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We give a sufficient and necessary condition for the permanence of a discrete model with Beddington-DeAngelis functional
response with the form 𝑥(𝑛 + 1) = 𝑥(𝑛)exp{𝑎(𝑛) − 𝑏(𝑛)𝑥(𝑛) − 𝑐(𝑛)𝑦(𝑛)/(𝛼(𝑛) + 𝛽(𝑛)𝑥(𝑛) + 𝛾(𝑛)𝑦(𝑛))}, 𝑦(𝑛 + 1) = 𝑦(𝑛)exp{−𝑑(𝑛) +
𝑓(𝑛)𝑥(𝑛)/(𝛼(𝑛) + 𝛽(𝑛)𝑥(𝑛) + 𝛾(𝑛)𝑦(𝑛))}, where 𝑎(𝑛), 𝑏(𝑛), 𝑐(𝑛), 𝑑(𝑛), 𝑓(𝑛), 𝛼(𝑛), 𝛽(𝑛), and 𝛾(𝑛) are periodic sequences with the
common period 𝜔; 𝑏(𝑛) is nonnegative; 𝑐(𝑛), 𝑑(𝑛), 𝑓(𝑛), 𝛼(𝑛), 𝛽(𝑛), and 𝛾(𝑛) are positive. It is because of the difference between
the comparison theorem for discrete system and its corresponding continuous system that an additional condition should be
considered. In addition, through some analysis on the limit case of this system, we find that the sequence 𝛼(𝑛) has great influence
on the permanence.

1. Introduction

Manymathematicalmodels have been established to describe
the relationships between the species and the outer environ-
ment or among the different species in biomathematics. The
dynamics of the growth of a population can be described if the
functional behavior of the rate of growth is known. Of course,
it is this functional behavior which is usually measured
in the laboratory or in the field. Among the relationships
between the species living in the same outer environment, the
predator-prey theory plays an important and fundamental
role. The dynamic relationship between predators and their
prey has long been and will continue to be one of the
dominant themes in both ecology and mathematical ecology
due to its universal existence and importance.These problems
may appear to be simple mathematically at first sight; they
are, in fact, very challenging and complicated. Though most
predator-prey theories are based on continuous models
governed by differential equations, the discrete time models
are more appropriate than the continuous ones when the
size of the population is rarely small or the population has
nonoverlapping generations. On the other hand, the concept
of permanence has played an important role in mathematical

ecology. Biologically, when a system of interacting species is
persistent in a suitable sense, it means that all the species
survive in the long term. For investigations on permanence
of discrete predator-prey models, one can refer to [1–3] and
references cited therein.

In 2006, Cui and Takeuchi studied the permanence,
extinction, and periodic solutions for a predator-prey model
with Beddington-DeAngelis functional response (see [4]);
they gave a sufficient and necessary condition to guarantee
the predator and prey to be permanent. As we all know, the
continuous dynamic system and its corresponding discrete
dynamic system, in some extent, have some similar prop-
erties, but also they have many differences. In this paper,
we want to study the permanence for the following discrete
predator-prey model with Beddington-DeAngelis functional
response:

𝑥 (𝑛 + 1)

= 𝑥 (𝑛) exp{𝑎 (𝑛) − 𝑏 (𝑛) 𝑥 (𝑛)

−

𝑐 (𝑛) 𝑦 (𝑛)

𝛼 (𝑛) + 𝛽 (𝑛) 𝑥 (𝑛) + 𝛾 (𝑛) 𝑦 (𝑛)

} ,
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𝑦 (𝑛 + 1)

= 𝑦 (𝑛) exp{ − 𝑑 (𝑛)

+

𝑓 (𝑛) 𝑥 (𝑛)

𝛼 (𝑛) + 𝛽 (𝑛) 𝑥 (𝑛) + 𝛾 (𝑛) 𝑦 (𝑛)

} ,

(1)

where 𝑎(𝑛), 𝑏(𝑛), 𝑐(𝑛), 𝑑(𝑛), 𝑓(𝑛), 𝛼(𝑛), 𝛽(𝑛), and 𝛾(𝑛) are
periodic sequences with the common period 𝜔; 𝑏(𝑛) is non-
negative; 𝑐(𝑛), 𝑑(𝑛), 𝑓(𝑛), 𝛼(𝑛), 𝛽(𝑛), and 𝛾(𝑛) are positive.
The reason and significance for the analysis on the properties
of these biologicalmodels could be found in [5, 6].The system
(1) can be seen as the discrete formof the continuous situation
which has been investigated in [4]. And the discretization
method could be found in [7].

As usual, we define the average value of periodic
sequences with period 𝜔 as

𝐴
𝜔
(𝑓 (𝑛)) =

1

𝜔

𝜔−1

∑

𝑛=0

𝑓 (𝑛) , (2)

and we denote

𝑓
𝑀

= max
𝑛∈𝐼
𝜔

𝑓 (𝑛) , 𝑓
𝐿

= min
𝑛∈𝐼
𝜔

𝑓 (𝑛) , (3)

where 𝐼
𝜔
= {0, 1, 2, . . . 𝜔 − 1}.

In order to describe our main results, we need some
lemmas below.

Lemma 1. If 𝑏(𝑛) ≥ 0 for all 𝑛 ∈ 𝑅 and 𝐴
𝜔
(𝑏(𝑛)) > 0, then

𝑥(𝑛+1) = 𝑥(𝑛) exp{𝑎(𝑛)−𝑏(𝑛)𝑥(𝑛)} has at least one nonnega-
tive𝜔-periodic solution 𝑥∗(𝑛). Moreover, if𝐴

𝜔
(𝑎(𝑛)) > 0, then

𝑥
∗

(𝑛) > 0 for all 𝑛 ∈ 𝑅 and if 𝐴
𝜔
(𝑎(𝑛)) ≤ 0, then 𝑥∗(𝑛) ≡ 0.

Moreover, if 𝐴
𝜔
(𝑎(𝑛)) ≤ 0, then the zero solution is globally

asymptotically stable for any positive initial condition.

Proof. The existence conclusion could be found in [8]. Now
we only prove the globally asymptotical stability. That is, we
consider the case 𝐴

𝜔
(𝑎(𝑛)) ≤ 0. Notice that

ln 𝑥 (𝑛 + 1)
𝑥 (𝑛)

= 𝑎 (𝑛) − 𝑏 (𝑛) 𝑥 (𝑛) , (4)

which implies that
𝑛

∑

𝑖=0

ln 𝑥 (𝑖 + 1)
𝑥 (𝑖)

=

𝑛

∑

𝑖=0

𝑎 (𝑖) −

𝑛

∑

𝑖=0

𝑏 (𝑖) 𝑥 (𝑖)

<

𝑛

∑

𝑖=0

𝑎 (𝑖) , for 𝑛 sufficiently large.

