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The following fractional difference boundary value problems 󳵻]
𝑦 (𝑡) = −𝑓 (𝑡 + ] − 1, 𝑦 (𝑡 + ] − 1)), 𝑦(] − 2) = 𝑦(] + 𝑏 + 1) = 0

are considered, where 1 < ] ≤ 2 is a real number and 󳵻
]
𝑦(𝑡) is the standard Riemann-Liouville fractional difference. Based on the

Krasnosel’skǐı theorem and the Schauder fixed point theorem, we establish some conditions on 𝑓 which are able to guarantee that
this FBVP has at least two positive solutions and one solution, respectively. Our results significantly improve and generalize those
in the literature. A number of examples are given to illustrate our main results.

1. Introduction

Fractional difference equations have been of great interest
recently. It is caused by the intensive development of the
theory of discrete fractional calculus itself; see [1–8]. Diaz
and Osler [1] introduced a fractional difference defined as
an infinite series, a generalization of the binomial formula
for the 𝑁th order difference 󳵻

𝑁
𝑓. Gray and Zhang [2]

developed a special case for one composition rule and Leibniz
formula. They worked exclusively with the nabla operator.
A recent interest in discrete fractional calculus has been
shown by Atici et al.; see [3–12]. Atici and Eloe developed
some of the basic theory of both discrete fractional IVPs
and BVPs with delta derivative on the time scale Z. In
particular, Atıcı and Şengül [5] provided some analysis of
discrete fractional variational problems. Their paper also
provided some initial attempts at using the discrete fractional
calculus to model biological processes. Similarly, Goodrich
[7–12] has established some results on both discrete fractional
IVPs and BVPs. Holm [13] introduced fractional sum and
difference operators and presented a complete and precise
theory for composing fractional sums and differences. In
addition, Wu and Baleanu [14] mainly concentrated on the
analytical aspects, and the variational iteration method is
extended in a new way to solve an initial value problem
of 𝑞-fractional difference equations. Following this trend,

in [15, 16], the authors discussed the boundary value problems
of fractional difference equations depending on parameters.

In this paper, we consider the following boundary value
problems for a fractional difference equation (FBVP):

󳵻
]
𝑦 (𝑡) = −𝑓 (𝑡 + ] − 1, 𝑦 (𝑡 + ] − 1)) ,

𝑦 (] − 2) = 𝑦 (] + 𝑏 + 1) = 0,

(1)

where 𝑡 ∈ [0, 𝑏 + 1]N0
, 𝑓 : [] − 1, ] + 𝑏]N]−1

× R → R is
continuous and 𝑓 is not identically zero, 1 < ] ⩽ 2, 𝑏 > 2

is an integer, and 󳵻
]
𝑦(𝑡) is the standard Riemann-Liouville

fractional difference. In this paper, we will use properties of
Green’s function of the FBVP (1) and the Krasnosel’skǐı fixed
point theorem to show that the FBVP (1) has at least one or
two positive solutions. Our results significantly improve and
generalize the results in [6, 8].

The plan of this paper is as follows. In Section 2, we will
present some necessary lemmas. By using the Krasnosel’skǐı
theorem, Section 3 proves the existence of two positive
solutions for the FBVP (1). Section 4 deduces the existence
of one solution by using Schauder’s fixed point theorem.

2. Preliminaries

In this section, we first review some basic notations and
lemmas about fractional sums and differences in [6–8, 13].
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For any 𝑡 and ], we define

𝑡
]
=

Γ (𝑡 + 1)

Γ (𝑡 + 1 − ])
(2)

for which the right-hand side is defined. We appeal to the
convention that if 𝑡 + 1 − ] is a pole of the Gamma function
and 𝑡 + 1 is not a pole, then 𝑡

]
= 0.

The ]th fractional sum of a function 𝑓 is

󳵻
−]
𝑓 (𝑡) =

1

Γ (])

𝑡−]

∑

𝑠=𝑎

(𝑡 − 𝑠 − 1)
]−1

𝑓 (𝑠) (3)

for ] > 0 and 𝑡 ∈ {𝑎+], 𝑎+]+1, . . .} = N
𝑎+].We also define the

]th fractional difference for ] > 0 by 󳵻]
𝑓(𝑡) = 󳵻

𝑛
󳵻
−(𝑛−])

𝑓(𝑡),
where 𝑡 ∈ N

𝑎+𝑛−], and 𝑛 ∈ N is chosen such that 0 ⩽ 𝑛 − 1 <

] ⩽ 𝑛.
Let 0 ⩽ 𝑛 − 1 < ] ⩽ 𝑛. Then

󳵻
−]
󳵻
]
𝑓 (𝑡) = 𝑓 (𝑡) + 𝑐

1(𝑡 − 𝑎)
]−1

+ 𝑐
2(𝑡 − 𝑎)

]−2

+ ⋅ ⋅ ⋅ + 𝑐
𝑛(𝑡 − 𝑎)

]−𝑛
, 𝑐
𝑖
∈ R, 1 ⩽ 𝑖 ⩽ 𝑛.

