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We consider the control systems governed by semilinear differential equations with Riemann-Liouville fractional derivatives in
Banach spaces. Firstly, by applying fixed point strategy, some suitable conditions are established to guarantee the existence and
uniqueness of mild solutions for a broad class of fractional infinite dimensional control systems. Then, by using generally mild
conditions of cost functional, we extend the existence result of optimal controls to the Riemann-Liouville fractional control systems.
Finally, a concrete application is given to illustrate the effectiveness of our main results.

1. Introduction

The purpose of this paper is to investigate the solvability and
optimal controls for the following semilinear control systems
with Riemann-Liouville fractional derivatives:

𝐿
𝐷
𝛼

𝑡
𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) ,

𝑡 ∈ (0, 𝑏] , 𝑢 ∈ 𝑈ad,

𝐼
1−𝛼

0
+ 𝑥 (𝑡)

𝑡=0
= 𝑥

0
∈ 𝑋,

(1)

where 0 < 𝛼 ≤ 1, 𝐿𝐷𝛼
𝑡

denotes the Riemann-Liouville
fractional derivative of order 𝛼 with the lower limit zero.
𝐴 : 𝐷(𝐴) ⊆ 𝑋 → 𝑋 is the infinitesimal generator of a
𝐶
0
-semigroup 𝑇(𝑡)(𝑡 ≥ 0) on a separable Banach space 𝑋.

𝑓 : [0, 𝑏] × 𝑋 → 𝑋 is a given function to be specified later.
The control function𝑢 is given in a suitable admissible control
set 𝑈ad. 𝐵 is a linear operator from a separable reflexive
Banach space 𝑌 into 𝑋. The cost functional over the family
of admissible state control pair (𝑥, 𝑢) is given by

J (𝑥, 𝑢) = ∫
𝐽

L (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡)) 𝑑𝑡. (2)

In recent years, fractional calculus has been paid more
and more attention that lies on the fact that it allows us
to consider integration and differentiation of any order, not

necessarily integer, and fractional-order models are more
accurate than integer-order models; that is, there are more
degrees of freedom in the fractional-order models. Further-
more, fractional derivatives provide an excellent instrument
for the description of memory and hereditary properties
of various materials and processes due to the existence
of term which insures the history and its impact on the
present and future in a model. Therefore, it has drawn great
applications of the mathematical modeling of systems and
processes in the fields of physics, chemistry, aerodynamics,
electrodynamics of complex medium, viscoelasticity, heat
conduction, electricity mechanics, control theory, and so
forth. For more details on these topics one can see, for
instance, [1–17] and the reference therein.

The definitions of Riemann-Liouville fractional deriva-
tives or integrals initial conditions play an important role
in some practical problems. Heymans and Podlubny [18]
have demonstrated that it is possible to attribute physical
meaning to initial conditions expressed in terms of Riemann-
Liouville fractional derivatives or integrals on the field of
the viscoelasticity, and such initial conditions are more
appropriate than physically interpretable initial conditions.

Since the pioneering work on the fundamental solutions
of Caputo fractional evolution equations associated with
some probability densities has been reported by El-Borai
[19, 20], the study of the existence, controllability, and optimal
controls of the fractional semilinear functional differential
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equations and inclusions with the infinitesimal generator
𝐴 of a 𝐶

0
-semigroup have been extensively studied (one

can see [21–23]). However, to the best of our knowledge,
the solvability and optimal controls for fractional semilin-
ear differential equations with Riemann-Liouville fractional
derivatives are still untreated topics in the literature and
this fact is the motivation of the present work. Our aim in
this paper is to provide some suitable sufficient conditions
for the existence and uniqueness of solutions and optimal
control results corresponding to the admissible control sets
of fractional abstract Cauchy problems with the Riemann-
Liouville fractional derivatives.

The rest of this paper is organized as follows. In Section 2,
we will present some basic definitions and preliminary facts,
such as definitions, lemmas, and theorems, which will be
used throughout the following sections. In Section 3, by
applying the well-known fixed point theorem, some sufficient
conditions are established for the existence and uniqueness
of mild solutions of the system (1). In Section 4, we will study
the optimal controls for semilinear differential equationswith
Riemann-Liouville fractional derivatives. Finally, we present
an example to demonstrate our main results in Section 5.

2. Preliminaries

In this section, we introduce some basic definitions and
preliminaries which are used throughout this paper. The
norm of a Banach space𝑋 will be denoted by ‖ ⋅ ‖

𝑋
. 𝐿
𝑏
(𝑋, 𝑌)

denotes the space of bounded linear operators from 𝑋 to
𝑌. For the uniformly bounded 𝐶

0
-semigroup 𝑇(𝑡), we set

𝑀 := sup
𝑡≥0

‖𝑇(𝑡)‖
𝐿
𝑏
(𝑋)

< ∞. Let 𝐶(𝐽,𝑋) denote the Banach
space of all𝑋-value continuous functions from 𝐽 = [0, 𝑏] into
𝑋 with the norm ‖𝑥‖

𝐶
= sup

𝑡∈𝐽
‖𝑥(𝑡)‖

𝑋
. Let 𝐴𝐶(𝐽,𝑋) be the

space of functions 𝑓 which are absolutely continuous on 𝐽

and 𝐴𝐶
𝑚
(𝐽, 𝑋) = {𝑓 : 𝐽 → 𝑋 and 𝑓

(𝑚−1)
(𝑥) ∈ 𝐴𝐶(𝐽, 𝑋)}.

To define the mild solutions of (1), we consider the Banach
space 𝐶

1−𝛼
(𝐽, 𝑋) = {𝑥 : 𝑡

1−𝛼
𝑥(𝑡) ∈ 𝐶(𝐽, 𝑋)} with the norm

‖𝑥‖
𝐶
1−𝛼

= sup{𝑡1−𝛼‖𝑥(𝑡)‖
𝑋

: 𝑡 ∈ 𝐽}. Obviously, the space
𝐶
1−𝛼

(𝐽, 𝑋) is a Banach space.
Firstly, let us recall the following definitions from frac-

tional calculus. For more details, one can see [3, 16].

Definition 1. The integral

𝐼
𝛼

𝑡
𝑓 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠, 𝛼 > 0, (3)

is called Riemann-Liouville fractional integral of order 𝛼,
where Γ is the gamma function.

Definition 2. For a function 𝑓(𝑡) given in the interval [0,∞),
the expression

𝐿
𝐷
𝛼

𝑡
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)
(

𝑑

𝑑𝑡
)

𝑛

∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝛼−1

𝑓 (𝑠) 𝑑𝑡, (4)

where 𝑛 = [𝛼] + 1, [𝛼] denotes the integer part of number
𝛼 and is called the Riemann-Liouville fractional derivative of
order 𝛼.

Lemma 3 (see [3]). Let 𝛼 > 0, let 𝑚 = [𝛼] + 1, and let
𝑥
𝑚−𝛼

(𝑡) = 𝐼
𝑚−𝛼

0
+ 𝑥(𝑡) be the fractional integral of order 𝑚 − 𝛼.

If 𝑥(𝑡) ∈ 𝐿
1
(𝐽, 𝑋) and 𝑥

𝑚−𝛼
(𝑡) ∈ 𝐴𝐶

𝑚
(𝐽, 𝑋), then one has the

following equality:

𝐼
𝛼

𝑡

𝐿
𝐷
𝛼

𝑡
𝑥 (𝑡) = 𝑥 (𝑡) −

𝑚

∑

𝑘=1

𝑥
(𝑚−𝑘)

𝑚−𝛼
(0)

Γ (𝛼 − 𝑘 + 1)
𝑡
𝛼−𝑘

. (5)

TheLaplace transform formula for theRiemann-Liouville
fractional integral is defined by

𝐿 {𝐼
𝛼

𝑡
𝑢 (𝑡) ; 𝜆} =

1

𝜆𝛼
�̂� (𝜆) , (6)

where �̂�(𝜆) is the Laplace of 𝑢 defined by

�̂� (𝜆) = ∫

∞

0

𝑒
−𝜆𝑡

𝑢 (𝑡) 𝑑𝑡, Re 𝜆 > 𝜔,

|𝑢 (𝑡)| ≤ 𝑐𝑒
𝜔𝑡
, 𝑐 is a constant.

