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This paper is concerned with the existence of traveling waves for a delayed SIRS epidemic diffusionmodel with saturation incidence
rate. By using the cross-iteration method and Schauder’s fixed point theorem, we reduce the existence of traveling waves to the
existence of a pair of upper-lower solutions. By careful analyzsis, we derive the existence of traveling waves connecting the disease-
free steady state and the endemic steady state through the establishment of the suitable upper-lower solutions.

1. Introduction

Since Kermack and Mckendrick [1] proposed an ordinary
differential system to study epidemiology in 1927, various
models have been used to describe various kinds of epi-
demics, and the dynamics of these systems have been inves-
tigated. Let 𝑆(𝑡) represent the number of individuals who
are susceptible to the disease, let 𝐼(𝑡) represent the number
of infected individuals who are infectious and are able to
spread the disease by contact with susceptible individuals,
and let 𝑅(𝑡) represent the number of individuals who have
been infected and then removed from the possibility of being
infected again. Mena-Lorca and Hethcote [2] considered the
following SIRS epidemic model:

̇𝑆 (𝑡) = 𝐴 − 𝑑𝑆 (𝑡) − 𝛽𝑆 (𝑡) 𝐼 (𝑡) + 𝛿𝑅 (𝑡) ,

̇𝐼 (𝑡) = 𝛽𝑆 (𝑡) 𝐼 (𝑡) − (𝛾 + 𝜇 + 𝑑) 𝐼 (𝑡) ,

�̇� (𝑡) = 𝛾𝐼 (𝑡) − (𝛿 + 𝑑) 𝑅 (𝑡) ,

(1)

where the parameters 𝐴, 𝑑, 𝛽, 𝛿, 𝛾, 𝜇 are positive constants
and 𝐴 is the recruitment rate of the population, 𝑑 is the nat-
ural death rate of the population, 𝛽 is the transmission rate,

𝛿 is the rate at which recovered individuals lose immunity and
return to the susceptible class, 𝛾 is the recovery rate of the
infective individuals, and 𝜇 is the death rate of the infective
individuals due to disease. The SIRS model assumes that the
recovered individuals have only temporary immunity, which
is reasonable in the study of some communicable diseases.

However, due to the diseases latency or immunity, the
presence of time delays in such models makes them more
realistic. On the other hand, the environment in which an
individual lives is actually heterogeneous and the mobility
of people within a country or even worldwide is large;
introducing the spatial diffusion in these epidemic models
is unavoidable. In recent years, the dynamics of the delayed
epidemic diffusion model have been widely studied by many
researchers (see, e.g., [3–6]), and these studies are mainly
focused on the global attractivity, basic reproductive number,
and especially the epidemic waves. For example, Gan et al. [7]
considered the following delayed SIRS epidemic model with
spatial diffusion:

𝜕𝑆

𝜕𝑡
= 𝐷𝑆

𝜕
2
𝑆

𝜕𝑥2
+ 𝐴 − 𝑑𝑆 (𝑥, 𝑡)

− 𝛽𝑆 (𝑥, 𝑡) 𝐼 (𝑥, 𝑡 − 𝜏) + 𝛿𝑅 (𝑥, 𝑡) ,

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 369072, 8 pages
http://dx.doi.org/10.1155/2014/369072

http://dx.doi.org/10.1155/2014/369072


2 Abstract and Applied Analysis

𝜕𝐼

𝜕𝑡
= 𝐷
𝐼

𝜕
2
𝐼

𝜕𝑥2
+ 𝛽𝑆 (𝑥, 𝑡) 𝐼 (𝑥, 𝑡 − 𝜏)

− (𝛾 + 𝛼 + 𝑑) 𝐼 (𝑥, 𝑡) ,

𝜕𝑅

𝜕𝑡
= 𝐷𝑅

𝜕
2
𝑅

𝜕𝑥2
+ 𝛾𝐼 (𝑥, 𝑡) − (𝛿 + 𝑑) 𝑅 (𝑥, 𝑡) ,

(2)

and obtained the existence of traveling wave solutions.
In systems (1) and (2), the terms 𝛽𝑆(𝑡)𝐼(𝑡) and

𝛽𝑆(𝑥, 𝑡)𝐼(𝑥, 𝑡 − 𝜏) are called incidence rate and both of
them are bilinear. However, as the number of susceptible
individuals is large, it is reasonable to consider the saturation
incidence rate (see [8]) instead of the bilinear incidence rate.
Motivated by the works mentioned above, we will consider
the following delayed SIRS epidemic diffusion model with
nonlinear saturation rate

𝜕𝑆

𝜕𝑡
= 𝐷
𝑆

𝜕
2
𝑆

𝜕𝑥2
+ 𝐴 − 𝑑𝑆 (𝑥, 𝑡)

−
𝛽𝑆 (𝑥, 𝑡) 𝐼 (𝑥, 𝑡 − 𝜏)

1 + 𝛼𝐼 (𝑥, 𝑡 − 𝜏)
+ 𝛿𝑅 (𝑥, 𝑡) ,

𝜕𝐼

𝜕𝑡
= 𝐷
𝐼

𝜕
2
𝐼

𝜕𝑥2
+
𝛽𝑆 (𝑥, 𝑡) 𝐼 (𝑥, 𝑡 − 𝜏)

1 + 𝛼𝐼 (𝑥, 𝑡 − 𝜏)

− (𝛾 + 𝜇 + 𝑑) 𝐼 (𝑥, 𝑡) ,

𝜕𝑅

𝜕𝑡
= 𝐷
𝑅

𝜕
2
𝑅

𝜕𝑥2
+ 𝛾𝐼 (𝑥, 𝑡) − (𝛿 + 𝑑) 𝑅 (𝑥, 𝑡)

(3)

and study its traveling wave solutions. The main tool is the
upper-lower solutions coupled with cross-iteration method
established by Ma [9]. We point out that the nonlinear
terms in (3) do not satisfy the common various (exponential)
monotonicity conditions such as in [10–12]; thus the main
difficulty is the construction and verification of the upper-
lower solutions.

2. Preliminaries and Lemmas

Throughout this paper, we employ the usual notations for the
standard ordering in R3. That is, for 𝑢 = (𝑢1, 𝑢2, 𝑢3) and V =
(V1, V2, V3), we denote 𝑢 ≤ V if 𝑢𝑖 ≤ V𝑖, 𝑖 = 1, 2, 3; 𝑢 < V if
𝑢 ≤ V but 𝑢 ̸= V; and 𝑢 ≪ V if 𝑢 ≤ V but 𝑢𝑖 ̸= V𝑖, 𝑖 = 1, 2, 3. Let
‖ ⋅ ‖ denote the Euclidean norm in R3.

