(𝑡)𝑒

0

⊖𝐴
∗(𝜎(𝜏)) = 𝑒

𝐴
(𝑡, 𝑡

0
)𝑒
𝐴
(𝑡
0
, 𝜎(𝜏)) = 𝑒

𝐴
(𝑡, 𝜎(𝜏)),

subtracting 𝑈 from 𝑉
𝑘
, we have

𝑉
𝑘
(𝑡) −

𝑔
𝑈 (𝑡)

= 𝑒
𝐴
(𝑡, 𝑡

+

𝑘
)Φ

𝑘
+ ∫

𝑡

𝑡𝑘

𝑒
𝐴
(𝑡, 𝜎 (𝜏)) 𝐹 (𝜏, 𝑉

𝑘
) Δ𝜏

−
𝑔
∫

𝑡

𝑡0

𝑒
0

𝐴
(𝑡) 𝑒

0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹 (𝜏, 𝑈)Δ𝜏

+ ∑

𝑡𝑗<𝑡

𝑒
0

𝐴
(𝑡) 𝑒

0

⊖𝐴
∗ (𝑡

+

𝑗
)𝐻

𝑗

= 𝑒
𝐴
(𝑡, 𝑡

+

𝑘
)Φ

𝑘
+ ∫

𝑡

𝑡𝑘

𝑒
𝐴
(𝑡, 𝜎 (𝜏))

× [𝐹 (𝜏, 𝑉
𝑘
) −

𝑔
𝐹 (𝜏, 𝑈)] Δ𝜏

+ ∑

𝑡𝑗<𝑡

𝑒
0

𝐴
(𝑡) 𝑒

0

⊖𝐴
∗ (𝑡

+

𝑗
)𝐻

𝑗
.

(94)

Thus, we have the following attractive result.

Theorem 21. Suppose that (57) admits an exponential
dichotomy on (𝑡

0
,∞)T+

with positive constants 𝑘, 𝑎, the pro-
jection 𝑃 = 𝐼, and the 𝑛 × 𝑛-matrix function 𝐴 which satisfy
the condition (H2), and 𝐹 ∈ Lip (ℎ). In addition, if

(i) for each Φ ∈ 𝑃𝐶
1, the set-valued function 𝐹

Φ
(𝑠) =

𝐹(𝑠, Φ(𝑠)) satisfies the hypothesis (H1),

(ii) there exists 𝑙 > 0 such that ‖Φ
𝑘
‖ ≤ 𝑙 for 𝑘 = 0, 1, 2, . . .,

then lim
𝑡→∞

𝐷(𝑈(𝑡
0
, 𝑈

0
)(𝑡), 𝑈(𝑡)) = 0.

Proof. Let 𝑡 ∈ 𝐼
𝑘
for some nature number 𝑘. Note that

𝑒
𝐴
(𝑡, 𝑡

+

𝑘
) = 𝑒

𝐴
(𝑡, 𝜎(𝑡

𝑘
)), and combining the exponential

dichotomy and the hypothesis (ii), one has

𝐷(𝑈 (𝑡
0
, 𝑈

0
) (𝑡) , 𝑈 (𝑡))

= 𝐷 (𝑉
𝑘
(𝑡) , 𝑈 (𝑡)) =


𝑉
𝑘
(𝑡) −

𝑔
𝑈 (𝑡)



≤
𝑒𝐴 (𝑡, 𝑡

+

𝑘
)

Φ𝑘



+ ∫

𝑡

𝑡𝑘

𝑒𝐴 (𝑡, 𝜎 (𝜏))



[𝐹 (𝜏, 𝑉

𝑘
) −

𝑔
𝐹 (𝜏, 𝑈)]


Δ𝜏

+ ∑

𝑡𝑗<𝑡


𝑒
0

𝐴
(𝑡) 𝑒

0

⊖𝐴
∗ (𝑡

+

𝑗
)