(7)

Lemma 4. Let 𝛼 ∈ (0, 1] and ℎ ∈ 𝐿
𝑝
(𝐽, 𝑋), 𝑝 > 1/𝛼, if

𝑥(𝑡) ∈ 𝐿
1
(𝐽, 𝑋), 𝑥

1−𝛼
(𝑡) ∈ 𝐴𝐶(𝐽, 𝑋), and 𝑥 is a solution of

the following problem:
𝐿
𝐷
𝛼

𝑡
𝑥 (𝑡) = 𝐴𝑥 (𝑡) + ℎ (𝑡) , 𝑡 ∈ (0, 𝑏] ,

𝐼
1−𝛼

0
+ 𝑥 (𝑡)

𝑡=0
= 𝑥

0
∈ 𝑋;

(8)

then, 𝑥 satisfies the following equation:

𝑥 (𝑡) = 𝑡
𝛼−1

𝑇
𝛼 (𝑡) 𝑥0 + ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑇
𝛼 (𝑡 − 𝑠) ℎ (𝑠) 𝑑𝑠, 𝑡 ∈ 𝐽,

(9)

where

𝑇
𝛼 (𝑡) = 𝛼∫

∞

0

𝜃𝜉
𝛼 (𝜃) 𝑇 (𝑡

𝛼
𝜃) 𝑑𝜃,

𝜉
𝛼 (𝜃) =

1

𝛼
𝜃
−1−(1/𝛼)

𝜛
𝛼
(𝜃
−(1/𝛼)

) ,

𝜛
𝛼 (𝜃) =

1

𝜋

∞

∑

𝑛=1

(−1)
𝑛−1

𝜃
−𝑛𝛼−1 Γ (𝑛𝛼 + 1)

𝑛!
sin (𝑛𝜋𝛼) ,

𝜃 ∈ (0,∞) ;

(10)

and 𝜉
𝛼
is a probability density function defined on (0,∞), that

is,

𝜉
𝛼 (𝜃) ≥ 0, 𝜃 ∈ (0,∞) , ∫

∞

0

𝜉
𝛼 (𝜃) 𝑑𝜃 = 1. (11)

Proof. Apply Riemann-Liouville fractional integral operator
on both sides of (8); then, by Lemma 3, we get

𝑥 (𝑡) =

𝐼
1−𝛼

0
+ 𝑥 (𝑡)

𝑡=0

Γ (𝛼)
𝑡
𝛼−1

+ 𝐼
𝛼

𝑡
𝐴𝑥 (𝑡) + 𝐼

𝛼

𝑡
ℎ (𝑡)

=
𝑡
𝛼−1

Γ (𝛼)
𝑥
0
+ 𝐼
𝛼

𝑡
𝐴𝑥 (𝑡) + 𝐼

𝛼

𝑡
ℎ (𝑡) ;

(12)

that is,

𝑥 (𝑡) =
𝑡
𝛼−1

Γ (𝛼)
𝑥
0
+

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

[𝐴𝑥 (𝑠) + ℎ (𝑠)] 𝑑𝑠.

(13)
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Let 𝜆 > 0; taking the Laplace transformations

𝑥 (𝜆) = ∫

∞

0

𝑒
−𝜆𝑡

𝑥 (𝑡) 𝑑𝑡, ℎ̂ (𝜆) = ∫

∞

0

𝑒
−𝜆𝑡

ℎ (𝑡) 𝑑𝑡, (14)

to (13), we obtain

𝑥 (𝜆) =
1

𝜆𝛼
𝑥
0
+

1

𝜆𝛼
𝐴𝑥 (𝜆) +

1

𝜆𝛼
ℎ̂ (𝜆)

= (𝜆
𝛼
𝐼 − 𝐴)

−1
𝑥
0
+ (𝜆

𝛼
𝐼 − 𝐴)

−1
ℎ̂ (𝜆)

= ∫

∞

0

𝑒
−𝜆
𝛼
𝑡
𝑇 (𝑡) 𝑥0𝑑𝑡 + ∫

∞

0

𝑒
−𝜆
𝛼
𝑡
𝑇 (𝑡) ℎ̂ (𝜆) 𝑑𝑡.

(15)

Consider the one-sided stable probability density

𝜛
𝛼 (𝜃) =

1

𝜋

∞

∑

𝑛=1

(−1)
𝑛−1

𝜃
−𝑛𝛼−1 Γ (𝑛𝛼 + 1)

𝑛!
sin (𝑛𝜋𝛼) ,

𝜃 ∈ (0,∞) ,

(16)

whose Laplace transform is given by

∫

∞

0

𝑒
−𝜆𝜃

𝜛
𝛼 (𝜃) 𝑑𝜃 = 𝑒

−𝜆
𝛼

, 𝛼 ∈ (0, 1) . (17)

Hence, it follows from (15) and (17) that

∫

∞

0

𝑒
−𝜆
𝛼
𝑡
𝑇 (𝑡) 𝑥0𝑑𝑡

= ∫

∞

0

𝑒
−(𝜆𝑠)
𝛼

𝑇 (𝑠
𝛼
) 𝑥
0
𝑑𝑠
𝛼

(𝑡 = 𝑠
𝛼
)

= 𝛼∫

∞

0

𝑒
−(𝜆𝑠)
𝛼

𝑇 (𝑠
𝛼
) 𝑠
𝛼−1

𝑥
0
𝑑𝑠

= 𝛼∬

∞

0

𝜛
𝛼 (𝜃) 𝑒

−𝜆𝑠𝜃
𝑇 (𝑠

𝛼
) 𝑠
𝛼−1

𝑥
0
𝑑𝜃 𝑑𝑠

= 𝛼∬

∞

0

𝜛
𝛼 (𝜃) 𝑒

−𝜆𝑢
𝑇(

𝑢
𝛼

𝜃𝛼
)

𝑠
𝛼−1

𝜃𝛼
𝑥
0
𝑑𝑢 𝑑𝜃 (𝑢 = 𝜃𝑠)

= ∫

∞

0

𝑒
−𝜆𝑢

[𝛼∫

∞

0

𝜛
𝛼 (𝜃) 𝑇(

𝑢
𝛼

𝜃𝛼
)

𝑠
𝛼−1

𝜃𝛼
𝑥
0
𝑑𝜃] 𝑑𝑢,

∫

∞

0

𝑒
−𝜆
𝛼
𝑡
𝑇 (𝑡) ℎ̂ (𝜆) 𝑑𝑡

= ∫

∞

0

𝑒
−𝜆
𝛼
𝑡
𝑇 (𝑡) [∫

∞

0

𝑒
−𝜆𝑠

ℎ (𝑠) 𝑑𝑠] 𝑑𝑡

= ∬

∞

0

𝑒
−𝜆
𝛼
𝑡
𝑇 (𝑡) 𝑒

−𝜆𝑠
ℎ (𝑠) 𝑑𝑠 𝑑𝑡

= ∬

∞

0

𝑒
−(𝜆𝜇)

𝛼

𝑇 (𝜇
𝛼
) 𝑞𝜇

𝛼−1
𝑒
−𝜆𝑠

ℎ (𝑠) 𝑑𝑠 𝑑𝜇

(𝑡 = 𝜇
𝛼
)