First, we assume that 𝐷𝑆 = 𝐷𝐼 = 𝐷𝑅 = 𝐷 for (3).
Denoting 𝑁 = 𝑆 + 𝐼 + 𝑅, then (3) reduces to the following
system:

𝜕𝑁

𝜕𝑡
= 𝐷

𝜕
2
𝑁

𝜕𝑥2
+ 𝐴 − 𝑑𝑁 (𝑥, 𝑡) − 𝜇𝐼 (𝑥, 𝑡) ,

𝜕𝐼

𝜕𝑡
= 𝐷

𝜕
2
𝐼

𝜕𝑥2
+
𝛽 (𝑁 − 𝐼 − 𝑅) 𝐼 (𝑥, 𝑡 − 𝜏)

1 + 𝛼𝐼 (𝑥, 𝑡 − 𝜏)

− (𝛾 + 𝜇 + 𝑑) 𝐼 (𝑥, 𝑡) ,

𝜕𝑅

𝜕𝑡
= 𝐷

𝜕
2
𝑅

𝜕𝑥2
+ 𝛾𝐼 (𝑥, 𝑡) − (𝛿 + 𝑑) 𝑅 (𝑥, 𝑡) .

(4)

By making changes of variables �̃� = 𝐴/𝑑 − 𝑁, 𝐼 = 𝐼, �̃� =
𝑅 and dropping the tildes, (4) is converted to the following
system:

𝜕𝑁

𝜕𝑡
= 𝐷

𝜕
2
𝑁

𝜕𝑥2
− 𝑑𝑁 (𝑥, 𝑡) + 𝜇𝐼 (𝑥, 𝑡) ,

𝜕𝐼

𝜕𝑡
= 𝐷

𝜕
2
𝐼

𝜕𝑥2
+ 𝛽(

𝐴

𝑑
− 𝑁 − 𝐼 − 𝑅)

𝐼 (𝑥, 𝑡 − 𝜏)

1 + 𝛼𝐼 (𝑥, 𝑡 − 𝜏)

− (𝛾 + 𝜇 + 𝑑) 𝐼 (𝑥, 𝑡) ,

𝜕𝑅

𝜕𝑡
= 𝐷

𝜕
2
𝑅

𝜕𝑥2
+ 𝛾𝐼 (𝑥, 𝑡) − (𝛿 + 𝑑) 𝑅 (𝑥, 𝑡) .

(5)

Consider the equilibrium equation of system (5):

𝜇𝐼 − 𝑑𝑁 = 0,

𝛽 (
𝐴

𝑑
− 𝑁 − 𝐼 − 𝑅)

𝐼

1 + 𝛼𝐼
− (𝛾 + 𝜇 + 𝑑) 𝐼 = 0,

𝛾𝐼 − (𝛿 + 𝑑) 𝑅 = 0.

(6)

Obviously, system (5) often has a trivial equilibrium
𝐸
0
(0, 0, 0). From the first and the third equation of

(6), we know that 𝑁 = (𝜇/𝑑)𝐼, 𝑅 = (𝛾/(𝛿 + 𝑑))𝐼.
Substituting the expressions into the second equation
of (6), if R0 := 𝐴𝛽/𝑑(𝛾 + 𝜇 + 𝑑) > 1, we get a positive
equilibrium 𝐸

∗
(𝑘1, 𝑘2, 𝑘3) of system (5), where

𝑘
1
= 𝜇 (𝛿 + 𝑑) [𝐴𝛽 − 𝑑 (𝛾 + 𝜇 + 𝑑)]

× (𝑑𝛽 [𝛿 (𝜇 + 𝑑) + 𝑑 (𝛾 + 𝜇 + 𝑑)]

+𝑑
2
𝛼 (𝛾 + 𝜇 + 𝑑) (𝛿 + 𝑑))

−1

,

𝑘2 =
(𝛿 + 𝑑) [𝐴𝛽 − 𝑑 (𝛾 + 𝜇 + 𝑑)]

𝛽 [𝛿 (𝜇 + 𝑑) + 𝑑 (𝛾 + 𝜇 + 𝑑)] + 𝑑𝛼 (𝛾 + 𝜇 + 𝑑) (𝛿 + 𝑑)
,

𝑘
3
=

𝛾 [𝐴𝛽 − 𝑑 (𝛾 + 𝜇 + 𝑑)]

𝛽 [𝛿 (𝜇 + 𝑑) + 𝑑 (𝛾 + 𝜇 + 𝑑)] + 𝑑𝛼 (𝛾 + 𝜇 + 𝑑) (𝛿 + 𝑑)
.

(7)

By calculating, we can obtain that 𝑘
1
+ 𝑘
2
+ 𝑘
3
< 𝐴/𝑑,

which is important in the following text. In fact,

𝑘
1
+ 𝑘
2
+ 𝑘
3

=
[𝐴𝛽 − 𝑑 (𝛾 + 𝜇 + 𝑑)]

𝛽 [𝛿 (𝜇 + 𝑑) + 𝑑 (𝛾 + 𝜇 + 𝑑)] + 𝑑𝛼 (𝛾 + 𝜇 + 𝑑) (𝛿 + 𝑑)

× [
𝜇

𝑑
(𝛿 + 𝑑) + (𝛿 + 𝑑) + 𝛾]

<
[𝐴𝛽 − 𝑑 (𝛾 + 𝜇 + 𝑑)]

𝛽 (𝜇𝛿 + 𝜇𝑑 + 𝛿𝑑 + 𝛾𝑑 + 𝑑2)

×
1

𝑑
(𝜇𝛿 + 𝜇𝑑 + 𝛿𝑑 + 𝛾𝑑 + 𝑑

2
)

=
[𝐴𝛽 − 𝑑 (𝛾 + 𝜇 + 𝑑)]

𝛽𝑑
<
𝐴

𝑑
.

(8)
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Now, we study the existence of traveling wave solutions
for system (5) connecting 𝐸0 and 𝐸∗.

Substituting 𝑁(𝑥, 𝑡) = 𝜙(𝑥 + 𝑐𝑡), 𝐼(𝑥, 𝑡) = 𝜑(𝑥 + 𝑐𝑡),
𝑅(𝑥, 𝑡) = 𝜓(𝑥 + 𝑐𝑡) into (5), and denoting 𝑥 + 𝑐𝑡 still by 𝑡,
we derive the following wave profile system from (5):

𝐷𝜙


(𝑡) − 𝑐𝜙

(𝑡) − 𝑑𝜙 (𝑡) + 𝜇𝜑 (𝑡) = 0,

𝐷𝜑


(𝑡) − 𝑐𝜑

(𝑡)

+ 𝛽 (
𝐴

𝑑
− 𝜙 (𝑡) − 𝜑 (𝑡) − 𝜓 (𝑡))

𝜑 (𝑡 − 𝑐𝜏)

1 + 𝛼𝜑 (𝑡 − 𝑐𝜏)

− (𝛾 + 𝜇 + 𝑑) 𝜑 (𝑡) = 0,

𝐷𝜓


(𝑡) − 𝑐𝜓

(𝑡) + 𝛾𝜑 (𝑡) − (𝛿 + 𝑑) 𝜓 (𝑡) = 0.

