
Research Article
Conditional Stability for an Inverse Problem of
Determining a Space-Dependent Source Coefficient in the
Advection-Dispersion Equation with Robin’s
Boundary Condition

Shunqin Wang,1 Chunlong Sun,2 and Gongsheng Li2

1 College of Mathematics and Statistics, Nanyang Normal University, Nanyang, Henan 473061, China
2 Institute of Applied Mathematics, Shandong University of Technology, Zibo, Shandong 255049, China

Correspondence should be addressed to Gongsheng Li; ligs@sdut.edu.cn

Received 3 December 2013; Revised 27 February 2014; Accepted 27 February 2014; Published 24 April 2014

Academic Editor: Sergei V. Pereverzyev

Copyright © 2014 Shunqin Wang et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper deals with an inverse problem of determining the space-dependent source coefficient in one-dimensional advection-
dispersion equationwithRobin’s boundary condition.Data compatibility for the inverse problem is analyzed bywhich an admissible
set for the unknown is set forth. Furthermore, with the help of an integral identity, a conditional Lipschitz stability is established
by suitably controlling the solution of an adjoint problem.

1. Introduction

The process of solute transport and transformation in the
soils and groundwater is always involving some complicated
physical and/or chemical reactions. By themass conservation
law, the process can often be described by mathematical
models of advection-dispersion and/or reaction diffusion
equations with source/sink terms. In many cases for the
solute transport model, the dispersion/diffusion coefficient,
the source/sink term, and other physical quantities are often
unknown and cannot be measured easily. So, the method
of inverse problem and parameter identification has had
wide applications in the research of soil and groundwater
problems.

Denoting Ω
𝑇

= {(𝑥, 𝑡) : 0 < 𝑥 < 𝑙, 0 < 𝑡 < 𝑇}, the one-
dimensional advection-dispersion equation usually utilized is
given as

𝑅
𝜕𝑐

𝜕𝑡
−

𝜕

𝜕𝑥
(𝐷

𝜕𝑐

𝜕𝑥
) + V

𝜕𝑐

𝜕𝑥
+ 𝑓 (𝑥, 𝑡; 𝑐) = 0, (𝑥, 𝑡) ∈ Ω

𝑇
,

(1)

where 𝑅 ≥ 1 is the retardation factor; 𝑐 = 𝑐(𝑥, 𝑡) is
the volume-averaged concentration at point 𝑥 and time

𝑡; 𝐷 = 𝐷(𝑥) is the dispersion coefficient; V > 0 is the
average flow velocity; and 𝑓 = 𝑓(𝑥, 𝑡; 𝑐) represents a general
source/sink term in the solute transportation.

Based on (1), a well-posed forward problem can be
obtained together with suitable initial boundary value condi-
tions. As for inverse problems of identifying the source term
in the advection-dispersion equation, there are quite a few
researches on the uniqueness and existence, but conditional
stability seems to be paid less attention to our knowledge,
especially for construction of Lipschitz stability. The reason
maybe comes from the methodology suitable for the stability
analysis.The variational integral identitymethod, also known
as monotonicity method or the adjoint method, see, for
example, [1–5], has been applied to parameter identification
problems in the parabolic equations, by which uniqueness
results can be obtained in a general way. Nevertheless, the
integral identity method can also be utilized to construct sta-
bility for the inverse problems based on (1). In [6], conditional
stability has ever been discussed for the inverse problem of
determining the source coefficient 𝑞(𝑥) in (1) in the case of
𝑓 = 𝑞(𝑥)𝑐 with Dirichlet boundary conditions. However,
there is a conceptional fault in the proof of the stability in [6]
when defining the norm of the unknown. The norm could
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have no meanings when using an unsuitable bilinear form
to give its definition. Another difference of this paper with
the work of [6] lies in using different boundary conditions.
We will consider the corresponding inverse problem for
(1) with Robin’s boundary condition at the left-hand side
of the domain and the homogeneous Neumann boundary
condition at the right-hand side of the domain.

Therefore, we have reason to consider the inverse problem
of determining the source coefficient 𝑞 = 𝑞(𝑥) in (1) also
in the case of 𝑓 = 𝑞(𝑥)𝑐 but with the boundary condition
of Robin’s type. By data compatibility analysis and using the
integral identitymethod, the solution of the forward problem
can be positive and monotone on the time variable, and an
admissible set for the unknown source coefficient is given.
Most important of all, a new bilinear form is put forward
with the aid of the solution of the adjoint problem, and the 𝐿

2

norm for the unknown is well-defined by which a conditional
Lipschitz stability for the inverse problem is established. The
rest of this paper is organized as follows.

In Section 2, the forward problem and the inverse prob-
lem of determining the space-dependent source coefficient
with final observations are introduced. In Section 3, data
compatibility is analyzed based on an integral identity by
which the solution of the forward problem can be monotone
and positive, and an admissible set for the unknown is set
forth. In Section 4, an integral identity combining variations
of the known functions with the changes of the unknown
is established with the aid of an adjoint problem, and a
suitable bilinear form and the corresponding norm for the
unknown are defined by which Lipschitz stability for the
inverse problem is constructed.