(5)

Therefore

𝑥 (𝑛 + 1) ≤ 𝑥 (0) exp{
𝑛

∑

𝑖=0

𝑎 (𝑖)}

≤ 𝑥 (0) exp{[ 𝑛
𝜔

]

𝜔−1

∑

𝑖=0

𝑎 (𝑖) +

𝜔−1

∑

𝑖=0

|𝑎 (𝑖)|} ,

(6)

where [𝑛/𝜔] represents the integer part of 𝑛/𝜔; thus if
𝐴
𝜔
(𝑎(𝑛)) < 0, then lim

𝑛→∞
𝑥(𝑛) = 0. If 𝐴

𝜔
(𝑎(𝑛)) = 0, by

(4), we have

𝑥 (𝑛 (𝜔 − 1) + 𝑖) = 𝑥 ((𝑛 − 1) (𝜔 − 1) + 𝑖)

× exp
{

{

{

𝑛(𝜔−1)+𝑖

∑

𝑗=(𝑛−1)(𝑤−1)+𝑖

𝑎 (𝑗)

−

𝑛(𝜔−1)+𝑖

∑

𝑗=(𝑛−1)(𝑤−1)+𝑖

𝑏 (𝑗) 𝑥 (𝑗)

}

}

}

≤ 𝑥 ((𝑛 − 1) (𝜔 − 1) + 𝑖) , 𝑖 ∈ 𝐼
𝜔
,

(7)

which implies that all the subsequences {𝑥(𝑛(𝜔 − 1) + 𝑖)} of
{𝑥(𝑛)} aremonotonically decreasing. Notice that they all have
a lower bounded zero; thus, there exists some nonnegative
constant𝐴

𝑖
such that lim

𝑛→∞
𝑥(𝑛(𝜔−1)+𝑖) = 𝐴

𝑖
(𝑖 ∈ 𝐼
𝜔
).We

claim that all 𝐴
𝑖
= 0. If all 𝐴

𝑖
̸= 0, then 𝐴 = min

1≤𝑖≤𝜔−1
𝐴
𝑖
>

0; for 𝑛 sufficiently large, we have ∑𝑛(𝜔−1)+𝑖
𝑗=(𝑛−1)(𝑤−1)+𝑖

𝑏(𝑗)𝑥(𝑗) ≥

(𝐴/2)∑
𝑛(𝜔−1)+𝑖

𝑗=(𝑛−1)(𝑤−1)+𝑖
𝑏(𝑗) = (𝐴𝜔/2)𝐴

𝜔
(𝑏(𝑛)) > 0. While (7)

implies that

lim
𝑛→∞

𝑛(𝜔−1)+𝑖

∑

𝑗=(𝑛−1)(𝑤−1)+𝑖

𝑏 (𝑗) 𝑥 (𝑗) = 0, (8)

this contradiction shows that there exists at least one 𝑖 ∈ 𝐼
𝜔

such that

𝐴
𝑖
= 0, (9)

and then (4) implies that all 𝐴
𝑖
= 0. The proof is complete.

Remark 2. This lemma is different from the continuous one;
here the condition𝐴

𝜔
(𝑎(𝑛)) > 0 can not support the globally

asymptotical stability of 𝑥∗(𝑛) (from the work of May [9]
and Zhang and Zhou [10]). In addition, we can find that the
continuous form of this lemma plays an important role in the
proof of the permanence in [4].

Lemma 3. Assume that 𝑎(𝑛) and 𝑏(𝑛) are all 𝜔-periodic
sequences and 𝑏(𝑛) is positive; if 𝐴

𝜔
(𝑎(𝑛)) > 0 and the

following inequality

[

𝑏(𝑛 + 1)

𝑏(𝑛)

exp {𝑎 (𝑛) − 1}]
𝑀

≤ 2 (10)

holds, then any solution 𝑥(𝑛) for the periodic equation 𝑥(𝑛 +
1) = 𝑥(𝑛) exp{𝑎(𝑛) − 𝑏(𝑛)𝑥(𝑛)} with positive initial condition
has the property

lim
𝑛→∞

(𝑥 (𝑛) − 𝑥
∗

(𝑛)) = 0, (11)

where 𝑥∗(𝑛) is defined as that in Lemma 1.

Proof. By Lemma 1, we know that 𝑥∗(𝑛) exists, and it is
positive; for any positive solution 𝑥(𝑛) of the equation

𝑥 (𝑛 + 1) = 𝑥 (𝑛) exp {𝑎 (𝑛) − 𝑏 (𝑛) 𝑥 (𝑛)} , (12)
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denote

𝐵 (𝑛) = ln 𝑥 (𝑛)
𝑥
∗
(𝑛)

, (13)

and then 𝐵(𝑛) satisfies

𝐵 (𝑛 + 1) − 𝐵 (𝑛) = 𝑏 (𝑛) 𝑥
∗

(𝑛) [1 − exp {𝐵 (𝑛)}] . (14)

Define 𝑉(𝑛) = 𝐵2(𝑛), and then

Δ𝑉 (𝑛) = 𝑉 (𝑛 + 1) − 𝑉 (𝑛)

= [𝐵 (𝑛 + 1) − 𝐵 (𝑛)] [𝐵 (𝑛 + 1) + 𝐵 (𝑛)]

= 𝑏 (𝑛) 𝑥
∗

(𝑛) [1 − exp {𝐵 (𝑛)}]

× [2𝐵 (𝑛) + 𝑏 (𝑛) 𝑥
∗

(𝑛) [1 − exp {𝐵 (𝑛)}]]

= −𝐵
2

(𝑛) 𝑏 (𝑛) 𝑥
∗

(𝑛) exp {𝜃𝐵 (𝑛)}

× [2 − 𝑏 (𝑛) 𝑥
∗

(𝑛) exp {𝜃𝐵 (𝑛)}] .