= ∭

∞

0

𝛼𝜛
𝛼 (𝜃) 𝑒

−𝜆𝜇𝜃
𝑇 (𝜇

𝛼
) 𝜇
𝛼−1

𝑒
−𝜆𝑠

ℎ (𝑠) 𝑑𝜃 𝑑𝑠 𝑑𝜇

= ∭

∞

0

𝛼𝜛
𝛼 (𝜃) 𝑒

−𝜆]
𝑇(

]𝛼

𝜃𝛼
)
]𝛼−1

𝜃𝛼
𝑒
−𝜆𝑠

ℎ (𝑠) 𝑑] 𝑑𝜃 𝑑𝑠

(] = 𝜇𝜃)

= ∭

∞

0

𝛼𝜛
𝛼 (𝜃) 𝑒

−𝜆(]+𝑠)
𝑇(

]𝛼

𝜃𝛼
)
]𝛼−1

𝜃𝛼
ℎ (𝑠) 𝑑] 𝑑𝜃 𝑑𝑠

= ∫

∞

0

∫

∞

0

∫

∞

𝑠

𝛼𝜛
𝛼 (𝜃) 𝑒

−𝜆𝜏
𝑇(

(𝜏 − 𝑠)
𝛼

𝜃𝛼
)

×
(𝜏 − 𝑠)

𝛼−1

𝜃𝛼
ℎ (𝑠) 𝑑𝜏 𝑑𝜃 𝑑𝑠 (𝜏 = ] + 𝑠)

= ∫

∞

0

𝑒
−𝜆𝜏

× [𝛼 ∫

𝜏

0

∫

∞

0

𝜛
𝛼 (𝜃) 𝑇(

(𝜏 − 𝑠)
𝛼

𝜃𝛼
)

×
(𝜏 − 𝑠)

𝛼−1

𝜃𝛼
ℎ (𝑠) 𝑑𝜃 𝑑𝑠] 𝑑𝜏.

(18)
According to the above work, we get

𝑥 (𝜆) = ∫

∞

0

𝑒
−𝜆𝑡

[𝛼∫

∞

0

𝜛
𝛼 (𝜃) 𝑇(

𝑡
𝛼

𝜃𝛼
)

𝑡
𝛼−1

𝜃𝛼
𝑥
0
𝑑𝜃

+ 𝛼∫

𝑡

0

∫

∞

0

𝜛
𝛼 (𝜃) 𝑇(

(𝑡 − 𝑠)
𝛼

𝜃𝛼
)

×
(𝑡 − 𝑠)

𝛼−1

𝜃𝛼
ℎ (𝑠) 𝑑𝜃 𝑑𝑠] 𝑑𝑡.

(19)

Now, we can invert the Laplace transform to (19) and
obtain

𝑥 (𝑡) = 𝛼∫

∞

0

𝜛
𝛼 (𝜃) 𝑇(

𝑡
𝛼

𝜃𝛼
)

𝑡
𝛼−1

𝜃𝛼
𝑥
0
𝑑𝜃

+ 𝛼∫

𝑡

0

∫

∞

0

𝜛
𝛼 (𝜃) 𝑇(

(𝑡 − 𝑠)
𝛼

𝜃𝛼
)

(𝑡 − 𝑠)
𝛼−1

𝜃𝛼
ℎ (𝑠) 𝑑𝜃 𝑑𝑡

= 𝛼∫

∞

0

1

𝛼
𝜃
−1−(1/𝛼)

𝜛
𝛼
(𝜃
−(1/𝛼)

) 𝜃𝑇 (𝑡
𝛼
𝜃) 𝑡

𝛼−1
𝑥
0
𝑑𝜃

+ 𝛼∫

𝑡

0

∫

∞

0

(𝑡 − 𝑠)
𝛼−1 1

𝛼
𝜃
−1−(1/𝛼)

𝜛
𝛼

× (𝜃
−(1/𝛼)

) 𝜃𝑇 ((𝑡 − 𝑠)
𝛼
𝜃) ℎ (𝑠) 𝑑𝜃 𝑑𝑡.

(20)
Let

𝜉
𝛼 (𝜃) =

1

𝛼
𝜃
−1−(1/𝛼)

𝜛
𝛼
(𝜃
−(1/𝛼)

) ,

𝑇
𝛼 (𝑡) = 𝛼∫

∞

0

𝜃𝜉
𝛼 (𝜃) 𝑇 (𝑡

𝛼
𝜃) 𝑑𝜃.

(21)
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Then, we get

𝑥 (𝑡) = 𝑡
𝛼−1

𝑇
𝛼 (𝑡) 𝑥0 + ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑇
𝛼 (𝑡 − 𝑠) ℎ (𝑠) 𝑑𝑠. (22)

This completes the proof of the lemma.

According to Lemma 4, we give the following definition.

Definition 5. A function 𝑥 ∈ 𝐶
1−𝛼

(𝐽, 𝑋) is called a mild
solution of (1) if it satisfies the following fractional integral
equation:

𝑥 (𝑡) = 𝑡
𝛼−1

𝑇
𝛼 (𝑡) 𝑥0

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑇
𝛼 (𝑡 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑇
𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠.

(23)

Remark 6. Amild solution 𝑥(⋅) ∈ 𝐶
1−𝛼

(𝐽, 𝑋) of the system (1)
is referred to as a state trajectory of the fractional semilinear
differential equation corresponding to the initial state 𝑥

0
and

the control 𝑢(⋅).

Due to the paper [23], we can obtain the following.

Lemma 7. The operator 𝑇
𝛼
(𝑡) has the following properties.

(i) For any fixed 𝑡 ≥ 0, 𝑇
𝛼
(𝑡) is linear and bounded

operators; that is, for any 𝑥 ∈ 𝑋,

𝑇𝛼 (𝑡) 𝑥
 ≤

𝛼𝑀

Γ (1 + 𝛼)
‖𝑥‖ . (24)

(ii) 𝑇
𝛼
(𝑡)(𝑡 ≥ 0) is strongly continuous.

(iii) For any 𝑡 > 0, 𝑇
𝛼
(𝑡) is also a compact operator if 𝑇(𝑡)

is compact.

Let us recall the following generalized Gronwall inequal-
ity which can be found in [24].

Lemma 8. Suppose 𝛽 > 0, 𝑎(𝑡) is a nonnegative function
locally integrable on [0, 𝜂], and 𝑏(𝑡) is a nonnegative, non-
decreasing continuous function defined on [0, 𝜂] and 𝑏(𝑡) ≤

𝑀 (constant), and suppose 𝑦(𝑡) is nonnegative and locally
integrable on [0, 𝜂] with

𝑦 (𝑡) ≤ 𝑎 (𝑡) + 𝑏 (𝑡) ∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

𝑦 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝜂] . (25)

Then,

𝑦 (𝑡) ≤ 𝑎 (𝑡) + ∫

𝑡

0

[

∞

∑

𝑛=1

[𝑏 (𝑡) Γ (𝛽)]
𝑛

Γ (𝑛𝛽)
(𝑡 − 𝑠)

𝑛𝛽−1
𝑎 (𝑠)] 𝑑𝑠,

𝑡 ∈ [0, 𝜂] .

(26)

Remark 9. Under the hypotheses of Lemma 8, let 𝑎(𝑡) be a
nondecreasing function on [0, 𝜂]. Then,

𝑦 (𝑡) ≤ 𝑎 (𝑡) 𝐸𝛽 (𝑏 (𝑡) Γ (𝛽) 𝑡
𝛽
) , (27)

where 𝐸
𝛽
is the Mittag-Leffler function defined by

𝐸
𝛽 (𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝑘𝛽 + 1)
. (28)

3. Existence of Mild Solutions

This section is devoted to the study of the existence and
uniqueness results for a class of semilinear differential equa-
tions with Riemann-Liouville fractional derivatives.

