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We study the existence of positive solutions for the homogeneous Dirichlet boundary value problem of 𝜑-Laplacian systems with
a singular weight which may not be in 𝐿1.

1. Introduction

In this paper, we study nonlinear differential systems of the
form

−Φ(u󸀠)󸀠 = h (𝑡) ⋅ f (u) , 𝑡 ∈ (0, 1) ,

u (0) = 0 = u (1) ,
(𝑃)

where Φ(u󸀠) = (𝜑(𝑢
󸀠

1
), . . . , 𝜑(𝑢

󸀠

𝑁
)) with 𝜑 : R → R an

odd increasing homeomorphism, h(𝑡) = (ℎ
1
(𝑡), . . . , ℎ

𝑁
(𝑡))

with ℎ
𝑖
: (0, 1) → R

+
, ℎ
𝑖

̸≡ 0 on any subinterval in
(0, 1), and f(u) = (𝑓1(u), . . . , 𝑓𝑁(u)) with 𝑓𝑖 : R𝑁

+
→ R

+
;

here we denote R
+
= [0, +∞), R𝑁

+
= R
+
× ⋅ ⋅ ⋅ ×R

+⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁

, and

x ⋅ y = (𝑥
1
𝑦
1
, 𝑥
2
𝑦
2
, . . . , 𝑥

𝑁
𝑦
𝑁
) the Hadamard product of x

and y in R𝑁. Thus problem (𝑃) can be rewritten as

− 𝜑(𝑢
󸀠

1
)
󸀠

= ℎ
1
(𝑡) 𝑓
1
(u) ,

...

− 𝜑(𝑢
󸀠

𝑁
)
󸀠

= ℎ
𝑁
(𝑡) 𝑓
𝑁
(u) , 𝑡 ∈ (0, 1) ,

𝑢
𝑖
(0) = 0 = 𝑢

𝑖
(1) , 𝑖 = 1, . . . , 𝑁.

(1)

We first give assumptions on 𝜑 and h.

(A) There exist an increasing homeomorphism 𝜓 of
(0,∞) onto (0,∞) and a function 𝛾 of (0,∞) into
(0,∞) such that

𝜓 (𝜎) ≤
𝜑 (𝜎𝑥)

𝜑 (𝑥)
≤ 𝛾 (𝜎) , ∀𝜎 > 0, 𝑥 ∈ R. (2)

(H) ℎ
𝑖
: (0, 1) → R

+
is locally integrable satisfying

∫

1/2

0

𝜓
−1
(∫

1/2

𝑠

ℎ
𝑖
(𝜏) 𝑑𝜏)𝑑𝑠 + ∫

1

1/2

𝜓
−1
(∫

𝑠

1/2

ℎ
𝑖
(𝜏) 𝑑𝜏) 𝑑𝑠

< ∞,

(3)

for 𝑖 = 1, . . . , 𝑁.

For convenience, we introduce a new class of weight
functions. For a bijection 𝜄 : R → R, define H

𝜄
as a subset

of 𝐿1loc((0, 1),R+) given by

H
𝜄
= {𝑔 | ∫

1/2

0

𝜄
−1
(∫

1/2

𝑠

𝑔 (𝜏) 𝑑𝜏)𝑑𝑠

+∫

1

1/2

𝜄
−1
(∫

𝑠

1/2

𝑔 (𝜏) 𝑑𝜏) 𝑑𝑠 < ∞} .

(4)

By the notation, condition (H)means ℎ
𝑖
∈H
𝜓
.
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The case of 𝑝-Laplace operator, namely, 𝜑(𝑥) = 𝜑
𝑝
(𝑥) :=

|𝑥|
𝑝−2
𝑥,𝑥 ∈ R,𝑝 > 1, satisfies condition (A)with𝜓 ≡ 𝜑

𝑝
≡ 𝛾.

We give one more example of 𝜑 and h satisfying conditions
(A) and (H).

Example 1. Define 𝜑 : R → R as an odd function with

𝜑 (𝑥) = 𝑥
2
+ 𝑥, 𝑥 ≥ 0. (5)

Then 𝜑 is obviously an increasing homeomorphism. Define
functions 𝜓 and 𝛾 given as

𝜓 (𝜎) = {
𝜎
2
, if 0 < 𝜎 ≤ 1,

𝜎, if 𝜎 > 1,

𝛾 (𝜎) = {
1, if 0 < 𝜎 ≤ 1,
𝜎
2
, if 𝜎 > 1.

(6)

Then 𝜓, 𝛾 : (0,∞) → (0,∞) and 𝜓 is an increasing
homeomorphism. This implies that 𝜑 satisfies condition (A).
Moreover, for ℎ(𝑡) = 𝑡

−3/2, we can easily calculate to see
ℎ ∈H

𝜓
.

We note that ℎ given in the example above is not
integrable near a boundary 𝑡 = 0; that is, ℎ ∉ 𝐿1(0, 1), and,
in this paper, we focus on studying generalized Laplacian
systems of condition (A)with singularweightswhichmaynot
be in 𝐿1(0, 1). We now give assumptions on f .

(F) 𝑓𝑖 : R𝑁
+
→ R
+
is continuous, 𝑖 = 1, . . . , 𝑁.

Problems of 𝑝-Laplacian or more generalized ones like
problem (𝑃) appear in various applications which describe
reaction-diffusion systems, nonlinear elasticity, glaciology,
population biology, combustion theory, and non-Newtonian
fluids (see [1–4]). Recently there is a vast literature related to
existence, multiplicity, or nonexistence of positive solutions
of problem (𝑃) for either 𝑝-Laplacian or more generalized
Laplacian problems (see [5–11] and the references therein).
Specially, for generalized Laplacian problems, one may refer
to works of Agarwal et al. (see [12–14]). Let us denote

f
0
:=

𝑁

∑

𝑖=1

𝑓
𝑖

0
, f

∞
:=

𝑁

∑

𝑖=1

𝑓
𝑖

∞
, (7)

where

𝑓
𝑖

0
:= lim
‖u‖→0

𝑓
𝑖
(u)

𝜑 (‖u‖)
, 𝑓

𝑖

∞
:= lim
‖u‖→∞

𝑓
𝑖
(u)

𝜑 (‖u‖)
, (8)

for all u ∈ R𝑁
+
and 𝑖 = 1, . . . , 𝑁.

Among the variety of works mentioned above, we are
interested in the following result.

Res A. Problem (𝑃) has at least one positive solution if either
f
0
= 0, f
∞
= ∞ or f

0
= ∞, f

∞
= 0.

Wang [10] proved Res A when each ℎ
𝑖
: [0, 1] → R

+

is continuous and 𝜑 satisfies that there exist two increasing

homeomorphisms 𝜓
1
and 𝜓

2
of (0,∞) onto (0,∞) such that

𝜓
1
(𝜎) 𝜑 (𝑥) ≤ 𝜑 (𝜎𝑥) ≤ 𝜓

2
(𝜎) 𝜑 (𝑥) , for 𝜎, 𝑥 > 0. (9)

Do Ó et al. [7] also proved Res A when 𝜑 = 𝜑
𝑝
and each

ℎ
𝑖
∈H
𝜑𝑝
(=H
𝜓
).

The aim of this paper is to prove Res A when 𝜑 satisfies
condition (A) and each ℎ

𝑖
∈H
𝜓
. More precisely, we state our

main theorem as follows.

Theorem2. Assume (𝐴), (𝐻), and (𝐹) hold.Then problem (𝑃)
satisfies Res A.

Extension of results in [10] or [7] to Theorem 2 is not
obvious mainly due to the singularity of ℎ

𝑖
in comparison

with Wang and lack of homogeneity of the general operator
𝜑 in comparison with Do et al.

For proofs, we introduce a newly developed solution
operator for (𝑃)motivated by Sim and Lee [15]. And then we
make use of the fixed point theoremof a cone for the existence
of positive solutions.

This paper is organized as follows. In Section 2, we
introduce a solution operator for problem (𝑃) and prove the
compactness of the operator. In Section 3, we prove our main
theorem.

2. A Solution Operator

Let us consider a simple scalar problem of the form

−𝜑(𝑤
󸀠
)
󸀠

= 𝑔 (𝑡) , 𝑡 ∈ (0, 1) , (𝑊)

𝑤 (0) = 𝑤 (1) = 0, (𝐷)

where 𝜑 satisfies (A) and 𝑔 ≥ 0 with 𝑔 ∈H
𝜑
.

Since 𝑔 may not be in 𝐿1(0, 1) as we see the example in
the introduction section, in this case, the solution of (𝑊) +
(𝐷) may not be in 𝐶1[0, 1]. So by a solution to this problem,
we understand a function 𝑤 ∈ 𝐶

0
[0, 1] ∩ 𝐶

1
(0, 1) with 𝜑(𝑤󸀠)

absolutely continuous which satisfies (𝑊).
We first give some remarks for calculations later on.

Remark 3. From condition (A), we get

𝜎𝑥 ≤ 𝜑
−1
[𝛾 (𝜎) 𝜑 (𝑥)] ,

𝜑
−1
[𝜎𝜑 (𝑥)] ≤ 𝜓

−1
(𝜎) 𝑥, for 𝜎, 𝑥 > 0.