(4)

In order to prove our results, we now provide some
properties on Green’s function associated with the problem
(1).

Lemma 1 (see [6, Theorem 3.1]). Let 1 < ] ⩽ 2 and 𝑓 : [] −

1, ]+ 𝑏]N]−1
×R → R be given. Then the solution of the FBVP

(1) is given by

𝑦 (𝑡) =

𝑏+1

∑

𝑠=0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠 + ] − 1, 𝑦 (𝑠 + ] − 1)) , (5)

where Green’s function𝐺 : []−1, ]+𝑏]N]−1
× [0, 𝑏+1]N0

→ R

is defined by

𝐺 (𝑡, 𝑠) =
1

Γ (])

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

𝑡
]−1

(] + 𝑏 − 𝑠)
]−1

(] + 𝑏 + 1)
]−1 − (𝑡 − 𝑠 − 1)

]−1
,

0 ⩽ 𝑠 < 𝑡 − ] + 1 ⩽ 𝑏 + 1,

𝑡
]−1

(] + 𝑏 − 𝑠)
]−1

(] + 𝑏 + 1)
]−1

0 ⩽ 𝑡 − ] + 1 ⩽ 𝑠 ⩽ 𝑏 + 1.

(6)

Remark 2. It is easy to see that 𝐺(] − 2, 𝑠) = 𝐺(] + 𝑏 + 1, 𝑠) =

0. 𝐺 could be extended to [] − 2, ] + 𝑏 + 1]N]−1
× [0, 𝑏 + 1]N0

;
we only discuss (𝑡, 𝑠) ∈ [] − 1, ] + 𝑏]N]−1

× [0, 𝑏 + 1]N0
.

Lemma 3 (see [6, Theorem 3.2]). The Green function 𝐺(𝑡, 𝑠)

satisfies the following conditions.

(i) 𝐺(𝑡, 𝑠) > 0, (𝑡, 𝑠) ∈ [] − 1, ] + 𝑏]N]−1
× [0, 𝑏 + 1]N0

.
(ii) max

𝑡∈[]−1,]+𝑏]N]−1
𝐺(𝑡, 𝑠) = 𝐺(𝑠+]−1, 𝑠), 𝑠 ∈ [0, 𝑏+1]N0

.

(iii) There exists a number 𝛾 ∈ (0, 1) such that

min
(]+𝑏)/4⩽𝑡⩽3(]+𝑏)/4

𝐺 (𝑡, 𝑠) ⩾ 𝛾 max
𝑡∈[]−1,]+𝑏]N]−1

𝐺 (𝑡, 𝑠)

= 𝛾𝐺 (𝑠 + ] − 1, 𝑠) , 𝑠 ∈ [0, 𝑏 + 1]N0
.

(7)

Denote

B = {𝑦 : [] − 2, ] + 𝑏 + 1]N]−2
󳨀→ R,

𝑦 (] − 2) = 𝑦 (] + 𝑏 + 1) = 0} .

(8)

It is clear that B is a Banach space with the norm ‖𝑦‖ =

max
𝑡∈[]−2,]+𝑏]N0

|𝑦(𝑡)|. We choose a cone

K = {𝑦 ∈ B : 𝑦 (𝑡) ⩾ 0, min
(]+𝑏)/4⩽𝑡⩽3(]+𝑏)/4

𝑦 (𝑡) ⩾ 𝛾
󵄩󵄩󵄩󵄩
𝑦
󵄩󵄩󵄩󵄩
} .

(9)

Now consider the operator 𝑇 defined by

(𝑇𝑦) (𝑡) =

𝑏+1

∑

𝑠=0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠 + ] − 1, 𝑦 (𝑠 + ] − 1)) . (10)

Referring to Lemma 3.1 of [8], we have the following.

Lemma 4.