2. The Forward Problem and the Inverse
Problem

Let us begin with the forward problem before discussing
the inverse problem. In this paper for (1), suppose that the
retardation factor 𝑅 = 1 and the dispersal coefficient 𝐷 is a
positive constant and the source term has the form of 𝑓 =

𝑞(𝑥)𝑐. For the constant dispersion coefficient𝐷, it always has
the representation of 𝐷 = 𝑎

𝐿
V, where 𝑎

𝐿
> 0 is the longitude

dispersion coefficient and V is also the average flow velocity.
Then the model we are to deal with is given as [7]

𝜕𝑐

𝜕𝑡
− 𝑎
𝐿
V
𝜕
2
𝑐

𝜕𝑥2
+ V

𝜕𝑐

𝜕𝑥
+ 𝑞 (𝑥) 𝑐 = 0, (𝑥, 𝑡) ∈ Ω

𝑇
. (2)

The initial value condition is given as

𝑐 (𝑥, 0) = 𝑐
0 (𝑥) , 0 ≤ 𝑥 ≤ 𝑙. (3)

The left boundary at 𝑥 = 0 is given with Robin’s condition:

V𝑐 (0, 𝑡) − 𝐷𝑐
𝑥 (0, 𝑡) = 𝑔 (𝑡) , 0 ≤ 𝑡 ≤ 𝑇, (4)

where the function 𝑔 = 𝑔(𝑡) represents the solute flux
through the left boundary because of the difference of
concentration at the two sides of the boundary. At the right
boundary 𝑥 = 𝑙, we assume it is an outflow boundary or the
boundary is imperceivable; that is, we have the condition:

𝑐
𝑥 (𝑙, 𝑡) = 0, 0 ≤ 𝑡 ≤ 𝑇. (5)

By (2), together with the initial boundary value condi-
tions (3)–(5), we get the so-called forward problem. Further-
more, under suitable conditions for the initial boundary value
functions, for example, 𝑐

0
(𝑥) ∈ 𝐶([0, 𝑙]), 𝑔(𝑡) ∈ 𝐶([0, 𝑇]), and

𝑞(𝑥) is boundedmeasurable, we know from [8] that the above
forward problem has unique solution 𝑐(𝑥, 𝑡) ∈ 𝐶

2,1
(Ω
𝑇
). On

the other hand, if the source coefficient function 𝑞 = 𝑞(𝑥) in
(2) is unknown, we have to determine it by some additional
information of the solution. The additional data we have are
the final observations at one final time 𝑡 = 𝑇 given as [9–12]

𝑐 (𝑥, 𝑇) = 𝜃 (𝑥) , 0 ≤ 𝑥 ≤ 𝑙. (6)

As a result, an inverse problem of determining the source
coefficient 𝑞(𝑥) is formulated by (2)–(5) together with the
additional information (6). To the best of our knowledge,
conditional stability for the above inverse source problem for
(2) with Robin’s boundary condition has not been studied in
the known literature. In what follows, we will firstly give data
compatibility analysis for the inverse problem and then put
forward an integral identity with which a conditional stability
is constructed by suitably controlling an adjoint problem.

3. Data Compatibility Analysis

Consider the inverse problem (2)–(6). Noting the reality
of real problems, the initial value function 𝑐

0
(𝑥), the flux

function 𝑔(𝑡), the additional function 𝜃(𝑥), and the hydraulic
parameters 𝑎

𝐿
and V are all claimed to be nonnegative on

(𝑥, 𝑡) ∈ Ω
𝑇
throughout the paper if there is no specification.

In addition, by ‖ ⋅ ‖
2
we denote the 𝐿

2-norm in the corre-
sponding space.

Suppose that 𝑐
0
(𝑥), 𝑔(𝑡), and 𝜃(𝑥) satisfy condition (A):

(A) 𝑐
0
(𝑥) ∈ 𝐶

2
[0, 𝑙], 𝑔(𝑡) ∈ 𝐶

1
[0, 𝑇], and 𝜃(𝑥) is piece-

wise continuous differential on 𝑥 ∈ [0, 𝑙], and there
are positive constants 𝑀

0
and 𝜀 such that ‖𝑐

0
‖
2
≤ 𝑀
0

and ‖𝜃‖
2
≥ 𝜀.

Moreover, the data should satisfy consistency condition
(B):

(B) V𝑐
0
(0) − 𝐷𝑐

󸀠

0
(0) = 𝑔(0); 𝑐

󸀠

0
(𝑙) = 𝜃

󸀠
(𝑙) = 0.