(10)

Remark 4. Let ℎ ∈ 𝐿
1

loc((0, 1),R+). Then for any fixed 𝑠 ∈
(0, 1/2), we know∫1/2

𝑠
ℎ(𝜏)𝑑𝜏 < ∞. Applying𝜎 = ∫1/2

𝑠
ℎ(𝜏)𝑑𝜏

and 𝑥 = 𝜑−1(1) in Remark 3, we get

𝜑
−1
(∫

1/2

𝑠

ℎ (𝜏) 𝑑𝜏) ≤ 𝜑
−1
(1) 𝜓
−1
(∫

1/2

𝑠

ℎ (𝜏) 𝑑𝜏) . (11)

This impliesH
𝜓
⊂H
𝜑
.
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Remark 5. If ℎ ∈H
𝜑
, then, for any fixed 𝜎 ∈ (0, 1),

𝜑
−1
(∫

𝜎

𝑠

ℎ (𝜏) 𝑑𝜏) ∈ 𝐿
1
(0,

1

2
] ,

𝜑
−1
(∫

𝑠

𝜎

ℎ (𝜏) 𝑑𝜏) ∈ 𝐿
1
[
1

2
, 1) .

(12)

We need a lemma which guarantees concavity of solu-
tions. The proof is similar to Lemma 2.3 in Wang [10].

Lemma 6. Let 𝑤 ∈ 𝐶
0
[0, 1] ∩ 𝐶

1
(0, 1) satisfy 𝜑(𝑤󸀠)󸀠 ≤ 0

on (0, 1). Then 𝑤 is concave on [0, 1] and min
𝑡∈[1/4,3/4]

𝑤(𝑡) ≥

(1/4)‖𝑤‖
∞
, where ‖𝑤‖

∞
is the supremum norm of 𝑤.

Let 𝑤 be a solution of (𝑊) + (𝐷).
Then integrating both sides of (𝑊) on the interval [𝑠, 1/2]

for 𝑠 ∈ (0, 1/2] and [1/2, 𝑠] for 𝑠 ∈ [1/2, 1), respectively, we
find that (𝑊) + (𝐷) is equivalent to

𝑤
󸀠
(𝑠) = 𝜑

−1
(𝑎 + ∫

1/2

𝑠

𝑔 (𝜏) 𝑑𝜏) , 𝑤 (0) = 0, 𝑠 ∈ (0,
1

2
] ,

𝑤
󸀠
(𝑠) = 𝜑

−1
(−𝑎 + ∫

𝑠

1/2

𝑔 (𝜏) 𝑑𝜏) , 𝑤 (1) = 0, 𝑠 ∈ [
1

2
, 1) ,

(13)

where 𝑎 = 𝜑(𝑤󸀠(1/2)). We show that 𝜑−1(𝑎 + ∫1/2
𝑠

𝑔(𝜏)𝑑𝜏) ∈

𝐿
1
(0, 1/2]. Indeed, by Lemma 6, solution 𝑤 has a unique

maximal point. That is, there exists a unique 𝜎
𝑤
∈ (0, 1) such

that 𝑤(𝜎
𝑤
) = max

𝑡∈[0,1]
𝑤(𝑡). Since 𝑤󸀠(𝜎

𝑤
) = 0, we see from

(13) that

𝜑
−1
(𝑎 + ∫

1/2

𝜎𝑤

𝑔 (𝜏) 𝑑𝜏) = 0. (14)

Since 𝜑 is an odd homeomorphism, 𝑎 + ∫1/2
𝜎𝑤

𝑔(𝜏)𝑑𝜏 = 0, and
by Remark 5, we get

𝜑
−1
(𝑎 + ∫

1/2

𝑠

𝑔 (𝜏) 𝑑𝜏)

= 𝜑
−1
(−∫

1/2

𝜎𝑤

𝑔 (𝜏) 𝑑𝜏 + ∫

1/2

𝑠

𝑔 (𝜏) 𝑑𝜏)

= 𝜑
−1
(∫

𝜎

𝑠

ℎ (𝜏) 𝑑𝜏) ∈ 𝐿
1
(0,

1

2
] .

(15)

Similar argument shows that 𝜑−1(−𝑎 + ∫
𝑠

1/2
𝑔(𝜏)𝑑𝜏) ∈

𝐿
1
[1/2, 1). Nowwe integrate both sides of (13) on the interval

[0, 𝑡] for 𝑡 ∈ [0, 1/2] and on the interval [𝑡, 1] for 𝑡 ∈ [1/2, 1],
respectively. Then we get

𝑤 (𝑡) =

{{{

{{{

{

∫

𝑡

0

𝜑
−1
(𝑎 + ∫

1/2

𝑠

𝑔 (𝜏) 𝑑𝜏)𝑑𝑠, 𝑡 ∈ [0,
1

2
] ,

∫

1

𝑡

𝜑
−1
(−𝑎 + ∫

𝑠

1/2

𝑔 (𝜏) 𝑑𝜏) 𝑑𝑠, 𝑡 ∈ [
1

2
, 1] .

(16)

Let us check 𝑤(1/2)− = 𝑤(1/2)+. For 𝑎 ∈ R, define

𝐺 (𝑎) = ∫

1/2

0

𝜑
−1
(𝑎 + ∫

1/2

𝑠

𝑔 (𝜏) 𝑑𝜏)𝑑𝑠

− ∫

1

1/2

𝜑
−1
(−𝑎 + ∫

𝑠

1/2

𝑔 (𝜏) 𝑑𝜏) 𝑑𝑠.

(17)

Then the function 𝐺 : R → R is well-defined. If 𝐺 has
a unique zero, then 𝑤(1/2)− = 𝑤(1/2)

+. For this, we give
the following lemma. The proof generally follows the lines of
proof of Lemma 2.2 in Sim and Lee [15].

Lemma 7. For given 𝑔 ∈ H
𝜑
, the function 𝐺 defined in (17)

has a unique zero 𝑎 = 𝑎(𝑔) in R.

Consequently, if 𝜑 satisfies (A) and 𝑔 ∈ H
𝜑
, then the

solution 𝑤 of (𝑊) + (𝐷) can be represented by

𝑤 (𝑡) =

{{{

{{{

{

∫

𝑡

0

𝜑
−1
(𝑎 (𝑔) + ∫

1/2

𝑠

𝑔 (𝜏) 𝑑𝜏)𝑑𝑠, 𝑡 ∈ [0,
1

2
] ,

∫

1

𝑡

𝜑
−1
(−𝑎 (𝑔) + ∫

𝑠

1/2

𝑔 (𝜏) 𝑑𝜏) 𝑑𝑠, 𝑡 ∈ [
1

2
, 1] ,

(18)

where 𝑎(𝑔) ∈ R uniquely satisfies

∫

1/2

0

𝜑
−1
(𝑎 (𝑔) + ∫

1/2

𝑠

𝑔 (𝜏) 𝑑𝜏)𝑑𝑠

= ∫

1

1/2

𝜑
−1
(−𝑎 (𝑔) + ∫

𝑠

1/2

𝑔 (𝜏) 𝑑𝜏) 𝑑𝑠.

(19)

On the other hand, it is not hard to see that a function 𝑤
defined in (18) satisfies 𝑤 ∈ 𝐶

0
[0, 1] ∩ 𝐶

1
(0, 1), and 𝜑(𝑤󸀠) is

absolutely continuous on (0, 1) and 𝑤 is in turn a solution of
(𝑊) + (𝐷).

Now we come back to our main problem

− 𝜑(𝑢
󸀠

1
)
󸀠

= ℎ
1
(𝑡) 𝑓
1
(u) ,

...

− 𝜑(𝑢
󸀠

𝑁
)
󸀠

= ℎ
𝑁
(𝑡) 𝑓
𝑁
(u) , 𝑡 ∈ (0, 1) ,

𝑢
𝑖
(0) = 0 = 𝑢

𝑖
(1) , 𝑖 = 1, . . . , 𝑁.

(𝑃
󸀠
)

We finally introduce the corresponding solution operator for
(𝑃
󸀠
) and prove compactness of the operator. For this purpose,

we need a preliminary lemma.
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Lemma 8. If ℎ ∈H
𝜓
, then, for given 𝛼 ∈ 𝐶[0, 1], 𝛼ℎ ∈H

𝜑
.

Proof. Let ℎ ∈ H
𝜓
and 𝛼 ∈ 𝐶[0, 1] be given. Then applying

Remark 3 with 𝜎 = ∫1/2
𝑠

ℎ(𝜏)𝑑𝜏, 𝑥 = 𝜑−1(‖𝛼‖
∞
) and using the

fact ℎ ∈H
𝜓
, we get

∫

1/2

0

𝜑
−1
(∫

1/2

𝑠

𝛼 (𝜏) ℎ (𝜏) 𝑑𝜏)𝑑𝑠

≤ ∫

1/2

0

𝜑
−1
(‖𝛼‖∞ ∫

1/2

𝑠

ℎ (𝜏) 𝑑𝜏)𝑑𝑠

≤ 𝜑
−1
(‖𝛼‖∞) ∫

1/2

0

𝜓
−1
(∫

1/2

𝑠

ℎ (𝜏) 𝑑𝜏)𝑑𝑠 < ∞.