𝐻
𝑗



≤ 𝑘𝑒
⊖𝑎
(𝑡, 𝜎 (𝑡

0
))
Φ𝑘



+ ∫

𝑡

𝑡𝑘

𝑘𝑒
⊖𝑎
(𝑡, 𝜎 (𝜏)) ℎ (𝜏)𝐷 (𝑉

𝑘
(𝜏) , 𝑈 (𝜏)) Δ𝜏

+ 𝑘∑

𝑡𝑗<𝑡

𝑒
⊖𝑎
(𝑡, 𝜎 (𝑡

𝑗
))

𝐻
𝑗



(95)

and therefore, in view of (H2),

𝑒
𝑎
(𝑡, 0)𝐷 (𝑈 (𝑡

0
, 𝑈

0
) (𝑡) , 𝑈 (𝑡))

≤ 𝑘𝑒
𝑎
(𝜎 (𝑡

0
) , 0)

Φ𝑘

 + 𝑘‖H‖
∞
∑

𝑡𝑗<𝑡

𝑒
𝑎
(𝜎 (𝑡

𝑗
) , 0)

+ ∫

𝑡

𝑡𝑘

𝑘𝑒
𝑎
(𝜎 (𝜏) , 0) ℎ (𝜏)𝐷 (𝑈 (𝑡

0
, 𝑈

0
) (𝜏) , 𝑈 (𝜏)) Δ𝜏

≤ 𝑘𝑒
𝑎
(𝜎 (𝑡

0
) , 0)

Φ𝑘

 +
𝑘

1 − 𝜒
‖H‖

∞

+ ∫

𝑡

𝑡𝑘

𝑘 (1 + 𝑎𝜇 (𝜏)) ℎ (𝜏) 𝑒
𝑎
(𝜏, 0)

× 𝐷 (𝑈 (𝑡
0
, 𝑈

0
) (𝜏) , 𝑈 (𝜏)) Δ𝜏.

(96)

In view of Gronwall’s inequality ([40, Theorem 6.4]), we
obtain

𝑒
𝑎
(𝑡, 0)𝐷 (𝑈 (𝑡

0
, 𝑈

0
) (𝑡) , 𝑈 (𝑡))

≤ 𝑙
𝑘
+ 𝑙

𝑘
∫

𝑡

𝑡𝑘

𝑒
𝑝
(𝑡, 𝜎 (𝜏)) 𝑝 (𝜏) Δ𝜏

≤ 𝑙
𝑘
+ 𝑙

𝑘
∫

𝑡

𝑡𝑘

𝑝 (𝜏) 𝑒
𝑝
(𝑡, 0) Δ𝜏,

(97)

where𝑝(𝜏) = 𝑘(1+𝑎𝜇(𝜏))ℎ(𝜏), 𝑙
𝑘
= 𝑘𝑒

𝑎
(𝜎(𝑡

0
), 0)‖Φ

𝑘
‖+(𝑘/(1−

𝜒))‖H‖
∞
. From this, it follows that

𝐷(𝑈 (𝑡
0
, 𝑈

0
) (𝑡) , 𝑈 (𝑡))

≤ 𝑙
𝑘
𝑒
⊖𝑎
(𝑡, 0) + 𝑙

𝑘
𝑒
𝑝⊖𝑎

(𝑡, 0) ∫

𝑡

𝑡𝑘

𝑝 (𝜏) Δ𝜏,

(98)
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which guarantees that 𝐷(𝑈(𝑡
0
, 𝑈

0
)(𝑡), 𝑈(𝑡)) → 0 as 𝑡 → ∞

and the proof is complete.

We are now in a position to formulate the stability criteria
for the null solution of ISDE (51). Let us first define the
stability of trivial solution.

Definition 22. Let𝑈(𝑡) = 𝑈(𝑡
0
, 𝑈

0
)(𝑡) be any solution of ISDE

(51). Then the trivial solution𝑈(𝑡) ≡ {0} is said to be stable if,
for each 𝜖 > 0 and 𝑡

0
∈ T

+
, there exists a 𝛿 = 𝛿(𝑡

0
, 𝜖) > 0 such

that𝐷(𝑈
0
, {0}) < 𝛿 implies that𝐷(𝑈(𝑡), {0}) < 𝜖, 𝑡 ∈ T

+
.