Denote 𝑐 = 𝑐(𝑥, 𝑡; 𝑞) as the unique solution of the forward
problem (2)–(5) for any prescribed source coefficient 𝑞 =

𝑞(𝑥) belonging to suitable spaces. With a similar method as
used in [4, 6, 13, 14], we can prove the following theorem to
reveal the monotonicity and positivity of the solution to the
forward problem.

Theorem 1. Suppose that the conditions (A) and (B) are
satisfied and 𝑐 = 𝑐(𝑥, 𝑡; 𝑞) is a priori bounded; then the
following statements hold.

(1) If the solute flux 𝑔(𝑡) is monotone decreasing on 𝑡 ∈

[0, 𝑇] and 𝑞 = 𝑞(𝑥) has the property (P1):

(P1) 𝑞(𝑥)𝑐
0
(𝑥) − V𝑐󸀠

0
(𝑥) + 𝐷𝑐

󸀠󸀠

0
(𝑥) ≥ 0, 0 ≤ 𝑥 ≤ 𝑙,
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then for each given 𝑥 ∈ [0, 𝑙], it follows that
0 ≤ 𝜃 (𝑥) = 𝑐 (𝑥, 𝑇) ≤ 𝑐 (𝑥, 𝑡)

≤ 𝑐 (𝑥, 0) = 𝑐
0 (𝑥) , 0 < 𝑡 < 𝑇.

(7)

(2) If the solute flux 𝑔(𝑡) is monotone increasing on 𝑡 ∈

[0, 𝑇] and 𝑞 = 𝑞(𝑥) has the property (P2):

(P2) 𝑞(𝑥)𝑐
0
(𝑥) − V𝑐󸀠

0
(𝑥) + 𝐷𝑐

󸀠󸀠

0
(𝑥) ≤ 0, 0 ≤ 𝑥 ≤ 𝑙,

then for each given 𝑥 ∈ [0, 𝑙], it follows that
0 ≤ 𝑐
0 (𝑥) = 𝑐 (𝑥, 0) ≤ 𝑐 (𝑥, 𝑡)

≤ 𝑐 (𝑥, 𝑇) = 𝜃 (𝑥) , 0 < 𝑡 < 𝑇.

(8)

Proof. We only prove the assertion (1), and (2) can be proved
similarly. For 𝑐 = 𝑐(𝑥, 𝑡; 𝑞) and any smooth test function
𝜑(𝑥, 𝑡), we have

∫
Ω𝑇

(𝑐
𝑡
− 𝐷𝑐
𝑥𝑥

+ V𝑐
𝑥
+ 𝑞 (𝑥) 𝑐) 𝜑𝑡𝑑𝑥 𝑑𝑡 = 0. (9)

Integration by parts leads to

∫
Ω𝑇

𝑐
𝑡
(𝜑
𝑡
+ 𝐷𝜑
𝑥𝑥

+ V𝜑
𝑥
− 𝑞 (𝑥) 𝜑) 𝑑𝑥 𝑑𝑡

= ∫

𝑇

0

[𝐷 (𝑐
𝑥
𝜑
𝑡
− 𝑐𝜑
𝑥𝑡
) − V𝑐𝜑

𝑡
]
𝑥=𝑙

𝑥=0
𝑑𝑡

+ ∫

𝑙

0

[𝐷𝑐𝜑
𝑥𝑥

+ V𝑐𝜑
𝑥
− 𝑞 (𝑥) 𝑐𝜑]

𝑡=𝑇

𝑡=0
𝑑𝑥.

(10)

Denote ℎ = V/𝐷 = 1/𝑎
𝐿
. If there is

𝜑
𝑥 (𝑙, 𝑡) + ℎ𝜑 (𝑙, 𝑡) = 0, (11)

then
𝜑
𝑥𝑡 (𝑙, 𝑡) + ℎ𝜑

𝑡 (𝑙, 𝑡) = 0, (12)
and we get

𝐷𝜑
𝑥𝑡 (𝑙, 𝑡) + V𝜑

𝑡 (𝑙, 𝑡) = 0. (13)
Let 𝐺 = 𝐺(𝑥, 𝑡) be any arbitrary nonnegative function

on (𝑥, 𝑡) ∈ Ω
𝑇
and 𝜑 = 𝜑(𝑥, 𝑡) solve the following adjoint

problem:
𝜑
𝑡
+ 𝐷𝜑
𝑥𝑥

+ V𝜑
𝑥
− 𝑞 (𝑥) 𝜑 = 𝐺 (𝑥, 𝑡) , (𝑥, 𝑡) ∈ Ω

𝑇
,

𝜑
𝑥 (0, 𝑡) = 0; 𝜑

𝑥 (𝑙, 𝑡) + ℎ𝜑 (𝑙, 𝑡) = 0, 0 ≤ 𝑡 ≤ 𝑇,

𝜑 (𝑥, 𝑇) = 0, 0 ≤ 𝑥 ≤ 𝑙.