(20)

Similarly, we can prove

∫

1

1/2

𝜑
−1
(∫

𝑠

1/2

𝛼 (𝜏) ℎ (𝜏) 𝑑𝜏) 𝑑𝑠 < ∞. (21)

This lemma should be more natural if it is valid under
assumption ℎ ∈ H

𝜑
. Even though it is true for the case

𝜑 = 𝜑
𝑝
, the 𝑝-Laplace operator, it seems not easy to prove

in general mainly caused by lack of homogeneity of 𝜑.
To set up the solution operator for (𝑃󸀠), let us define 𝐸 as

the Banach space 𝐶
0
[0, 1] × ⋅ ⋅ ⋅ × 𝐶

0
[0, 1]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁

with norm ‖u‖
∞
=

Σ
𝑁

𝑖=1
‖𝑢
𝑖
‖
∞

and define a cone 𝐾 by taking

𝐾 = {u ∈ 𝐸 | 𝑢
𝑖
is concave on [0, 1] , 𝑖 = 1, . . . , 𝑁} .

(22)

Let u ∈ 𝐾 and ℎ
𝑖
∈ H
𝜓
, 𝑖 = 1, . . . , 𝑁; then 𝑓𝑖(u) ∈ 𝐶[0, 1]

and by Lemma 8, ℎ
𝑖
𝑓
𝑖
(u) ∈ H

𝜑
. Let us apply the solution

representation for (𝑊) + (𝐷) replacing 𝑔 with ℎ
𝑖
𝑓
𝑖
(u); then

we get

𝑢
𝑖
(𝑡) =

{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{

{

∫

𝑡

0

𝜑
−1
(𝑎
𝑖
(ℎ
𝑖
𝑓
𝑖
(u))

+ ∫

1/2

𝑠

ℎ
𝑖
(𝜏) 𝑓
𝑖
(u (𝜏)) 𝑑𝜏)𝑑𝑠,

0 ≤ 𝑡 ≤
1

2
,

∫

1

𝑡

𝜑
−1
( − 𝑎
𝑖
(ℎ
𝑖
𝑓
𝑖
(u))

+∫

𝑠

1/2

ℎ
𝑖
(𝜏) 𝑓
𝑖
(u (𝜏)) 𝑑𝜏) 𝑑𝑠,

1

2
≤ 𝑡 ≤ 1,

(23)

where 𝑎𝑖(ℎ
𝑖
𝑓
𝑖
(u)) is a unique zero of

∫

1/2

0

𝜑
−1
(𝑎
𝑖
(ℎ
𝑖
𝑓
𝑖
(u)) + ∫

1/2

𝑠

ℎ
𝑖
(𝜏) 𝑓
𝑖
(u (𝜏)) 𝑑𝜏)𝑑𝑠

= ∫

1

1/2

𝜑
−1
( − 𝑎
𝑖
(ℎ
𝑖
𝑓
𝑖
(u)) +∫

𝑠

1/2

ℎ
𝑖
(𝜏) 𝑓
𝑖
(u (𝜏)) 𝑑𝜏) 𝑑𝑠.

(24)

Now for u ∈ 𝐾, let us define

𝑇
𝑖
(u) (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{

{

∫

𝑡

0

𝜑
−1
(𝑎
𝑖
(ℎ
𝑖
𝑓
𝑖
(u))

+ ∫

1/2

𝑠

ℎ
𝑖
(𝜏) 𝑓
𝑖
(u (𝜏)) 𝑑𝜏)𝑑𝑠,

𝑡 ∈ [0,
1

2
] ,

∫

1

𝑡

𝜑
−1
( − 𝑎
𝑖
(ℎ
𝑖
𝑓
𝑖
(u))

+ ∫

𝑠

1/2

ℎ
𝑖
(𝜏) 𝑓
𝑖
(u (𝜏)) 𝑑𝜏) 𝑑𝑠,

𝑡 ∈ [
1

2
, 1] ,

𝑇 (u) = (𝑇1 (u) , . . . , 𝑇𝑁 (u)) .
(25)

Then by Lemma 6, 𝑇(𝐾) ⊂ 𝐾 and we see that u is a positive
solution of (𝑃󸀠) if and only if u = 𝑇(u) on𝐾.

We finally prove the solution operator 𝑇 : 𝐾 → 𝐾 is
completely continuous. For this, we need a couple of lemmas
about the properties of 𝑎𝑖(ℎ

𝑖
𝑓
𝑖
(u)). Since ℎ

𝑖
and 𝑓𝑖 are fixed,

we regard 𝑎𝑖(ℎ
𝑖
𝑓
𝑖
(u)) as a function of u ∈ 𝐾. The proofs

of the following two lemmas are mainly induced by the
monotonicity of 𝜑 and similar to proofs of Lemmas 3.1 and
3.2 in Sim and Lee [15].

Lemma 9. 𝑎𝑖 sends bounded sets in 𝐾 into bounded sets in R

for 𝑖 = 1, . . . , 𝑁.

Lemma 10. 𝑎𝑖 : 𝐾 → R is continuous for 𝑖 = 1, . . . , 𝑁.

Lemma 11. 𝑇 : 𝐾 → 𝐾 is completely continuous.

Proof. Continuity of 𝑇𝑖 can be done by using the Lebesgue
Dominated ConvergenceTheorem with aid of the continuity
of 𝑎𝑖. Let 𝐵 be a bounded subset of 𝐾. Then it is enough
to prove 𝑇𝑖(𝐵) is uniformly bounded and equicontinuous.
We first prove that 𝑇𝑖(𝐵) is uniformly bounded. Indeed, take
𝑀
𝐵
= sup{‖𝑓𝑖(u)‖

∞
| u ∈ 𝐵}, 𝐾

𝑖
(= 𝐾

𝑖
(ℎ
𝑖
,𝑀
𝐵
)) =

sup{|𝑎𝑖(ℎ
𝑖
𝑓
𝑖
(u))| | u ∈ 𝐵}, and denote simply 𝑎𝑖u ≜

𝑎
𝑖
(ℎ
𝑖
𝑓
𝑖
(u)). We compute the bound on the interval (0, 1/2];
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the bound on the interval [1/2, 1) can be obtained by the
similar way. Consider

󵄨󵄨󵄨󵄨󵄨
𝑇
𝑖
(u) (𝑡)󵄨󵄨󵄨󵄨󵄨

≤ ∫

𝑡

0

𝜑
−1
(
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖

u
󵄨󵄨󵄨󵄨󵄨
+ ∫

1/2

𝑠

ℎ
𝑖
(𝜏) 𝑓
𝑖
(u (𝜏)) 𝑑𝜏)𝑑𝑠

≤ ∫

1/2

0

𝜑
−1
(𝐾
𝑖
+𝑀
𝐵
∫

1/2

𝑠

ℎ
𝑖
(𝜏) 𝑑𝜏)𝑑𝑠.

(26)

Case 1 (ℎ
𝑖
∈ 𝐿
1
(0, 1/2])

󵄨󵄨󵄨󵄨󵄨
𝑇
𝑖
(u) (𝑡)󵄨󵄨󵄨󵄨󵄨 ≤ ∫

1/2

0

𝜑
−1
(𝐾
𝑖
+𝑀
𝐵
∫

1/2

0

ℎ
𝑖
(𝜏) 𝑑𝜏)𝑑𝑠

=
1

2
𝜑
−1
(𝐾
𝑖
+𝑀
𝐵

󵄩󵄩󵄩󵄩ℎ𝑖
󵄩󵄩󵄩󵄩𝐿1(0,1/2]) .

(27)

Case 2 (ℎ
𝑖
∉ 𝐿
1
(0, 1/2]). Let 𝐻(𝑠) = ∫1/2

𝑠
ℎ
𝑖
(𝜏)𝑑𝜏; then ℎ

𝑖
∈

𝐿
1

loc(0, 1) implies that𝐻 is continuous on (0, 1/2],𝐻(𝑠) < ∞
for 𝑠 ∈ (0, 1/2] and 𝐻(0+) = ∞. Thus we may choose 𝑠

∗
∈

(0, 1/2) satisfying

𝐾
𝑖

𝑀
𝐵

= 𝐻 (𝑠
∗
) (= ∫

1/2

𝑠∗

ℎ
𝑖
(𝜏) 𝑑𝜏) . (28)

If 𝑠 ≤ 𝑠
∗
, then

∫

𝑠∗

0

𝜑
−1
(𝐾
𝑖
+𝑀
𝐵
∫

1/2

𝑠

ℎ
𝑖
(𝜏) 𝑑𝜏)𝑑𝑠

= ∫

𝑠∗

0

𝜑
−1
(𝑀
𝐵
(∫

1/2

𝑠∗

ℎ
𝑖
(𝜏) 𝑑𝜏 + ∫

1/2

𝑠

ℎ
𝑖
(𝜏) 𝑑𝜏))𝑑𝑠

≤ ∫

𝑠∗

0

𝜑
−1
(2𝑀
𝐵
∫

1/2

𝑠

ℎ
𝑖
(𝜏) 𝑑𝜏)𝑑𝑠.