Theorem 23. Under the assumption of Theorem 21, the trivial
solution of ISDE (51) is stable.

Proof. From the above arguments we see that any solution of
ISDE (51) can be indicated by

𝑈 (𝑡) =

{{{{{{{{{{{

{{{{{{{{{{{

{

𝑒
0

𝐴
(𝑡) 𝑈

0

+∫

𝑡

𝑡0

𝑒
𝐴
(𝑡, 𝜎 (𝜏)) 𝐹 (𝜏, 𝑈) Δ𝜏

= 𝑉 (𝑡) , 𝑡 ∈ [0, 𝑡
0
]
T+
,

∫

𝑡

𝑡0

𝑒
0

𝐴
(𝑡) 𝑒

0

⊖𝐴
∗ (𝜎 (𝜏)) 𝐹 (𝜏, 𝑈) Δ𝜏

= 𝑊 (𝑡) , 𝑡 ∈ (𝑡
0
,∞)

T+
.

(99)

We first consider the case of 𝑡 ∈ [0, 𝑡
0
]T+

. As an analogy of the
proof of Theorem 21, we have obtained

𝑒
𝑎
(𝑡, 0)𝐷 (𝑈 (𝑡) , {0}) ≤ 𝑙

0
+ 𝑙

0
𝑒
𝑝
(𝑡, 0) ∫

𝑡0

0

𝑝 (𝜏) Δ𝜏, (100)

where 𝑝(𝜏) = 𝑘(1 + 𝑎𝜇(𝜏))ℎ(𝜏), 𝑙
0
= 𝑘𝑒

𝑎
(𝜎(𝑡

0
), 0)𝐷(𝑈

0
, {0}).

For any 𝜖 > 0, choose

𝛿
1
= 𝜖[𝑘𝑒

𝑎
(𝜎(𝑡

0
), 0) (1 + 𝑒

𝑎
(𝑡
0
, 0) ∫

𝑡0

0

𝑝(𝜏)Δ𝜏)]

−1

, (101)

and we have𝐷(𝑈(𝑡), {0}) < 𝜖 whenever𝐷(𝑈
0
, {0}) < 𝛿

1
.

If 𝑡 ∈ (𝑡
0
,∞)T+

, by the exponential dichotomy we have

𝐷 (𝑈 (𝑡) , {0})

≤ 𝐷 (𝑊 (𝑡) , {0}) + 𝑒
𝑎
(0, 𝑡) 𝐷 (𝑈

0
, {0})

≤ ∫

𝑡

𝑡0


𝑒
0

𝐴
(𝑡) 𝑒

0

⊖𝐴
∗ (𝜎 (𝜏))


𝐷 (𝐹 (𝜏, 𝑈) , 𝐹 (𝑡, {0})) Δ𝜏

+ 𝑒
𝑎
(0, 𝑡) 𝐷 (𝑈

0
, {0})

≤ ∫

𝑡

𝑡0

𝑘𝑒
⊖𝑎
(𝑡, 𝜎 (𝜏)) ℎ (𝜏)𝐷 (𝑈 (𝜏) , {0}) Δ𝜏

+ 𝑒
𝑎
(0, 𝑡) 𝐷 (𝑈

0
, {0})

(102)

and therefore

𝑒
𝑎
(𝑡, 0)𝐷 (𝑈 (𝑡) , {0})

≤ ∫

𝑡

𝑡0

𝑘𝑒
𝑎
(𝜎 (𝜏) , 0) ℎ (𝜏)𝐷 (𝑈 (𝜏) , {0}) Δ𝜏 + 𝐷 (𝑈

0
, {0})

= ∫

𝑡

𝑡0

𝑝 (𝜏) 𝑒
𝑎
(𝜏, 0)𝐷 (𝑈 (𝜏) , {0}) Δ𝜏 + 𝐷 (𝑈

0
, {0}) .