(9)

Note that R
0
> 1 imply 𝐴𝛽/𝑑 − (𝛾 + 𝜇) > 𝑑. Moreover,

we have

𝜇
𝑘2

𝑘
1

= 𝑑, 𝛾
𝑘2

𝑘
3

− 𝛿 = 𝑑. (10)

We can select suitable 𝑀
1
, 𝑀
2
, 𝑀
3
such that 𝑀

𝑖
> 𝑘
𝑖
, 𝑖 =

1, 2, 3, which satisfy

𝐴𝛽

𝑑
− (𝛾 + 𝜇) > 𝜇

𝑀
2

𝑀
1

> 𝑑,

𝐴𝛽

𝑑
− (𝛾 + 𝜇) > 𝛾

𝑀
2

𝑀
3

− 𝛿 > 𝑑,

𝐴

𝑑
> 𝑀1 +𝑀2 +𝑀3.

(11)

Denote 𝐶
[0,M](R,R

3
) = {(𝜙, 𝜑, 𝜓) ∈ 𝐶(R,R3) : 0 ≤

(𝜙(𝑠), 𝜑(𝑠), 𝜓(𝑠)) ≤ M}, whereM = (𝑀1,𝑀2,𝑀3).
Denote 𝑓 = (𝑓

1
, 𝑓
2
, 𝑓
3
) : 𝐶
[0,M](R,R

3
) → 𝐶(R,R3):

𝑓
1
(𝜙, 𝜑, 𝜓) (𝑡) = −𝑑𝜙 (𝑡) + 𝜇𝜑 (𝑡) ,

𝑓
2
(𝜙, 𝜑, 𝜓) (𝑡) = 𝛽 (

𝐴

𝑑
− 𝜙 (𝑡) − 𝜑 (𝑡) − 𝜓 (𝑡))

×
𝜑 (𝑡 − 𝑐𝜏)

1 + 𝛼𝜑 (𝑡 − 𝑐𝜏)
− (𝛾 + 𝜇 + 𝑑) 𝜑 (𝑡) ,

𝑓
3
(𝜙, 𝜑, 𝜓) (𝑡) = 𝛾𝜑 (𝑡) − (𝛿 + 𝑑) 𝜓 (𝑡) .

(12)

For (𝜙, 𝜑, 𝜓) ∈ 𝐶
[0,M](R,R

3
), by a careful calculation, we

have
𝑓1 (𝜙1, 𝜑1, 𝜓1) (𝑡) − 𝑓1 (𝜙2, 𝜑2, 𝜓2) (𝑡)



≤ (𝑑 + 𝜇) |Φ (𝑡) − Ψ (𝑡)|R3 ,

𝑓2 (𝜙1, 𝜑1, 𝜓1) (𝑡) − 𝑓2 (𝜙2, 𝜑2, 𝜓2) (𝑡)


≤ 𝐿|Φ (𝑡) − Ψ (𝑡)|R3 ,

𝑓3 (𝜙1, 𝜑1, 𝜓1) (𝑡) − 𝑓3 (𝜙2, 𝜑2, 𝜓2) (𝑡)


≤ (𝛾 + 𝛿 + 𝑑) |Φ (𝑡) − Ψ (𝑡)|R3 ,

(13)

where 𝐿 := 𝐴𝛽/𝑑 + 𝛽(1 + 𝛼𝑀2
2
+𝑀
1
+𝑀
3
+ 2𝑀
2
+ 2𝑀
2
/(1 +

𝛼𝑀
2
)) + (𝛾 + 𝜇 + 𝑑), Φ = (𝜙

1
, 𝜑
1
, 𝜓
1
), Ψ = (𝜙

2
, 𝜑
2
, 𝜓
2
).

For the positive constants 𝜌
1
, 𝜌
2
, 𝜌
3
, we define 𝐻 :

𝐶
[0,M](R,R

3
) → 𝐶(R,R3) by

𝐻
1
(𝜙, 𝜑, 𝜓) (𝑡) = 𝑓1 (𝜙, 𝜑, 𝜓) (𝑡) + 𝜌1𝜙 (𝑡) ,

𝐻
2
(𝜙, 𝜑, 𝜓) (𝑡) = 𝑓2 (𝜙, 𝜑, 𝜓) (𝑡) + 𝜌2𝜑 (𝑡) ,

𝐻3 (𝜙, 𝜑, 𝜓) (𝑡) = 𝑓3 (𝜙, 𝜑, 𝜓) (𝑡) + 𝜌3𝜓 (𝑡) .

(14)

Then operators𝐻
1
,𝐻
2
,𝐻
3
have the following properties.

Lemma 1. For 0 ≤ 𝜙
2
(𝑡) ≤ 𝜙

1
(𝑡) ≤ 𝑀

1
, 0 ≤ 𝜑

2
(𝑡) ≤ 𝜑

1
(𝑡) ≤

𝑀
2
, 0 ≤ 𝜓

2
(𝑡) ≤ 𝜓

1
(𝑡) ≤ 𝑀

3
, one has

(i)

𝐻
1 (𝜙1, 𝜑1, 𝜓1) (𝑡) ≥ 𝐻1 (𝜙2, 𝜑2, 𝜓2) (𝑡) ,

𝐻
3
(𝜙
1
, 𝜑
1
, 𝜓
1
) (𝑡) ≥ 𝐻3 (𝜙2, 𝜑2, 𝜓2) (𝑡) ;

(15)

(ii)

𝐻
2
(𝜙
1
, 𝜑
1
, 𝜓
1
) (𝑡) ≥ 𝐻2 (𝜙1, 𝜑2, 𝜓1) (𝑡) ,

𝐻2 (𝜙2, 𝜑1, 𝜓1) (𝑡) ≥ 𝐻1 (𝜙1, 𝜑1, 𝜓1) (𝑡) ,

𝐻
2
(𝜙
1
, 𝜑
1
, 𝜓
2
) (𝑡) ≥ 𝐻2 (𝜙1, 𝜑1, 𝜓1) (𝑡) .

(16)

Proof. According to the definitions of 𝑓 and𝐻, we have

𝐻
1
(𝜙
1
, 𝜑
1
, 𝜓
1
) (𝑡) − 𝐻1 (𝜙2, 𝜑2, 𝜓2) (𝑡)

= (𝜌
1 − 𝑑) (𝜙1 (𝑡) − 𝜙2 (𝑡)) + 𝜇 (𝜑1 (𝑡) − 𝜑2 (𝑡)) ,

𝐻
3
(𝜙
1
, 𝜑
1
, 𝜓
1
) (𝑡) − 𝐻3 (𝜙2, 𝜑2, 𝜓2) (𝑡)

= (𝜌
3
− 𝑑 − 𝛿) (𝜓

1 (𝑡) − 𝜓2 (𝑡))

+ 𝛾 (𝜙
1 (𝑡) − 𝜙2 (𝑡)) .