(29)

On the other hand, if 𝑠 > 𝑠
∗
, then

∫

1/2

𝑠∗

𝜑
−1
(𝐾
𝑖
+𝑀
𝐵
∫

1/2

𝑠

ℎ
𝑖
(𝜏) 𝑑𝜏)𝑑𝑠

≤ ∫

1/2

𝑠∗

𝜑
−1
(𝐾
𝑖
+𝑀
𝐵
∫

1/2

𝑠∗

ℎ
𝑖
(𝜏) 𝑑𝜏)𝑑𝑠

≤ ∫

1/2

𝑠∗

𝜑
−1
(2𝑀
𝐵
∫

1/2

𝑠∗

ℎ
𝑖
(𝜏) 𝑑𝜏)𝑑𝑠.

(30)

Applying Remark 3 with 𝜎 = ∫1/2
𝑠

ℎ
𝑖
(𝜏)𝑑𝜏 and 𝑥 = 𝜑−1(2𝑀

𝐵
),

we get

󵄨󵄨󵄨󵄨󵄨
𝑇
𝑖
(u) (𝑡)󵄨󵄨󵄨󵄨󵄨

≤ ∫

𝑠∗

0

𝜑
−1
(𝐾
𝑖
+𝑀
𝐵
∫

1/2

𝑠

ℎ
𝑖
(𝜏) 𝑑𝜏)𝑑𝑠

+ ∫

1/2

𝑠∗

𝜑
−1
(𝐾
𝑖
+𝑀
𝐵
∫

1/2

𝑠

ℎ
𝑖
(𝜏) 𝑑𝜏)𝑑𝑠

≤ ∫

𝑠∗

0

𝜑
−1
(2𝑀
𝐵
∫

1/2

𝑠

ℎ
𝑖
(𝜏) 𝑑𝜏)𝑑𝑠

+ ∫

1/2

𝑠∗

𝜑
−1
(2𝑀
𝐵
∫

1/2

𝑠∗

ℎ
𝑖
(𝜏) 𝑑𝜏)𝑑𝑠

≤ 𝜑
−1
(2𝑀
𝐵
) ∫

𝑠∗

0

𝜓
−1
(∫

1/2

𝑠

ℎ
𝑖
(𝜏) 𝑑𝜏)𝑑𝑠

+ (
1

2
− 𝑠
∗
)𝜑
−1
(2𝑀
𝐵

󵄩󵄩󵄩󵄩ℎ𝑖
󵄩󵄩󵄩󵄩𝐿1(𝑠∗ ,1/2]

) .

(31)

By the fact ℎ
𝑖
∈ H

𝜓
, all bounds above are finite and

independent on u ∈ 𝐵 and 𝑡 ∈ [0, 1/2]. Thus 𝑇𝑖(𝐵) is
uniformly bounded.

We finally prove the equicontinuity of𝑇𝑖(𝐵). Assume 𝑡
1
<

𝑡
2
.

Case 1 (𝑡
1
, 𝑡
2
∈ [0, 1/2])

󵄨󵄨󵄨󵄨󵄨
𝑇
𝑖
(u) (𝑡
1
) − 𝑇
𝑖
(u) (𝑡
2
)
󵄨󵄨󵄨󵄨󵄨

≤ ∫

𝑡2

𝑡1

𝜑
−1
(
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖

u
󵄨󵄨󵄨󵄨󵄨
+ ∫

1/2

𝑠

ℎ
𝑖
(𝜏) 𝑓
𝑖
(u (𝜏)) 𝑑𝜏)𝑑𝑠

≤ ∫

𝑡2

𝑡1

𝜑
−1
(𝐾
𝑖
+𝑀
𝐵
∫

1/2

𝑠

ℎ
𝑖
(𝜏) 𝑑𝜏)𝑑𝑠.

(32)

Let ℎ
𝑖
∈ 𝐿
1
(0, 1/2]; then we can easily see

󵄨󵄨󵄨󵄨󵄨
𝑇
𝑖
(u) (𝑡
1
) − 𝑇
𝑖
(u) (𝑡
2
)
󵄨󵄨󵄨󵄨󵄨

≤ 𝜑
−1
(𝐾
𝑖
+𝑀
𝐵

󵄩󵄩󵄩󵄩ℎ𝑖
󵄩󵄩󵄩󵄩𝐿1(0,1/2])

󵄨󵄨󵄨󵄨𝑡1 − 𝑡2
󵄨󵄨󵄨󵄨 .

(33)

Let ℎ
𝑖
∉ 𝐿
1
(0, 1/2]; then, for 𝑠

∗
∈ (0, 1/2) defined in (28),

󵄨󵄨󵄨󵄨󵄨
𝑇
𝑖
(u) (𝑡
1
) − 𝑇
𝑖
(u) (𝑡
2
)
󵄨󵄨󵄨󵄨󵄨

≤ ∫

𝑡2

𝑡1

𝜑
−1
(𝑀
𝐵
(∫

1/2

𝑠∗

ℎ
𝑖
(𝜏) 𝑑𝜏 + ∫

1/2

𝑠

ℎ
𝑖
(𝜏) 𝑑𝜏))𝑑𝑠.

(34)
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Subcase 1 (0 ≤ 𝑡
1
< 𝑡
2
≤ 𝑠
∗
). Applying Remark 3 with 𝜎 =

∫
1/2

𝑠
ℎ
𝑖
(𝜏)𝑑𝜏 and 𝑥 = 𝜑−1(2𝑀

𝐵
), we get

󵄨󵄨󵄨󵄨󵄨
𝑇
𝑖
(u) (𝑡
1
) − 𝑇
𝑖
(u) (𝑡
2
)
󵄨󵄨󵄨󵄨󵄨

≤ ∫

𝑡2

𝑡1

𝜑
−1
(2𝑀
𝐵
∫

1/2

𝑠

ℎ
𝑖
(𝜏) 𝑑𝜏)𝑑𝑠

≤ 𝜑
−1
(2𝑀
𝐵
) ∫

𝑡2

𝑡1

𝜓
−1
(∫

1/2

𝑠

ℎ
𝑖
(𝜏) 𝑑𝜏)𝑑𝑠.

(35)

Subcase 2 (𝑠
∗
≤ 𝑡
1
< 𝑡
2
)

󵄨󵄨󵄨󵄨󵄨
𝑇
𝑖
(u) (𝑡
1
) − 𝑇
𝑖
(u) (𝑡
2
)
󵄨󵄨󵄨󵄨󵄨

≤ ∫

𝑡2

𝑡1

𝜑
−1
(2𝑀
𝐵
∫

1/2

𝑠∗

ℎ
𝑖
(𝜏) 𝑑𝜏)𝑑𝑠

≤ 𝜑
−1
(2𝑀
𝐵

󵄩󵄩󵄩󵄩ℎ𝑖
󵄩󵄩󵄩󵄩𝐿1[𝑠∗ ,1/2]

)
󵄨󵄨󵄨󵄨𝑡1 − 𝑡2

󵄨󵄨󵄨󵄨 .

(36)

Subcase 3 (0 ≤ 𝑡
1
≤ 𝑠
∗
< 𝑡
2
). Consider

󵄨󵄨󵄨󵄨󵄨
𝑇
𝑖
(u) (𝑡
1
) − 𝑇
𝑖
(u) (𝑡
2
)
󵄨󵄨󵄨󵄨󵄨

≤ ∫

𝑠∗

𝑡1

𝜑
−1
(𝑀
𝐵
(∫

1/2

𝑠∗

ℎ
𝑖
(𝜏) 𝑑𝜏 + ∫

1/2

𝑠

ℎ
𝑖
(𝜏) 𝑑𝜏))𝑑𝑠

+ ∫

𝑡2

𝑠∗

𝜑
−1
(𝑀
𝐵
(∫

1/2

𝑠∗

ℎ
𝑖
(𝜏) 𝑑𝜏 + ∫

1/2

𝑠

ℎ
𝑖
(𝜏) 𝑑𝜏))𝑑𝑠

≤ ∫

𝑠∗

𝑡1

𝜑
−1
(2𝑀
𝐵
∫

1/2

𝑠

ℎ
𝑖
(𝜏) 𝑑𝜏)𝑑𝑠

+ ∫

𝑡2

𝑠∗

𝜑
−1
(2𝑀
𝐵
∫

1/2

𝑠∗

ℎ
𝑖
(𝜏) 𝑑𝜏)𝑑𝑠

≤ 𝜑
−1
(2𝑀
𝐵
) ∫

𝑡2

𝑡1

𝜓
−1
(∫

1/2

𝑠

ℎ
𝑖
(𝜏) 𝑑𝜏)𝑑𝑠

+ 𝜑
−1
(2𝑀
𝐵

󵄩󵄩󵄩󵄩ℎ𝑖
󵄩󵄩󵄩󵄩𝐿1[𝑠∗ ,1/2]

)
󵄨󵄨󵄨󵄨𝑡1 − 𝑡2

󵄨󵄨󵄨󵄨 .

(37)

Bounds of all cases above are independent of u ∈ 𝐵 and by
the fact ℎ

𝑖
∈ H
𝜓
, we see that each bound converges to 0 as

|𝑡
1
− 𝑡
2
| → 0.

Case 2 (𝑡
1
, 𝑡
2
∈ [1/2, 1]). Proof can be done by the same

argument as Case 1.