(103)

Gronwall’s inequality again implies that

𝑒
𝑎
(𝑡, 0)𝐷 (𝑈 (𝑡) , {0})

≤ 𝐷 (𝑈
0
, {0}) ∫

𝑡

𝑡0

𝑝 (𝜏) 𝑒
𝑝
(𝑡, 𝜎 (𝜏)) Δ𝜏 + 𝐷 (𝑈

0
, {0}) ,

(104)

which implies that

𝐷 (𝑈 (𝑡) , {0}) ≤ 𝐷 (𝑈
0
, {0}) (1 + ∫

∞

𝑡0

𝑝 (𝜏) Δ𝜏) . (105)

Taking 𝛿
2
= 𝜖(1 + ∫

∞

𝑡0

𝑝(𝜏)Δ𝜏)
−1

, we have 𝐷(𝑈(𝑡), {0}) < 𝜖 if
𝐷(𝑈

0
, {0}) < 𝛿

2
. Let 𝛿 = min{𝛿

1
, 𝛿

2
}. Then 𝐷(𝑈

0
, {0}) < 𝛿

implies that 𝐷(𝑈(𝑡), {0}) < 𝜖, 𝑡 ∈ T
+
. This proof is complete.

5. Examples

In this section we present several examples to illustrate the
applicability of the results involved in the above sections.

Example 1. Consider the set dynamic equation

Δ
𝑔
𝑈 (𝑡) = 𝐴𝑈 (𝑡) + 𝐹 (𝑡) , 𝑡 ∈ T

+
, 𝑡 ̸= 𝑡

𝑘
,

𝑈 (𝑡
+

𝑘
) = 𝐵𝑈 (𝑡

𝑘
) , 𝑘 = 0, 1, 2 . . . ,

𝑈 (𝑡
0
) = 𝑈

0
,

(106)

where 𝐴 = (
−𝜆 0

0 −𝜆
), 𝜆 > 0, and −𝜆 ∈ R+

1
, 𝐹(𝑡) = 𝑓(𝑡)𝐶

with 𝑓(𝑡) = (
sin√3𝑡
cos√2𝑡 ), 𝐶 ⊂ R a bounded subset, 𝐵 is a 2 ×

2-constant-valued matrix, and 𝑡
𝑘
= (𝑘 + 1)𝑡

0
∈ T

+
for 𝑘 =

0, 1, 2, . . ..

Conclusion. Equation (106) has a unique bounded solution

𝑈 (𝑡) =

{{{{{

{{{{{

{

𝑒
−𝜆
(𝑡, 𝑡

0
) 𝐼

2
𝑈
0

+∫

𝑡

𝑡0

𝑒
−𝜆
(𝑡, 𝜎 (𝜏)) 𝐼

2
𝑓 (𝜏) 𝐶Δ𝜏, 𝑡 ∈ [0, 𝑡

0
]
T+
,

∫

𝑡

𝑡0

𝑒
−𝜆
(𝑡, 𝜎 (𝜏)) 𝐼

2
𝑓 (𝜏) 𝐶Δ𝜏, 𝑡 ∈ (𝑡

0
,∞)

T+

with 𝐼
2
= (

1 0

0 1
) .

(107)
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Proof. From [40, Theorem 5.35] it is easy to see that the
homogeneous equation of (106) admits an exponential
dichotomy with the constants 𝑘 = 𝑎 = 1, the projection
𝑃 = 𝐼

2
, and the fundamental matrix 𝑒

0

𝐴
(𝑡) = 𝑒

−𝜆
(𝑡, 0)𝐼

2
.

Thus, the condition (H1) is naturally satisfied. Let 𝐵𝐶
0
=

{𝑈 ∈ 𝐵𝐶(T
+
, 𝐾

2

𝑐
) : 𝑈

𝑡
+

𝑘

= 𝐵(𝑈(𝑡
𝑘
))}. Now Remark 17

guarantees that the existence of the unique bounded solution
𝑈 to (106) and the expression of 𝑈 are immediately obtained
by Corollary 16.

