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We consider a linear pursuit game of one pursuer and one evader whose motions are described by different-type linear discrete
systems. Controls of the players satisfy total constraints. Terminal set M is a subset of R𝑛 and it is assumed to have nonempty
interior. Game is said to be completed if 𝑦 (𝑘) − 𝑥 (𝑘) ∈ 𝑀 at some step k. To construct the control of the pursuer, at each step
i, we use positions of the players from step 1 to step i and the value of the control parameter of the evader at the step i. We give
sufficient conditions of completion of pursuit and construct the control for the pursuer in explicit form. This control forces the
evader to expend some amount of his resources on a period consisting of finite steps. As a result, after several such periods the
evader exhausted his energy and then pursuit will be completed.

1. Introduction

A large number of works are devoted to differential games
where the position of the players changes continuously in
time (see, e.g., [1–18]). Zero-sum differential games were
first considered in the book of Isaacs [5] who derived the
main equation of the theory of differential games. Though
the Isaacs method is not complete (since the main equation
may not have classical solutions or may have infinitely many
generalized solutions [18]) he effectively applied it to solve
many interesting game problems.

Krasovskĭı and Subbotin [7] and Pontryagin [10] pro-
posed two different formalizations for differential games.
According to Pontryagin we have to identify ourselves with
the pursuer in pursuit games and with the evader in evasion
games. Many approaches have been proposed in literature
to solve differential game problems under the integral con-
straints (see, e.g., [1–4, 6, 8, 9, 11–15, 17]).

In the present paper, we study a linear pursuit game
with total constraints on controls. Such constraints are dis-
crete analogues of integral constraints for differential games.

There are a few papers that study discrete games under total
constraints (see, e.g., [14–16, 19–22]).

In the linear discrete game studied by Satimov et al. [14] ,
the eigenvalues of the main matrix are assumed to be real.
Some sufficient conditions of completion of pursuit were
obtained in this paper. In the paper of Satimov et al. [15],
motions of players are simple. It was a starting point for mul-
tiperson differential games with integral constraints. Some
sufficient conditions were obtained for the game to be termi-
nated.

In the paper of Ibragimov [20], a discrete game described
by the equation

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) − 𝑢 (𝑘) + V (𝑘) (1)

is studied. Control of the evader satisfies total constraint.
There are two game problems that are considered. In the
first game, the control of the pursuer satisfies geometric con-
straint, and in the second it satisfies total constraint. Sufficient
conditions of completion of game from any position were
obtained.
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Azamov and Kuchkarov [19] studied relationship be-
tween 0-controllability of linear discrete systems

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) (2)

and completion of linear pursuit discrete game described by
the equation

𝑧 (𝑘 + 1) = 𝐴𝑧 (𝑘) + 𝐵𝑢 (𝑘) + 𝐶V (𝑘) . (3)

The control of the pursuer is subjected to geometric con-
straint and that of the evader is subjected to total constraint.
Necessary and sufficient conditions were obtained under
which solvability of 0-controllability is equivalent to comple-
tion of pursuit.

Kuchkarov et al. [22] studied a discrete game whose
position 𝑧(𝑘 + 1) ∈ R𝑛 is described by the above equa-
tion. Different from the above game, both controls of the
players are subjected to total constraints. They proved that if
eigenvalues of the matrix 𝐴 in absolute value are less than
1 and dim 𝐵𝑆 = 𝑛, where 𝑆 is unit ball in R𝑛 centered at
the origin, then pursuit can be completed from any initial
position. This result much more improves the result of the
work by Ibragimov and Kuchkarov [21].

In the present paper, we study a linear pursuit discrete
game of one pursuer and one evader. It is assumed that total
constraints are imposed on controls of players. The main
point in the pursuit method is that, in one step, the pursuer
forces the evader to expend a certain amount of his resources
to prevent the game from being completed. Therefore, after
finite times of such steps the resources of the evader will be
exhausted, and then pursuit will be completed. We obtain
sufficient conditions of completion of pursuit.