In what follows, we will make the following hypotheses
on the data of our problems:

𝐻(1): the function 𝑓 : 𝐽 × 𝑋 → 𝑋 satisfies the following:

(i) 𝑓(⋅, 𝑥) : 𝐽 → 𝑋 is measurable for all 𝑥 ∈ 𝑋 and
𝑓(𝑡, ⋅) : 𝑋 → 𝑋 is continuous for a.e. 𝑡 ∈ 𝐽;

(ii) there exists a function 𝜙(⋅) ∈ 𝐿
𝑝
(𝐽, 𝑅

+
), 𝑝 > 1/𝛼,

and a constant 𝜌 > 0 such that
𝑓 (𝑡, 𝑥 (𝑡))

 ≤ 𝜙 (𝑡) + 𝜌𝑡
1−𝛼

‖𝑥 (𝑡)‖ , for a.e. 𝑡 ∈ 𝐽; (29)

(iii) there exists a function𝜑(⋅) ∈ 𝐿
𝑝
(𝐽, 𝑅

+
),𝑝 > 1/𝛼,

such that
𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)

 ≤ 𝜑 (𝑡)
𝑥 − 𝑦

𝐶
1−𝛼

,

for a.e. 𝑡 ∈ 𝐽 and all 𝑥, 𝑦 ∈ 𝐶
1−𝛼 (𝐽, 𝑋) ;

(30)

𝐻(2): the operator 𝐵 ∈ 𝐿
𝑏
(𝐿
𝑝
(𝐽, 𝑌), 𝐿

𝑝
(𝐽, 𝑋));

𝐻(3): the multivalued map 𝑈 : 𝐽 → 𝑃
𝑓
(𝑌) (where 𝑃

𝑓
(𝑌)

is a class of nonempty closed and convex subsets of
𝑌) is measurable and there exists a function 𝑢(𝑡) ∈

𝐿
𝑝
(𝐽, 𝑅

+
), 𝑝 > 1/𝛼, such that

‖𝑈 (𝑡)‖ = sup {‖V‖ : V ∈ 𝑈 (𝑡)} ≤ 𝑢 (𝑡) , for a.e. 𝑡 ∈ 𝐽. (31)

Set the admissible control set

Uad = 𝑆
𝑝

𝑈
= {𝑢 ∈ 𝐿

𝑝
(𝐽) : 𝑢 (𝑡) ∈ 𝑈 (𝑡) a.e.} , 𝑝 >

1

𝛼
. (32)

Then, 𝑈ad ̸= 0 (see Proposition 2.1.7 and Lemma 2.3.2 of
[25]). And it is not difficult to check that 𝑈ad is a closed and
convex subset of 𝐿𝑝(𝐽, 𝑌).

In order to discuss the solvability and optimal control of
system (1), we need to consider the following.

Lemma 10. Assume that𝐻(1)–𝐻(3) hold.Then, there exists a
constant 𝜔 > 0 such that

‖𝑥‖𝐶
1−𝛼

≤ 𝜔, for any solution 𝑥 of (1) . (33)

Proof. If 𝑥 is a mild solution of system (1) with respect to 𝑢 ∈

𝑈ad on 𝐶
1−𝛼

(𝐽, 𝑋), then

𝑥 (𝑡) = 𝑡
𝛼−1

𝑇
𝛼 (𝑡) 𝑥0 + ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑇
𝛼 (𝑡 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑇
𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠.

(34)
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For 𝑡 ∈ 𝐽, we obtain that

𝑡
1−𝛼

‖𝑥 (𝑡)‖ ≤
𝑇𝛼 (𝑡) 𝑥0



+ 𝑡
1−𝛼

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1 𝑇𝛼 (𝑡 − 𝑠) 𝐵𝑢 (𝑠)

 𝑑𝑠

+ 𝑡
1−𝛼

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1 𝑇𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑠

≤
𝛼𝑀

Γ (1 + 𝛼)

× [
𝑥0

 + 𝑡
1−𝛼

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

‖(𝐵𝑢) (𝑠)‖ 𝑑𝑠

+ 𝑡
1−𝛼

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

× [𝜙 (𝑠) + 𝜌𝑠
1−𝛼

‖𝑥 (𝑠)‖] 𝑑𝑠]

≤
𝛼𝑀

Γ (1 + 𝛼)

× [
𝑥0

 + (
𝑝 − 1

𝑝𝛼 − 1
)

(𝑝−1)/𝑝

𝑏
1−(1/𝑝)

× (‖𝐵𝑢‖𝐿𝑝 +
𝜙

𝐿𝑝
)

+ 𝜌𝑏
1−𝛼

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑠
1−𝛼

‖𝑥 (𝑠)‖ 𝑑𝑠] .

(35)

Let

𝜅 =
𝛼𝑀

Γ (1 + 𝛼)
[
𝑥0

 + (
𝑝 − 1

𝑝𝛼 − 1
)

(𝑝−1)/𝑝

𝑏
1−(1/𝑝)

× (‖𝐵𝑢‖𝐿𝑝 +
𝜙

𝐿𝑝
) ] ,

𝑊 (𝑡) = 𝑡
1−𝛼

‖𝑥 (𝑡)‖ ;

(36)

then by (35), we have

𝑊(𝑡) ≤ 𝜅 +
𝛼𝑀𝜌𝑏

1−𝛼

Γ (1 + 𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑊(𝑠) 𝑑𝑠. (37)

It follows from Remark 9 that

𝑊(𝑡) ≤ 𝜅𝐸
𝛼
(𝑀𝜌𝑏) := 𝜔. (38)

Therefore, ‖𝑥‖
𝐶
1−𝛼

= sup
𝑡∈𝐽

𝑡
1−𝛼

‖𝑥(𝑡)‖ ≤ 𝜔. The proof is
completed.

Now, we are in the position to present our first result.

Theorem 11. Assume that the hypotheses 𝐻(1)–𝐻(3) are sat-
isfied. Then, the problem (1) has a unique mild solution on 𝐽

provided that

𝛼𝑀

Γ (1 + 𝛼)
(

𝑝 − 1

𝑝𝛼 − 1
)

1−(1/𝑝)

𝑏
1−(1/𝑝)𝜑

𝐿𝑝
< 1,

𝑀𝑏
𝛼

Γ (1 + 𝛼)
< 1.

(39)

Proof. Consider the operator ϝ : 𝐶
1−𝛼

(𝐽, 𝑋) → 𝐶
1−𝛼

(𝐽, 𝑋)

defined by

(ϝ𝑥) (𝑡) = 𝑡
𝛼−1

𝑇
𝛼 (𝑡) 𝑥0 + ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑇
𝛼 (𝑡 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑇
𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠.

(40)

Choose

𝑟 ≥ (
𝛼𝑀

Γ (1 + 𝛼)
[
𝑥0

 + (
𝑝 − 1

𝑝𝛼 − 1
)

(𝑝−1)/𝑝

× 𝑏
𝛼−(1/𝑝)

(‖𝐵𝑢‖𝐿𝑝 +
𝜙

𝐿𝑝
) ])

× (1 −
𝑀𝑏

𝛼

Γ (1 + 𝛼)
)

−1

,

(41)

and let 𝐵
𝑟
= {𝑥 ∈ 𝐶

1−𝛼
(𝐽, 𝑋) : ‖𝑥‖ ≤ 𝑟}. It is obvious that 𝐵

𝑟

is a bounded, closed, and convex subset of 𝐶
1−𝛼

(𝐽, 𝑋).
Firstly, we show that ϝ maps 𝐵

𝑟
into itself. In fact, for any

𝑥 ∈ 𝐵
𝑟
and 𝑡 ∈ 𝐽, like the proof of Lemma 10, we can easily

obtain ‖(ϝ𝑥)(𝑡)‖ ≤ 𝑟 which means that ϝ𝐵
𝑟
⊆ 𝐵

𝑟
.