𝑇 (K) ⊆ K. (11)

We notice that 𝑇 is a summation operator on a discrete
finite set. Hence, 𝑇 is trivially completely continuous. And a
fixed point of 𝑇 is equivalent to a solution of the FBVP (1).
Wewill obtain sufficient conditions on the nonlinear𝑓 for the
existence of fixed points of 𝑇. In order to prove our results,
we need the following well-known Krasnosel’skǐı fixed point
theorem.

Lemma 5 (see [17]). Let B be a Banach space and let K ⊆

B be a cone. Assume that Ω
1
and Ω

2
are bounded open sets

contained in B such that 0 ∈ Ω
1
and Ω

1
⊆ Ω
2
. Assume 𝑇 :

K ∩ (Ω
2
\ Ω
1
) → K is a completely continuous operator. If

either

(i) ‖𝑇𝑦‖ ⩽ ‖𝑦‖ for 𝑦 ∈ K ∩ 𝜕Ω
1
and ‖𝑇𝑦‖ ⩾ ‖𝑦‖ for

𝑦 ∈ K ∩ 𝜕Ω
2
; or

(ii) ‖𝑇𝑦‖ ⩾ ‖𝑦‖ for 𝑦 ∈ K ∩ 𝜕Ω
1
and ‖𝑇𝑦‖ ⩽ ‖𝑦‖ for

𝑦 ∈ K ∩ 𝜕Ω
2
.

Then the operator𝑇 has at least one fixed point inK∩(Ω
2
\Ω
1
).

3. Existence of Positive Solutions

In this section, we state and prove the multiplicity of positive
solutions regarding FBVP (1). Then, we conclude this section
with two examples to illustrate our main results. For this, we
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need to suppose that𝑓 : []−1, ]+𝑏]N]−1
×[0, +∞) → [0, +∞)

is continuous and 𝑓 is not identically zero. Denote

𝑓
0
= lim inf
𝑦→0

min
𝑡∈[]−2,]+𝑏]N]−2

𝑓 (𝑡, 𝑦)

𝑦
,

𝑓
0
= lim sup
𝑦→0

max
𝑡∈[]−2,]+𝑏]N]−2

𝑓 (𝑡, 𝑦)

𝑦
,

𝑓
∞

= lim inf
𝑦→+∞

min
𝑡∈[]−2,]+𝑏]N]−2

𝑓 (𝑡, 𝑦)

𝑦
,

𝑓
∞

= lim sup
𝑦→+∞

max
𝑡∈[]−2,]+𝑏]N]−2

𝑓 (𝑡, 𝑦)

𝑦
,

𝜂 =
1

∑
𝑏+1

𝑠=0
𝐺 (𝑠 + ] − 1, 𝑠)

,

𝜆 =
1

𝛾∑
[3(]+𝑏)/4−]+1]
𝑠=[(]+𝑏)/4−]+1] 𝐺 ([(𝑏 − ]) /2] + ], 𝑠)

,

(12)

where 𝛾 is the constant in Lemma 3. In the sequel, let Ω
𝑟
=

{𝑦 ∈ K : ‖𝑦‖ < 𝑟}, for 𝑟 > 0, and 𝜕Ω
𝑟
= {𝑦 ∈ K : ‖𝑦‖ = 𝑟}.

For convenience in what follows, we state these conditions of
this section below.

(𝐶1) There is a 𝑝 > 0 such that 𝑓(𝑡, 𝑦) < 𝜂𝑝 for 0 ⩽ 𝑦 ⩽ 𝑝

and ] − 2 ⩽ 𝑡 ⩽ ] + 𝑏.

(𝐶2) There is a 𝑝 > 0 such that 𝑓(𝑡, 𝑦) > 𝜆𝑝 for 𝛾𝑝 ⩽ 𝑦 ⩽ 𝑝

and (] + 𝑏)/4 ⩽ 𝑡 ⩽ 3(] + 𝑏)/4.

(𝐶3) 𝑓
0
> 𝜆, 𝑓

∞
> 𝜆.

(𝐶4) 𝑓
0
< 𝜂, 𝑓∞ < 𝜂.

Lemma 6 (see [8]). Suppose that there exist two different
positive numbers 𝑟 and 𝑅 such that 𝑓 satisfies condition (𝐶1)

at 𝑟 and condition (𝐶2) at 𝑅. Then FBVP (1) has at least one
positive solution 𝑦

0
∈ K satisfying min{𝑟, 𝑅} ⩽ ‖𝑦

0
‖ ⩽

max{𝑟, 𝑅}.