Case 3 (0 < 𝑡
1
≤ 1/2 < 𝑡

2
< 1). Without loss of generality,

we assume 1/4 ≤ 𝑡
1
≤ 1/2 < 𝑡

2
≤ 3/4. Then, by using the

definition of 𝑎𝑖u, we obtain
󵄨󵄨󵄨󵄨󵄨
𝑇
𝑖
(u) (𝑡
1
) − 𝑇
𝑖
(u) (𝑡
2
)
󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡1

0

𝜑
−1
(𝑎
𝑖

u + ∫
1/2

𝑠

ℎ
𝑖
(𝜏) 𝑓
𝑖
(u (𝜏)) 𝑑𝜏)𝑑𝑠

−∫

1

𝑡2

𝜑
−1
(−𝑎
𝑖

u + ∫
𝑠

1/2

ℎ
𝑖
(𝜏) 𝑓
𝑖
(u (𝜏)) 𝑑𝜏) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡1

0

𝜑
−1
(𝑎
𝑖

u + ∫
1/2

𝑠

ℎ
𝑖
(𝜏) 𝑓
𝑖
(u (𝜏)) 𝑑𝜏)𝑑𝑠

− ∫

1/2

0

𝜑
−1
(𝑎
𝑖

u + ∫
1/2

𝑠

ℎ
𝑖
(𝜏) 𝑓
𝑖
(u (𝜏)) 𝑑𝜏)𝑑𝑠

+ ∫

1

1/2

𝜑
−1
(−𝑎
𝑖

u + ∫
𝑠

1/2

ℎ
𝑖
(𝜏) 𝑓
𝑖
(u (𝜏)) 𝑑𝜏) 𝑑𝑠

−∫

1

𝑡2

𝜑
−1
(−𝑎
𝑖

u + ∫
𝑠

1/2

ℎ
𝑖
(𝜏) 𝑓
𝑖
(u (𝜏)) 𝑑𝜏) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫

1/2

𝑡1

𝜑
−1
(𝐾
𝑖
+𝑀
𝐵
∫

1/2

𝑠

ℎ
𝑖
(𝜏) 𝑑𝜏)𝑑𝑠

+ ∫

𝑡2

1/2

𝜑
−1
(𝐾
𝑖
+𝑀
𝐵
∫

𝑠

1/2

ℎ
𝑖
(𝜏) 𝑑𝜏) 𝑑𝑠

≤ ∫

1/2

𝑡1

𝜑
−1
(𝐾
𝑖
+𝑀
𝐵
∫

1/2

1/4

ℎ
𝑖
(𝜏) 𝑑𝜏)𝑑𝑠

+ ∫

𝑡2

1/2

𝜑
−1
(𝐾
𝑖
+𝑀
𝐵
∫

3/4

1/2

ℎ
𝑖
(𝜏) 𝑑𝜏)𝑑𝑠

= 𝜑
−1
(𝐾
𝑖
+𝑀
𝐵

󵄩󵄩󵄩󵄩ℎ𝑖
󵄩󵄩󵄩󵄩𝐿1[1/4,1/2])

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑡
1
−
1

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝜑
−1
(𝐾
𝑖
+𝑀
𝐵

󵄩󵄩󵄩󵄩ℎ𝑖
󵄩󵄩󵄩󵄩𝐿1[1/2,3/4])

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑡
2
−
1

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2𝜑
−1
(𝐾
𝑖
+𝑀
𝐵

󵄩󵄩󵄩󵄩ℎ𝑖
󵄩󵄩󵄩󵄩𝐿1[1/4,3/4])

󵄨󵄨󵄨󵄨𝑡1 − 𝑡2
󵄨󵄨󵄨󵄨 .

(38)

Conclusion is the same as Case 1 and it completes the
proof of equicontinuity.

3. Proof of Theorem 2

In this section, we prove our main theorem. Basic tool for the
proof is the following well-known fixed point theorem (see
[16, 17]).

Lemma 12. Let 𝐸 be a Banach space and let 𝐾 be a cone in
𝐸. Assume that Ω

1
and Ω

2
are open subsets of 𝐸 with 0 ∈ Ω

1
,

Ω
1
⊂ Ω
2
. Assume that 𝑇 : 𝐾 ∩ Ω

2
\ Ω
1
→ 𝐾 is completely

continuous such that either

‖𝑇u‖ ≤ ‖u‖ , for u ∈ 𝐾 ∩ 𝜕Ω
1
;

‖𝑇u‖ ≥ ‖u‖ , for u ∈ 𝐾 ∩ 𝜕Ω
2
;

or ‖𝑇u‖ ≥ ‖u‖ , for u ∈ 𝐾 ∩ 𝜕Ω
1
;

‖𝑇u‖ ≤ ‖u‖ , for u ∈ 𝐾 ∩ 𝜕Ω
2
.

(39)

Then 𝑇 has a fixed point in 𝐾 ∩ Ω
2
\ Ω
1
.
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Proof of Theorem 2. (1) Let f
0
= 0; then 𝑓𝑖

0
= 0, 𝑖 = 1, . . . , 𝑁.

For convenience, we denote

𝐻
𝑖

0
≜ ∫

1/2

0

𝜓
−1
(∫

1/2

𝑠

ℎ
𝑖
(𝜏) 𝑑𝜏)𝑑𝑠,

𝐻
𝑖

1
≜ ∫

1

1/2

𝜓
−1
(∫

𝑠

1/2

ℎ
𝑖
(𝜏) 𝑑𝜏) 𝑑𝑠,

(40)

where 𝑖 = 1, . . . , 𝑁. Then ℎ
𝑖
∈ H
𝜓
implies 𝐻𝑖

0
, 𝐻𝑖
1
< ∞.

Choose 𝜖 > 0 sufficiently small so that

𝜓
−1
(𝜖)max {𝐻𝑖

0
, 𝐻
𝑖

1
| 𝑖 = 1, . . . , 𝑁} ≤

1

𝑁
. (41)

Then we see that

𝜓
−1
(𝜖)max {𝐻𝑖

0
, 𝐻
𝑖

1
} ≤

1

𝑁
, for 𝑖 = 1, . . . , 𝑁. (42)

Since𝑓𝑖
0
= 0, there exists 𝑟𝑖

1
(= 𝑟
𝑖

1
(𝜖)) > 0 such that, for x ∈ R𝑁

+

with ‖x‖ ≤ 𝑟𝑖
1
,

𝑓
𝑖
(x) ≤ 𝜀𝜑 (‖x‖) , for 𝑖 = 1, . . . , 𝑁. (43)

Denote 𝐾
𝑎
= {u ∈ 𝐾 | ‖u‖

∞
< 𝑎} for 𝑎 > 0 and take

𝑟
1
= min{𝑟𝑖

1
| 𝑖 = 1, . . . , 𝑁}. Then since 𝑇(u) ∈ 𝐾 for

u ∈ 𝜕𝐾
𝑟1
, there exists unique 𝜎

𝑖
∈ (0, 1) such that 𝑇𝑖(u)(𝜎

𝑖
) =

max
𝑡∈[0,1]

𝑇
𝑖
(u)(𝑡) and 𝑇𝑖(u)󸀠(𝜎

𝑖
) = 0. We first consider the

case 𝜎
𝑖
∈ (0, 1/2]. Consider

0 = 𝑇
𝑖
(u)󸀠 (𝜎

𝑖
) = 𝜑
−1
(𝑎
𝑖

u + ∫
1/2

𝜎𝑖

ℎ
𝑖
(𝜏) 𝑓
𝑖
(u (𝜏)) 𝑑𝜏) .

(44)

Since 𝜑 is an odd homeomorphism, 𝑎𝑖u = −∫
1/2

𝜎𝑖

ℎ
𝑖
(𝜏)

𝑓
𝑖
(u(𝜏))𝑑𝜏. Using (43) and applying Remark 3 with 𝜎 = 𝜖,

𝑥 = 𝜑
−1
(𝜑(𝑟
1
) ∫
1/2

𝑠
ℎ
𝑖
(𝜏)𝑑𝜏), and then 𝜎 = ∫1/2

𝑠
ℎ
𝑖
(𝜏)𝑑𝜏, 𝑥 = 𝑟

1

consecutively, we obtain

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖
(u)󵄩󵄩󵄩󵄩󵄩∞ = 𝑇

𝑖
(u) (𝜎

𝑖
)

= ∫

𝜎𝑖

0

𝜑
−1
(𝑎
𝑖

u + ∫
1/2

𝑠

ℎ
𝑖
(𝜏) 𝑓
𝑖
(u (𝜏)) 𝑑𝜏)𝑑𝑠

= ∫

𝜎𝑖

0

𝜑
−1
(−∫

1/2

𝜎𝑖

ℎ
𝑖
(𝜏) 𝑓
𝑖
(u (𝜏)) 𝑑𝜏

+∫

1/2

𝑠

ℎ
𝑖
(𝜏) 𝑓
𝑖
(u (𝜏)) 𝑑𝜏)𝑑𝑠

= ∫

𝜎𝑖

0

𝜑
−1
(∫

𝜎𝑖

𝑠

ℎ
𝑖
(𝜏) 𝑓
𝑖
(u (𝜏)) 𝑑𝜏) 𝑑𝑠

≤ ∫

1/2

0

𝜑
−1
(∫

1/2

𝑠

ℎ
𝑖
(𝜏) 𝑓
𝑖
(u (𝜏)) 𝑑𝜏)𝑑𝑠

≤ ∫

1/2

0

𝜑
−1
(𝜖𝜑 (𝑟

1
) ∫

1/2

𝑠

ℎ
𝑖
(𝜏) 𝑑𝜏)𝑑𝑠

≤ 𝜓
−1
(𝜖) ∫

1/2

0

𝜑
−1
(𝜑 (𝑟
1
) ∫

1/2

𝑠

ℎ
𝑖
(𝜏) 𝑑𝜏)𝑑𝑠

≤ 𝜓
−1
(𝜖) [∫

1/2

0

𝜓
−1
(∫

1/2

𝑠

ℎ
𝑖
(𝜏) 𝑑𝜏)𝑑𝑠] 𝑟

1

= 𝜓
−1
(𝜖)𝐻
𝑖

0
𝑟
1
.