Next, we show that ϝ is a contraction operator on
𝐶
1−𝛼

(𝐽, 𝑋).
Indeed, let 𝑡 ∈ 𝐽, and 𝑥, 𝑦 ∈ 𝐶

1−𝛼
(𝐽, 𝑋); then we obtain

𝑡
1−𝛼 (ϝ𝑥) (𝑡) − (ϝ𝑦) (𝑡)



≤ 𝑡
1−𝛼

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

×
𝑇𝛼 (𝑡 − 𝑠) [𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))]

 𝑑𝑠

≤
𝛼𝑀

Γ (1 + 𝛼)
𝑡
1−𝛼

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝜑 (𝑠)

×
𝑥 − 𝑦

𝐶
1−𝛼

𝑑𝑠

≤
𝛼𝑀

Γ (1 + 𝛼)
(

𝑝 − 1

𝑝𝛼 − 1
)

1−(1/𝑝)

𝑏
1−(1/𝑝)

×
𝜑

𝐿𝑝
𝑥 − 𝑦

𝐶
1−𝛼

.

(42)

Since (𝛼𝑀/(Γ(1 + 𝛼)))((𝑝 − 1)/(𝑝𝛼 −

1))
1−(1/𝑝)

𝑏
1−(1/𝑝)

‖𝜑‖
𝐿
𝑝 < 1, so ϝ is a contradiction operator.

According to Banach’s fixed point theorem, we obtain the
problem (1) that has a unique mild solution on 𝐽. The proof
is completed.
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Remark 12. In Theorem 11, we investigate the existence of
a local mild solution of (1). Next, if we assume that the
semigroup 𝑇(𝑡)(𝑡 > 0) is compact, then we can get the global
version of a mild solution for system (1).

Firstly, for a compact semigroup, we have the following.

Lemma 13 (see [26]). Let 𝑇(𝑡) be a 𝐶
0
-semigroup. If 𝑇(𝑡) is

a compact semigroup, then 𝑇(𝑡) is continuous in the uniform
operator topology for 𝑡 > 0.

The key tool in the existence result is the following Schae-
fer fixed point theorem.

Theorem 14. Let 𝑋 be a Banach space and let 𝐹 : 𝑋 → 𝑋 be
a completely continuous operator. If the set

Ω (𝐹) = {𝑥 ∈ 𝑋 : 𝑥 = 𝜆𝐹 (𝑥) , 𝜆 ∈ (0, 1)} (43)

is bounded, then 𝐹 has at least a fixed point.

Now, we are ready to state the existence result which is
based onTheorem 14.

Theorem 15. Assume that 𝐻(1)–𝐻(3) hold; if 𝐴 is the
infinitesimal generator of a compact semigroup 𝑇(𝑡), then the
problem (1) has at least one mild solution on 𝐽.

Proof. We consider the operator ϝ : 𝐶
1−𝛼

(𝐽, 𝑋) →

𝐶
1−𝛼

(𝐽, 𝑋) defined by

(ϝ𝑥) (𝑡) = 𝑡
𝛼−1

𝑇
𝛼 (𝑡) 𝑥0 + ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑇
𝛼 (𝑡 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑇
𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠.

(44)

For the sake of convenience, we subdivide the proof into
several steps.

Step 1. ϝ maps bounded sets into bounded sets in 𝐶
1−𝛼

(𝐽, 𝑋).
In fact, it is enough to show that, for any 𝑟 > 0, there

exists a 𝜂 > 0 such that, for each 𝑥 ∈ 𝐵
𝑟
= {𝑥 ∈ 𝐶

1−𝛼
(𝐽, 𝑋) :

‖𝑥‖
𝐶
1−𝛼

≤ 𝑟}, we have ‖ϝ𝑥‖
𝐶
1−𝛼

≤ 𝜂.
For each 𝑡 ∈ 𝐽, we obtain

𝑡
1−𝛼 (ϝ𝑥) (𝑡)

 ≤
𝑇𝛼 (𝑡) 𝑥0



+ 𝑡
1−𝛼

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1 𝑇𝛼 (𝑡 − 𝑠) (𝐵𝑢) (𝑠)

 𝑑𝑠

+ 𝑡
1−𝛼

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1 𝑇𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑠

≤
𝛼𝑀

Γ (1 + 𝛼)

× [
𝑥0

 + 𝑡
1−𝛼

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

‖(𝐵𝑢) (𝑠)‖ 𝑑𝑠

+ 𝑡
1−𝛼

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

× [𝜙 (𝑠) + 𝜌𝑠
1−𝛼

‖𝑥 (𝑠)‖] 𝑑𝑠]

≤
𝛼𝑀

Γ (1 + 𝛼)

× [
𝑥0

 + (
𝑝 − 1

𝑝𝛼 − 1
)

(𝑝−1)/𝑝

𝑏
1−(1/𝑝)

× (‖𝐵𝑢‖𝐿𝑝 +
𝜙

𝐿𝑝
) ] +

𝜌𝑀𝑏𝑟

Γ (1 + 𝛼)
,

(45)
which implies that

ϝ𝑥
𝐶
1−𝛼

≤
𝛼𝑀

Γ (1 + 𝛼)

× [
𝑥0

 + (
𝑝 − 1

𝑝𝛼 − 1
)

(𝑝−1)/𝑝

× 𝑏
1−(1/𝑝)

(‖𝐵𝑢‖𝐿𝑝 +
𝜙

𝐿𝑝
) ]

+
𝜌𝑀𝑏𝑟

Γ (1 + 𝛼)
:= 𝜂.

(46)

Thus, we know that {𝑡1−𝛼(ϝ𝑥)(𝑡) : 𝑥 ∈ 𝐵
𝑟
} is a bounded

set in 𝐶(𝐽,𝑋).

Step 2. We prove that ϝ is continuous.
Let {𝑥

𝑛
} be a sequence such that 𝑥

𝑛
→ 𝑥 in 𝐶

1−𝛼
(𝐽, 𝑋) as

𝑛 → ∞. Then, for each 𝑡 ∈ 𝐽, we obtain
𝑡
1−𝛼 (ϝ𝑥𝑛) (𝑡) − (ϝ𝑥) (𝑡)



≤ 𝑡
1−𝛼

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1 𝑇𝛼 (𝑡 − 𝑠)

× [𝑓 (𝑠, 𝑥
𝑛 (𝑠)) − 𝑓 (𝑠, 𝑥 (𝑠))]

 𝑑𝑠

≤
𝛼𝑀

Γ (1 + 𝛼)
𝑡
1−𝛼

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝜑 (𝑠)
𝑥𝑛 − 𝑥

𝐶
1−𝛼

𝑑𝑠

≤
𝛼𝑀

Γ (1 + 𝛼)

× (
𝑝 − 1

𝑝𝛼 − 1
)

1−(1/𝑝)

𝑏
1−(1/𝑝)𝜑

𝐿𝑝
𝑥𝑛 − 𝑥

𝐶
1−𝛼

.

(47)
Hence, we get

ϝ𝑥𝑛 − ϝ𝑥
𝐶
1−𝛼

≤
𝛼𝑀

Γ (1 + 𝛼)

× (
𝑝 − 1

𝑝𝛼 − 1
)

1−(1/𝑝)

𝑏
1−(1/𝑝)

×
𝜑

𝐿𝑝
𝑥𝑛 − 𝑥

𝐶
1−𝛼

→ 0 as 𝑛 → ∞.