(17)

Let 𝜌
1
= 𝑑, 𝜌

3
= 𝑑 + 𝛿; we obtain the properties for 𝐻

1
and

𝐻
3
.
For (ii), we have

𝐻
2
(𝜙
1
, 𝜑
1
, 𝜓
1
) (𝑡) − 𝐻2 (𝜙1, 𝜑2, 𝜓1) (𝑡)

= 𝛽 (
𝐴

𝑑
− 𝜙
1 (𝑡) − 𝜓1 (𝑡))

× (
𝜑
1 (𝑡 − 𝑐𝜏)

1 + 𝛼𝜑
1 (𝑡 − 𝑐𝜏)

−
𝜑
1 (𝑡 − 𝑐𝜏)

1 + 𝛼𝜑
1 (𝑡 − 𝑐𝜏)

)

− 𝛽(𝜑1 (𝑡)
𝜑1 (𝑡 − 𝑐𝜏)

1 + 𝛼𝜑
1 (𝑡 − 𝑐𝜏)

− 𝜑
2 (𝑡)

𝜑2 (𝑡 − 𝑐𝜏)

1 + 𝛼𝜑
2 (𝑡 − 𝑐𝜏)

)

+ [𝜌
2 − (𝛾 + 𝜇 + 𝑑)] (𝜑1 (𝑡) − 𝜑2 (𝑡)) .

(18)

Note that𝑀
1
+𝑀
3
< 𝐴/𝑑, and 𝑥/(1 + 𝛼𝑥) is nondecreasing;

we have that the first term of the last formula is nonnegative,
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and the second term is bigger than −(𝛽𝑀
2
/(1+𝛼𝑀

2
))(𝜑
1
(𝑡)−

𝜑
2
(𝑡)). Let 𝜌

2
= 𝛽𝑀

2
/(1 + 𝛼𝑀

2
) + 𝛾 + 𝜇 + 𝑑; we have

𝐻
2
(𝜙
1
, 𝜑
1
, 𝜓
1
)(𝑡) ≥ 𝐻

2
(𝜙
1
, 𝜑
2
, 𝜓
1
)(𝑡). Since

𝐻2 (𝜙2, 𝜑1, 𝜓1) (𝑡) − 𝐻2 (𝜙1, 𝜑1, 𝜓1) (𝑡)

= [𝛽
𝜑
1 (𝑡 − 𝑐𝜏)

1 + 𝛼𝜑
1 (𝑡 − 𝑐𝜏)

+ 𝜌
2
] (𝜑
1 (𝑡) − 𝜑2 (𝑡)) ,

𝐻
2
(𝜙
1
, 𝜑
1
, 𝜓
2
) (𝑡) − 𝐻2 (𝜙1, 𝜑1, 𝜓1) (𝑡)

= [𝛽
𝜑
1 (𝑡 − 𝑐𝜏)

1 + 𝛼𝜑1 (𝑡 − 𝑐𝜏)
+ 𝜌
2
] (𝜓
1 (𝑡) − 𝜓2 (𝑡)) ,

(19)

then, for any positive constant 𝜌
2
, we have𝐻

2
(𝜙
2
, 𝜑
1
, 𝜓
1
)(𝑡) ≥

𝐻
1
(𝜙
1
, 𝜑
1
, 𝜓
1
)(𝑡),𝐻

2
(𝜙
1
, 𝜑
1
, 𝜓
2
)(𝑡) ≥ 𝐻

2
(𝜙
1
, 𝜑
1
, 𝜓
1
)(𝑡).

Remark 2. For 𝐻
2
, we can further conclude that

𝐻
2
(𝜙
2
, 𝜑
1
, 𝜓
2
)(𝑡) ≥ 𝐻

2
(𝜙
1
, 𝜑
2
, 𝜓
1
)(𝑡) from Lemma 1(ii).

According to the definition of 𝐻, system (9) can be
written as

𝐷𝜙


(𝑡) − 𝑐𝜙

(𝑡) − 𝜌1𝜙 (𝑡) + 𝐻1 (𝜙, 𝜑, 𝜓) (𝑡) = 0,

𝐷𝜑


(𝑡) − 𝑐𝜑

(𝑡) − 𝜌2𝜑 (𝑡) + 𝐻2 (𝜙, 𝜑, 𝜓) (𝑡) = 0,

𝐷𝜓


(𝑡) − 𝑐𝜓

(𝑡) − 𝜌3𝜓 (𝑡) + 𝐻3 (𝜙, 𝜑, 𝜓) (𝑡) = 0.

(20)

Define

𝜆
1
=

𝑐 − √𝑐2 + 4𝜌
1
𝐷

2𝐷
, 𝜆2 =

𝑐 + √𝑐2 + 4𝜌
1
𝐷

2𝐷
,

𝜆
3
=

𝑐 − √𝑐2 + 4𝜌
2
𝐷

2𝐷
, 𝜆

4
=

𝑐 + √𝑐2 + 4𝜌
2
𝐷

2𝐷
,

𝜆5 =

𝑐 − √𝑐2 + 4𝜌3𝐷

2𝐷
, 𝜆6 =

𝑐 + √𝑐2 + 4𝜌3𝐷

2𝐷
,

(21)

and operator 𝐹 = (𝐹
1, 𝐹2, 𝐹3) : 𝐶[0,M](R,R

3
) → 𝐶(R,R3) by

𝐹
1
(𝜙, 𝜑, 𝜓) (𝑡)

=
1

𝐷 (𝜆
2
− 𝜆
1
)
[∫

𝑡

−∞

𝑒
𝜆
1
(𝑡−𝑠)

𝐻
1
(𝜙, 𝜑, 𝜓) (𝑠) 𝑑𝑠

+ ∫

+∞

𝑡

𝑒
𝜆
2
(𝑡−𝑠)

𝐻
1
(𝜙, 𝜑, 𝜓) (𝑠) 𝑑𝑠] ,

𝐹2 (𝜙, 𝜑, 𝜓) (𝑡)

=
1

𝐷 (𝜆4 − 𝜆3)
[∫

𝑡

−∞

𝑒
𝜆
3
(𝑡−𝑠)

𝐻
2
(𝜙, 𝜑, 𝜓) (𝑠) 𝑑𝑠

+ ∫

+∞

𝑡

𝑒
𝜆
4
(𝑡−𝑠)

𝐻
2
(𝜙, 𝜑, 𝜓) (𝑠) 𝑑𝑠] ,

𝐹
3
(𝜙, 𝜑, 𝜓) (𝑡)

=
1

𝐷 (𝜆
6
− 𝜆
5
)
[∫

𝑡

−∞

𝑒
𝜆
5
(𝑡−𝑠)

𝐻
3
(𝜙, 𝜑, 𝜓) (𝑠) 𝑑𝑠

+ ∫

+∞

𝑡

𝑒
𝜆
6
(𝑡−𝑠)

𝐻
3
(𝜙, 𝜑, 𝜓) (𝑠) 𝑑𝑠] .