Theorem 7. Assume that𝑓 satisfies conditions (𝐶1) and (𝐶3).
Then FBVP (1) has at least two positive solutions𝑦

1
and𝑦
2
with

0 < ‖𝑦
1
‖ < 𝑝 ⩽ ‖𝑦

2
‖.

Proof. Suppose that (𝐶3) holds. Since𝑓
0
> 𝜆, there exist 𝜀 > 0

and 0 < 𝑟
0
< 𝑝 such that 𝑓(𝑡, 𝑦) ⩾ (𝜆 + 𝜀)𝑦, 0 ⩽ 𝑦 ⩽ 𝑟

0
,

𝑡 ∈ []−2, ]+𝑏]N]−2
. Let 𝑟
1
∈ (0, 𝑟

0
) andnote that [(𝑏−])/2]+] ∈

[(𝑏 + ])/4, 3(𝑏 + ])/4]. Thus for 𝑦 ∈ 𝜕Ω
𝑟1
, we get

(𝑇𝑦) ([
𝑏 − ]
2

] + ])

=

𝑏+1

∑

𝑠=0

𝐺([
𝑏 − ]
2

] + ], 𝑠) 𝑓 (𝑠 + ] − 1, 𝑦 (𝑠 + ] − 1))

⩾

𝑏+1

∑

𝑠=0

𝐺([
𝑏 − ]
2

] + ], 𝑠) (𝜆 + 𝜀) 𝑦

⩾ (𝜆 + 𝜀) ⋅ 𝛾
󵄩󵄩󵄩󵄩
𝑦
󵄩󵄩󵄩󵄩

[(3(]+𝑏)/4)−]+1]

∑

𝑠=[((]+𝑏)/4)−]+1]
𝐺([

𝑏 − ]
2

] + ], 𝑠)

> 𝜆 ⋅ 𝛾
󵄩󵄩󵄩󵄩
𝑦
󵄩󵄩󵄩󵄩

[(3(]+𝑏)/4)−]+1]

∑

𝑠=[((]+𝑏)/4)−]+1]
𝐺([

𝑏 − ]
2

] + ], 𝑠)

= 𝑟
1
;

(13)

that is, there is ‖𝑇𝑦‖ > ‖𝑦‖ for 𝑦 ∈ K ∩ 𝜕Ω
𝑟1
.

On the other hand, since 𝑓
∞

> 𝜆, there exist 𝜎 > 0 and
𝑅
0
> 0 such that 𝑓(𝑡, 𝑦) ⩾ (𝜆 + 𝜎)𝑦, 𝑦 ⩾ 𝑅

0
, 𝑡 ∈ [] − 2, ] +

𝑏]N]−2
. Choose𝑅

1
> max{(1/𝛾)𝑅

0
, 𝑝}. If𝑦 ∈ 𝜕Ω

𝑅1
, then𝑦(𝑡) ⩾

𝛾‖𝑦‖ > 𝑅
0
for (] + 𝑏)/4 ⩽ 𝑡 ⩽ 3(] + 𝑏)/4. So it follows that

(𝑇𝑦) ([
𝑏 − ]
2

] + ])

=

𝑏+1

∑

𝑠=0

𝐺([
𝑏 − ]
2

] + ], 𝑠) 𝑓 (𝑠 + ] − 1, 𝑦 (𝑠 + ] − 1))

⩾

𝑏+1

∑

𝑠=0

𝐺([
𝑏 − ]
2

] + ], 𝑠) (𝜆 + 𝜎) 𝑦

⩾ (𝜆 + 𝜎) ⋅ 𝛾
󵄩󵄩󵄩󵄩
𝑦
󵄩󵄩󵄩󵄩

[(3(]+𝑏)/4)−]+1]

∑

𝑠=[((]+𝑏)/4)−]+1]
𝐺([

𝑏 − ]
2

] + ], 𝑠)

> 𝜆 ⋅ 𝛾
󵄩󵄩󵄩󵄩
𝑦
󵄩󵄩󵄩󵄩

[(3(]+𝑏)/4)−]+1]

∑

𝑠=[((]+𝑏)/4)−]+1]
𝐺([

𝑏 − ]
2

] + ], 𝑠)

= 𝑅
1
,

(14)

from which we see that ‖𝑇𝑦‖ > ‖𝑦‖ for 𝑦 ∈ K ∩ 𝜕Ω
𝑅1
.

For any 𝑦 ∈ 𝜕Ω
𝑝
, from (𝐶1), we have 𝑓(𝑡, 𝑦) ⩽ 𝜂𝑝, 𝑡 ∈

[] − 2, ] + 𝑏]N]−2
.