(15)

Notice that

𝑏 (𝑛 + 1) 𝑥 (𝑛 + 1)

=

𝑏 (𝑛 + 1)

𝑏 (𝑛)

𝑏 (𝑛) 𝑥 (𝑛) exp {𝑎 (𝑛) − 𝑏 (𝑛) 𝑥 (𝑛)}

≤

𝑏 (𝑛 + 1)

𝑏 (𝑛)

exp {𝑎 (𝑛) − 1} , for any 𝑛 ≥ 1,

(16)

and here we use the inequality 𝑥 exp{𝑎−𝑥} ≤ exp{𝑎−1}; thus
for any positive solution 𝑥(𝑛) of (12), we have

𝑏 (𝑛) 𝑥 (𝑛) ≤ [

𝑏(𝑛 + 1)

𝑏(𝑛)

exp{𝑎(𝑛) − 1}]
𝑀

, (17)

and by (10), we know that

𝑏 (𝑛) 𝑥 (𝑛) ≤ 2. (18)

In particular, 𝑏(𝑛)𝑥∗(𝑛) ≤ 2. Then equality (15) implies that
Δ𝑉(𝑛) ≤ 0; that is, 𝐵2(𝑛) is nonincreasing; thus it converges,
by (14), lim

𝑛→∞
𝐵(𝑛) = 0. The proof is complete.

Remark 4. In [11], Professor Zhou considered the existence
and stability of the periodic solution of the equation𝑥(𝑛+1) =
𝑥(𝑛) exp{𝑟(𝑛)(1 − (𝑥(𝑛)/𝐾(𝑛)))}. Here 𝑟(𝑛) and 𝐾(𝑛) are all
positive 𝜔-periodic sequences; under the condition

𝐾
𝑀

𝐾
𝐿
exp (𝑟𝑀 − 1) ≤ 2, (19)

the conclusion of Lemma 3 is satisfied. By Lemma 3, the
condition (19) can be replaced by

[

𝐾 (𝑛) 𝑟 (𝑛 + 1)

𝐾 (𝑛 + 1) 𝑟 (𝑛)

exp (𝑟 (𝑛) − 1)]
𝑀

≤ 2. (20)

Notice that if 𝐾(𝑛) ≡ 1, then the condition (19) can be
simplified as

[𝑟(𝑛)]
𝑀

≤ ln 2 + 1. (21)

In fact, in this case, by the work of Zhang and Zhou [10], the
condition (21) could be generalized to

[𝑟(𝑛)]
𝑀

≤ 2. (22)

It is worthy to say that, when [𝑎(𝑛)]𝐿 > 2, the conclusion of
Lemma 3 is false. This is quite different from the correspond-
ing continuous case. In particular, if 𝑎(𝑛)/𝑏(𝑛) ≡ constant,
then (10) could be replaced by (22).

For the permanence of (1), we have the following.

Theorem 5. Assume that 𝑎(𝑛) and 𝑏(𝑛) are all 𝜔-periodic
sequences and 𝑏(𝑛) is positive; if

[

𝑏(𝑛 + 1)

𝑏(𝑛)

exp {𝑎 (𝑛) − 1}]
𝑀

≤ 1 (23)

and 𝐴
𝜔
(𝑎(𝑛)) > 0 hold true, then the system (1) is permanent

and has at least one positive 𝜔-periodic solution provided that

𝐴
𝜔
(−𝑑 (𝑛) +

𝑓 (𝑛) 𝑥
∗

(𝑛)

𝛼 (𝑛) + 𝛽 (𝑛) 𝑥
∗
(𝑛)

) > 0, (24)

where 𝑥∗(𝑛) is the unique periodic solution of 𝑥(𝑛 + 1) =
𝑥(𝑛) exp{𝑎(𝑛) − 𝑏(𝑛)𝑥(𝑛)} given by Lemma 1.

Theorem 6. Suppose that

𝐴
𝜔
(𝑎 (𝑛)) > 0, 𝐴

𝜔
(𝑏 (𝑛)) > 0 (25)

and (23) hold; if (1) is permanent, then (24) is true.

ByTheorems 5 and 6, we can easily obtain the following.

Corollary 7. Assume that 𝑎(𝑛) and 𝑏(𝑛) are all 𝜔-periodic
sequences and 𝑏(𝑛) is positive; if (23) and 𝐴

𝜔
(𝑎(𝑛)) > 0 hold

true, then system (1) is permanent if and only if (24) holds.

2. Proof of the Main Results

In this section, we will give the proofs of Theorems 5 and 6.
First we give some lemmas.

Lemma 8. Under the condition (25), there exist two positive
constants𝑀

𝑥
and𝑀

𝑦
such that

lim
𝑛→∞

sup𝑥 (𝑛) ≤ 𝑀
𝑥
, lim

𝑛→∞

sup𝑦 (𝑛) ≤ 𝑀
𝑦 (26)

for any solution (𝑥(𝑛), 𝑦(𝑛)) of (1) with positive initial condi-
tions.

Proof. Notice that, for any positive initial value, from math-
ematical induction, we can obtain that 𝑥(𝑛) > 0, 𝑦(𝑛) > 0.
Then we have

𝑥 (𝑛 + 1) < 𝑥 (𝑛) exp {𝑎 (𝑛) − 𝑏 (𝑛) 𝑥 (𝑛)} . (27)

Notice that

𝑥
∗

(𝑛 + 1) = 𝑥
∗

(𝑛) exp {𝑎 (𝑛) − 𝑏 (𝑛) 𝑥∗ (𝑛)} . (28)



4 Abstract and Applied Analysis

If we let

𝑥 (𝑛) = exp {𝑢 (𝑛)} , 𝑥
∗

(𝑛) = exp {𝑢∗ (𝑛)} ,

V (𝑛) = 𝑢 (𝑛) − 𝑢∗ (𝑛) ,
(29)

then by (27) and (28), we have

V (𝑛 + 1) − V (𝑛) < −𝑏 (𝑛) exp {𝑢∗ (𝑛)} [exp {V (𝑛)} − 1] .
(30)

If there exists some positive integer 𝑁 such that V(𝑛) < 0
for 𝑛 > 𝑁, then lim

𝑛→∞
sup𝑥(𝑛) ≤ [𝑥

∗

(𝑛)]
𝑀. If there

exists some positive integer 𝑁 such that V(𝑛) > 0 for 𝑛 >
𝑁, then (30) implies that the sequence {V(𝑛)} converges to
zero, which shows that lim

𝑛→∞
sup(𝑥(𝑛) − 𝑥∗(𝑛)) = 0; thus

lim
𝑛→∞

sup𝑥(𝑛) ≤ [𝑥∗(𝑛)]𝑀 also hold true. If the sequence
{V(𝑛)} oscillates about zero, let V(𝑛

𝑙
) be the first element of the

𝑙th positive semicycle of the sequence {V(𝑛)}; then from (30),
we have

lim
𝑛→∞

sup V (𝑛) = lim
𝑙→∞

V (𝑛
𝑙
) ,

V (𝑛
𝑙
) − V (𝑛

𝑙
− 1) < −𝑏 (𝑛

𝑙
− 1) exp {𝑢∗ (𝑛

𝑙
− 1)}

× [exp {V (𝑛
𝑙
− 1)} − 1]