(22)

It is easy to see that 𝐹
𝑖
(𝜙, 𝜑, 𝜓)(𝑡) (𝑖 = 1, 2, 3) satisfy system

(20); thus the fixed point of operator 𝐹 satisfies (9), which is
a traveling wave solution of system (5).Therefore, we will use
Schauder’s fixed point theorem to find the fixed point of 𝐹,
where the continuity of 𝐹 is required. For this purpose, let
] > 0; we define a norm forΦ(𝑡) = (𝜙, 𝜑, 𝜓)(𝑡) ∈ 𝐶(R,R3) by

|Φ|] = sup
𝑡∈R

𝑒
−]|𝑡|

‖Φ (𝑡)‖ . (23)

Define

𝐵] (R,R
3
) = {Φ ∈ 𝐶 (R,R

3
) : |Φ|] < ∞} . (24)

Then it is obvious that (𝐵](R,R
3
), | ⋅ |]) is a Banach space.

We also need the following definition of upper and lower
solutions for system (9).

Definition 3. A pair of continuous functions Φ = (𝜙, 𝜑, 𝜓)

and Φ = (𝜙, 𝜑, 𝜓) are called an upper solution and a
lower solution of (9), respectively, if there exist finite points
𝑇
1, 𝑇2, . . . , 𝑇𝑚 such that Φ, Φ are twice differentiable and

bounded on R \ {𝑇𝑖}, 𝑖 = 1, 2, . . . , 𝑚, and satisfy

𝐷𝜙



(𝑡) − 𝑐𝜙


(𝑡) + 𝑓1 (𝜙, 𝜑, 𝜓) (𝑡) ≤ 0,

𝐷𝜑


(𝑡) − 𝑐𝜑

(𝑡) + 𝑓2 (𝜙, 𝜑, 𝜓) (𝑡) ≤ 0,

𝐷𝜓


(𝑡) − 𝑐𝜓

(𝑡) + 𝑓3 (𝜙, 𝜑, 𝜓) (𝑡) ≤ 0,

𝐷𝜙


(𝑡) − 𝑐𝜙

(𝑡) + 𝑓1 (𝜙, 𝜑, 𝜓) (𝑡) ≥ 0,

𝐷𝜑


(𝑡) − 𝑐𝜑

(𝑡) + 𝑓2 (𝜙, 𝜑, 𝜓) (𝑡) ≥ 0,

𝐷𝜓


(𝑡) − 𝑐𝜓

(𝑡) + 𝑓3 (𝜙, 𝜑, 𝜓) (𝑡) ≥ 0,

(25)

for 𝑡 ∈ R \ {𝑇
𝑖
}, respectively.

We assume that a pair of upper-lower solutions Φ =

(𝜙, 𝜑, 𝜓) and Φ = (𝜙, 𝜑, 𝜓) are given such that

(P1)

(0, 0, 0) ≤ (𝜙 (𝑡) , 𝜑 (𝑡) , 𝜓 (𝑡)) ≤ (𝜙 (𝑡) , 𝜑 (𝑡) , 𝜓 (𝑡))

≤ (𝑀
1
,𝑀
2
,𝑀
3
) ;

(26)
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(P2)

lim
𝑡→−∞

(𝜙 (𝑡) , 𝜑 (𝑡) , 𝜓 (𝑡))

= lim
𝑡→−∞

(𝜙 (𝑡) , 𝜑 (𝑡) , 𝜓 (𝑡)) = (0, 0, 0) ,

lim
𝑡→+∞

(𝜙 (𝑡) , 𝜑 (𝑡) , 𝜓 (𝑡))

= lim
𝑡→+∞

(𝜙 (𝑡) , 𝜑 (𝑡) , 𝜓 (𝑡)) = (𝑘1, 𝑘2, 𝑘3) ;

(27)

(P3)

Φ


(𝑡+) ≤ Φ


(𝑡−) , Φ

(𝑡+) ≥ Φ


(𝑡−) for 𝑡 ∈ R. (28)

Define the set

Γ = {(𝜙, 𝜑, 𝜓) (𝑡) ∈ 𝐶[0,M] (R,R
3
) : 𝜙 (𝑡) ≤ 𝜙 (𝑡) ≤ 𝜙 (𝑡) ,

𝜑 (𝑡) ≤ 𝜑 (𝑡) ≤ 𝜑 (𝑡) , 𝜓 (𝑡) ≤ 𝜓 (𝑡) ≤ 𝜓 (𝑡)} .

(29)

Then by the property of𝐻, we have the property of 𝐹.

Lemma 4. For 0 ≤ 𝜙2(𝑡) ≤ 𝜙1(𝑡) ≤ 𝑀1, 0 ≤ 𝜑2(𝑡) ≤ 𝜑1(𝑡) ≤

𝑀
2
, 0 ≤ 𝜓

2
(𝑡) ≤ 𝜓

1
(𝑡) ≤ 𝑀

3
, one has

𝐹
1
(𝜙
1
, 𝜑
1
, 𝜓
1
) (𝑡) ≥ 𝐹1 (𝜙2, 𝜑2, 𝜓2) (𝑡) ,

𝐹2 (𝜙2, 𝜑1, 𝜓2) (𝑡) ≥ 𝐹2 (𝜙1, 𝜑2, 𝜓1) (𝑡) ,

𝐹
3
(𝜙
1
, 𝜑
1
, 𝜓
1
) (𝑡) ≥ 𝐹3 (𝜙2, 𝜑2, 𝜓2) (𝑡) .

(30)

Similar to Lemmas 4.4–4.6 in [7], we have the following
lemmas and omit their proofs.

Lemma 5. 𝐹 = (𝐹1, 𝐹2, 𝐹3) is continuous with respect to the
norm | ⋅ |] in (𝐵](R,R

3
)).

Lemma 6. Consider 𝐹 : Γ → Γ.

Lemma 7. 𝐹 : Γ → Γ is compact with respect to the norm | ⋅ |].

Theorem 8. Assume that 𝐴𝛽/𝑑(𝛾 + 𝜇 + 𝑑) > 1. If (9) has a
pair of upper-lower solutions Φ = (𝜙, 𝜑, 𝜓) and Φ = (𝜙, 𝜑, 𝜓)

and satisfies (P1), (P2), and (P3), then system (5) has a traveling
wave solution.

Proof. According to Lemmas 5–7 and applying Schauder’s
fixed point theorem, operator 𝐹 has a fixed point Φ∗ =

(𝜙
∗
, 𝜑
∗
, 𝜓
∗
) ∈ Γ, which is traveling wave for system (5).

Furthermore, by (P2) we have

lim
𝑡→−∞

(𝜙
∗
, 𝜑
∗
, 𝜓
∗
) = (0, 0, 0) ,

lim
𝑡→+∞

(𝜙
∗
, 𝜑
∗
, 𝜓
∗
) = (𝑘

1
, 𝑘
2
, 𝑘
3
) .

(31)

Therefore, the fixed point is a traveling wave solution for (5)
connecting 𝐸0 and 𝐸∗. The proof is complete.