Consider

(𝑇𝑦) (𝑡) =

𝑏+1

∑

𝑠=0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠 + ] − 1, 𝑦 (𝑠 + ] − 1))

⩽

𝑏+1

∑

𝑠=0

𝐺 (𝑠 + ] − 1, 𝑠) 𝜂𝑝

= 𝑝 =
󵄩󵄩󵄩󵄩
𝑦
󵄩󵄩󵄩󵄩
;

(15)

that is, there is ‖𝑇𝑦‖ ⩽ ‖𝑦‖ for 𝑦 ∈ K ∩ 𝜕Ω
𝑝
.

Consequently, Lemma 5 implies that there are two fixed
points 𝑦

1
and 𝑦
2
of operator 𝑇 such that 0 < ‖𝑦

1
‖ < 𝑝 < ‖𝑦

2
‖.

And this completes the proof.

Remark 8. By the proof of Theorem 7, we know that the
conclusion of Theorem 7 is valid if (𝐶3) is replaced by 𝑓

0
=

+∞ and 𝑓
∞

= +∞. Namely, our result in this paper improve
Theorem 3.4 in [8].

Theorem 9. Suppose that conditions (𝐶2) and (𝐶4) hold, 𝑓 >

0 for 𝑡 ∈ []−2, ]+𝑏]N]−2
.Then FBVP (1) has at least two positive

solutions 𝑦
1
and 𝑦

2
with 0 < ‖𝑦

1
‖ < 𝑝 < ‖𝑦

2
‖.
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Proof. From the assumption𝑓
0
< 𝜂, one can find 𝜀 > 0(𝜀 < 𝜂)

and 0 < 𝑟
0
< 𝑝 such that 𝑓(𝑡, 𝑦) ⩽ (𝜂 − 𝜀)𝑦, 0 ⩽ 𝑦 ⩽ 𝑟

0
,

𝑡 ∈ [] − 2, ] + 𝑏]N]−2
. Let 𝑟

2
∈ (0, 𝑟

0
); then for 𝑦 ∈ 𝜕Ω

𝑟2
, we

have

(𝑇𝑦) (𝑡) =

𝑏+1

∑

𝑠=0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠 + ] − 1, 𝑦 (𝑠 + ] − 1))

⩽

𝑏+1

∑

𝑠=0

𝐺 (𝑠 + ] − 1, 𝑠) (𝜂 − 𝜀) 𝑟
2

< 𝜂𝑟
2

𝑏+1

∑

𝑠=0

𝐺 (𝑠 + ] − 1, 𝑠)

= 𝑟
2
=
󵄩󵄩󵄩󵄩
𝑦
󵄩󵄩󵄩󵄩
,

(16)

from which we see that ‖𝑇𝑦‖ < ‖𝑦‖ for 𝑦 ∈ 𝜕Ω
𝑟2
.

On the other hand, since 𝑓
∞

< 𝜂, there exist 0 < 𝜎 < 𝜂

and 𝑅
0
> 0 such that

𝑓 (𝑡, 𝑦) ⩽ 𝜎𝑦, 𝑦 ⩾ 𝑅
0
, 𝑡 ∈ [] − 2, ] + 𝑏]N]−2

. (17)

Denote 𝑀 = max
(𝑡,𝑦)∈[]−2,]+𝑏]N]−2×[0,𝑅0]

𝑓(𝑡, 𝑦); then 0 ⩽

𝑓(𝑡, 𝑦) ⩽ 𝜎𝑦+𝑀, 0 ⩽ 𝑦 < +∞. Let𝑅
2
> max{2𝑝,𝑀/(𝜂−𝜎)}.

For 𝑦 ∈ 𝜕Ω
𝑅2
, we have

󵄩󵄩󵄩󵄩
𝑇𝑦

󵄩󵄩󵄩󵄩
= max
𝑡∈[]−2,]+𝑏]N]−2

𝑏+1

∑

𝑠=0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠 + ] − 1, 𝑦 (𝑠 + ] − 1))

⩽

𝑏+1

∑

𝑠=0

𝐺 (𝑠 + ] − 1, 𝑠) 𝑓 (𝑠 + ] − 1, 𝑦 (𝑠 + ] − 1))

⩽ (𝜎
󵄩󵄩󵄩󵄩
𝑦
󵄩󵄩󵄩󵄩
+ 𝑀)

𝑏+1

∑

𝑠=0

𝐺 (𝑠 + ] − 1, 𝑠)

= (𝜎𝑅
2
+ 𝑀) ⋅

1

𝜂
< 𝑅
2
.