Example 2. Let us consider an interval-valued dynamic
equation

Δ
𝑔
𝑈 (𝑡) = −𝑝 (𝑡) 𝑈 (𝑡) + 𝐹 (𝑡, 𝑈) ,

𝑡 ̸= 𝑡
𝑘

(𝑘 = 0, 1, 2, . . .) ,

𝑈
𝑡
+

𝑘

= 𝐽
𝑘
𝑈 (𝑡

𝑘
) + 𝐻

𝑘
, 𝑘 = 0, 1, 2, . . . ,

𝑈 (𝑡
0
) = 𝑈

0
,

(108)

where 𝑈(𝑡) = [𝑢
−

(𝑡), 𝑢
+

(𝑡)] ∈ I, 𝐹(𝑡, 𝑈) =

[𝑓
−

(𝑡, 𝑈), 𝑓
+

(𝑡, 𝑈)], 𝐽
𝑘
: I → I, andH = {𝐻

𝑘
} ∈ H

1
.

Conclusion. If (ii) of Theorem 21 holds, 𝑒
1
(𝜎(𝑡

𝑘
), 𝜎(𝑡

𝑘+1
)) ≤

𝜒 < 1 for 𝑘 = 0, 1, 2, . . ., and the following hypotheses hold:

(I) 𝑝 ∈ 𝐶
𝑟𝑑
(T

+
,R

+
), inf

𝑡∈T+
𝑝(𝑡) > 0 and −𝑝 ∈ R+

1
;

(II) 𝑓−, 𝑓+ ∈ 𝑃𝐶(T
+
× I,R);

(III) 𝑓
1
, 𝑓

2
∈ Lip(ℎ),

then the following results are valid.

(i) Let 𝑈
𝑘
(𝑡) = [𝑢

−

𝑘
(𝑡), 𝑢

+

𝑘
(𝑡)] be a solution of (90) with

Φ
𝑘
∈ I (𝑡 ∈ 𝐼

𝑘
, 𝑘 = 0, 1, 2, . . .). For any 𝜀 > 0, there

exists the natural number 𝑘 such that
min {𝑢−

𝑘
(𝑡) − 𝑢

−

(𝑡) , 𝑢
+

𝑘
(𝑡) − 𝑢

+

(𝑡)}
 < 𝜀,

max {𝑢−
𝑘
(𝑡) − 𝑢

−

(𝑡) , 𝑢
+

𝑘
(𝑡) − 𝑢

+

(𝑡)}
 < 𝜀

(109)

for 𝑡 ∈ 𝐼
𝑘
, where 𝑈(𝑡) = [𝑢

−

(𝑡), 𝑢
+

(𝑡)] is a solution of
(108).

(ii) The trivial solution of (108) is stable.

Proof. Clearly, the homogeneous equation Δ
𝑔
𝑈(𝑡) =

𝑝(𝑡)𝑈(𝑡) admits an exponential dichotomy with constants
𝑘 = 𝑎 = 1, the projection 𝑃 = 𝐼, and the fundamental matrix
𝑒
0

−𝑝
(𝑡); that is, the hypothesis (H1) of Theorem 21 is valid.

Our assumption guarantees that (H2) is also valid.
For (𝑡, 𝑈

1
), (𝑡, 𝑈

2
) ∈ T

+
× I, set 𝑓−

1
= 𝑓

−

(𝑡, 𝑈
1
), 𝑓

−

2
=

𝑓
−

(𝑡, 𝑈
2
) and we similarly stipulate 𝑓+. Since 𝑓

1
, 𝑓

2
∈ Lip(ℎ),

by means of [33] we have

𝐷(𝐹 (𝑡, 𝑈
1
) , 𝐹 (𝑡, 𝑈

2
))

= max {min {𝑓−
1
− 𝑓

−

2
, 𝑓

+

1
− 𝑓

+

2
}
 ,

max {𝑓−
1
− 𝑓

−

2
, 𝑓

+

1
− 𝑓

+

2
}
}

≤ 𝐷 (𝑈
1
, 𝑈

2
) ℎ (𝑡) .