(48)

Step 3. We prove that {𝑡
1−𝛼

(ϝ𝑥)(𝑡) : 𝑥 ∈ 𝐵
𝑟
} is an

equicontinuous set in 𝐶(𝐽,𝑋).
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Firstly, for any 𝜀 > 0, by Lemma 7(ii), 𝑇
𝛼
(𝑡) is strongly

continuous; then, there exists a 𝛿

> 0, such that

𝑇𝛼 (𝜏2) 𝑥0 − 𝑇
𝛼
(𝜏
1
) 𝑥
0

 <
𝜀

2
, as 𝜏2 − 𝜏

1

 < 𝛿

. (49)

Thus, for the above 𝜀 > 0, there exists 𝛿
0
= min{𝛿, ((𝑝𝛼−

1)/(𝑝 − 1))[Γ(𝛼)𝜀/(2𝑀(‖𝐵𝑢‖
𝐿
𝑝 + ‖𝜙‖

𝐿
𝑝 + 𝜌𝑟))]

𝑝/(𝑝−1)
} > 0,

such that, for any 𝑥 ∈ 𝐵
𝑟
, 𝜏
1
= 0, 0 < 𝜏

2
≤ 𝛿
0
, one can obtain


𝜏
1−𝛼

2
(ϝ𝑥) (𝜏

2
) − 𝜏

1−𝛼

1
(ϝ𝑥) (𝜏

1
)


≤
𝑇𝛼 (𝜏2) 𝑥0 − 𝑥

0



+



𝜏
1−𝛼

2
∫

𝜏
2

0

(𝜏
2
− 𝑠)

𝛼−1
𝑇
𝛼
(𝜏
2
− 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠



+



𝜏
1−𝛼

2
∫

𝜏
2

0

(𝜏
2
− 𝑠)

𝛼−1
𝑇
𝛼
(𝜏
2
− 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠



≤
𝑇𝛼 (𝜏2) 𝑥0 − 𝑥

0

 +
𝛼𝑀

Γ (1 + 𝛼)
(

𝑝 − 1

𝑝𝛼 − 1
)

(𝑝−1)/𝑝

× (‖𝐵𝑢‖𝐿𝑝 +
𝜙

𝐿𝑝
+ 𝜌𝑟) 𝛿

1−(1/𝑝)

0

<
𝜀

2
+

𝜀

2
= 𝜀.

(50)

Hence, by the definition of equicontinuity, we get that ϝ
is equicontinuous on [0, 𝛿

0
].

Next, for any 𝑥 ∈ 𝐵
𝑟
and (𝛿

0
/2) ≤ 𝜏

1
< 𝜏
2
≤ 𝑏, we obtain


𝜏
1−𝛼

2
(ϝ𝑥) (𝜏

2
) − 𝜏

1−𝛼

1
(ϝ𝑥) (𝜏

1
)


≤
𝑇𝛼 (𝜏2) 𝑥0 − 𝑇

𝛼
(𝜏
1
) 𝑥
0



+


𝜏
1−𝛼

2
∫

𝜏
2

0

(𝜏
2
− 𝑠)

𝛼−1
𝑇
𝛼
(𝜏
2
− 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠

− 𝑡
1−𝛼

∫

𝜏
1

0

(𝜏
1
− 𝑠)

𝛼−1
𝑇
𝛼
(𝜏
1
− 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠



+



𝜏
1−𝛼

2
∫

𝜏
2

0

(𝜏
2
− 𝑠)

𝛼−1

× 𝑇
𝛼
(𝜏
2
− 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 − 𝜏

1−𝛼

1

× ∫

𝜏
1

0

(𝜏
1
− 𝑠)

𝛼−1
𝑇
𝛼
(𝜏
1
− 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠



≤
𝑇𝛼 (𝜏2) 𝑥0 − 𝑇

𝛼
(𝜏
1
) 𝑥
0



+ [𝜏
1−𝛼

2
− 𝜏
1−𝛼

1
]



∫

𝜏
1

0

(𝜏
1
− 𝑠)

𝛼−1
𝑇
𝛼
(𝜏
1
− 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠



+ 𝜏
1−𝛼

2



∫

𝜏
1

0

[(𝜏
1
− 𝑠)

𝛼−1
− (𝜏

2
− 𝑠)

𝛼−1
]

× 𝑇
𝛼
(𝜏
1
− 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠



+ 𝜏
1−𝛼

2



∫

𝜏
1

0

(𝜏
1
− 𝑠)

𝛼−1
[𝑇
𝛼
(𝜏
2
− 𝑠)

−𝑇
𝛼
(𝜏
1
− 𝑠)] 𝐵𝑢 (𝑠) 𝑑𝑠



+ 𝜏
1−𝛼

2



∫

𝜏
2

𝜏
1

(𝜏
2
− 𝑠)

𝛼−1
𝑇
𝛼
(𝜏
2
− 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠



+ [𝜏
1−𝛼

2
− 𝜏
1−𝛼

1
]



∫

𝜏
1

0

(𝜏
1
− 𝑠)

𝛼−1

× 𝑇
𝛼
(𝜏
1
− 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠



+ 𝜏
1−𝛼

2



∫

𝜏
1

0

[(𝜏
1
− 𝑠)

𝛼−1
− (𝜏

2
− 𝑠)

𝛼−1
]

× 𝑇
𝛼
(𝜏
1
− 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠



+ 𝜏
1−𝛼

2



∫

𝜏
1

0

(𝜏
1
− 𝑠)

𝛼−1
[𝑇
𝛼
(𝜏
2
− 𝑠)

−𝑇
𝛼
(𝜏
1
− 𝑠)] 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠



+ 𝜏
1−𝛼

2



∫

𝜏
2

𝜏
1

(𝜏
2
− 𝑠)

𝛼−1
𝑇
𝛼
(𝜏
2
− 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠



≤ 𝑄
1
+ 𝑄

2
+ 𝑄

3
+ 𝑄

4
+ 𝑄

5
+ 𝑄

6
+ 𝑄

7
+ 𝑄

8
+ 𝑄

9
.

(51)
By the assumptions and Holder’s inequality, we have

𝑄
2
≤ [𝜏

1−𝛼

2
− 𝜏
1−𝛼

1
]

𝛼𝑀

Γ (1 + 𝛼)

× ∫

𝜏
1

0

(𝜏
1
− 𝑠)

𝛼−1

‖𝐵𝑢 (𝑠)‖ 𝑑𝑠

≤
𝛼𝑀

Γ (1 + 𝛼)
(

𝑝 − 1

𝑝𝛼 − 1
)

(𝑝−1)/𝑝

× ‖𝐵𝑢‖𝐿𝑝𝜏
𝛼−(1/𝑝)

1
[𝜏
1−𝛼

2
− 𝜏
1−𝛼

1
] .

(52)

Similarly, we obtain

𝑄
3
≤

2𝛼𝑀𝜏
1−𝛼

2

Γ (1 + 𝛼)
(

𝑝 − 1

𝑝𝛼 − 1
)

(𝑝−1)/𝑝

× ‖𝐵𝑢‖𝐿𝑝(𝜏2 − 𝜏
1
)
𝛼−(1/𝑝)

,

𝑄
5
≤

𝛼𝑀𝜏
1−𝛼

2

Γ (1 + 𝛼)
(

𝑝 − 1

𝑝𝛼 − 1
)

(𝑝−1)/𝑝

× ‖𝐵𝑢‖𝐿𝑝(𝜏2 − 𝜏
1
)
𝛼−(1/𝑝)

,

𝑄
6
≤

𝛼𝑀

Γ (1 + 𝛼)
(

𝑝 − 1

𝑝𝛼 − 1
)

1−(1/𝑝)

× [
𝜙

𝐿𝑝
+ 𝜌𝜔] 𝜏

𝛼−(1/𝑝)

1
[𝜏
1−𝛼

2
− 𝜏
1−𝛼

1
] ,

𝑄
7
≤

2𝛼𝑀𝜏
1−𝛼

2

Γ (1 + 𝛼)
(

𝑝 − 1

𝑝𝛼 − 1
)

1−(1/𝑝)

× [
𝜙

𝐿𝑝
+ 𝜌𝜔] (𝜏

2
− 𝜏
1
)
𝛼−(1/𝑝)

,

𝑄
9
≤

𝛼𝑀𝜏
1−𝛼

2

Γ (1 + 𝛼)
(

𝑝 − 1

𝑝𝛼 − 1
)

1−(1/𝑝)