(18)

Therefore, we have ‖𝑇𝑦‖ < ‖𝑦‖ for 𝑦 ∈ 𝜕Ω
𝑅2
.

Finally, for any 𝑦 ∈ 𝜕Ω
𝑝
, since 𝛾𝑝 ⩽ 𝑦(𝑡) ⩽ 𝑝 for 𝑡 ∈

[(] + 𝑏)/4, 3(] + 𝑏)/4], we estimate

(𝑇𝑦) ([
𝑏 − ]
2

] + ])

=

𝑏+1

∑

𝑠=0

𝐺([
𝑏 − ]
2

] + ], 𝑠) 𝑓 (𝑠 + ] − 1, 𝑦 (𝑠 + ] − 1))

> 𝜆𝛾𝑝

[(3(]+𝑏)/4)−]+1]

∑

𝑠=[((]+𝑏)/4)−]+1]
𝐺([

𝑏 − ]
2

] + ], 𝑠)

= 𝑝 =
󵄩󵄩󵄩󵄩
𝑦
󵄩󵄩󵄩󵄩
.

(19)

Hence ‖𝑇𝑦‖ > ‖𝑦‖ for 𝑦 ∈ K ∩ 𝜕Ω
𝑝
.

By Lemma 5, the proof is complete.

Remark 10. From the proof of Theorem 9, we know that the
conclusion of Theorem 9 is valid if the condition (𝐶4) is
replaced by 𝑓

0
= 0 and 𝑓

∞
= 0.

Remark 11. Theorem 9 is not included in [6, 8].
From the proof of Theorems 7 and 9, we have the

following.

Theorem 12. Suppose that 𝑓
0
> 𝜆, 𝑓

∞
< 𝜂. Then FBVP (1)

has at least one positive solution.

Theorem 13. Suppose that 𝑓0 < 𝜂,𝑓
∞

> 𝜆. Then FBVP (1)
has at least one positive solution.

Remark 14. Theorems 12 and 13 in this paper significantly
generalize Theorems 4.1 and 4.2 in [6].

Example 15. Consider the following boundary value prob-
lems:

󳵻
9/8

𝑦 (𝑡) = −
1

100
𝑒
𝑡−(57/8)

(𝑦
1/2

(𝑡 +
1

8
) +

1

4
𝑦
2
(𝑡 +

1

8
)) ,

𝑦 (−
7

8
) = 𝑦(

65

8
) = 0,

(20)

where ] = 9/8 and 𝑏 = 6, and 𝑓(𝑡, 𝑦) =

(1/100)𝑒
𝑡−(29/4)

(𝑦
1/2

+ (1/4)𝑦
2
). A simple computation shows

that 𝜂 > 0.0126, 𝜆 = 5/18𝛾 (𝛾 is the constant in
Lemma 3(iii)), and 𝑓

0
= 𝑓
∞

= +∞. Taking 𝑝 = 1, we get

𝑓 (𝑡, 𝑦) =
1

100
𝑒
𝑡−(29/4)

(𝑦
1/2

+
1

4
𝑦
2
)

⩽
1

100
(𝑝
1/2

+
1

4
𝑝
2
)

= 0.0125 < 𝜂𝑝,

(21)

0 ⩽ 𝑦 ⩽ 𝑝, ] − 2 ⩽ 𝑡 ⩽ 𝑏 + ]. All conditions in Theorem 7
are satisfied. Therefore FBVP (20) has at least two positive
solutions 𝑦

1
and 𝑦

2
such that 0 < ‖𝑦

1
‖ < 1 < ‖𝑦

2
‖.

Example 16. Consider the following boundary value prob-
lems:

󳵻
9/8

𝑦 (𝑡) = −
1

100
𝑦 (𝑡 +

1

8
) [1 +

28 − 𝛾

𝛾 (1 + 𝑦
2
(𝑡 + (1/8)))

] ,

𝑦 (−
7

8
) = 𝑦(

65

8
) = 0,

(22)
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where ] = 9/8 and 𝑏 = 6, and 𝑓(𝑡, 𝑦) = (1/100)𝑦[1 + ((28 −

𝛾)/𝛾(1 + 𝑦
2
))] (𝛾 is the constant in Lemma 3(iii)); it is easy to

compute that

𝑓
∞

= lim sup
𝑦→+∞

max
𝑡∈[]−2,]+𝑏]N]−2

1

100
(1 +

28 − 𝛾

𝛾 (1 + 𝑦
2
)

)

=
1

100
< 0.0126 < 𝜂,

𝑓
0
= lim inf
𝑦→0

+

min
𝑡∈[]−2,]+𝑏]N]−2

1

100
(1 +

28 − 𝛾

𝛾 (1 + 𝑦
2
)

)

=
7

25𝛾
>

5

18𝛾
= 𝜆,

(23)

which yields the condition of Theorem 12. By Theorem 12,
FBVP (22) has at least one positive solution.