(45)

Similarly for the case 𝜎
𝑖
∈ [1/2, 1), we get

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖
(u)󵄩󵄩󵄩󵄩󵄩∞ ≤ 𝜓

−1
(𝜖)𝐻
𝑖

1
𝑟
1
. (46)

Therefore combining the above two inequalities and using the
definition of 𝜖, we get

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖
(u)󵄩󵄩󵄩󵄩󵄩∞ ≤ 𝜓

−1
(𝜖)max {𝐻𝑖

0
, 𝐻
𝑖

1
} 𝑟
1
≤
𝑟
1

𝑁
,

for 𝑖 = 1, . . . , 𝑁,
(47)

and thus

‖𝑇(u)‖
∞
=

𝑁

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖
(u)󵄩󵄩󵄩󵄩󵄩∞ ≤ ‖u‖∞, for u ∈ 𝜕𝐾

𝑟1
. (48)

We now use the assumption f
∞
= ∞. In this case, we may

choose an index 𝑖
0
satisfying 𝑓𝑖0

∞
= ∞. Take

𝑀 =
𝛾 (32)

min {∫1/2
1/4

ℎ
𝑖0
(𝜏) 𝑑𝜏, ∫

3/4

1/2
ℎ
𝑖0
(𝜏) 𝑑𝜏}

> 0, (49)

where 𝛾 is the function appeared in condition (A).Then there
exists 𝑅

𝑀
> 0 such that, for x ∈ R𝑁

+
with ‖x‖ ≥ 𝑅

𝑀
, we have

𝑓
𝑖0 (x) ≥ 𝑀𝜑 (‖x‖) . (50)

If u ∈ 𝐾 with ‖u‖
∞

≥ 4𝑅
𝑀
, then by Lemma 6, for 𝑡 ∈

[1/4, 3/4],

‖u (𝑡)‖ =
𝑁

∑

𝑖=1

𝑢
𝑖
(𝑡) ≥ min
𝑡∈[1/4,3/4]

𝑁

∑

𝑖=1

𝑢
𝑖
(𝑡) ≥

1

4
‖u‖
∞
≥ 𝑅
𝑀
, (51)

𝑓
𝑖0 (u (𝑡)) ≥ 𝑀𝜑 (‖u (𝑡)‖) ≥ 𝑀𝜑(1

4
‖u‖
∞
) . (52)
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Take 𝑟
2
> max{𝑟

1
, 4𝑅
𝑀
}. Then for u ∈ 𝜕𝐾

𝑟2
, we get

2𝑇
𝑖0 (u) (1

2
)

= ∫

1/2

0

𝜑
−1
(𝑎
𝑖0

u + ∫
1/2

𝑠

ℎ
𝑖0
(𝜏) 𝑓
𝑖0 (u (𝜏)) 𝑑𝜏)𝑑𝑠

+ ∫

1

1/2

𝜑
−1
(−𝑎
𝑖0

u + ∫
𝑠

1/2

ℎ
𝑖0
(𝜏) 𝑓
𝑖0 (u (𝜏)) 𝑑𝜏) 𝑑𝑠.

(53)

If 𝑎𝑖0u ≥ 0, then

∫

1/2

0

𝜑
−1
(𝑎
𝑖0

u + ∫
1/2

𝑠

ℎ
𝑖0
(𝜏) 𝑓
𝑖0 (u (𝜏)) 𝑑𝜏)𝑑𝑠

≥ ∫

1/2

0

𝜑
−1
(∫

1/2

𝑠

ℎ
𝑖0
(𝜏) 𝑓
𝑖0 (u (𝜏)) 𝑑𝜏)𝑑𝑠,

(54)

and by the definition of 𝑎𝑖0u ,

∫

1

1/2

𝜑
−1
(−𝑎
𝑖0

u + ∫
𝑠

1/2

ℎ
𝑖0
(𝜏) 𝑓
𝑖0 (u (𝜏)) 𝑑𝜏) 𝑑𝑠

= ∫

1/2

0

𝜑
−1
(𝑎
𝑖0

u + ∫
1/2

𝑠

ℎ
𝑖0
(𝜏) 𝑓
𝑖0 (u (𝜏)) 𝑑𝜏)𝑑𝑠 ≥ 0.

(55)

Thus

2𝑇
𝑖0 (u) (1

2
) ≥ ∫

1/2

0

𝜑
−1
(∫

1/2

𝑠

ℎ
𝑖0
(𝜏) 𝑓
𝑖0 (u (𝜏)) 𝑑𝜏)𝑑𝑠.

(56)

If 𝑎𝑖0u < 0, then −𝑎
𝑖0

u > 0 and

∫

1

1/2

𝜑
−1
(−𝑎
𝑖0

u + ∫
𝑠

1/2

ℎ
𝑖0
(𝜏) 𝑓
𝑖0 (𝑢 (𝜏)) 𝑑𝜏) 𝑑𝑠

≥ ∫

1

1/2

𝜑
−1
(∫

𝑠

1/2

ℎ
𝑖0
(𝜏) 𝑓
𝑖0 (𝑢 (𝜏)) 𝑑𝜏) 𝑑𝑠,

(57)

and by the same argument, we get

2𝑇
𝑖0 (u) (1

2
) ≥ ∫

1

1/2

𝜑
−1
(∫

𝑠

1/2

ℎ
𝑖0
(𝜏) 𝑓
𝑖0 (u (𝜏)) 𝑑𝜏) 𝑑𝑠.

(58)

Thus by using (52), we get

2
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖0(u)󵄩󵄩󵄩󵄩󵄩∞

≥ 2𝑇
𝑖0 (u) (1

2
)

≥ min{∫
1/2

0

𝜑
−1
(∫

1/2

𝑠

ℎ
𝑖0
(𝜏) 𝑓
𝑖0 (u (𝜏)) 𝑑𝜏)𝑑𝑠,

∫

1

1/2

𝜑
−1
(∫

𝑠

1/2

ℎ
𝑖0
(𝜏) 𝑓
𝑖0 (u (𝜏)) 𝑑𝜏) 𝑑𝑠}

≥ min{∫
1/4

0

𝜑
−1
(∫

1/2

𝑠

ℎ
𝑖0
(𝜏) 𝑓
𝑖0 (u (𝜏)) 𝑑𝜏)𝑑𝑠,

∫

1

3/4

𝜑
−1
(∫

𝑠

1/2

ℎ
𝑖0
(𝜏) 𝑓
𝑖0 (u (𝜏)) 𝑑𝜏) 𝑑𝑠}

≥ min{∫
1/4

0

𝜑
−1
(∫

1/2

1/4

ℎ
𝑖0
(𝜏) 𝑓
𝑖0 (u (𝜏)) 𝑑𝜏)𝑑𝑠,

∫

1

3/4

𝜑
−1
(∫

3/4

1/2

ℎ
𝑖0
(𝜏) 𝑓
𝑖0 (u (𝜏)) 𝑑𝜏)𝑑𝑠}

≥ min{∫
1/4

0

𝜑
−1
(𝑀𝜑(

1

4
‖u‖
∞
)∫

1/2

1/4

ℎ
𝑖0
(𝜏) 𝑑𝜏)𝑑𝑠,

∫

1

3/4

𝜑
−1
(𝑀𝜑(

1

4
‖u‖
∞
)∫

3/4

1/2

ℎ
𝑖0
(𝜏) 𝑑𝜏)𝑑𝑠}

=
1

4
𝜑
−1
(𝑀𝜑(

1

4
‖u‖∞)

×min{∫
1/2

1/4

ℎ
𝑖0
(𝜏) 𝑑𝜏, ∫

3/4

1/2

ℎ
𝑖0
(𝜏) 𝑑𝜏}) .

(59)

By the definition of𝑀, we get

2
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖0(u)󵄩󵄩󵄩󵄩󵄩∞ ≥

1

4
𝜑
−1
(𝛾 (32) 𝜑 (

1

4
‖u‖
∞
)) . (60)

Applying Remark 3 with 𝜎 = 32 and 𝑥 = (1/4)‖u‖
∞
, we get

2
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖0(u)󵄩󵄩󵄩󵄩󵄩∞ ≥

1

4
⋅ 32 ⋅

1

4
‖u‖
∞
= 2‖u‖∞. (61)

Thus

‖𝑇(u)‖∞ ≥
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖0 (u)󵄩󵄩󵄩󵄩󵄩∞ ≥ ‖u‖∞, for u ∈ 𝜕𝐾

𝑟2
. (62)

Combining (48) and (62), we conclude that problem (𝑃) has
at least one positive solution u with 𝑟

1
≤ ‖u‖

∞
≤ 𝑟
2
.