2. Statement of the Problem

In the Euclidian space R𝑛, we consider a discrete game de-
scribed by the following equations:

𝑥 (𝑘) = 𝐴𝑥 (𝑘 − 1) + 𝑢 (𝑘) , (4)

𝑦 (𝑘) = 𝐵𝑦 (𝑘 − 1) + V (𝑘) , (5)

where 𝑥, 𝑦, 𝑢, V ∈ R𝑛, 𝑛 ≥ 1, 𝐴 and 𝐵 are 𝑛 × 𝑛 constant
matrices, and 𝑢 (resp., V) is control parameter of the pursuer
(evader). The parameters 𝑢 and V are chosen in the form of
sequences as follows:

𝑢 = 𝑢 (⋅) = {𝑢 (1) , 𝑢 (2) , . . . , 𝑢 (𝑘) , . . .} ,

V = V (⋅) = {V (1) , V (2) , . . . , V (𝑘) , . . .}
(6)

and subjected to the following constraints:

‖𝑢 (⋅)‖
𝑙
2

≤ 𝜌, (7)

‖V (⋅)‖
𝑙
2

≤ 𝜎, (8)

where 𝜌 and 𝜎 are positive numbers. The pursuer and evader
move according to (4) and (5), respectively. In the space R𝑛,
a terminal set 𝑀, whose interior is not empty, is defined.

The condition int𝑀 ̸=Ø implies that there are a number ℓ > 0
and vector𝑚 ∈ 𝑀 to satisfy the inclusion ℓ𝑆 ⊂ −𝑚 +𝑀. The
purpose of the pursuer is to realize the inclusion

𝑦 (𝑘) − 𝑥 (𝑘) ∈ 𝑀 (9)

at some finite step 𝑘, and that of the evader is opposite.

Definition 1. A sequence 𝑢 = 𝑢(⋅) (resp., V = V(⋅)) subjected
to the constraint (7) (resp., (8)) is called admissible control of
the pursuer (evader).

Definition 2. If for any admissible control of the evader V =
V(⋅) = {V(1), V(2), . . . , V(𝑘), . . .} one can construct an admis-
sible control of the pursuer 𝑢(⋅) = {𝑢(1), 𝑢(2), . . . , 𝑢(𝑘), . . .}

such that for the solutions
𝑥 = 𝑥 (⋅) = {𝑥 (1) , 𝑥 (2) , . . . , 𝑥 (𝑘)} ,

𝑦 = 𝑦 (⋅) = {𝑦 (1) , 𝑦 (2) , . . . , 𝑦 (𝑘)}

(10)

of (4) and (5) with the initial positions 𝑧
0
= (𝑥
0
, 𝑦
0
), where

𝑥(0) = 𝑥
0
, 𝑦(0) = 𝑦

0
, 𝑦
0
− 𝑥
0
∉ 𝑀, and controls 𝑢(⋅), V(⋅) the

inclusion (9) is satisfied at some 𝑘 ≤ 𝑁(𝑧
0
), then we say that

pursuit starting from the position 𝑧
0
can be completed in the

game (4), (5) for𝑁 = 𝑁(𝑧
0
) steps. Here, we assume that the

pursuer uses V(𝑘) to construct 𝑢(𝑘), 𝑘 ≥ 1.

Problem. Find sufficient conditions, under which pursuit can
be completed from any initial position 𝑧

0
= (𝑥
0
, 𝑦
0
), 𝑥
0
, 𝑦
0
∈

R𝑛, 𝑦
0
− 𝑥
0
∉ 𝑀.

3. Main Result

In this section, we formulate and prove the main result of the
paper. First of all, we state our basic assumption. Let the norm
of the matrix 𝐴 be defined by ‖𝐴‖ = max

|𝑥|=1
|𝐴𝑥|.