= −𝑏 (𝑛
𝑙
− 1) exp {𝑢 (𝑛

𝑙
− 1)}

+ 𝑏 (𝑛
𝑙
− 1) exp {𝑢∗ (𝑛

𝑙
− 1)}

≤ 𝑏 (𝑛
𝑙
− 1) exp {𝑢∗ (𝑛

𝑙
− 1)}

≤ [𝑏 (𝑛) exp {𝑢∗ (𝑛)}]𝑀,

(31)

and therefore

lim
𝑙→∞

V (𝑛
𝑙
) ≤ [𝑏(𝑛) exp{𝑢∗(𝑛)}]𝑀, (32)

and from the above analysis, we can obtain

lim
𝑛→∞

sup𝑥 (𝑛) ≤ [𝑥∗(𝑛)]𝑀 + [𝑏(𝑛)𝑥∗(𝑛)]𝑀 := 𝑀
𝑥
. (33)

From the second equation of (1), we have

𝑦 (𝑛 + 1)

≤ 𝑦 (𝑛) exp{ − 𝑑 (𝑛)

+

𝑓 (𝑛) 𝑥 (𝑛)

𝛼 (𝑛) + 𝛽 (𝑛) 𝑥 (𝑛) + 𝛾 (𝑛) 𝑦 (𝑛)

}

≤ 𝑦 (𝑛) exp{−𝑑𝐿 +
𝑓
𝑀

𝑀
𝑥

𝛼
𝐿
+ 𝛾
𝐿
𝑦 (𝑛)

}

= 𝑦 (𝑛) exp{
𝑓
𝑀

𝑀
𝑥
− 𝛼
𝐿

𝑑
𝐿

− 𝛾
𝐿

𝑑
𝐿

𝑦 (𝑛)

𝛼
𝐿
+ 𝛾
𝐿
𝑦 (𝑛)

}

< 𝑦 (𝑛) exp{
𝑓
𝑀

𝑀
𝑥
− 𝛾
𝐿

𝑑
𝐿

𝑦 (𝑛)

𝛼
𝐿
+ 𝛾
𝐿
𝑦 (𝑛)

} .

(34)

If {𝑦(𝑛)} does not oscillate about𝑓𝑀𝑀
𝑥
/𝛾
𝐿

𝑑
𝐿, then from (34)

we have

lim
𝑛→∞

sup𝑦 (𝑛) ≤
𝑓
𝑀

𝑀
𝑥

𝛾
𝐿
𝑑
𝐿
. (35)

Otherwise, if we let 𝑦(𝑛
𝑙
) be the first element of the 𝑙th

positive semicycle of the sequence {𝑦(𝑛)}, then from (34), we
know that

lim
𝑛→∞

sup𝑦 (𝑛) = lim
𝑙→∞

𝑦 (𝑛
𝑙
) ≤

𝑓
𝑀

𝑀
𝑥

𝛾
𝐿
𝑑
𝐿

exp{
𝑓
𝑀

𝑀
𝑥

𝛼
𝐿
} ,

(36)

and by (35) and (36), we have

lim
𝑛→∞

sup𝑦 (𝑛) ≤
𝑓
𝑀

𝑀
𝑥

𝛾
𝐿
𝑑
𝐿

exp{
𝑓
𝑀

𝑀
𝑥

𝛼
𝐿
} := 𝑀

𝑦
. (37)

The proof is complete.

Lemma 9. Assume that (25) holds true, then there exists a
positive constant 𝐿

𝑥
such that

lim
𝑛→∞

sup𝑥 (𝑛) ≥ 𝐿
𝑥 (38)

for any solution (𝑥(𝑛), 𝑦(𝑛)) of (1) with positive initial condi-
tions.

Proof . We prove it by contradiction. If (38) is false, then for
every 𝑚 > 0, there exists a solution (𝑥(𝑛, 𝑧

𝑚
), 𝑦(𝑛, 𝑧

𝑚
)) with

initial condition (𝑥(0, 𝑧
𝑚
), 𝑦(0, 𝑧

𝑚
)) such that

lim
𝑛→∞

sup 𝑥 (𝑛, 𝑧
𝑚
) <

1

𝑚

. (39)

Choose sufficiently small positive constants 𝜀
𝑥
< 1 and 𝜀

𝑦
< 1

such that

𝐴
𝜔
(−𝑑 (𝑡) +

𝑓 (𝑛) 𝜀
𝑥

𝛼 (𝑛) + 𝛽 (𝑛) 𝜀
𝑥

) < 0, (40)

𝐴
𝜔
(𝑎 (𝑛) −

𝑐 (𝑛) 𝜀
𝑦

𝛼 (𝑛) + 𝛾 (𝑛) 𝜀
𝑦

) > 0. (41)

From (39), for any given 𝜀
𝑥
< 1, there exists a positive integer

𝑁
0
such that

lim
𝑛→∞

sup𝑥 (𝑛, 𝑧
𝑚
) <

1

𝑚

< 𝜀
𝑥
, 𝑚 > 𝑁

0
. (42)

Equation (42) shows that there exists a sufficiently large𝑁(𝑚)
1

such that

𝑥 (𝑛, 𝑧
𝑚
) <

1

𝑚

< 𝜀
𝑥
, for 𝑚 > 𝑁

0
, 𝑛 ≥ 𝑁

(𝑚)

1
. (43)

Then the second equation of (1) now yields

𝑦 (𝑛 + 1, 𝑧
𝑚
) ≤ 𝑦 (𝑛, 𝑧

𝑚
) exp{−𝑑 (𝑛) +

𝑓 (𝑛) 𝜀
𝑥

𝛼 (𝑛) + 𝛽 (𝑛) 𝜀
𝑥

} ,

(44)
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and by (40), we have

ln
𝑦 ((𝑘 + 1) 𝜔, 𝑧

𝑚
)

𝑦 (𝑘𝜔, 𝑧
𝑚
)

< 𝜔𝐴
𝜔
(−𝑑 (𝑛) +

𝑓 (𝑛) 𝜀
𝑥

𝛼 (𝑛) + 𝛽 (𝑛) 𝜀
𝑥

) < 0,

for 𝑘 ≥ 𝑁(𝑚)
1
.