(2)We now prove the second result ofTheorem 2. Let f
0
=

∞; then there exists an index 𝑖
0
satisfying 𝑓𝑖0

0
= ∞. Take

𝑀 =
𝛾 (32)

min {∫1/2
1/4

ℎ
𝑖0
(𝜏) 𝑑𝜏, ∫

3/4

1/2
ℎ
𝑖0
(𝜏) 𝑑𝜏}

> 0. (63)

Then there exists 𝑟
𝑀
> 0 such that, for x ∈ R𝑁

+
with ‖x‖ ≤ 𝑟

𝑀
,

we have

𝑓
𝑖0 (x) ≥ 𝑀𝜑 (‖x‖) . (64)

Ifu ∈ 𝐾with ‖u‖
∞
≤ 𝑟
𝑀
, then by Lemma 6, for 𝑡 ∈ [1/4, 3/4],

‖u (𝑡)‖ ≤ ‖u‖∞ ≤ 𝑟𝑀, (65)

𝑓
𝑖0 (u (𝑡)) ≥ 𝑀𝜑 (‖u (𝑡)‖) ≥ 𝑀𝜑(1

4
‖u‖
∞
) . (66)
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Take 𝑟
1
= 𝑟
𝑀
and let u ∈ 𝜕𝐾

𝑟1
. Then

2𝑇
𝑖0 (u) (1

2
)

= ∫

1/2

0

𝜑
−1
(𝑎
𝑖0

u + ∫
1/2

𝑠

ℎ
𝑖0
(𝜏) 𝑓
𝑖0 (u (𝜏)) 𝑑𝜏)𝑑𝑠

+ ∫

1

1/2

𝜑
−1
(−𝑎
𝑖0

u + ∫
𝑠

1/2

ℎ
𝑖0
(𝜏) 𝑓
𝑖0 (u (𝜏)) 𝑑𝜏) 𝑑𝑠.

(67)

We also consider two cases 𝑎𝑖0u ≥ 0 and 𝑎
𝑖0

u < 0. Applying the
same argument in (1) with aid of (66), we get

2
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖0(u)󵄩󵄩󵄩󵄩󵄩∞

≥ 2𝑇
𝑖0 (u) (1

2
)

=
1

4
𝜑
−1
(𝑀𝜑(

1

4
‖u‖∞)

×min{∫
1/2

1/4

ℎ
𝑖0
(𝜏) 𝑑𝜏, ∫

3/4

1/2

ℎ
𝑖0
(𝜏) 𝑑𝜏}) .

(68)

By the definition of𝑀, we get

2
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖0(u)󵄩󵄩󵄩󵄩󵄩∞ ≥

1

4
𝜑
−1
(𝛾 (32) 𝜑 (

1

4
‖u‖
∞
)) . (69)

Applying Remark 3 with 𝜎 = 32 and 𝑥 = (1/4)‖u‖
∞
, we get

2
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖0(u)󵄩󵄩󵄩󵄩󵄩∞ ≥

1

4
⋅ 32 ⋅

1

4
‖u‖
∞
= 2‖u‖∞. (70)

Thus

‖𝑇(u)‖∞ ≥
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖0 (u)󵄩󵄩󵄩󵄩󵄩∞ ≥ ‖u‖∞, for u ∈ 𝜕𝐾

𝑟1
. (71)

Let f
∞
= 0; then 𝑓𝑖

∞
= 0, 𝑖 = 1, . . . , 𝑁. Define a function

𝑓
𝑖
(𝑡) : R

+
→ R
+
by

𝑓
𝑖
(𝑡) = max {𝑓𝑖 (x) | x ∈ R

𝑁

+
, ‖x‖ ≤ 𝑡} . (72)

By Lemma 2.8 in Wang [10], we have

𝑓
𝑖

∞
= lim
𝑡→∞

𝑓
𝑖
(𝑡)

𝜑 (𝑡)
= 𝑓
𝑖

∞
= 0. (73)

Choose 𝜖 > 0 sufficiently small so that

𝜓
−1
(𝜖)max {𝐻𝑖

0
, 𝐻
𝑖

1
| 𝑖 = 1, . . . , 𝑁} ≤

1

𝑁
, (74)

where𝐻𝑖
0
and𝐻𝑖

1
are defined as in part (1). Then we see that

𝜓
−1
(𝜖)max {𝐻𝑖

0
, 𝐻
𝑖

1
} ≤

1

𝑁
, for 𝑖 = 1, . . . , 𝑁. (75)

Since 𝑓𝑖
∞
= 0, there exists 𝑟𝑖

2
(= 𝑟
𝑖

2
(𝜖)) > such that, for 𝑡 ∈ R

+

with 𝑡 ≥ 𝑟𝑖
2
,

𝑓
𝑖
(𝑡) ≤ 𝜀𝜑 (𝑡) , for 𝑖 = 1, . . . , 𝑁. (76)

Take 𝑟
2
> max{𝑟

1
,max{𝑟𝑖

2
| 𝑖 = 1, . . . , 𝑁}}. Then for u ∈ 𝜕𝐾

𝑟2
,

we get

𝑓
𝑖
(u (𝑡)) ≤ 𝑓𝑖 (𝑟

2
) ≤ 𝜀𝜑 (𝑟

2
) , for 𝑖 = 1, . . . , 𝑁. (77)

Since 𝑇(u) ∈ 𝐾, there exists unique 𝜎
𝑖
∈ (0, 1) such

that 𝑇𝑖(u)(𝜎
𝑖
) = max

𝑡∈[0,1]
𝑇
𝑖
(u)(𝑡) and 𝑇

𝑖
(u)󸀠(𝜎

𝑖
) = 0.

Considering two cases 𝜎
𝑖
∈ (0, 1/2] and 𝜎

𝑖
∈ [1/2, 1) with

the same argument in (1) and using (77), we get
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖
(u)󵄩󵄩󵄩󵄩󵄩∞ ≤ 𝜓

−1
(𝜖)max {𝐻𝑖

0
, 𝐻
𝑖

1
} 𝑟
2
, for 𝑖 = 1, . . . , 𝑁,

(78)

‖𝑇(u)‖∞ =
𝑁

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖
(u)󵄩󵄩󵄩󵄩󵄩∞ ≤ ‖u‖∞, for u ∈ 𝜕𝐾

𝑟2
. (79)

Combining (71) and (79), we conclude that problem (𝑃) has
at least one positive solution u with 𝑟

1
≤ ‖u‖

∞
≤ 𝑟
2
and the

proof is complete.

4. Examples

In this section, we give some examples applicable to ourmain
results.

Example 13. Consider the following 𝜑-Laplacian system:

𝜑(𝑢
󸀠
)
󸀠

+ 𝑡
−𝛼
[(𝑢 + V)𝑝−𝑞 + 1] = 0,

𝜑(V󸀠)
󸀠

+ 𝑡
−𝛽
𝑢
𝑞−1
(1 − 𝑒

−V
) = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = V (0) = 𝑢 (1) = V (1) = 0,

(𝐸
1
)

where 𝜑(𝑥) = |𝑥|
𝑝−2
𝑥 + |𝑥|

𝑞−2
𝑥, 𝑥 ∈ R, 1 < 𝑞 < 𝑝, 1 <

𝛼, 𝛽 < min{2, 𝑞}. We note that both ℎ(𝑡) = 𝑡−𝛼 and ℎ(𝑡) = 𝑡−𝛽
are not in 𝐿1(0, 1). It is easy to see that 𝜑 is an odd increasing
homeomorphism. Define functions 𝜓 and 𝛾 given as

𝜓 (𝜎) = {
𝜎
𝑝−1
, if 0 < 𝜎 ≤ 1,

𝜎
𝑞−1
, if 𝜎 > 1,

𝛾 (𝜎) = {
1, if 0 < 𝜎 ≤ 1,
𝜎
𝑝−1
, if 𝜎 > 1.

(80)

Then 𝜓, 𝛾 : (0,∞) → (0,∞) and 𝜓 is an increasing
homeomorphism with

𝜓
−1
(𝜎) = {

𝜎
1/(𝑝−1)

, if 0 < 𝜎 ≤ 1,
𝜎
1/(𝑞−1)

, if 𝜎 > 1.
(81)

If 0 < 𝜎 ≤ 1, then 𝜎−(𝑝−𝑞) ≥ 1 and

𝜑 (𝜎𝑥)

𝜑 (𝑥)
=
𝜎
𝑝−1

[|𝑥|
𝑝−2
𝑥 + 𝜎
−(𝑝−𝑞)

|𝑥|
𝑞−2
𝑥]

|𝑥|
𝑝−2
𝑥 + |𝑥|

𝑞−2
𝑥

≥ 𝜎
𝑝−1

= 𝜓 (𝜎) .