Assumption 3. There exist numbers 𝜌
1
> 0, 𝜌

2
> 0, 𝑑 > 0, 0 ≤

𝛼
1
< 1, 0 ≤ 𝛼

2
< 1/2, a positive integer𝑚, and vector𝑚

1
∈ 𝑀

such that 𝜌
1
+ 𝜌
2
= 𝜌 and

(1) for any 𝑥, 𝑦 ∈ R𝑛, 𝑦 − 𝑥 ∉ 𝑀, there exists a step 𝑘 =
𝑘(𝑥, 𝑦) > 0 such that

−𝑚
1
+ 𝐵
𝑘

𝑦 − 𝐴
𝑘

𝑥 ∈
𝜌
1

√𝑚 ⋅ 𝑘
(𝐴
𝑘−1

+ 𝐴
𝑘−2

+ ⋅ ⋅ ⋅ + 𝐸) 𝑆;

(11)

(2) there exist linear operators 𝐹(𝑘, 𝑖) : 𝑅𝑛 → 𝑅
𝑛, 1 ≤ 𝑖 ≤

𝑘, such that for any 𝑘 ≥ 1 the following inequalities
hold true:

(a) ∑𝑘
𝑖=1
‖𝐵
𝑘−𝑖

− 𝐴
𝑘−𝑖

𝐹(𝑘, 𝑖)‖
2

≤ 𝑑𝑚
𝛼
1 ,

(b) ‖𝐹(𝑘, 𝑖)‖ ≤ 𝜌
2
/(𝜎 ⋅ 𝑚

𝛼
2), 1 ≤ 𝑖 ≤ 𝑘;

(3) 𝑚 ⋅min{𝜎2/𝑚1−2𝛼2 , ℓ2/(𝑑 ⋅ 𝑚𝛼1)} > 𝜎2.

Under this assumption we prove the following statement.

Theorem 4. If Assumption 3 holds, then pursuit can be com-
pleted in the game (4), (5) from any initial position 𝑧

0
=

(𝑥
0
, 𝑦
0
), 𝑥
0
, 𝑦
0
∈ R𝑛, 𝑦

0
− 𝑥
0
∉ 𝑀, for a finite step.
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Proof. Let 𝑦
0
− 𝑥
0
∉ 𝑀. Then it follows from condition (1) of

Assumption 3 that there exists 𝑘
1
= 𝑘
1
(𝑥
0
, 𝑦
0
) > 0 such that

−𝑚
1
+ 𝐵
𝑘
1𝑦
0
− 𝐴
𝑘
1𝑥
0
∈

𝜌
1

√𝑚 ⋅ 𝑘
1

× (𝐴
𝑘
1
−1

+ 𝐴
𝑘
1
−2

+ ⋅ ⋅ ⋅ + 𝐴 + 𝐸) 𝑆.

(12)

Consider the equation

(𝐴
𝑘
1
−1

+ 𝐴
𝑘
1
−2

+ ⋅ ⋅ ⋅ + 𝐴 + 𝐸)𝑤 = −𝑚
1
+ 𝐵
𝑘
1𝑦
0
− 𝐴
𝑘
1𝑥
0
,

(13)

with respect to the unknown vector 𝑤 ∈ (𝜌
1
/√𝑚𝑘

1
)𝑆. Ac-

cording to (12), (13) has a solution. Let 𝑤 = 𝑤 be the lexico-
graphically minimum solution of (13).

We now construct a control for the pursuer. Let the
evader use an arbitrary admissible control V = V(⋅) = {V(1),
V(2), . . . , V(𝑘), . . .}; that is, behavior of the evader is any.

By Definition 2, the pursuermay use V(𝑖) to construct 𝑢(𝑖)
on each step 𝑖. Set

𝑢 (𝑖) = 𝐹 (𝑘
1
, 𝑖) V (𝑖) + 𝑤, 𝑖 = 1, 2, . . . , (14)

while
𝑘

∑

𝑖=1

|V (𝑖)|2 <
𝜎
2

𝑚1−2𝛼2
, (15)

where 𝑘 is an integer. Then it is natural to consider the
following three cases.

Case 1. The inequality (15) holds for all 𝑘 ∈ {1, 2, . . . 𝑘
1
}.

Case 2. At some 𝑘 = 𝑛
1
, 𝑛
1
< 𝑘
1
, the inequality sign in (15)

turns to equality.