(14)

Then, together with the initial boundary value conditions
given by (3), (4), and (5), the equality (10) is reduced to

∫
Ω𝑇

𝑐
𝑡
𝐺 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

= ∫

𝑙

0

𝑐 (𝑥, 0) [−𝐷𝜑
𝑥𝑥 (𝑥, 0) − V𝜑

𝑥 (𝑥, 0)

+𝑞 (𝑥) 𝜑 (𝑥, 0)] 𝑑𝑥

+ ∫

𝑇

0

𝑔 (𝑡) 𝜑𝑡 (0, 𝑡) 𝑑𝑡 := 𝐼
1
+ 𝐼
2
,

(15)

where

𝐼
1
= ∫

𝑙

0

𝑐
0 (𝑥)

× [𝑞 (𝑥) 𝜑 (𝑥, 0) − V𝜑
𝑥 (𝑥, 0) − 𝐷𝜑

𝑥𝑥 (𝑥, 0)] 𝑑𝑥,

𝐼
2
= ∫

𝑇

0

𝑔 (𝑡) 𝜑𝑡 (0, 𝑡) 𝑑𝑡.

(16)

Firstly by using integration by parts for 𝐼
1
, we have

𝐼
1
= − 𝐷[𝑐

0 (𝑥) 𝜑𝑥 (𝑥, 0) − 𝑐
󸀠

0
(𝑥) 𝜑 (𝑥, 0)]

𝑙

0

− V[𝑐
0
(𝑥)𝜑(𝑥, 0)]

𝑙

0

+ ∫

𝑙

0

[𝑞 (𝑥) 𝑐0 (𝑥) + V𝑐󸀠
0
(𝑥) − 𝐷𝑐

󸀠󸀠

0
(𝑥)]

× 𝜑 (𝑥, 0) 𝑑𝑥.

(17)

Thanks to the consistency condition (B) and the boundary
value conditions of the adjoint problem (14), we can get

𝐼
1
= 𝑔 (0) 𝜑 (0, 0)

+ ∫

𝑙

0

[𝑞 (𝑥) 𝑐0 (𝑥) + V𝑐󸀠
0
(𝑥) − 𝐷𝑐

󸀠󸀠

0
(𝑥)] 𝜑 (𝑥, 0) 𝑑𝑥.

(18)

Also by integration by parts for 𝐼
2
and noting 𝜑(0, 𝑇) = 0, we

have

𝐼
2
= −𝑔 (0) 𝜑 (0, 0) − ∫

𝑇

0

𝑔
󸀠
(𝑡) 𝜑 (0, 𝑡) 𝑑𝑡. (19)

So, we get

∫
Ω𝑇

𝑐
𝑡
𝐺 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

= ∫

𝑙

0

[𝑞 (𝑥) 𝑐0 (𝑥) + V𝑐󸀠
0
(𝑥) − 𝐷𝑐

󸀠󸀠

0
(𝑥)] 𝜑 (𝑥, 0) 𝑑𝑥

+ ∫

𝑇

0

[−𝑔
󸀠
(𝑡)] 𝜑 (0, 𝑡) 𝑑𝑡.

(20)

By applying the maximum principle of parabolic type
of PDE, see, for example [15], to the adjoint problem (14),
we conclude that if 𝐺(𝑥, 𝑡) is nonnegative but is otherwise
arbitrary, then 𝜑(𝑥, 𝑡) is negative on Ω

𝑇
, and so does for

𝜑(0, 𝑡) and 𝜑(𝑥, 0). Then together with the property (P1), we
know that the sign of the first term of the right-hand side of
(20) is nonpositive. In addition, by virtue of the monotone
decreasing property of the boundary flux 𝑔(𝑡), the sign of the
second term of the right-hand side of (20) is also nonpositive.
Hence, the sign of expression (20) or (15) is nonpositive; that
is, we have

∫
Ω𝑇

𝑐
𝑡
𝐺 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡 ≤ 0. (21)

Since 𝐺 = 𝐺(𝑥, 𝑡) is nonnegative but otherwise arbitrary,
it follows that if there is any positive measure subset of Ω

𝑇

where 𝑐
𝑡
(𝑥, 𝑡) is positive, then a contradiction of (21) can be

achieved by choosing the support 𝐺 = 𝐺(𝑥, 𝑡) in this positive
measure set. This proves that for each 𝑥 ∈ [0, 𝑙], there is
𝑐
𝑡
(𝑥, 𝑡) ≤ 0 for 0 ≤ 𝑡 ≤ 𝑇, and the assertion (1) is valid. The

proof is completed.
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Remark 2. By setting V = 0 and 𝑓(𝑥, 𝑡; 𝑐) = 0 in (1), we get
the model ever discussed in [4] where Neumann’s boundary
conditions are employed and the initial value is zero. Thanks
to 𝑐
0
(𝑥) = 0, we have by equality (15)

∫
Ω𝑇

𝑐
𝑡
𝐺 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡 = ∫

𝑇

0

𝑔 (𝑡) 𝜑𝑡 (0, 𝑡) 𝑑𝑡. (22)

Since 𝜑(0, 𝑡) ≤ 𝜑(0, 𝑇) for 0 < 𝑡 < 𝑇, there is 𝜑
𝑡
(0, 𝑡) ≥ 0.