× [
𝜙

𝐿𝑝
+ 𝜌𝜔] (𝜏

2
− 𝜏
1
)
𝛼−(1/𝑝)

,

(53)
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and, for 𝑄
4
, 𝑄
8
, there exists a 𝛿 > 0 which is small enough,

such that

𝑄
4
≤ 𝜏
1−𝛼

2
[



∫

𝜏
1
−𝛿

0

(𝜏
1
− 𝑠)

𝛼−1
[𝑇
𝛼
(𝜏
2
− 𝑠)

−𝑇
𝛼
(𝜏
1
− 𝑠)] 𝐵𝑢 (𝑠) 𝑑𝑠



+



∫

𝜏
1

𝜏
1
−𝛿

(𝜏
1
− 𝑠)

𝛼−1
[𝑇
𝛼
(𝜏
2
− 𝑠)

−𝑇
𝛼
(𝜏
1
− 𝑠)] 𝐵𝑢 (𝑠) 𝑑𝑠



]

≤ sup
𝑠∈[0,𝜏

1
−𝛿]

𝑇𝛼 (𝜏2 − 𝑠)

− 𝑇
𝛼
(𝜏
1
− 𝑠)

 𝜏
1−𝛼

2
(

𝑝 − 1

𝑝𝛼 − 1
)

(𝑝−1)/𝑝

× ‖𝐵𝑢‖𝐿𝑝 (𝜏
(𝛼𝑝−1)/(𝑝−1)

1
− 𝛿
(𝛼𝑝−1)/(𝑝−1)

)
1−(1/𝑝)

+
2𝛼𝑀𝜏

1−𝛼

2

Γ (1 + 𝛼)
(

𝑝 − 1

𝑝𝛼 − 1
)

(𝑝−1)/𝑝

‖𝐵𝑢‖𝐿𝑝𝑏
1−𝛼

𝛿
1−(1/𝑝)

,

𝑄
8
≤ sup
𝑠∈[0,𝜏

1
−𝛿]

𝑇𝛼 (𝜏2 − 𝑠) − 𝑇
𝛼
(𝜏
1
− 𝑠)



× 𝜏
1−𝛼

2
(

𝑝 − 1

𝑝𝛼 − 1
)

(𝑝−1)/𝑝

[
𝜙

𝐿𝑝
+ 𝜌𝜔]

× (𝜏
(𝛼𝑝−1)/(𝑝−1)

1
− 𝛿
(𝛼𝑝−1)/(𝑝−1)

)
1−(1/𝑝)

+
2𝛼𝑀𝜏

1−𝛼

2

Γ (1 + 𝛼)
(

𝑝 − 1

𝑝𝛼 − 1
)

(𝑝−1)/𝑝

[
𝜙

𝐿𝑝
+ 𝜌𝜔] 𝑏

1−𝛼
𝛿
1−(1/𝑝)

.

(54)

Since the compactness of𝑇(𝑡)(𝑡 > 0) and Lemma 13 imply
the continuity of 𝑇

𝛼
(𝑡)(𝑡 > 0) in 𝑡 in the uniform operator

topology, it can be easily seen that 𝑄
4
and 𝑄

8
tend to zero

independently of 𝑥 ∈ 𝐵
𝑟
as 𝜏

2
→ 𝜏

1
, 𝛿 → 0. It is also

clear that 𝑄
𝑖
(𝑖 = 1, 2, 3, 5, 6, 7, 9) tend to zero as 𝜏

2
→ 𝜏

1

does not depend on particular choice of 𝑥. Thus, we get that
‖𝜏
1−𝛼

2
(ϝ𝑥)(𝜏

2
) − 𝜏

1−𝛼

1
(ϝ𝑥)(𝜏

1
)‖ tends to zero independently of

𝑥 ∈ 𝐵
𝑟
as 𝜏

2
→ 𝜏

1
which implies that ϝ is equicontinuous on

𝛿
0
/2 ≤ 𝜏

1
< 𝜏
2
≤ 𝑏.

Therefore, by all of the above work, we can get that
{𝑡
1−𝛼

(ϝ𝑥)(𝑡) : 𝑥 ∈ 𝐵
𝑟
} is an equicontinuous set in 𝐶(𝐽,𝑋).

Step 4. We show that ϝ is compact.
Let 𝑡 ∈ 𝐽 be fixed; we show that the set Π(𝑡) =

{𝑡
1−𝛼

(ϝ𝑥)(𝑡) : 𝑥 ∈ 𝐵
𝑟
} is relatively compact in 𝑋.

Clearly, Π(0) = {𝑥
0
} is compact, so it is only necessary to

consider 𝑡 > 0. For each 𝜖 ∈ (0, 𝑡), 𝑡 ∈ (0, 𝑏], and 𝑥 ∈ 𝐵
𝑟
and

any 𝛿 > 0, we define

Π
𝜖,𝛿 (𝑡) = {𝑡

1−𝛼
ϝ
𝜖,𝛿 (𝑥) (𝑡) : 𝑥 ∈ 𝐵

𝑟
} , (55)

where

𝑡
1−𝛼

ϝ
𝜖,𝛿 (𝑥) (𝑡)

= 𝑇
𝛼 (𝑡) 𝑥0 + 𝛼𝑡

1−𝛼

× ∫

𝑡−𝜖

0

∫

∞

𝛿

𝜃(𝑡 − 𝑠)
𝛼−1

𝜉
𝛼 (𝜃) 𝑇 ((𝑡 − 𝑠)

𝛼
𝜃)

× [𝐵𝑢 (𝑠) + 𝑓 (𝑠, 𝑥 (𝑠))] 𝑑𝜃 𝑑𝑠.

= 𝑇
𝛼 (𝑡) 𝑥0 + 𝛼𝑇 (𝜖

𝛼
𝛿) 𝑡

1−𝛼

× ∫

𝑡−𝜖

0

∫

∞

𝛿

𝜃(𝑡 − 𝑠)
𝛼−1

𝜉
𝛼 (𝜃) 𝑇 ((𝑡 − 𝑠)

𝛼
𝜃 − 𝜖

𝛼
𝛿)

× [𝐵𝑢 (𝑠) + 𝑓 (𝑠, 𝑥 (𝑠))] 𝑑𝜃 𝑑𝑠.

(56)

From the boundedness of ∫𝑡−𝜖
0

∫
∞

𝛿
𝜃(𝑡 − 𝑠)

𝛼−1
𝜉
𝛼
(𝜃)𝑇((𝑡 −

𝑠)
𝛼
𝜃 − 𝜖

𝛼
𝛿)[𝐵𝑢(𝑠) + 𝑓(𝑠, 𝑥(𝑠))]𝑑𝜃𝑑𝑠 and the compactness

of 𝑇(𝜖
𝛼
𝛿)(𝜖

𝛼
𝛿 > 0), we obtain that the set Π

𝜖,𝛿
(𝑡) =

{𝑡
1−𝛼

ϝ
𝜖,𝛿

(𝑥)(𝑡) : 𝑥 ∈ 𝐵
𝑟
} is relatively compact set in 𝑋 for

each 𝜖 ∈ (0, 𝑡) and 𝛿 > 0. Moreover, we have

𝑡
1−𝛼 ϝ (𝑥) (𝑡) − ϝ

𝜖,𝛿 (𝑥) (𝑡)


= 𝑡
1−𝛼



𝛼∫

𝑡

0

∫

∞

0

𝜃(𝑡 − 𝑠)
𝛼−1

𝜉
𝛼 (𝜃) 𝑇 ((𝑡 − 𝑠)

𝛼
𝜃)

× [𝐵𝑢 (𝑠) + 𝑓 (𝑠, 𝑥 (𝑠))] 𝑑𝜃 𝑑𝑠

− 𝛼∫

𝑡−𝜖

0

∫

∞

𝛿

𝜃(𝑡 − 𝑠)
𝛼−1

𝜉
𝛼 (𝜃) 𝑇 ((𝑡 − 𝑠)