Case 3. At some 𝑘 = 𝑛
1
− 1, 𝑛
1
< 𝑘
1
, the inequality (15) holds,

but at 𝑘 = 𝑛
1
it fails to hold and opposite inequality holds:

𝑛
1

∑

𝑖=1

|V (𝑖)|2 >
𝜎
2

𝑚1−2𝛼2
. (16)

It follows from (4) and (5) that for the solutions 𝑥(𝑘) and 𝑦(𝑘)
corresponding to the initial position (𝑥

0
, 𝑦
0
) and control (14)

we obtain

𝑦 (𝑘) − 𝑥 (𝑘) = 𝐵
𝑘

𝑦
0
− 𝐴
𝑘

𝑥
0

+

𝑘

∑

𝑖=1

(𝐵
𝑘−𝑖V (𝑖) − 𝐴𝑘−𝑖 (𝐹 (𝑘

1
, 𝑖) V (𝑖) + 𝑤))

= 𝐵
𝑘

𝑦
0
− 𝐴
𝑘

𝑥
0
+

𝑘

∑

𝑖=1

(𝐵
𝑘−𝑖

− 𝐴
𝑘−𝑖

𝐹 (𝑘
1
, 𝑖)) V (𝑖)

+

𝑘

∑

𝑖=1

𝐴
𝑘−𝑖

𝑤.

(17)

In Case 1, since 𝑤 is a solution of (13), it follows from (17) at
𝑘 = 𝑘
1
that

− 𝑚
1
+ 𝑦 (𝑘

1
) − 𝑥 (𝑘

1
)

= −𝑚
1
+ 𝐵
𝑘
1𝑦
0
− 𝐴
𝑘
1𝑥
0

− (𝐴
𝑘
1
−1

+ 𝐴
𝑘
1
−2

+ ⋅ ⋅ ⋅ + 𝐴 + 𝐸)𝑤

+

𝑘
1

∑

𝑖=1

(𝐵
𝑘
1
−𝑖

− 𝐴
𝑘
1
−𝑖

𝐹 (𝑘
1
, 𝑖)) V (𝑖)

=

𝑘
1

∑

𝑖=1

(𝐵
𝑘
1
−𝑖

− 𝐴
𝑘
1
−𝑖

𝐹 (𝑘
1
, 𝑖)) V (𝑖) .

(18)

Next, if pursuit is not completed in the game (4), (5) at the
step 𝑘

1
, then in view of (18) we obtain

−𝑚1 + 𝑦 (𝑘1) − 𝑥 (𝑘1)


=



𝑘
1

∑

𝑖=1

(𝐵
𝑘
1
−𝑖

− 𝐴
𝑘
1
−𝑖

𝐹 (𝑘
1
, 𝑖)) V (𝑖)



> ℓ.

(19)

Thenusing theCauchy-Schwartz inequality and condition (5)
(a) of Assumption 3 yields

ℓ <



𝑘
1

∑

𝑖=1

(𝐵
𝑘
1
−𝑖

− 𝐴
𝑘
1
−𝑖

𝐹 (𝑘
1
, 𝑖)) V (𝑖)



< (

𝑘
1

∑

𝑖=1


𝐵
𝑘
1
−𝑖

− 𝐴
𝑘
1
−𝑖

𝐹 (𝑘
1
, 𝑖)


2

)

1/2

⋅ (

𝑘
1

∑

𝑖=1

|V (𝑖)|2)

1/2

≤ (𝑑 ⋅ 𝑚
𝛼
1)
1/2

⋅ (

𝑘
1

∑

𝑖=1

|V (𝑖)|2)

1/2

.

(20)

Hence,

𝑘
1

∑

𝑖=1

|V (𝑖)|2 >
ℓ
2

(𝑑 ⋅ 𝑚𝛼1)
. (21)

Clearly, if inequality (19) is not satisfied, then pursuit starting
from the initial position 𝑧

0
= (𝑥
0
, 𝑦
0
), 𝑦
0
− 𝑥
0
∉ 𝑀, is

completed on the step 𝑘
1
in the game (4), (5). Therefore,

assuming that pursuit is not completed up to the step 𝑘
1
in

the game (4), (5), which implies inequalities (19) and (21), we
conclude that the evader must expend the resources greater
than ℓ2/(𝑑 ⋅ 𝑚𝛼1) for the steps 1, . . . , 𝑘

1
.

In Case 2, the evader expends resources equal to
𝜎
2

/(𝑚
1−2𝛼
2) for the steps 1, . . . , 𝑛

1
.