Hence we deduce that assertion (1) is also valid if 𝑔(𝑡) < 0

and assertion (2) is valid for 𝑔(𝑡) > 0. However, if considering
nonzero initial condition, the property (P1)/(P2) is needed,
and the assumption of monotonicity for 𝑔(𝑡) can be replaced
by the properties of keeping its positive/negative sign for 𝑡 ∈

(0, 𝑇) and 𝑔(0) = 0 such that the assertions of this theorem
can be proved too.

According to Theorem 1, we can get two sufficient
conditions under which the inverse problem (2)–(6) is of data
compatibility. That is, the unknown source coefficient 𝑞(𝑥)

should have one of the following conditions with the known
data functions 𝑐

0
(𝑥) and 𝑔(𝑡):

(C1) 𝑔
󸀠
(𝑡) ≤ 0 for 𝑡 ∈ [0, 𝑇], and 𝑞(𝑥) has property (P1);

(C2) 𝑔
󸀠
(𝑡) ≥ 0, 𝑡 ∈ [0, 𝑇], and 𝑞(𝑥) has property (P2).

In summary, if the conditions (A), (B), and (C1) are
satisfied, the solution 𝑐 = 𝑐(𝑥, 𝑡; 𝑞) is monotone decreasing
on 𝑡 ∈ [0, 𝑇] for each 𝑥 ∈ [0, 𝑙]. If the conditions (A), (B), and
(C2) are satisfied, then the solution 𝑐 = 𝑐(𝑥, 𝑡; 𝑞) is monotone
increasing on 𝑡 ∈ [0, 𝑇] for each 𝑥 ∈ [0, 𝑙].

In the following discussions,we assume that the condition
(C1) is satisfied and the unknown source coefficient 𝑞 =

𝑞(𝑥) is continuous and has property (P1). Moreover, let the
function 𝑞 = 𝑞(𝑥) take nonnegative values for 𝑥 ∈ [0, 𝑙].
Thus, an admissible set for the unknown source coefficients
is defined as follows:

𝑆ad = {𝑞 : 𝑞 is continuous, 𝑞 ≥ 0 for 𝑥 ∈ [0, 𝑙] ,

and has property (P1)} .
(23)

In the next section, wewill establish a conditional stability
for the inverse problem of determining 𝑞 ∈ 𝑆ad with the
help of an integral identity by suitably controlling an adjoint
problem.

4. Conditional Stability of the Inverse Problem

It is more difficult to prove stability than to prove existence
and uniqueness for an inverse problem, and it always needs
additional conditions and suitable topology to construct a
stability which is called conditional stability for the inverse
problem.

4.1. Construction of Integral Identity. In this section, a vari-
ational integral identity with the aid of an adjoint problem
is established, which reflects a corresponding relation of the
unknown source coefficientwith those of the initial boundary
values and the additional data.

Theorem 3. Let 𝑐
𝑖

= 𝑐(𝑥, 𝑡; 𝑞
𝑖
) (𝑖 = 1, 2) be two solutions

corresponding to the initial boundary value functions 𝑐𝑖
0
(𝑥) and

𝑔
𝑖
(𝑡) (𝑖 = 1, 2) and let 𝜃

𝑖
(𝑥) (𝑖 = 1, 2) be the corresponding

additional observations. Then it follows that

∫
Ω𝑇

𝑐
2
(𝑞
1
− 𝑞
2
) 𝜑 (𝑤) (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

= ∫

𝑙

0

(𝜃
2
− 𝜃
1
) 𝑤 (𝑥) 𝑑𝑥 + ∫

𝑙

0

(𝑐
1

0
− 𝑐
2

0
) 𝜑 (𝑥, 0) 𝑑𝑥

+ ∫

𝑇

0

(𝑔
1
− 𝑔
2
) 𝜑 (0, 𝑡) 𝑑𝑡,

(24)

where 𝜑 = 𝜑(𝑤)(𝑥, 𝑡) is the solution of a suitable adjoint
problem with input data 𝑤 = 𝑤(𝑥) given in the proof of this
theorem.