3. Existence of Traveling Waves

To prove the existence of traveling wave solutions for (5), we
only need to construct a pair of upper-lower solutions.

Consider the following functions:

Δ 1 (𝜂, 𝑐) = 𝐷𝜂
2
− 𝑐𝜂 − 𝑑 + 𝜇

𝑀
2

𝑀
1

,

Δ
2
(𝜂, 𝑐) = 𝐷𝜂

2
− 𝑐𝜂 +

𝐴𝛽

𝑑
− (𝛾 + 𝜇 + 𝑑) ,

Δ
3
(𝜂, 𝑐) = 𝐷𝜂

2
− 𝑐𝜂 − (𝛿 + 𝑑) + 𝛾

𝑀
2

𝑀3

.

(32)

Note that (11) and R0 > 1; we know that there exist positive
numbers 𝑐∗

1
, 𝑐∗
2
, 𝑐∗
3
such that

Δ
1 (𝜂, 𝑐) = 0 has two zeros 0 < 𝜂1 < 𝜂2, for 𝑐 > 𝑐

∗

1
,

Δ
2
(𝜂, 𝑐) = 0 has two zeros 0 < 𝜂

3
< 𝜂
4
, for 𝑐 > 𝑐∗

2
,

Δ
3
(𝜂, 𝑐) = 0 has two zeros 0 < 𝜂

5
< 𝜂
6
, for 𝑐 > 𝑐∗

3
.

(33)

Denote 𝑐∗ = max{𝑐∗
1
, 𝑐
∗

2
, 𝑐
∗

3
}. According to [5, Lemma

3.8], we have 𝜂1 < 𝜂3 and 𝜂5 < 𝜂3.
Assume that 𝜇/𝑑+𝛾/(𝛿+𝑑) < 1; we can select 𝜀

𝑖
> 0 (𝑖 =

1, 2, . . . , 6), 𝜀
1
, 𝜀
2
∈ (0, 𝑘

1
), 𝜀
3
, 𝜀
4
∈ (0, 𝑘

2
), 𝜀
5
, 𝜀
6
∈ (0, 𝑘

3
)

satisfying the following inequalities:

𝜇 (𝑘
2
+ 𝜀
3
) − 𝑑 (𝑘

1
+ 𝜀
1
) < 0,

𝛽 (
𝐴

𝑑
− 𝑘1 + 𝜀2 − 𝑘2 − 𝜀3 − 𝑘3 + 𝜀6)

− (𝛾 + 𝜇 + 𝑑) < 0,

𝛾 (𝑘
2 + 𝜀3) − (𝛿 + 𝑑) (𝑘3 + 𝜀5) < 0,

𝑑 (𝑘
1
− 𝜀
2
) − 𝜇 (𝑘

2
− 𝜀
4
) < 0,

(𝛾 + 𝜇 + 𝑑) −
𝛽

1 + 𝛼 (𝑘
2
− 𝜀
4
)

× (
𝐴

𝑑
− 𝑘
1
− 𝜀
1
− 𝑘
2
+ 𝜀
4
− 𝑘
3
− 𝜀
5
) < 0,

(𝛿 + 𝑑) (𝑘3 − 𝜀6) − 𝛾 (𝑘2 − 𝜀4) < 0.

(34)

In fact, we first choose 𝜀
3
, 𝜀
4
∈ (0, 𝑘

2
) such that

(
𝜇

𝑑
+

𝛾

𝛿 + 𝑑
) 𝜀3 < 𝜀4, (

𝜇

𝑑
+

𝛾

𝛿 + 𝑑
) 𝜀4 < 𝜀3. (35)
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For 𝜀
3
∈ (0, 𝑘

2
), noting that 𝑘

1
= (𝜇/𝑑)𝑘

2
and 𝑘
3
= (𝛾/(𝛿+

𝑑))𝑘
2
, we can find 𝜀

1
∈ (0, 𝑘

1
), 𝜀
5
∈ (0, 𝑘

3
) such that

𝑘
1 > 𝜀1 >

𝜇

𝑑
𝜀3 =

𝜇

𝑑
(𝑘2 + 𝜀3) − 𝑘1

⇒ 𝜇 (𝑘
2
+ 𝜀
3
) − 𝑑 (𝑘

1
+ 𝜀
1
) < 0,

𝑘
3
> 𝜀
5
>

𝛾

𝛿 + 𝑑
𝜀
3
=

𝛾

𝛿 + 𝑑
(𝑘
2
+ 𝜀
3
) − 𝑘
3

⇒ 𝛾 (𝑘
2
+ 𝜀
3
) − (𝛿 + 𝑑) (𝑘3 + 𝜀5) < 0.

(36)

For 𝜀
4
∈ (0, 𝑘

2
), we can find 𝜀

2
∈ (0, 𝑘

1
), 𝜀
6
∈ (0, 𝑘

3
) such

that

𝑘
1 > 𝜀2 >

𝜇

𝑑
𝜀4 = 𝑘1 −

𝜇

𝑑
(𝑘2 − 𝜀4)

⇒ 𝑑 (𝑘
1
− 𝜀
2
) − 𝜇 (𝑘

2
− 𝜀
4
) < 0,

𝑘
3 > 𝜀6 >

𝛾

𝛿 + 𝑑
𝜀4 = 𝑘3 −

𝛾

𝛿 + 𝑑
(𝑘2 − 𝜀4)

⇒ (𝛿 + 𝑑) (𝑘3 − 𝜀6) − 𝛾 (𝑘2 − 𝜀4) < 0.

(37)

Furthermore, for 𝜀1 > (𝜇/𝑑)𝜀3, 𝜀5 > (𝛾/(𝛿+𝑑))𝜀3 and (35),
we can find suitable 𝜀1, 𝜀5 satisfying 𝜀1 + 𝜀5 < 𝜀4. Similarly, we
can find suitable 𝜀2, 𝜀6 satisfying 𝜀2 + 𝜀6 < 𝜀3. Thus we have

𝛽(
𝐴

𝑑
− 𝑘
1
+ 𝜀
2
− 𝑘
2
− 𝜀
3
− 𝑘
3
+ 𝜀
6
) − (𝛾 + 𝜇 + 𝑑) < 0,

(𝛾 + 𝜇 + 𝑑) −
𝛽

1 + 𝛼 (𝑘
2
− 𝜀
4
)

× (
𝐴

𝑑
− 𝑘1 − 𝜀1 − 𝑘2 + 𝜀4 − 𝑘3 − 𝜀5) < 0.