We turn to Case 3. Since inequality (15) is satisfied at 𝑘 =
𝑛
1
− 1 and (16) is satisfied at 𝑘 = 𝑛

1
, then

𝑛
1
−1

∑

𝑖=1

|V (𝑖)|2 +
1

𝑑2
1

V (𝑛1)

2

=
𝜎
2

𝑚1−2𝛼2
(22)
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at some 𝑑
1
> 1. Define the value 𝑢(𝑛

1
) of the pursuer’s control

as follows:

𝑢 (𝑛
1
) = 𝐹 (𝑘

1
, 𝑛
1
) (

1

𝑑
1

V (𝑛
1
)) + 𝑤. (23)

Admissibility of the pursuer’s control will be shown later.
Thus, in Case 3, to guarantee that pursuit is not completed
up to the step 𝑛

1
, the evader must expend resources greater

than 𝜎2/𝑚1−2𝛼2 .
The process of the game up to the step 𝑘

1
in Case 1 and

up to the step 𝑛
1
in Cases 2 and 3 will be referred to as the

process of first approach of the pursuer to evader.
We now calculate the amount of resources expended by

the pursuer on the process of the first approach.
In Case 1, using theMinkowski inequality, we obtain from

(14) that
𝑘
1

∑

𝑖=1

|𝑢 (𝑖)|
2

=

𝑘
1

∑

𝑖=1

𝐹 (𝑘1, 𝑖) V (𝑖) + 𝑤

2

≤ [

[

(

𝑘
1

∑

𝑖=1

𝐹 (𝑘1, 𝑖) V (𝑖)

2

)

1/2

+ (

𝑘
1

∑

𝑖=1

|𝑤|
2

)

1/2

]

]

2

.

(24)

In Case 2, in view of (14) we have
𝑛
1

∑

𝑖=1

|𝑢 (𝑖)|
2

=

𝑛
1

∑

𝑖=1

𝐹 (𝑘1, 𝑖) V (𝑖) + 𝑤

2

≤ [

[

(

𝑛
1

∑

𝑖=1

𝐹 (𝑘1, 𝑖) V (𝑖)

2

)

1/2

+ (

𝑛
1

∑

𝑖=1

|𝑤|
2

)

1/2

]

]

2

.

(25)

In Case 3, we use (14) and (23) to estimate the resources of the
pursuer. Since 𝑑

1
> 1, using theMinkowski inequality, we see

that
𝑛
1

∑

𝑖=1

|𝑢 (𝑖)|
2

=

𝑛
1
−1

∑

1

𝐹 (𝑘1, 𝑖) V (𝑖) + 𝑤

2

+


𝐹 (𝑘
1
, 𝑛
1
) (

1

𝑑
1

V (𝑛
1
)) + 𝑤



2

≤ [

[

(

𝑛
1
−1

∑

𝑖=1

𝐹 (𝑘1, 𝑖) V (𝑖)

2

+
1

𝑑2
1

𝐹 (𝑘1, 𝑛1) V (𝑛1)

2

)

1/2

+(

𝑛
1

∑

𝑖=1

|𝑤|
2

)

1/2

]

]

2

≤ ((

𝑛
1

∑

𝑖=1

𝐹 (𝑘1, 𝑖) V (𝑖)

2

)

1/2

+ (

𝑛
1

∑

𝑖=1

|𝑤|
2

)

1/2

)

2

.

(26)

Similarly, according to condition (5) (b) of Assumption 3 and
the fact that 𝑤 ∈ (𝜌

1
/√𝑚𝑘

1
)𝑆, 𝑛
1
< 𝑘
1
, the right-hand sides

of inequalities (24)–(26) can be estimated from the above by
𝜌
2

/𝑚. For example, the right-hand side of (24) is estimated
as follows:

[

[

(

𝑘
1

∑

𝑖=1

𝐹 (𝑘1, 𝑖)

2

⋅ |V (𝑖) |2)

1/2

+ (

𝑘
1

∑

𝑖=1

|𝑤|
2

)

1/2

]

]

2

≤ [

[

𝜌
2

𝜎𝑚𝛼2
(

𝑘
1

∑

𝑖=1

|V (𝑖) |2)

1/2

+
𝜌
1

√𝑚

]

]

2

≤ (
𝜌
2

𝜎 ⋅ 𝑚𝛼2
⋅

𝜎

√𝑚1−2𝛼2
+

𝜌
1

√𝑚
)

1/2

=
𝜌
2

𝑚
.