(45)

This implies that the subsequence {𝑦(𝑘𝜔, 𝑧
𝑚
)} of {𝑦(𝑛, 𝑧

𝑚
)} is

monotonically decreasing; thus it is convergent; by (45),

lim
𝑘→∞

𝑦 (𝑘𝜔, 𝑧
𝑚
) = 0. (46)

Notice that exp{−𝑑(𝑛) + 𝑓(𝑛)𝜀
𝑥
/(𝛼(𝑛) + 𝛽(𝑛)𝜀

𝑥
)} is bounded;

thus by (44), using mathematical induction, we can easily
obtain

lim
𝑛→∞

𝑦 (𝑛, 𝑧
𝑚
) = 0, (47)

and thus there exists a sufficiently large 𝑁(𝑚)
2

> 𝑁
(𝑚)

1
such

that

𝑦 (𝑛, 𝑧
𝑚
) < 𝜀
𝑦

for 𝑛 > 𝑁(𝑚)
2
; (48)

therefore the first equation of (1) yields

𝑥 (𝑛 + 1, 𝑧
𝑚
)

≥ 𝑥 (𝑛, 𝑧
𝑚
) exp{𝑎 (𝑛) − 𝑏 (𝑛) 𝑥 (𝑛, 𝑧

𝑚
)

−

𝑐 (𝑛) 𝜀
𝑦

𝛼 (𝑛) + 𝛾 (𝑛) 𝜀
𝑦

} , 𝑛 > 𝑁
(𝑚)

2
.

(49)

By (41), utilizing Lemma 1, we know that the equation 𝑃(𝑛 +
1) = 𝑃(𝑛) exp{𝑎(𝑛) − 𝑐(𝑛)𝜀

𝑦
/(𝛼(𝑛) + 𝛾(𝑛)𝜀

𝑦
) − 𝑏(𝑛)𝑃(𝑛)} has

at least one positive 𝜔-periodic solution called 𝑃∗(𝑛). It is
obvious that 𝑃∗(𝑛) is independent of 𝑧

𝑚
. Let

𝑃
∗

(𝑛) = exp {𝑄∗ (𝑛)} , 𝑥 (𝑛, 𝑧
𝑚
) = exp {𝑄 (𝑛, 𝑧

𝑚
)} ,

𝐻 (𝑛, 𝑧
𝑚
) = 𝑄 (𝑛, 𝑧

𝑚
) − 𝑄
∗

(𝑛) ,

(50)

then

𝐻(𝑛 + 1, 𝑧
𝑚
) ≥ 𝐻 (𝑛, 𝑧

𝑚
) − 𝑏 (𝑛) exp {𝑄∗ (𝑛)}

× [exp {𝐻 (𝑛, 𝑧
𝑚
)} − 1] .

(51)

If𝐻(𝑛, 𝑧
𝑚
) does not oscillate about zero, then

lim
𝑛→∞

inf 𝐻(𝑛, 𝑧
𝑚
) ≥ 0, (52)

which implies that when 𝑛 is large enough,

𝑥 (𝑛, 𝑧
𝑚
) ≥ 𝑃
∗

(𝑛) ≥ [𝑃
∗

(𝑛)]
𝐿

> 0. (53)

If 𝐻(𝑛, 𝑧
𝑚
) oscillates about zero, let 𝐻(𝑛

𝑙
, 𝑧
𝑚
) be the

first element of the 𝑙th negative semicycle of the sequence
{𝐻(𝑛, 𝑧

𝑚
)}; then from (51), we know that

lim
𝑛→∞

inf 𝐻(𝑛, 𝑧
𝑚
) = lim
𝑙→∞

𝐻(𝑛
𝑙
, 𝑧
𝑚
) . (54)

Notice that

𝐻(𝑛
𝑙
, 𝑧
𝑚
) ≥ 𝐻 (𝑛

𝑙
− 1, 𝑧
𝑚
) − 𝑏 (𝑛

𝑙
− 1)

× exp {𝑄∗ (𝑛
𝑙
− 1)} [exp {𝐻 (𝑛

𝑙
− 1, 𝑧
𝑚
)} − 1]

≥ − 𝑏 (𝑛
𝑙
− 1) exp {𝑄 (𝑛

𝑙
− 1)}

≥ − [𝑏 (𝑛)]
𝑀

𝑀
𝑥
,

(55)

and thus when 𝑛 is sufficiently large,

𝑥 (𝑛, 𝑧
𝑚
) ≥ [𝑃

∗

(𝑛)]
𝐿 exp {−[𝑏 (𝑛)]𝑀𝑀

𝑥
} > 0. (56)

Inequalities (53) and (56) imply that when 𝑛 is suffi-
ciently large, 𝑥(𝑛, 𝑧

𝑚
) ≥ [𝑃

∗

(𝑛)]
𝐿 exp{−[𝑏(𝑛)]𝑀𝑀

𝑥
}. Since

[𝑃
∗

(𝑛)]
𝐿 exp{−[𝑏(𝑛)]𝑀𝑀

𝑥
} is independent of𝑚, then

lim
𝑚→∞

inf 𝑥 (𝑛, 𝑧
𝑚
) ≥ [𝑃

∗

(𝑛)]
𝐿 exp {−[𝑏 (𝑛) 𝑃∗ (𝑛)]𝑀} ,

(57)

and this contradicts (42). The proof is complete.

Lemma 10. Assume that (25), (24), and (23) hold true; then
there exists a positive constant 𝐿

𝑦
such that

lim
𝑛→∞

sup𝑦 (𝑛) ≥ 𝐿
𝑦 (58)

for any solution (𝑥(𝑛), 𝑦(𝑛)) of (1) with positive initial values.

Proof. If (58) is not true, then, for any 𝑚 > 0, there
exists a positive initial value (𝑥(0,𝑚), 𝑦(0,𝑚)) which may be
dependent on𝑚 such that

lim
𝑛→∞

sup𝑦 (𝑛,𝑚) ≤ 1
𝑚

, (59)

where (𝑥(𝑛,𝑚), 𝑦(𝑛,𝑚)) is the solution of (1) with positive
initial values (𝑥(0,𝑚), 𝑦(0,𝑚)).