(38)

We define continuous functions Φ(𝑡) =

(𝜙1(𝑡), 𝜑1(𝑡), 𝜓1(𝑡)) and Ψ(𝑡) = (𝜙2(𝑡), 𝜑2(𝑡), 𝜓2(𝑡)) as
follows:

𝜙
1 (𝑡) = {

𝑘1𝑒
𝜂
1
𝑡
, 𝑡 ≤ 𝑡1,

𝑘
1
+ 𝜀
1
𝑒
−𝜂𝑡
, 𝑡 > 𝑡

1
,

𝜙
2 (𝑡) = {

0, 𝑡 ≤ 𝑡
2
,

𝑘
1
− 𝜀
2
𝑒
−𝜂𝑡
, 𝑡 > 𝑡

2
,

𝜑1 (𝑡) = {
𝑘
2𝑒
𝜂
3
𝑡
, 𝑡 ≤ 𝑡3,

𝑘
2
+ 𝜀
3
𝑒
−𝜂𝑡
, 𝑡 > 𝑡

3
,

𝜑
2 (𝑡) = {

0, 𝑡 ≤ 𝑡
4
,

𝑘
2
− 𝜀
4
𝑒
−𝜂𝑡
, 𝑡 > 𝑡

4
,

𝜓
1 (𝑡) = {

𝑘
3
𝑒
𝜂
5
𝑡
, 𝑡 ≤ 𝑡

5
,

𝑘
3 + 𝜀5𝑒

−𝜂𝑡
, 𝑡 > 𝑡5,

𝜓
2 (𝑡) = {

0, 𝑡 ≤ 𝑡
6
,

𝑘
3
− 𝜀
6
𝑒
−𝜂𝑡
, 𝑡 > 𝑡

6
,

(39)

where 𝑡
1
, 𝑡
3
, 𝑡
5
> 0, 𝑡

2
, 𝑡
4
, 𝑡
6
< 0 , and 𝜂 > 0 is a proper

constant to be chosen later.
Furthermore, we can conclude that 𝑡

3
≥ max{𝑡

1
, 𝑡
5
} and

𝑡
4
≤ min{𝑡

2
, 𝑡
6
}, which can help us verify the upper-lower

solution for system (9).Wepoint out thatΦ(𝑡) andΨ(𝑡) satisfy
(P1), (P2), and (P3) for proper parameters.

Lemma 9. Suppose 𝜇/𝑑 + 𝛾/(𝛿 + 𝑑) < 1. Then the functions
Φ(𝑡) and Ψ(𝑡) defined above are upper and lower solutions of
(9), respectively.

Proof. If 𝑡 ≤ 𝑡1, 𝜙1(𝑡) = 𝑘1𝑒𝜂1𝑡, 𝜑1(𝑡) = 𝑘2𝑒𝜂3𝑡, we have

𝑝
1 (𝑡) := 𝐷𝜙



1
(𝑡) − 𝑐𝜙



1
(𝑡) − 𝑑𝜙1 (𝑡) + 𝜇𝜑1 (𝑡)

≤ (𝐷𝜂
2

1
− 𝑐𝜂1 − 𝑑 + 𝜇

𝑀
2

𝑀
1

)𝑘1𝑒
𝜂
1
𝑡
= 0.

(40)

If 𝑡 > 𝑡
1, 𝜙1(𝑡) = 𝑘1 + 𝜀1𝑒

−𝜂𝑡, 𝜑1(𝑡) ≤ 𝑘2 + 𝜀3𝑒
−𝜂𝑡, we know

𝑝
1 (𝑡) ≤ 𝐼1 (𝜂) , (41)

where 𝐼
1
(𝜂) = (𝐷𝜀

1
𝜂
2
+ 𝑐𝜀
1
𝜂)𝑒
−𝜂𝑡

− 𝑑(𝑘
1
+ 𝜀
1
𝑒
−𝜂𝑡
) + 𝜇(𝑘

2
+

𝜀
3
𝑒
−𝜂𝑡
). Then 𝐼

1
(0) = 𝜇(𝑘

2
+ 𝜀
3
) − 𝑑(𝑘

1
+ 𝜀
1
). It follows from

(34) that 𝐼
1
(0) < 0 and there exists 𝜂∗

1
> 0 such that 𝑝

1
(𝑡) < 0

for all 𝜂 ∈ (0, 𝜂∗
1
).

If 𝑡 ≤ 𝑡
3
, 𝜑
1
(𝑡) = 𝑘

2
𝑒
𝜂
3
𝑡, we obtain that

𝑝2 (𝑡) := 𝐷𝜑


1
(𝑡) − 𝑐𝜑



1
(𝑡)

+ 𝛽 (
𝐴

𝑑
− 𝜙2 (𝑡) − 𝜑1 (𝑡) − 𝜓2 (𝑡))

𝜑
1 (𝑡 − 𝑐𝜏)

1 + 𝛼𝜑
1 (𝑡 − 𝑐𝜏)

− (𝛾 + 𝜇 + 𝑑) 𝜑
1 (𝑡)

≤ (𝐷𝜂
3

2
− 𝑐𝜂
3
− 𝛾 − 𝜇 − 𝑑) 𝑘

2
𝑒
𝜂
3
𝑡
+
𝐴𝛽

𝑑
𝑘
2
𝑒
𝜂
3
(𝑡−𝑐𝜏)

≤ [𝐷𝜂
3

2
− 𝑐𝜂
3
+
𝐴𝛽

𝑑
− 𝛾 − 𝜇 − 𝑑] 𝑘

2
𝑒
𝜂
3
𝑡
= 0.

(42)

If 𝑡 > 𝑡
3
, 𝜑
1
(𝑡) = 𝑘

2
+ 𝜀
3
𝑒
−𝜂𝑡, 𝜙
2
(𝑡) = 𝑘

1
− 𝜀
2
𝑒
−𝜂𝑡, 𝜓

2
(𝑡) =

𝑘3 − 𝜀6𝑒
−𝜂𝑡, we have

𝑝
2 (𝑡) ≤ 𝐼2 (𝜂) , (43)

where

𝐼
2 (𝜂) = (𝐷𝜀3𝜂

2
+ 𝑐𝜀3𝜂) 𝑒

−𝜂𝑡

− (𝛾 + 𝜇 + 𝑑) (𝑘
2
+ 𝜀
3
𝑒
−𝜂𝑡
)

+ 𝛽 [
𝐴

𝑑
− 𝑘
1
+ 𝜀
2
𝑒
−𝜂𝑡

− 𝑘
2
− 𝜀
3
𝑒
−𝜂𝑡

− 𝑘
3
+ 𝜀
6
𝑒
−𝜂𝑡
]

× (𝑘
2 + 𝜀3𝑒

−𝜂(𝑡−𝑐𝜏)
) .

(44)

It follows from (34) that 𝐼
2
(0) < 0 and there exists 𝜂∗

2
> 0

such that 𝑝
2
(𝑡) < 0 for all 𝜂 ∈ (0, 𝜂∗

2
).
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If 𝑡 ≤ 𝑡
5
, 𝜓
1
(𝑡) = 𝑘

3
𝑒
𝜂
5
𝑡, 𝜑
1
(𝑡) = 𝑘

2
𝑒
𝜂
3
𝑡, we have

𝑝3 (𝑡) := 𝐷𝜓


1
(𝑡) − 𝑐𝜓



1
(𝑡) + 𝛾𝜑1 (𝑡) − (𝛿 + 𝑑) 𝜓1 (𝑡)

≤ [𝐷𝜂
2

5
− 𝑐𝜂
5
− (𝛿 + 𝑑) + 𝛾

𝑀2

𝑀3

] 𝑘
3
𝑒
𝜂
5
𝑡
= 0.