Proof. Denoting 𝐶 = 𝑐
1
− 𝑐
2
and noting that 𝑐

1
and 𝑐
2
both

satisfy (2) and (3)–(6), we have

𝐶
𝑡
− 𝐷𝐶

𝑥𝑥
+ V𝐶
𝑥
+ 𝑞
1
𝐶 = (𝑞

2
− 𝑞
1
) 𝑐
2
, (25)

𝐶 (𝑥, 0) = 𝑐
1

0
− 𝑐
2

0
, (26)

V𝐶 (0, 𝑡) − 𝐷𝐶
𝑥 (0, 𝑡) = 𝑔

1
− 𝑔
2
, 𝐶
𝑥 (𝑙, 𝑡) = 0, (27)

𝐶 (𝑥, 𝑇) = 𝜃
1
− 𝜃
2
. (28)

By smooth test function 𝜑 = 𝜑(𝑥, 𝑡) and by multiplying two
sides of (25) and integrating on Ω

𝑇
, respectively, we have

∫
Ω𝑇

[𝐶
𝑡
− 𝐷𝐶

𝑥𝑥
+ V𝐶
𝑥
+ 𝑞
1
𝐶] 𝜑 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

= ∫
Ω𝑇

𝑐
2
[𝑞
2
− 𝑞
1
] 𝜑 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡.

(29)

Integration by parts for the left-hand side of equality (29)
and with a similar method as used in the proof of expression
(15), we get the identity (24) as long as choosing 𝜑(𝑥, 𝑡) as the
solution of the adjoint problem:

𝜑
𝑡
+ 𝐷𝜑
𝑥𝑥

+ V𝜑
𝑥
− 𝑞
1 (𝑥) 𝜑 = 0, (𝑥, 𝑡) ∈ Ω

𝑇
,

𝜑
𝑥 (0, 𝑡) = 0, 𝜑

𝑥 (𝑙, 𝑡) + ℎ𝜑 (𝑙, 𝑡) = 0, 𝑡 ∈ [0, 𝑇] ,

𝜑 (𝑥, 𝑇) = 𝑤 (𝑥) , 𝑥 ∈ [0, 𝑙] ,

(30)

where ℎ = V/𝐷 = 1/𝑎
𝐿
and 𝑤 = 𝑤(𝑥) is called a controllable

input. Since the adjoint problem is completely controlled by
the unique input 𝑤 = 𝑤(𝑥), we denote the solution of the
adjoint problem (30) by𝜑 = 𝜑(𝑤)(𝑥, 𝑡).The proof is over.

Obviously, by setting 𝜏 = 𝑇 − 𝑡 and 𝑥 = 𝑥 for the adjoint
problem (30) and also denoting 𝜏 as 𝑡, it is transformed to a
normal initial boundary value problem given as follows:

𝜑
𝑡
− 𝐷𝜑
𝑥𝑥

− V𝜑
𝑥
+ 𝑞
1 (𝑥) 𝜑 = 0, (𝑥, 𝑡) ∈ Ω

𝑇
,

𝜑
𝑥 (0, 𝑡) = 0, 𝜑

𝑥 (𝑙, 𝑡) + ℎ𝜑 (𝑙, 𝑡) = 0, 𝑡 ∈ [0, 𝑇] ,

𝜑 (𝑥, 0) = 𝑤 (𝑥) , 𝑥 ∈ [0, 𝑙] .

(31)
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In what follows, we cope with problem (31) instead of
problem (30). For this adjoint problem, we can see below
that its solution is really determined by the unique input
𝑤 = 𝑤(𝑥).

4.2. Lipschitz Stability. Firstly, by applying variable separa-
tion method and Sturm-Liouville eigenvalue theory [16], we
can get an explicit expression of the solution for the adjoint
problem (31).

Lemma 4. Suppose that the source coefficient 𝑞(𝑥) ∈ 𝑆
𝑎𝑑

and
the hydraulic parameters 𝐷 and V are positive; then there is

𝜑 (𝑤) (𝑥, 𝑡) =

∞

∑

𝑛=1

𝑎
𝑛
exp (−𝜆

𝑛
𝐷𝑡)𝑋

𝑛 (𝑥) , (32)

where𝜆
𝑛
,𝑋
𝑛
(𝑥) (𝑛 = 1, 2, . . .) are eigenvalues and correspond-

ing eigenfunctions of the following Sturm-Liouville problem,
respectively,

𝑋
󸀠󸀠

+ ℎ𝑋
󸀠
−

𝑞
1 (𝑥)

𝐷
𝑋 + 𝜆𝑋 = 0,

𝑋
󸀠
(0) = 0, 𝑋

󸀠
(𝑙) + ℎ𝑋 (𝑙) = 0,

(33)

𝑎
𝑛
=

(𝑤,𝑋
𝑛
)

(𝑋
𝑛
, 𝑋
𝑛
)

=

∫
𝑙

0
𝜌 (𝑥)𝑤 (𝑥)𝑋𝑛 (𝑥) 𝑑𝑥

󵄩󵄩󵄩󵄩𝑋𝑛
󵄩󵄩󵄩󵄩

2

2

, (34)

where 𝜌(𝑥) = exp(ℎ𝑥) is the weighted function of the
eigenvalue problem (33) and the eigenfunctions series {𝑋

𝑛
(𝑥)}

are orthogonal and complete on 𝐿
2
(0, 𝑙) with the weighted

function 𝜌(𝑥).