By (25) and (24), we can choose the constant 𝜀
𝑦
and 𝜀

sufficiently small such that

𝐴
𝜔
(−𝑑 (𝑛) +

𝑓 (𝑛) (𝑥
∗

(𝑛) − 𝜀)

𝛼 (𝑛) + 𝛽 (𝑛) (𝑥
∗
(𝑛) − 𝜀) + 𝛾 (𝑛) 𝜀

𝑦

) > 0,

(60)

𝐴
𝜔
(𝑎 (𝑛) −

𝑐 (𝑛) 𝜀
𝑦

𝛼 (𝑛) + 𝛾 (𝑛) 𝜀
𝑦

) > 0. (61)
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From (59), we can choose𝑚 sufficiently large such that 1/𝑚 <
𝜀
𝑦
; then the first equation of (1) implies that

𝑥 (𝑛 + 1,𝑚)

≥ 𝑥 (𝑛,𝑚)

× exp{𝑎 (𝑛) −
𝑐 (𝑛) 𝜀

𝑦

𝛼 (𝑛) + 𝛾 (𝑛) 𝜀
𝑦

− 𝑏 (𝑛) 𝑥 (𝑛,𝑚)} .

(62)

By (61) and Lemmas 1 and 3, the following equation

𝑧 (𝑛 + 1) = 𝑧 (𝑛) exp{𝑎 (𝑛) −
𝑐 (𝑛) 𝜀

𝑦

𝛼 (𝑛) + 𝛾 (𝑛) 𝜀
𝑦

− 𝑏 (𝑛) 𝑧 (𝑛)}

(63)

has a unique positive 𝜔-periodic solution 𝑧∗(𝑛) for any
sufficiently small positive number 𝜀

𝑦
and

lim
𝜀
𝑦
→0

(𝑧
∗

(𝑛) − 𝑥
∗

(𝑛)) = 0. (64)

We claim that, for any 𝜀 > 0, there exists a sufficiently large𝑁
such that

𝑥 (𝑛,𝑚) ≥ 𝑥
∗

(𝑛) − 𝜀, for 𝑛 > 𝑁. (65)

In fact, by (62) and (63), if we set

𝑥 (𝑛,𝑚) = exp {𝑈 (𝑛,𝑚)} , 𝑧 (𝑛) = exp {𝑉 (𝑛)} , (66)

where the sequence {𝑧(𝑛)} is the solution of (63) with initial
condition 𝑧(0) = 𝑥(0,𝑚), then

𝑈 (𝑛 + 1,𝑚) ≥ 𝑈 (𝑛,𝑚) + 𝑎 (𝑛)

−

𝑐 (𝑛) 𝜀
𝑦

𝛼 (𝑛) + 𝛾 (𝑛) 𝜀
𝑦

− 𝑏 (𝑛) exp {𝑈 (𝑛,𝑚)} ,

𝑉 (𝑛 + 1) = 𝑉 (𝑛) + 𝑎 (𝑛)

−

𝑐 (𝑛) 𝜀
𝑦

𝛼 (𝑛) + 𝛾 (𝑛) 𝜀
𝑦

− 𝑏 (𝑛) exp {𝑉 (𝑛)} .

(67)

Thus
𝑈 (𝑛 + 1,𝑚) − 𝑉 (𝑛 + 1)

≥ 𝑈 (𝑛,𝑚) − 𝑉 (𝑛)

− 𝑏 (𝑛) exp {𝑉 (𝑛)} {exp {𝑈 (𝑛,𝑚) − 𝑉 (𝑛)} − 1} .
(68)

Denote

𝑊(𝑛,𝑚) = 𝑈 (𝑛,𝑚) − 𝑉 (𝑛) , (69)

and then (68) implies that

𝑊(𝑛 + 1,𝑚) ≥ 𝑊 (𝑛,𝑚)

− 𝑏 (𝑛) exp {𝑉 (𝑛)} [exp {𝑊 (𝑛,𝑚)} − 1] .
(70)

Notice that

𝑥 (𝑛 + 1,𝑚) ≤ 𝑥 (𝑛,𝑚) exp {𝑎 (𝑛) − 𝑏 (𝑛) 𝑥 (𝑛,𝑚)} , (71)

and by (23), we have

𝑏 (𝑛 + 1) 𝑥 (𝑛 + 1,𝑚)

≤

𝑏 (𝑛 + 1)

𝑏 (𝑛)

𝑏 (𝑛) 𝑥 (𝑛,𝑚) exp {𝑎 (𝑛) − 𝑏 (𝑛) 𝑥 (𝑛,𝑚)}

≤ [

𝑏 (𝑛 + 1)

𝑏 (𝑛)

exp {𝑎 (𝑛) − 1}]
𝑀

≤ 1, for any 𝑛 ∈ 𝑁.

(72)

Define a function

𝑓 (𝑥) = 𝑥 − ℎ (exp {𝑥} − 1) , ℎ exp {𝑥} ≤ 1. (73)

Then

𝑓
󸀠

(𝑥) = 1 − ℎ exp {𝑥} ≥ 0. (74)

From (70), we can obtain𝑊(1,𝑚) ≥ 𝑊(0,𝑚) = 0. By (73),
(74), and (72), we know that

𝑊(𝑛,𝑚) ≥ 0, (75)

which implies that

𝑥 (𝑛,𝑚) ≥ 𝑧 (𝑛) . (76)

Under condition (23), by Lemma 3, we have

lim
𝑛→∞

(𝑧 (𝑛) − 𝑧
∗

(𝑛)) = 0, (77)

and then (64), (77), and (76) imply that (65) holds. Now the
second equation of (1) yields

𝑦 (𝑛 + 1,𝑚)

≥ 𝑦 (𝑛,𝑚)

× exp{−𝑑 (𝑛) +
𝑓 (𝑛) (𝑥

∗

(𝑛) − 𝜀)

𝛼 (𝑛) + 𝛽 (𝑛) (𝑥 (𝑛) − 𝜀) + 𝛾 (𝑛) 𝜀
𝑦

} ,

(78)

and thus (60) shows that

lim
𝑛→∞

sup𝑦 (𝑛,𝑚) = +∞. (79)

This contradicts (59). The proof is complete.