(45)

If 𝑡 > 𝑡
5, 𝜓1(𝑡) = 𝑘3 + 𝜀5𝑒

−𝜂𝑡, 𝜑1(𝑡) ≤ 𝑘2 + 𝜀3𝑒
−𝜂𝑡,

𝑝
3 (𝑡) ≤ 𝐼3 (𝜂) , (46)

where 𝐼3(𝜂) = (𝐷𝜀5𝜂
2
+𝑐𝜀5𝜂)𝑒

−𝜂𝑡
+𝛾(𝑘2+𝜀3𝑒

−𝜂𝑡
)−(𝛿+𝑑)(𝑘3+

𝜀5𝑒
−𝜂𝑡
). We can derive from (34) that there exists 𝜂∗

3
> 0 such

that 𝑝3(𝑡) < 0 for all 𝜂 ∈ (0, 𝜂
∗

3
).

If 𝑡 ≤ 𝑡2, 𝜙2(𝑡) = 0, we have

𝑞
1 (𝑡) := 𝐷𝜙



2
(𝑡) − 𝑐𝜙



2
(𝑡) − 𝑑𝜙2 (𝑡)

+ 𝜇𝜑
2 (𝑡) = 𝜇𝜑2 (𝑡) ≥ 0.

(47)

If 𝑡 > 𝑡
2
, 𝜙
2
(𝑡) = 𝑘

1
− 𝜀
2
𝑒
−𝜂𝑡, 𝜑
2
(𝑡) = 𝑘

2
− 𝜀
4
𝑒
−𝜂𝑡, we have

𝑞
1 (𝑡) ≥ 𝐼4 (𝜂) , (48)

where 𝐼
4
(𝜂) = −(𝐷𝜀

2
𝜂
2
+ 𝑐𝜀
2
𝜂)𝑒
−𝜂𝑡

− 𝑑(𝑘
1
− 𝜀
2
𝑒
−𝜂𝑡
) + 𝜇(𝑘

2
−

𝜀4𝑒
−𝜂𝑡
). It follows from (34) that 𝐼4(0) > 0 and there exists

𝜂
∗

4
> 0 such that 𝑞1(𝑡) > 0 for all 𝜂 ∈ (0, 𝜂

∗

4
).

If 𝑡 ≤ 𝑡4, 𝜑2(𝑡) = 0, we obtain that

𝑞
2 (𝑡) := 𝐷𝜑



2
(𝑡) − 𝑐𝜑



2
(𝑡)

+ 𝛽 (
𝐴

𝑑
− 𝜙
1 (𝑡) − 𝜑2 (𝑡) − 𝜓1 (𝑡))

𝜑
2 (𝑡 − 𝑐𝜏)

1 + 𝛼𝜑2 (𝑡 − 𝑐𝜏)

− (𝛾 + 𝜇 + 𝑑) 𝜑
2 (𝑡) = 0.

(49)

If 𝑡 > 𝑡4, 𝜑2(𝑡) = 𝑘2 − 𝜀4𝑒
−𝜂𝑡, 𝜑2(𝑡 − 𝑐𝜏) ≥ 𝑘2 − 𝜀4𝑒

−𝜂(𝑡−𝑐𝜏),
𝜙1(𝑡) ≤ 𝑘1 + 𝜀1𝑒

−𝜂𝑡, 𝜓1(𝑡) ≤ 𝑘3 + 𝜀5𝑒
−𝜂𝑡, we have

𝑞
2 (𝑡) ≥ 𝐼5 (𝜂) , (50)

where

𝐼
5
(𝜂) = − (𝐷𝜀

4
𝜂
2
+ 𝑐𝜀
4
𝜂) 𝑒
−𝜂𝑡

− (𝛾 + 𝜇 + 𝑑) (𝑘
2
− 𝜀
4
𝑒
−𝜂𝑡
)

+ 𝛽 (
𝐴

𝑑
− 𝑘1 − 𝜀1𝑒

−𝜂𝑡
− 𝑘2 + 𝜀4𝑒

−𝜂𝑡
− 𝑘3

−𝜀
5
𝑒
−𝜂𝑡
)

𝑘
2
− 𝜀
4
𝑒
−𝜂(𝑡−𝑐𝜏)

1 + 𝛼𝑘
2
− 𝛼𝜀
4
𝑒−𝜂(𝑡−𝑐𝜏)

.

(51)

It follows from (34) that 𝐼
5
(0) > 0 and there exists 𝜂∗

5
> 0

such that 𝑞
2
(𝑡) > 0 for all 𝜂 ∈ (0, 𝜂∗

5
).

If 𝑡 ≤ 𝑡
6
, 𝜓
2
(𝑡) = 0, we have

𝑞
3 (𝑡) := 𝐷𝜓



2
(𝑡) − 𝑐𝜓



2
(𝑡) + 𝛾𝜑2 (𝑡)

− (𝛿 + 𝑑) 𝜓2 (𝑡) ≥ 0.

(52)

If 𝑡 > 𝑡
6
, 𝜓
2
(𝑡) = 𝑘

3
− 𝜀
6
𝑒
−𝜂𝑡, 𝜑
2
(𝑡) = 𝑘

2
− 𝜀
4
𝑒
−𝜂𝑡, we have

𝑞
3 (𝑡) ≥ 𝐼6 (𝜂) , (53)

where 𝐼
6
(𝜂) = −(𝐷𝜀

6
𝜂
2
+ 𝑐𝜀
6
𝜂)𝑒
−𝜂𝑡

+ 𝛾(𝑘
2
− 𝜀
4
𝑒
−𝜂𝑡
) − (𝛿 +

𝑑)(𝑘
3
− 𝜀
6
𝑒
−𝜂𝑡
). It follows from (34) that 𝐼

6
(0) > 0 and there

exists 𝜂∗
6
> 0 such that 𝑞3(𝑡) > 0 for all 𝜂 ∈ (0, 𝜂

∗

6
).

Thus, taking 𝜂 ∈ (0,min1≤𝑖≤6{𝜂
∗

𝑖
}), we prove thatΦ(𝑡) and

Ψ(𝑡) are upper and lower solutions of (9).

Now we obtain and state the main result in this paper.

Theorem 10. Assume that 𝐴𝛽/𝑑(𝛾 + 𝜇 + 𝑑) > 1 and 𝜇/𝑑 +

𝛾/(𝛿 + 𝑑) < 1; then, for any 𝑐 > 𝑐
∗, (5) has a traveling wave

solution connecting two equilibria 𝐸0 and 𝐸∗. Furthermore,
system (4) has a traveling wave solution with speed 𝑐, which
connects two states (𝐴/𝑑, 0, 0) and (𝐴/𝑑 − 𝑘1, 𝑘2, 𝑘3).
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