Remark 5. By multiplying 𝜌(𝑥) = exp(ℎ𝑥) at the two sides of
the differential equation in (33), we have

−
𝑑

𝑑𝑥
(𝜌 (𝑥)𝑋

󸀠
) + 𝑄 (𝑥)𝑋 = 𝜆𝜌 (𝑥)𝑋, (35)

where 𝑄(𝑥) = 𝜌(𝑥)𝑞
1
(𝑥)/𝐷 ≥ 0 for 𝑥 ∈ [0, 𝑙]. Combing

with the homogeneous boundary conditions 𝑋
󸀠
(0) = 0

and 𝑋
󸀠
(𝑙) + ℎ𝑋(𝑙) = 0, we deduce that the operator

−(𝑑/𝑑𝑥)[𝜌(𝑥)(𝑑/𝑑𝑥)] + 𝑄(𝑥) is self-adjoint and the problem
(33) is a regular Sturm-Liouville eigenvalue problem, and so
the eigenfunctions𝑋

𝑛
(𝑥), 𝑛 = 1, 2, . . . are orthogonal with the

weighted function 𝜌(𝑥) for 𝑥 ∈ [0, 𝑙].

With the aid of Lemma 4 and identity (24), we define a
bilinear formB(𝑞, 𝑤) : 𝐿

2
(0, 1) × 𝐿

2
(0, 1) → 𝑅 by

B (𝑞, 𝑤) = ∫
Ω𝑇

𝑐
2
𝑞 (𝑥) 𝜑 (𝑤) (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡, (36)

where 𝜑(𝑤) is the solution of the adjoint problem (31) for
𝑤 ∈ 𝐿

2
(0, 𝑙) and 𝑐

2
= 𝑐(𝑥, 𝑡; 𝑞

2
) is a definite solution of

the forward problem (2)–(5) for any given 𝑞
2

∈ 𝑆ad and 𝑐
2

is nonnegative and bounded for (𝑥, 𝑡) ∈ Ω
𝑇
which can be

regarded as a weighted function of the bilinear form. It is
noticeable that B is defined with 𝑞(𝑥) and 𝑤(𝑥) which is
different from those definitions given in [6, 17].

By using maximum-minimum principle in the adjoint
problem (31), we know that the solution 𝜑 = 𝜑(𝑤)(𝑥, 𝑡) takes
nonnegative values as long as 𝑤 = 𝑤(𝑥) ∈ 𝐿

2
(0, 𝑙) taking

nonnegative values on 𝑥 ∈ [0, 𝑙]. In addition, by general
theory of parabolic equation [8], there exists positive constant
𝑀
1
such that

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐿2(Ω𝑇)

≤ 𝑀
1‖𝑤‖𝐿2(0,𝑙). (37)

Then we get the following lemma.

Lemma 6. The functional B defined by (36) is a bounded
bilinear form.

Proof . In fact, B is linear on 𝑞 from (36) and together with
the expressions (32) and (34) it follows that 𝜑(𝑤) is linear
on 𝑤, and then B is linear on 𝑤 too. Next, using Hölder
inequality for the right-hand side of (36), we have

󵄨󵄨󵄨󵄨B (𝑞, 𝑤)
󵄨󵄨󵄨󵄨 ≤ 𝑀

1
(∫
Ω𝑇

[𝑞 (𝑥)]
2
𝑑𝑥 𝑑𝑡)

1/2

× (∫
Ω𝑇

[𝜑 (𝑤)]
2
𝑑𝑥 𝑑𝑡)

1/2

= 𝑀
2
√𝑇

󵄩󵄩󵄩󵄩𝑞
󵄩󵄩󵄩󵄩𝐿2(0,𝑙)

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐿2(Ω𝑇)

≤ 𝑀
3

󵄩󵄩󵄩󵄩𝑞
󵄩󵄩󵄩󵄩𝐿2(0,𝑙)‖

𝑤‖𝐿2(0,𝑙),

(38)

where 𝑀
3

= 𝑀
1
𝑀
2
√𝑇 and 𝑀

2
here is a positive constant

depending on the domain and the prescribed solution 𝑐
2
; then

B is bounded on 𝑞 and 𝑤. The proof is over.

By definition (36) and Lemmas 4 and 6, we define an
admissible space for the inputs as 𝑊 = {𝑤 ∈ 𝐿

2
(0, 𝑙) : 𝑤 ≥

0, ‖𝑤‖
2
≤ 𝐸} and a norm for the source coefficient via

󵄩󵄩󵄩󵄩𝑞
󵄩󵄩󵄩󵄩2

= sup
𝑤∈𝑊, 𝑤 ̸= 0

󵄨󵄨󵄨󵄨B (𝑞, 𝑤)
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑐2
󵄩󵄩󵄩󵄩2‖

𝑤‖2

, (39)

where 𝐸 > 0 is a constant and ‖𝑐
2
‖
2

= (∫
Ω𝑇

[𝑐(𝑥, 𝑡; 𝑞
2
)]
2

𝑑𝑥 𝑑𝑡)
1/2.