(27)

Therefore,

𝑘
1

∑

𝑖=1

|𝑢 (𝑖)|
2

≤
𝜌
2

𝑚
in Case 1,

𝑛
1

∑

𝑖=1

|𝑢(𝑖)|
2

≤
𝜌
2

𝑚
in Cases 2 and 3.

(28)

We conclude from these estimations that if pursuit is not
completed in the game (4), (5) during the process of first
approach, the amount of resources expended by the evader
is greater than or equal to min{𝜎2/𝑚1−2𝛼2 , ℓ2/(𝑑 ⋅ 𝑚𝛼1)}, and
that expended by the pursuer does not exceed 𝜌2/𝑚.

Further, we continue as follows. InCase 1, the points𝑥
01
=

𝑥(𝑘
1
), 𝑦
01
= 𝑦(𝑘

1
) will be taken as the initial position at 𝑘

1
,

and in Cases 2 and 3, the points 𝑥
01
= 𝑥(𝑛

1
), 𝑦
01
= 𝑦(𝑛

1
) will

be taken as the initial position at 𝑛
1
. We now consider (4), (5)

with the initial position (𝑥
01
, 𝑦
01
) for the steps 𝑘 = 1, 2, . . ..

Given the initial position (𝑥
01
, 𝑦
01
), 𝑦
01
− 𝑥
01
∉ 𝑀, we

find the least integer 𝑘
2
= 𝑘
2
(𝑥
01
, 𝑦
01
) > 0 such that

−𝑚
2
+ 𝐵
𝑘
2𝑦
01
− 𝐵
𝑘
2𝑥
01
∈

𝜌
1

√𝑚𝑘
2

× (𝐴
𝑘
2
−1

+ 𝐴
𝑘
2
−2

+ ⋅ ⋅ ⋅ + 𝐴 + 𝐸) 𝑆,

(29)

at some 𝑚
2
∈ 𝑀. Existence of such 𝑘

2
is guaranteed by

condition (1) of Assumption 3.
Let V = V(𝑖), 1 ≤ 𝑖 ≤ 𝑘

2
, be an arbitrary control of the

evader. For the steps 𝑖 ∈ {1, . . . , 𝑘
2
}, we define the control of

the pursuer 𝑢 = 𝑢(𝑖) by (14), with 𝑘
1
replaced by 𝑘

2
while the

inequality (15) holds.
We apply the above argument again. If pursuit is not

completed in the game (4), (5) during the process of second
approach, then the amount of resources expended by the
evader is not less than min{𝜎2/𝑚1−2𝛼2 , ℓ2/(𝑑 ⋅ 𝑚𝛼1)}, and that
expended by the pursuer is less than 𝜌2/𝑚.

Now, 𝑚-time repeated application of this reasoning
enables us to conclude that at most at the 𝑚th process of
approach pursuit is completed in the game (4), (5).
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Indeed, assuming the contrary we have

𝜎
2

≥

𝑚

∑

𝑗=1

(

𝑘
𝑗

∑

𝑖=1

|V (𝑖)|2) ≥

𝑚

∑

𝑗=1

min{ ℓ
2

𝑑 ⋅ 𝑚𝛼1
,

𝜎
2

𝑚1−2𝛼2
}

= 𝑚 ⋅min{ ℓ
2

𝑑 ⋅ 𝑚𝛼1
,

𝜎
2

𝑚1−2𝛼2
} ,

(30)

which contradicts condition (3) of Assumption 3.
However for 𝑢 = 𝑢(⋅) we have ∑𝑚

𝑗=1
∑
𝑘
𝑗

𝑖=1
|𝑢(𝑖)|
2

≤ ∑
𝑚

𝑗=1

(𝜌
2

/𝑚) = 𝜌
2. The proof is complete.