(110)

This implies that 𝐹 ∈ Lip(ℎ). In virtue of Theorem 21, for any
𝜀 > 0, there exists a 𝑇 > 0 such that

𝐷(𝑈 (𝑡
0
, 𝑈

0
) (𝑡) , 𝑈 (𝑡)) < 𝜀 (111)

for any 𝑡 > 𝑇, where 𝑈(𝑡
0
, 𝑈

0
) is given as in (92). By means

of (92), there exists some natural number 𝑘 such that 𝑡 ∈ 𝐼
𝑘

when 𝑡 > 𝑇 is given. Thus, 𝑈(𝑡
0
, 𝑈

0
)(𝑡) = 𝑈

𝑘
(𝑡). Hence,

𝐷(𝑈 (𝑡
0
, 𝑈

0
) (𝑡) , 𝑈 (𝑡))

= 𝐷 (𝑈
𝑘
(𝑡) , 𝑈 (𝑡)) = max {𝑢

−

(𝑡)
 ,
𝑢
+

(𝑡)
} < 𝜀,

(112)

where 𝑢
−

(𝑡) = min{𝑢−
𝑘
(𝑡) − 𝑢

−

(𝑡), 𝑢
+

𝑘
(𝑡) − 𝑢

+

(𝑡)}, 𝑢
+

=

max{𝑢−
𝑘
(𝑡) − 𝑢

−

(𝑡), 𝑢
+

𝑘
(𝑡) − 𝑢

+

(𝑡)}. (i) is valid.
(ii) is an immediate result of Theorem 23.

In order to apply our results to fuzzy problems to obtain
the existence and stability of bounded solutions to fuzzy
dynamic equations on a time scale, we need some terse
memories for fuzzy theory for its analogy in R referring to
[43]. A function 𝑢 : T → [0, 1] is called a fuzzy number on
time scale if it satisfies the following properties:

(i) 𝑢 is normal; that is, there exists 𝑠
0
∈ T such that

𝑢(𝑠
0
) = 1,

(ii) 𝑢 is a convex fuzzy set on T (i.e., 𝑢(𝑡𝑎 + (1 − 𝑡)𝑏) ≥

min{𝑢(𝑎), 𝑢(𝑏)}, ∀𝑡 ∈ [0, 1], 𝑎, 𝑏 ∈ T , 𝑡𝑎+(1−𝑡)𝑏 ∈ T),
(iii) 𝑢 is upper semicontinuous on T ,
(iv) [𝑢]0 = {𝑠 ∈ T : 𝑢(𝑠) > 0} is compact.

Let T
𝐹
denote the space of fuzzy numbers. For 0 < 𝑟 ≤ 1,

the set [𝑢]𝑟 = {𝑠 ∈ T : 𝑢(𝑠) ≥ 𝑟} is called the 𝑟-level set of
𝑢. Obviously [𝑢]𝑟 is a compact interval of T if 𝑢 ∈ T

𝐹
for all

𝑟 ∈ [0, 1]. The notation [𝑢]
𝑟

= [𝑢
−

𝑟
, 𝑢

+

𝑟
]
T
denotes explicitly

the 𝑟-level set of 𝑢. we refer to 𝑢
− and 𝑢

+ as the lower and
upper branches of𝑢, respectively. For any𝑢, V ∈ T

𝐹
, themetric

structure is given by the Hausdorff distance

𝐷
𝑓
(𝑢, V) = sup

𝑟∈[0,1]

max {𝑢
−

𝑟
− V−

𝑟

 ,
𝑢
+

𝑟
− V+

𝑟

} . (113)

Thus (T
𝐹
, 𝐷

𝑓
) is a complete metric space.

Consider the existence and stability of bounded solutions
for the impulsive fuzzy differential equation on T

Δ
𝑔
𝑌 (𝑡) = −𝑝 (𝑡) 𝑌 (𝑡) + 2̃𝑒

⊖1
(𝜎 (𝑡) , 0) 𝑌(𝑡)