4. Existence of Solutions

In this section, we give the existence of solutions for problem
(1). We will prove this result by using Schauder’s fixed point
theorem and provide an example to illustrate our results.

Theorem 17. Let 𝑓 : [] − 1, ] + 𝑏]N]−1
× R → R

be a continuous function. Suppose that one of the following
conditions is satisfied.

(𝐻
1
) There exist a nonnegative function 𝑎(𝑡) ∈ C[]−1, ]+𝑏]
and a constant 𝑐 such that |𝑓(𝑡, 𝑦)| ⩽ 𝑎(𝑡)+𝑐|𝑦|

𝜌, where
𝑐 ⩾ 0, 0 < 𝜌 < 1.

(𝐻
2
) |𝑓(𝑡, 𝑦)| ⩽ 𝑐|𝑦|

𝜌, where 𝑐 > 0, 𝜌 > 1.

Then problem (1) has at least one solution.

Proof. First, suppose the condition (𝐻
1
) can be satisfied. Let

𝐸 = {𝑦 (𝑡) ∈ B :
󵄩󵄩󵄩󵄩
𝑦
󵄩󵄩󵄩󵄩
⩽ 𝑅, 𝑡 ∈ [] − 2, ] + 𝑏]N]−2

} , (24)

where

𝑅 ⩾ max{2

𝑏+1

∑

𝑠=0

𝐺 (𝑠 + ] − 1, 𝑠) |𝑎 (𝑠 + ] − 1)| ,

[4𝑐
Γ (] + 𝑏 + 2)

Γ (𝑏 + 2) Γ (] + 1)

]

1/(1−𝜌)

} .

(25)

Obviously, 𝐸 is a closed ball in the Banach spaceB.
Now we prove that 𝑇 : 𝐸 → 𝐸. For any 𝑦 ∈ 𝐸, then

󵄨󵄨󵄨󵄨
(𝑇𝑦) (𝑡)

󵄨󵄨󵄨󵄨
⩽

𝑏+1

∑

𝑠=0

󵄨󵄨󵄨󵄨󵄨
𝐺 (𝑡, 𝑠) [𝑎 (𝑠 + ] − 1)

+𝑐
󵄨󵄨󵄨󵄨
𝑦 (𝑠 + ] − 1)

󵄨󵄨󵄨󵄨

𝜌
]
󵄨󵄨󵄨󵄨󵄨

⩽

𝑏+1

∑

𝑠=0

|𝐺 (𝑡, 𝑠) 𝑎 (𝑠 + ] − 1)|

+

𝑏+1

∑

𝑠=0

𝑐
󵄩󵄩󵄩󵄩
𝑦 (𝑠 + ] − 1)

󵄩󵄩󵄩󵄩

𝜌
⋅ |𝐺 (𝑡, 𝑠)|

⩽

𝑏+1

∑

𝑠=0

𝐺 (𝑠 + ] − 1, 𝑠) |𝑎 (𝑠 + ] − 1)|

+ 𝑐𝑅
𝜌
(

𝑡−]

∑

𝑠=0

|𝐺 (𝑡, 𝑠)| +

𝑏+1

∑

𝑠=𝑡−]+1
|𝐺 (𝑡, 𝑠)|)

⩽

𝑏+1

∑

𝑠=0

𝐺 (𝑠 + ] − 1, 𝑠) |𝑎 (𝑠 + ] − 1)|

+
𝑐𝑅
𝜌

Γ (])
(

𝑡−]

∑

𝑠=0

(𝑡 − 𝑠 − 1)
]−1

+

𝑏+1

∑

𝑠=0

𝑡
]−1

(] + 𝑏 − 𝑠)
]−1

(] + 𝑏 + 1)
]−1 )

⩽

𝑏+1

∑

𝑠=0

𝐺 (𝑠 + ] − 1, 𝑠) |𝑎 (𝑠 + ] − 1)|

+ 𝑐𝑅
𝜌 max
𝑡∈[]−2,]+𝑏]𝑁]−2

(
1

Γ (])

𝑡−]

∑

𝑠=0

(𝑡 − 𝑠 − 1)
]−1

)

+ 𝑐𝑅
𝜌 max
𝑡∈[]−2,]+𝑏]𝑁]−2

(
𝑡
]−1

Γ (]) (] + 𝑏 + 1)
]−1

×

𝑏+1

∑

𝑠=0

(] + 𝑏 − 𝑠)
]−1

) .