It is not difficult to testify that the above definition is well-
defined, by which we can construct a conditional stability for
the inversion of the source coefficient based on the integral
identity (24).

Theorem 7. Suppose that the assumptions (A), (B), and (C1)
are satisfied and (𝑐

𝑖
, 𝑞
𝑖
) (𝑖 = 1, 2) are two pairs of solutions to

the inverse problem (2)–(6) corresponding to the data 𝑐
𝑖

0
and

𝑔
𝑖
(𝑖 = 1, 2) and 𝜃

𝑖
(𝑖 = 1, 2) are the additional observations.

Then for 𝑞 ∈ 𝑆
𝑎𝑑

and 𝑤 ∈ 𝑊, there exists constant 𝑀 =

𝑀(𝐷, V, Ω
𝑇
, ‖𝜃‖
2
) such that

󵄩󵄩󵄩󵄩𝑞1 − 𝑞
2

󵄩󵄩󵄩󵄩2

≤ 𝑀(
󵄩󵄩󵄩󵄩𝜃1 − 𝜃

2

󵄩󵄩󵄩󵄩2
+

󵄩󵄩󵄩󵄩󵄩
𝑐
1

0
− 𝑐
2

0

󵄩󵄩󵄩󵄩󵄩2
+

󵄩󵄩󵄩󵄩𝑔1 − 𝑔
2

󵄩󵄩󵄩󵄩2
) .

(40)
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Proof. Firstly by assertion (1) of Theorem 1, there is

[𝜃 (𝑥)]
2
≤ [𝑐 (𝑥, 𝑡)]

2
≤ [𝑐
0 (𝑥)]
2
,

0 < 𝑥 < 𝑙, 0 < 𝑡 < 𝑇,

(41)

for any solution 𝑐(𝑥, 𝑡) of the forward problem (2)–(5) with
the final function 𝜃(𝑥) = 𝑐(𝑥, 𝑇) and the initial function
𝑐
0
(𝑥) = 𝑐(𝑥, 0). Then noting condition (A), we have, for the

solution 𝑐
2
= 𝑐(𝑥, 𝑡; 𝑞

2
),

1

𝑀
0
√𝑇

≤
1

󵄩󵄩󵄩󵄩𝑐0
󵄩󵄩󵄩󵄩2

√𝑇

≤
1

󵄩󵄩󵄩󵄩𝑐2
󵄩󵄩󵄩󵄩2

≤
1

‖𝜃‖2
√𝑇

≤
1

𝜀√𝑇

. (42)

Next by definition (39) and utilizing the integral identity (24)
and Cauchy-Schwartz inequality, we get

󵄩󵄩󵄩󵄩𝑞1 − 𝑞
2

󵄩󵄩󵄩󵄩2
≤

1

‖𝜃‖2
√𝑇

⋅ {
󵄩󵄩󵄩󵄩𝜃1 − 𝜃

2

󵄩󵄩󵄩󵄩2
sup
𝑤∈𝑊, 𝑤 ̸= 0

‖𝑤‖2

‖𝑤‖2

+
󵄩󵄩󵄩󵄩󵄩
𝑐
1

0
− 𝑐
2

0

󵄩󵄩󵄩󵄩󵄩2
sup
𝑤∈𝑊, 𝑤 ̸= 0

󵄩󵄩󵄩󵄩𝜑(𝑥, 0)
󵄩󵄩󵄩󵄩2

‖𝑤‖2

+
󵄩󵄩󵄩󵄩𝑔1 − 𝑔

2

󵄩󵄩󵄩󵄩2
sup
𝑤∈𝑊, 𝑤 ̸= 0

󵄩󵄩󵄩󵄩𝜑 (0, 𝑡)
󵄩󵄩󵄩󵄩2

‖𝑤‖2

} .

(43)

Also by the general theory of 1D parabolic equation, we know
that there exists a constant𝑀 > 0 depending on𝐷, V and the
domain Ω

𝑇
such that

󵄩󵄩󵄩󵄩𝜑(𝑥, 0)
󵄩󵄩󵄩󵄩2

,
󵄩󵄩󵄩󵄩𝜑(0, 𝑡)

󵄩󵄩󵄩󵄩2
≤ 𝑀‖𝑤‖2. (44)

Therefore, by setting

𝑀 =
1

‖𝜃‖2
√𝑇

max {1,𝑀} (45)

and noting (43) it follows that (40) is valid. The proof is over.

Remark 8. This theorem shows a conditional Lipschitz sta-
bility for the inverse problem (2)–(6). Furthermore, by this
theorem we can see that the uniqueness in the meaning of 𝐿2
for the inverse problem can be easily deduced by the stability
estimate (40).
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