2

,

𝑡 ̸= 𝑡
𝑘
(𝑘 = 0, 1, 2, . . .) ,

𝑌
𝑡
+

𝑘

= 𝐽
𝑘
𝑌 (𝑡

𝑘
) + 𝐻

𝑘
, 𝑘 = 0, 1, 2, . . . ,

𝑌 (0) = 𝑌
0
,

(114)

where 𝑝, 𝑡
𝑘
, 𝐽

𝑘
, 𝐻

𝑘
satisfy the hypotheses of Example 2,

respectively. The 𝑟-level set of fuzzy number 2̃ is [2]𝑟 = [𝑟 +

1, 3 − 𝑟] for all 𝑟 ∈ [0, 1]. Let 𝐹(𝑡, 𝑌) = 2̃𝑒
⊖1
(𝜎(𝑡), 0)𝑌(𝑡)

2.
Then 𝑟-level set of 𝐹(𝑡, 𝑌) is [𝐹(𝑡, 𝑌)]𝑟 = 𝑒

⊖1
(𝜎(𝑡), 0)[(𝑟 +

1)(𝑌
−

𝑟
)
2

, (3 − 𝑟)(𝑌
+

𝑟
)
2

]. Further, we have the following.
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Theorem 24. Let T1/6
𝐹

= {𝑋 ∈ 𝑃𝐶
1

: 𝐷
0
(𝑋, {0}) ≤ 1/6}.

If 𝑝, 𝑡
𝑘
, 𝐽

𝑘
, 𝐻

𝑘
satisfy the hypotheses of Example 2, then fuzzy

dynamic equation (114) has a bounded solution which satisfies
the results of Example 2.

Proof. Note that T1/6
𝐹

is a metric space with respect to 𝐷
𝑓
. In

virtue of Theorems 21 and 23, it suffices to prove 𝐹(𝑡, 𝑌) =

2̃𝑒
⊖1
(𝜎(𝑡), 0)𝑌(𝑡)

2

∈ Lip(ℎ). In fact, for any 𝑋,𝑌 ∈ T
1/6

𝐹
, we

have

𝐷
𝑓
([𝐹(𝑡, 𝑋)]

𝑟

, [𝐹(𝑡, 𝑌)]
𝑟

)

= 𝐷
𝑓
(𝑒

⊖1
(𝜎 (𝑡) , 0) [(𝑟 + 1) (𝑋

−

𝑟
)
2

, (3 − 𝑟) (𝑋
+

𝑟
)
2

] ,

𝑒
⊖1
(𝜎 (𝑡) , 0) [(𝑟 + 1) (𝑌

−

𝑟
)
2

, (3 − 𝑟) (𝑌
+

𝑟
)
2

])

= 𝑒
⊖1
(𝜎 (𝑡) , 0)max {(1 + 𝑟)


(𝑋

−

𝑟
)
2

− (𝑌
−

𝑟
)
2

,

(3 − 𝑟)

(𝑋

+

𝑟
)
2

− (𝑌
+

𝑟
)
2

}

≤ 3𝑒
⊖1
(𝜎 (𝑡) , 0)

𝑋
+

𝑟
+ 𝑌

+

𝑟



×max {𝑋
−

𝑟
− 𝑌

−

𝑟

 ,
𝑋

+

𝑟
− 𝑌

+

𝑟

}

≤ 3𝑒
⊖1
(𝜎 (𝑡) , 0)

𝑋
+

𝑟
+ 𝑌

+

𝑟

 𝐷𝑓
(𝑋, 𝑌)

≤ 𝑒
⊖1
(𝜎 (𝑡) , 0)𝐷

𝑓
(𝑋, 𝑌) .

(115)

Let ℎ(𝑡) = 𝑒
⊖1
(𝜎(𝑡), 0). Then ℎ : T

+
→ R

+
satisfies

(1 + 𝜇 (𝑡)) ℎ (𝑡) =
1

1 + 𝜇 (𝑡) ⋅ ⊖1
𝑒
⊖1
(𝜎 (𝑡) , 0) = 𝑒

⊖1
(𝑡, 0) .

(116)

This implies that (1+𝜇(𝑡))ℎ(𝑡) ≤ 1 and ∫∞
0

(1+𝜇(𝜏))ℎ(𝜏)Δ𝜏 <

∞. Consequently, 𝐹 ∈ Lip(ℎ). This proof is complete.
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