(26)
Notice that

1

Γ (])

𝑡−]

∑

𝑠=0

(𝑡 − 𝑠 − 1)
]−1

=
1

Γ (])
[−

1

]
(𝑡 − 𝑠)

]
]

𝑡−]+1

𝑠=0

=
1

Γ (] + 1)

𝑡
]
≤

Γ (] + 𝑏 + 1)

Γ (𝑏 + 1) Γ (] + 1)

,

𝑡
]−1

Γ (]) (] + 𝑏 + 1)
]−1

𝑏+1

∑

𝑠=0

(] + 𝑏 − 𝑠)
]−1

⩽
1

Γ (])

𝑏+1

∑

𝑠=0

(] + 𝑏 − 𝑠)
]−1

=
1

Γ (])
[−

1

]
(] + 𝑏 − 𝑠 + 1)

]
]

𝑏+2

𝑠=0

=
Γ (] + 𝑏 + 2)

Γ (𝑏 + 2) Γ (] + 1)

.

(27)
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Thus
󵄨󵄨󵄨󵄨
(𝑇𝑦) (𝑡)

󵄨󵄨󵄨󵄨

⩽

𝑏+1

∑

𝑠=0

𝐺 (𝑠 + ] − 1, 𝑠) |𝑎 (𝑠 + ] − 1)|

+ 2𝑐𝑅
𝜌 Γ (] + 𝑏 + 2)

Γ (𝑏 + 2) Γ (] + 1)

⩽
𝑅

2
+

𝑅

2
= 𝑅;

(28)

we get ‖𝑇𝑦‖ ⩽ 𝑅.
Second, suppose the condition (𝐻

2
) can be satisfied; we

choose

0 < 𝑅 ⩽ (
Γ (𝑏 + 2) Γ (] + 1)

2𝑐Γ(] + 𝑏 + 2)
)

1/(𝜌−1)

. (29)

With a similar argument as the above, we obtain ‖𝑇𝑦‖ ⩽ 𝑅.
Consequently, we get 𝑇 : 𝐸 → 𝐸.

Note that 𝑇 is a summation operator on a discrete finite
set. Hence, 𝑇 is trivially completely continuous. Therefore,
according to the Schauder fixed point theorem, 𝑇 has a fixed
point 𝑦. Namely, 𝑦 is a solution of problem (1). The theorem
is proved.

Remark 18. In this section, 𝑓 is only a continuous function,
without nonnegative assumptions on function 𝑓.

Remark 19. If 𝜌 = 1 in (𝐻
1
), we need the condition 𝑐(Γ(] +

𝑏 + 2)/Γ(𝑏 + 2)Γ(] + 1)) ⩽ 1/4. Then, choose

𝑅 ⩾ 2

𝑏

∑

𝑠=0

𝐺 (𝑠 + ] − 1, 𝑠) |𝑎 (𝑠 + ] − 1)| . (30)

If 𝜌 = 1 in (𝐻
2
), we only need the condition 𝑐(Γ(]+𝑏+2)/Γ(𝑏+

2)Γ(]+1)) ⩽ 1/2.Then the conclusion ofTheorem 17 remains
true.

Example 20. Consider the fractional difference equation

󳵻
3/2

𝑦 (𝑡) = − (𝑡 +
1

2
)

4

𝑦
𝜌
(𝑡 +

1

2
) ,

𝑦 (−
1

2
) = 𝑦(

5

2
+ 𝑏) = 0,

(31)

where 𝑡 ∈ [] − 2, ] + 𝑏]N]−2
, 0 < 𝜌 < 1 or 𝜌 > 1, 𝑏 ∈ N

+
, and

𝑎(𝑡) = 0, 𝑓(𝑡, 𝑦) = 𝑡
4
𝑦
𝜌. By using Theorem 17, the existence

of solutions is obvious for 0 < 𝜌 < 1 or 𝜌 > 1.
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