Lemma 11. Assume that (25) holds true; then there is a positive
constant 𝐿󸀠

𝑥
such that

lim
𝑛→∞

inf 𝑥 (𝑛) ≥ 𝐿󸀠
𝑥

(80)

for any solution (𝑥(𝑛), 𝑦(𝑛)) of (1) with positive initial condi-
tions.
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Proof. If (80) is false, then there exists an initial value
(𝑥(0), 𝑦(0)) ≜ 𝑡

𝑚
such that

lim
𝑛→∞

inf 𝑥 (𝑛, 𝑡
𝑚
) ≤

1

𝑚

, (81)

for any 𝑚 > 0, where (𝑥(𝑛, 𝑡
𝑚
), 𝑦(𝑛, 𝑡

𝑚
)) represents the solu-

tion of (1) with initial value 𝑡
𝑚
. Thus, there is a subsequence

{𝑛
𝑙
} of {𝑛} such that

𝑥 (𝑛
𝑙
, 𝑡
𝑚
) ≤

1

𝑚

. (82)

On the other hand, by Lemma 9, there exists a constant 𝐿
𝑥
/2

(which is independent of the initial value 𝑡
𝑚
) such that

𝑥 (𝑚
𝑘
, 𝑡
𝑚
) ≥

𝐿
𝑥

2

. (83)

Notice that, for any 𝑛
𝑙
, there exists a 𝑚

𝑘
which satisfies 𝑛

𝑙
≤

𝑚
𝑘
, (82), and (83). Choose𝑚 sufficiently large such that

1

𝑚

exp {(𝑚
𝑘
− 𝑛
𝑙
) [𝑎 (𝑛)]

𝑀

} <

𝐿
𝑥

2

. (84)

Obviously, such 𝑚 exists. Fixing it, and by the first equation
of (1), we know

𝑥 (𝑛
𝑙
+ 1, 𝑡
𝑚
)

≤ 𝑥 (𝑛
𝑙
, 𝑡
𝑚
) exp {[𝑎 (𝑛)]𝑀} ≤ 1

𝑚

exp {[𝑎 (𝑛)]𝑀} ,
(85)

and by mathematical induction, we can easily obtain

𝑥 (𝑚
𝑘
, 𝑡
𝑚
) ≤

1

𝑚

exp {(𝑚
𝑘
− 𝑛
𝑙
) [𝑎 (𝑛)]

𝑀

} <

𝐿
𝑥

2

, (86)

and this contradicts (83). The proof is complete.

Lemma 12. Assume that (25), (24), and (23) hold true, then
there exists a positive constant 𝐿󸀠

𝑦
such that

lim
𝑛→∞

inf 𝑦 (𝑛) ≥ 𝐿󸀠
𝑦

(87)

for any solution (𝑥(𝑛), 𝑦(𝑛)) of (1) with positive initial values.

Proof. If (87) is false, then for any𝑚 > 0, there exist an initial
value (𝑥(0), 𝑦(0)) ≜ 𝑠

𝑚
and a positive integer sequence {𝑛

𝑙
}

such that

𝑦 (𝑛
𝑙
, 𝑠
𝑚
) ≤

1

𝑚

, (88)

where (𝑥(𝑛, 𝑠
𝑚
), 𝑦(𝑛, 𝑠

𝑚
)) represents the solution of (1) with

initial value 𝑠
𝑚
.

From the proof of Lemma 10, we can find that, for any
𝜀 > 0, when 𝑛 is sufficiently large, 𝑥(𝑛, 𝑠

𝑚
) ≤ 𝑥
∗

(𝑛) + 𝜀,

𝑦 (𝑛
𝑙
+ 1, 𝑠
𝑚
)

≤ 𝑦 (𝑛
𝑙
, 𝑠
𝑚
)

× exp{−𝑑 (𝑛) +
𝑓 (𝑛) [𝑥

∗

(𝑛) + 𝜀]

𝛼 (𝑛) + 𝛽 (𝑛) [𝑥
∗
(𝑛) + 𝜀]

}

≤ 𝑦 (𝑛
𝑙
, 𝑠
𝑚
)

× exp{[−𝑑 (𝑛) +
𝑓 (𝑛) [𝑥

∗

(𝑛) + 𝜀]

𝛼 (𝑛) + 𝛽 (𝑛) [𝑥
∗
(𝑛) + 𝜀]

]

𝑀

} ;

(89)

here 𝑛
𝑙
is sufficiently large. On the other hand, by Lemma 10,

there also exist a constant 𝐿
𝑦
/2 (which is independent to 𝑚)

and a subsequence {𝑚
𝑘
} of {𝑛} such that

𝑦 (𝑚
𝑘
, 𝑠
𝑚
) ≥

𝐿
𝑦

2

. (90)

The rest of the proof is similar to that of Lemma 11; we omit it
here.

Proof of Theorem 5. By Lemmas 8, 11, and 12, we can easily
obtain it.

Proof of Theorem 6. Assume that (1) is permanent; then there
exist two constants 𝐿 and𝑀 such that

𝐿 < 𝑥 (𝑛) < 𝑀, 𝐿 < 𝑦 (𝑛) < 𝑀; (91)

for simplicity, the inequality holds true only for sufficiently
large 𝑛; we omit the explanation of the domain for 𝑛 in what
follows. Choose 𝐿 sufficiently small such that

𝐴
𝜔
(𝑎 (𝑛) −

𝑐 (𝑛) 𝐿

𝛼 (𝑛) + 𝛽 (𝑛)𝑀 + 𝛾 (𝑛) 𝐿

) > 0, (92)

[

𝑏(𝑛 + 1)

𝑏(𝑛)

exp{𝑎 (𝑛) − 𝑐 (𝑛) 𝐿

𝛼 (𝑛) + 𝛽 (𝑛)𝑀 + 𝛾 (𝑛) 𝐿

− 1}]

𝑀

≤ 1.

(93)

Consider the following equation:

𝑢 (𝑛 + 1)

= 𝑢 (𝑛) exp{𝑎 (𝑛) − 𝑐 (𝑛) 𝐿

𝛼 (𝑛) + 𝛽 (𝑛)𝑀 + 𝛾 (𝑛) 𝐿

− 𝑏 (𝑛) 𝑢 (𝑛) } ;

(94)

by (93) and Lemma 3, (94) has a unique positive solution
𝑢
∗

(𝑛) which is globally asymptotically stable. Obviously,

lim
𝐿→0

+

(𝑢
∗

(𝑛) − 𝑥
∗

(𝑛)) = 0. (95)
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In addition, 𝑢∗(𝑛) ≤ 𝑥∗(𝑛). Notice that

𝑥 (𝑛 + 1)

≤ 𝑥 (𝑛) exp{𝑎 (𝑛) − 𝑏 (𝑛) 𝑥 (𝑛)

−

𝑐 (𝑛) 𝐿

𝛼 (𝑛) + 𝛽 (𝑛)𝑀 + 𝛾 (𝑛) 𝐿

} .