(82)
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If 𝜎 > 1, then 𝜎𝑝−𝑞 > 1 and

𝜑 (𝜎𝑥)

𝜑 (𝑥)
=
𝜎
𝑞−1
[𝜎
𝑝−𝑞
|𝑥|
𝑝−2
𝑥 + |𝑥|

𝑞−2
𝑥]

|𝑥|
𝑝−2
𝑥 + |𝑥|

𝑞−2
𝑥

≥ 𝜎
𝑞−1

= 𝜓 (𝜎) .

(83)

If 0 < 𝜎 ≤ 1, then 𝜎𝑝−𝑞 ≤ 1 and

𝜑 (𝜎𝑥)

𝜑 (𝑥)
=
𝜎
𝑞−1
[𝜎
𝑝−𝑞
|𝑥|
𝑝−2
𝑥 + |𝑥|

𝑞−2
𝑥]

|𝑥|
𝑝−2
𝑥 + |𝑥|

𝑞−2
𝑥

≤ 𝜎
𝑞−1

≤ 1 = 𝛾 (𝜎) .

(84)

If 𝜎 > 1, then 𝜎−(𝑝−𝑞) < 1 and

𝜑 (𝜎𝑥)

𝜑 (𝑥)
=
𝜎
𝑝−1

[|𝑥|
𝑝−2
𝑥 + 𝜎
−(𝑝−𝑞)

|𝑥|
𝑞−2
𝑥]

|𝑥|
𝑝−2
𝑥 + |𝑥|

𝑞−2
𝑥

≤ 𝜎
𝑝−1

= 𝛾 (𝜎) .

(85)

Thus, it follows that

𝜓 (𝜎) ≤
𝜑 (𝜎𝑥)

𝜑 (𝜎)
≤ 𝛾 (𝜎) , ∀𝜎 > 0, 𝑥 ∈ R. (86)

Next, we show that ℎ(𝑡) = 𝑡−𝛼 ∈H
𝜓
. Consider

∫

1/2

𝑠

𝜏
−𝛼
𝑑𝜏

= −
1

𝛼 − 1
𝜏
−(𝛼−1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1/2

𝑠

= −
1

𝛼 − 1
[(
1

2
)

−(𝛼−1)

− 𝑠
−(𝛼−1)

]

=
1

𝛼 − 1
[𝑠
−(𝛼−1)

− 2
𝛼−1
] ≤

1

𝛼 − 1
𝑠
−(𝛼−1)

.

(87)

Since 1 < 𝛼 < min{2, 𝑞}, then (1/(𝛼 − 1))1/(𝛼−1) > 1 and
(1/(𝛼 − 1))

1/(𝛼−1)
> 𝑠, for 𝑠 ∈ (0, 1). Thus, 1/(𝛼 − 1) > 𝑠𝛼−1,

(1/(𝛼 − 1))𝑠
−(𝛼−1)

> 1, and

∫

1/2

0

𝜓
−1
(∫

1/2

𝑠

𝜏
−𝛼
𝑑𝜏)𝑑𝑠

≤ ∫

1/2

0

𝜓
−1
(

1

𝛼 − 1
𝑠
−(𝛼−1)

)𝑑𝑠

= ∫

1/2

0

(
𝑠
−(𝛼−1)

𝛼 − 1
)

1/(𝑞−1)

𝑑𝑠

=
𝑞 − 1

(𝛼 − 1)
1/(𝑞−1)

(𝑞 − 𝛼)
𝑠
(𝑞−𝛼)/(𝑞−1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1/2

0

< ∞,

(88)

since 𝑞 − 𝛼 > 0 and 𝑞 − 1 > 0. The continuity of ℎ(𝑡) = 𝑡−𝛼 on
[1/2, 1] obviously implies that ∫1

1/2
𝜓
−1
(∫
𝑠

1/2
𝜏
−𝛼
𝑑𝜏)𝑑𝑠 < ∞.

Similarly, we can show that ℎ(𝑡) = 𝑡−𝛽 ∈ H
𝜓
. We now check

the conditions on the nonlinear terms. Both 𝑓1(𝑢, V) = (𝑢 +
V)𝑝−𝑞 + 1 and 𝑓2(𝑢, V) = 𝑢𝑞−1(1 − 𝑒−V) satisfy (F) and

𝑓
1

0
= lim
‖(𝑢,V)‖→0

𝑓
1
(𝑢, V)

𝜑 (‖(𝑢, V)‖)

= lim
‖(𝑢,V)‖→0

(𝑢 + V)𝑝−𝑞 + 1
(𝑢 + V)𝑞−1 [(𝑢 + V)𝑝−𝑞 + 1]

= ∞,

𝑓
1

∞
= lim
‖(𝑢,V)‖→∞

𝑓
1
(𝑢, V)

𝜑 (‖(𝑢, V)‖)

= lim
‖(𝑢,V)‖→∞

1

(𝑢 + V)𝑞−1
= 0,

𝑓
2

0
= lim
‖(𝑢,V)‖→0

(1 − 𝑒
−V
) ⋅

𝑢
𝑞−1

(𝑢 + V)𝑝−1 + (𝑢 + V)𝑞−1

≤ lim
‖(𝑢,V)‖→0

(1 − 𝑒
−V
) = 0,

𝑓
2

∞
= lim
‖(𝑢,V)‖→∞

(1 − 𝑒
−V
) ⋅

𝑢
𝑞−1

(𝑢 + V)𝑝−1 + (𝑢 + V)𝑞−1

≤ lim
‖(𝑢,V)‖→∞

(1 − 𝑒
−V
) ⋅

(𝑢 + V)𝑞−1

(𝑢 + V)𝑝−1 + (𝑢 + V)𝑞−1

≤ lim
‖(𝑢,V)‖→∞

1

(𝑢 + V)𝑝−𝑞 + 1
= 0.

(89)

Thus, f
0
= 𝑓
1

0
+𝑓
2

0
= ∞, f

∞
= 𝑓
1

∞
+𝑓
2

∞
= 0. Consequently, by

Theorem 2, we see that problem (𝐸
1
) has at least one positive

solution.

Example 14. Consider the following 𝜑-Laplacian system:

𝜑(𝑢
󸀠
)
󸀠

+ 𝑡
−5/4

(𝑢 + V)1/2 = 0,

𝜑(V󸀠)
󸀠

+ 𝑡
−6/5

(1 − 𝑒
−(𝑢+V)

) (𝑢 + V)1/3 = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = V (0) = 𝑢 (1) = V (1) = 0,
(𝐸
2
)

where 𝜑(𝑥) = 𝑥1/3, 𝑥 ∈ R, is an odd increasing homeomor-
phism. By the homogeneity of 𝜑, taking 𝜓(𝜎) = 𝛾(𝜎) ≡ 𝜑(𝜎),
we see that condition (A) is satisfied. Consider

∫

1/2

0

𝜓
−1
(∫

1/2

𝑠

𝜏
−5/4

𝑑𝜏)𝑑𝑠

= ∫

1/2

0

𝜓
−1
(4 (𝑠
−1/4

− 2
1/4
)) 𝑑𝑠

= ∫

1/2

0

(4(𝑠
−1/4

− 2
1/4
))
3

𝑑𝑠

≤ 64∫

1/2

0

𝑠
−3/4

𝑑𝑠 = 256𝑠
1/4

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1/2

0

< ∞,

(90)
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and the continuity of ℎ(𝑡) = 𝑡
−5/4 on [1/2, 1] implies that

ℎ(𝑡) = 𝑡
−5/4

∈ H
𝜓
. Similarly, we can show that ℎ(𝑡) = 𝑡−6/5 ∈

H
𝜓
. For the nonlinear terms, both 𝑓1(𝑢, V) = (𝑢 + V)1/2 and

𝑓
2
(𝑢, V) = (1 − 𝑒−(𝑢+V))(𝑢 + V)1/3 satisfy condition (F) and

𝑓
1

0
= lim
‖(𝑢,V)‖→0

𝑓
1
(𝑢, V)

𝜑 (‖(𝑢, V)‖)

= lim
‖(𝑢,V)‖→0

(𝑢 + V)1/2

(𝑢 + V)1/3

= lim
‖(𝑢,V)‖→0

(𝑢 + V)1/6 = 0,

𝑓
1

∞
= lim
‖(𝑢,V)‖→∞

𝑓
1
(𝑢, V)

𝜑 (‖(𝑢, V)‖)

= lim
‖(𝑢,V)‖→∞

(𝑢 + V)1/6 = ∞,

𝑓
2

0
= lim
‖(𝑢,V)‖→0

(1 − 𝑒
−(𝑢+V)

) ⋅
(𝑢 + V)1/3

(𝑢 + V)1/3

= lim
‖(𝑢,V)‖→0

(1 − 𝑒
−(𝑢+V)

) = 0,

𝑓
2

∞
= lim
‖(𝑢,V)‖→∞

(1 − 𝑒
−(𝑢+V)

) = 1.

(91)

Thus, f
0
= 𝑓
1

0
+𝑓
2

0
= 0, f
∞
= 𝑓
1

∞
+𝑓
2

∞
= ∞. Consequently, by

Theorem 2, we see that problem (𝐸
2
) has at least one positive

solution.
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