Remark 5. Let condition (2) of Assumption 3 hold for𝑚 = 1

and 𝑑 < ℓ2/𝜎2. Then conditions (1) and (3) of Assumption 3
can be weakened. More precisely, we require the inclusion
𝑦
0
− 𝑥
0
∈ 𝑀 and drop condition (3). Then Theorem 4 guar-

antees that pursuit can be completed only from the initial
points 𝑥

0
, 𝑦
0
.

Example 6. Consider a discrete game described by equations

𝑥
𝑘
= 𝜆𝑥
𝑘−1

+ 𝑢
𝑘
,

𝑦
𝑘
= 𝜆𝑦
𝑘−1

+ V
𝑘
,

(31)

where 𝑥
𝑘
, 𝑦
𝑘
, 𝑢
𝑘
, V
𝑘
∈ 𝑅
𝑛, 𝑛 ≥ 1. Let 𝑢 = (𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑘
, . . .),

V = (V
1
, V
2
, . . . , V

𝑘
, . . .), and

‖𝑢(⋅)‖
𝑙
2

≤ 𝜌, ‖V (⋅)‖
𝑙
2

≤ 𝜎. (32)

The terminal set is𝑀 = {𝑥, 𝑦 | 𝑥, 𝑦 ∈ 𝑅
𝑛

, 𝑦 − 𝑥 ∈ 𝑙𝑆, 𝑙 >

0}. For this example, 𝐵 = 𝐴 = 𝜆𝐸. ApplyingTheorem 4 to the
game (31) and (32), we obtain the following statement.

Assertion 1. If 𝜌 > 𝜎 and |𝜆| ≤ 1, then pursuit can be
completed in the game (31) and (32) from any initial positions
in finite number of steps.

Proof of assertion is straightforward if we take𝐹(𝑘, 𝑖) = 𝐸,
𝑚 = 1, 𝜌 = 𝜌

1
+ 𝜌
2
, 𝜌
1
> 0, 𝜌

2
> 𝜎, and 𝛼

1
= 𝛼
2
̸= 0, and 𝑑 >

0 is sufficiently small number. For Assertion 1 we used Re-
mark 5.

4. Conclusion

We have obtained sufficient conditions of completion of pur-
suit for a linear pursuit discrete game with total constraints
where motions of the players are described by different-type
linear equations.The control parameter of the pursuer 𝑢(𝑘) is
constructed based on V(𝑘).

It should be noted that conclusion of Theorem 4 is still
true with appropriate changes if controls 𝑢 = 𝑢(⋅) and V =

V(⋅) are subjected to constraints ‖𝑢(⋅)‖
𝑙
𝑝

≤ 𝜌 and ‖V(⋅)‖
𝑙
𝑝

≤ 𝜎,
𝑝 > 1. Further studies can be done to weaken conditions of
Assumption 3.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

The present research was partially supported by the National
Fundamental Research Grant Scheme (FRGS) of Malaysia,
01-01-13-1228FR.

References

[1] A. Ya. Azimov and G. Kh. Guseinov, “On some classes of
differential games with integral constraints,” Izvestiya Akademii
Nauk SSSR. Tekhnicheskaya Kibernetika, no. 3, pp. 9–16, 1972.

[2] A. A. Chikrii and A. A. Belousov, “On linear differential games
with integral constraints. Memoirs of Institute of Mathematics
andMechanics,”Ural Branch of the RussianAcademy of Sciences,
Ekaterinburg, vol. 15, no. 4, pp. 290–301, 2009.

[3] G. I. Ibragimov, “On the problem of group pursuit with
integral constraints on the controls of the players,” Rossĭıskaya
Akademiya Nauk. Matematicheskie Zametki, vol. 70, no. 2, pp.
201–212, 2001.

[4] G. I. Ibragimov and N. Y. Satimov, “A multiplayer pursuit dif-
ferential game on a closed convex set with integral constraints,”
Abstract and Applied Analysis, vol. 2012, Article ID 460171, 12
pages, 2012.

[5] R. Isaacs, Differential Games. A Mathematical Theory with
Applications toWarfare and Pursuit, Control and Optimization,
New York, NY, USA, 1967.

[6] N.N.Krasovskii,TheTheory ofMotionControl, Nauka,Moscow,
Russia, 1970.
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