(96)

Thus

𝑥 (𝑛) ≤ 𝑢
∗

(𝑛) , (97)

𝑦 (𝑛 + 1) ≤ 𝑦 (𝑛) exp{−𝑑 (𝑛) +
𝑓 (𝑛) 𝑥

∗

(𝑛)

𝛼 (𝑛) + 𝛽 (𝑛) 𝑥
∗
(𝑛)

} . (98)

If

𝐴
𝜔
(−𝑑 (𝑛) +

𝑓 (𝑛) 𝑥
∗

(𝑛)

𝛼 (𝑛) + 𝛽 (𝑛) 𝑥
∗
(𝑛)

) < 0, (99)

then (98) implies that

lim
𝑛→∞

𝑦 (𝑛) = 0; (100)

this is a contradiction.
If

𝐴
𝜔
(−𝑑 (𝑛) +

𝑓 (𝑛) 𝑥
∗

(𝑛)

𝛼 (𝑛) + 𝛽 (𝑛) 𝑥
∗
(𝑛)

) = 0, (101)

then the second equation of (1) implies that

𝑦 (𝑛 + 1)

≤ 𝑦 (𝑛) exp{−𝑑 (𝑛) +
𝑓 (𝑛) 𝑥

∗

(𝑛)

𝛼 (𝑛) + 𝛽 (𝑛) 𝑥
∗
(𝑛) + 𝛾 (𝑡) 𝐿

} ,

(102)

and by (101),

𝐴
𝜔
(−𝑑 (𝑛) +

𝑓 (𝑛) 𝑥
∗

(𝑛)

𝛼 (𝑛) + 𝛽 (𝑛) 𝑥
∗
(𝑛) + 𝛾 (𝑡) 𝐿

) < 0; (103)

then (102) also implies (100), which also contradicts the
permanence. The proof is complete.

3. Examples and Discussion

In this section, we give some examples to illustrate our main
results and also give some discussions.

Example 1. Let 𝑏(𝑛) = 1, 𝑎(3𝑛 + 1) = 0.5, 𝑎(3𝑛 +

2) = 0.2, 𝑎(3𝑛) = 0.8. Then condition (10) holds true; by
Lemma 3, we know that the periodic equation 𝑥(𝑛 + 1) =
𝑥(𝑛) exp{𝑎(𝑛) − 𝑏(𝑛)𝑥(𝑛)} has only one positive 3-periodic
solution. By numerical computation, we know 𝑥∗(3𝑛 + 1) =
0.5812, 𝑥

∗

(3𝑛+2) = 0.5359, 𝑥
∗

(3𝑛) = 0.3830. See Figure 1 for
more assistance.
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Example 2. Let 𝑐(𝑛) = 𝛾(𝑛) = 1, 𝑎(𝑛) and 𝑏(𝑛) are defined as
in Example 1, 𝑑(3𝑛 + 1) = 0.2, 𝑑(3𝑛 + 2) = 0.1, 𝑑(3𝑛 + 3) =
0.3, 𝑓(3𝑛 + 1) = 2, 𝑓(3𝑛 + 2) = 1, 𝑓(3𝑛 + 3) = 3, 𝛼(3𝑛 + 1) =

0.1, 𝛼(3𝑛+1) = 0.3, 𝛼(3𝑛+1) = 0.4, 𝛽(3𝑛+1) = 0.1, 𝛽(3𝑛+1) =

0.2, and 𝛽(3𝑛 + 1) = 0.3.

By the above definition, we can easily obtain

𝐴
𝜔
(−𝑑 (𝑛) +

𝑓 (𝑛) 𝑥
∗

(𝑛)

𝛼 (𝑛) + 𝛽 (𝑛) 𝑥
∗
(𝑛)

) = 3.4330 > 0, (104)

and byTheorem 5, we know that system (1) is permanent and
has at least one positive 3-periodic solution. In fact, from the
numerical results, we can get one of the 3-periodic solutions:
𝑥
∗

(3𝑛 + 1) = 0.0265, 𝑦
∗

(3𝑛 + 1) = 0.0806, 𝑥
∗

(3𝑛 + 2) =

0.0289, 𝑦
∗

(3𝑛 + 2) = 0.0786, 𝑥
∗

(3𝑛) = 0.0364, 𝑦
∗

(3𝑛) =

0.0727. See Figure 2.
Now let us go back to conditions (10) and (23). Obviously,

condition (23) can be included by (10), and condition (10)
assures the globally asymptotical stability of the positive
periodic solution 𝑥∗(𝑛) of (12). But under condition (10), for
the solution 𝑥(𝑛) of the inequality 𝑥(𝑛 + 1) ≤ 𝑥(𝑛) exp{𝑎(𝑛) −
𝑏(𝑛)𝑥(𝑛)}, we can not obtain 𝑥(𝑛) ≤ 𝑥∗(𝑛) for 𝑛 sufficiently
large; for the solution 𝑥(𝑛) of the inequality 𝑥(𝑛 + 1) ≥
𝑥(𝑛) exp{𝑎(𝑛) − 𝑏(𝑛)𝑥(𝑛)}, we can not obtain 𝑥(𝑛) ≥ 𝑥∗(𝑛)
for 𝑛 sufficiently large. One crucial reason is that the com-
parison theorem for discrete system is quite different from
its corresponding continuous system. In [8], we gave a quali-
tative analysis for the permanence of ratio-dependent prey-
predator model; there we used the comparison theorem of
difference equations; unfortunately, an additional condition
should be considered, while in [12] we deleted this additional
condition (the method we used is not the comparison
theorem of difference equations but is the semicycle theory).
In the present paper, can condition (23) be deleted? We leave
it for further investigation.

In addition, we consider an extreme situation: 𝛼(𝑛) ≡
0. In this extreme case, we have already obtained the per-
manence for system (1) (see [12]). Recall that the condition
which assures the permanence is 𝐴

𝜔
(𝑓(𝑛) − 𝑑(𝑛)) > 0

and 𝐴
𝜔
(𝑎(𝑛) − 𝑐(𝑛)/𝛾(𝑛)) > 0. Let us see the limit
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condition under this extreme situation. Now condition
(24) was deduced to 𝐴

𝜔
(𝑓(𝑛) − 𝑑(𝑛)) > 0, while the

condition [(𝑏(𝑛 + 1)/𝑏(𝑛)) exp{𝑎(𝑛) − 1}]𝑀 ≤ 1 remains
unchanged. Notice that the deduced condition is indepen-
dent of the sequences 𝑐(𝑛) and 𝛾(𝑛). Do the two sequences
have any influence on the permanence of this extreme
situation? The answer is “yes.” In [13], we have obtained that
when𝐴

𝜔
(𝑐(𝑛)/𝛾(𝑛)) > 𝐴

𝜔
(𝑎(𝑛)+𝑑(𝑛)), the limit system is not

persistent. In this point of view, we can see that the sequence
𝛼(𝑛) has great influence on the permanence. In fact, from the
proof of our main results, we can see that the proof could
not be copied to prove the permanence of the limit system
(extreme case).
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