𝛼
𝜃)

× [𝐵𝑢 (𝑠) + 𝑓 (𝑠, 𝑥 (𝑠))] 𝑑𝜃 𝑑𝑠



≤ 𝛼𝑡
1−𝛼



∫

𝑡

0

∫

𝛿

0

𝜃(𝑡 − 𝑠)
𝛼−1

𝜉
𝛼 (𝜃) 𝑇 ((𝑡 − 𝑠)

𝛼
𝜃)

× [𝐵𝑢 (𝑠) + 𝑓 (𝑠, 𝑥 (𝑠))] 𝑑𝜃 𝑑𝑠



+ 𝛼𝑡
1−𝛼



∫

𝑡

𝑡−𝜖

∫

∞

𝛿

𝜃(𝑡 − 𝑠)
𝛼−1

𝜉
𝛼 (𝜃) 𝑇 ((𝑡 − 𝑠)

𝛼
𝜃)

× [𝐵𝑢 (𝑠) + 𝑓 (𝑠, 𝑥 (𝑠))] 𝑑𝜃 𝑑𝑠



≤ 𝛼𝑀(
𝑝 − 1

𝑝𝛼 − 1
)

1−(1/𝑝)

[‖𝐵𝑢‖𝐿𝑝 +
𝜙

𝐿𝑝
+ 𝑟𝜌]

× [𝑏
1−(1/𝑝)

∫

𝛿

0

𝜃𝜉
𝛼 (𝜃) 𝑑𝜃 +

𝑏
1−𝛼

Γ (1 + 𝛼)
𝜖
𝛼−(1/𝑝)

] .

(57)

Since ∫
∞

0
𝜃𝜉
𝛼
(𝜃)𝑑𝜃 = 1/(Γ(1 + 𝛼)), the last inequality

tends to zero when 𝜖 → 0 and 𝛿 → 0. Therefore, there are
relatively compact sets arbitrarily close to the set Π(𝑡)(𝑡 > 0).
Hence, the set Π(𝑡)(𝑡 > 0) is also relatively compact in 𝑋.

Step 5. A priori bounds.
Now, it remains to show that the set

Ω(ϝ) = {𝑥 ∈ 𝐶
1−𝛼 (𝐽, 𝑋) : 𝑥 = 𝜆ϝ (𝑥) , 𝜆 ∈ (0, 1)} (58)

is bounded.
Let 𝑥 ∈ Ω(ϝ); then 𝑥 = 𝜆ϝ(𝑥) for some 𝜆 ∈ (0, 1).

Similarly to the proof of Lemma 10, we obtain

‖𝑥‖𝐶
1−𝛼

≤ 𝜅𝐸
𝛼
(𝑀𝜌𝑏) . (59)

This shows that the set Ω(ϝ) is bounded.
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As a result, by the conclusion of Theorem 14, we obtain
that ϝ has a fixed point 𝑥. Therefore, system (1) has at least
one mild solution on 𝐽. The proof is completed.

4. Optimal Control Results

In this section, we are concerned with the following Lagrange
problem (P).

Minimize a cost function of the form

J (𝑥, 𝑢) := ∫

𝑏

0

L (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡)) 𝑑𝑡, (60)

among all the admissible state control pairs of the semilin-
ear differential equations with Riemann-Liouville fractional
derivatives (1); that is, find an admissible state control pair
(𝑥
0
, 𝑢
0
) ∈ 𝐶

1−𝛼
(𝐽, 𝑋) × 𝑈ad such that

J (𝑥
0
, 𝑢
0
) ≤ J (𝑥, 𝑢) , ∀ (𝑥, 𝑢) ∈ 𝐶

1−𝛼 (𝐽, 𝑋) × 𝑈ad, (61)

where 𝑥 denotes the mild solution of system (1) correspond-
ing to the control 𝑢 ∈ 𝑈ad.

For the existence of solution for problem (P), we will
introduce the following assumptions:

𝐻(4): the functionL : 𝐽 × 𝑋 × 𝑌 → 𝑅 ∪ {∞} satisfies the
following:

(i) the function L : 𝐽 × 𝑋 × 𝑌 → 𝑅 ∪ {∞} is Borel
measurable;

(ii) L(𝑡, ⋅, ⋅) is sequentially lower semicontinuous on𝑋 ×

𝑌 for almost all 𝑡 ∈ 𝐽;
(iii) L(𝑡, 𝑥, ⋅) is convex on𝑌 for each 𝑥 ∈ 𝑋 and almost all

𝑡 ∈ 𝐽;
(iv) there exist constants 𝑐 ≥ 0, 𝑑 > 0, 𝜓 is nonnegative,

and 𝜓 ∈ 𝐿
1
(𝐽, 𝑅) such that

L (𝑡, 𝑥, 𝑢) ≥ 𝜓 (𝑡) + 𝑐‖𝑥‖𝑋 + 𝑑‖𝑢‖𝑌. (62)

Next, we can give the following result on existence of
optimal controls for problem (P).

Theorem 16. Let the assumptions of Theorem 15 and 𝐻(4)

hold. Then, Lagrange problem (P) admits an optimal pair;
that is, there exists an admissible control pair (𝑥

0
, 𝑢
0
) ∈

𝐶
1−𝛼

(𝐽, 𝑋) × Uad such that

J (𝑥
0
, 𝑢
0
) = ∫

𝑏

0

L (𝑡, 𝑥
0
(𝑡) , 𝑢

0
(𝑡)) 𝑑𝑡 ≤ J (𝑥, 𝑢) ,

∀ (𝑥, 𝑢) ∈ 𝐶
1−𝛼 (𝐽, 𝑋) × 𝑈ad.

(63)

Proof. If inf{J(𝑥, 𝑢) : (𝑥, 𝑢) ∈ 𝐶
1−𝛼

(𝐽, 𝑋) × 𝑈ad} = +∞, then
it is clear that the Lagrange problem (P) has an optimal pair.

Without loss of generality, we assume that inf{J(𝑥, 𝑢) :

(𝑥, 𝑢) ∈ 𝐶
1−𝛼

(𝐽, 𝑋)×𝑈ad} = 𝜉 < +∞. Using𝐻(4)(iv), we have
𝜉 > −∞. By definition of infimum, there exists a minimizing
sequence feasible pair {(𝑥

𝑚
, 𝑢
𝑚
)} ⊂ Pad ≡ {(𝑥, 𝑢) : 𝑥 that is

a mild solution of system (1) corresponding to 𝑢 ∈ 𝑈ad}, such
that J(𝑥

𝑚
, 𝑢
𝑚
) → 𝜉 as 𝑚 → +∞. Since {𝑢

𝑚
} ⊆ 𝑈ad (𝑚 =

1, 2, . . .), {𝑢𝑚} is a bounded subset of the separable reflexive
Banach space 𝐿

𝑝
(𝐽, 𝑌), there exists a subsequence, relabeled

as {𝑢𝑚}, and 𝑢
0
∈ 𝐿
𝑝
(𝐽, 𝑌) such that

𝑢
𝑚

⇀ 𝑢
0 in 𝐿

𝑝
(𝐽, 𝑌) . (64)

Since 𝑈ad is closed and convex, by Mazur’s lemma, 𝑢0 ∈

𝑈ad.
Let {𝑥

𝑚
} denote the sequence of solutions of the system

(1) corresponding to {𝑢
𝑚
}; that is,

𝑥
𝑚

(𝑡) = 𝑡
𝛼−1

𝑇
𝛼 (𝑡) 𝑥0 + ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑇
𝛼 (𝑡 − 𝑠) 𝐵𝑢

𝑚
(𝑠) 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑇
𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥

𝑚
(𝑠)) 𝑑𝑠.

(65)

Now, we prove that {𝑥𝑚} is relatively compact on 𝐶
1−𝛼

(𝐽, 𝑋).
Firstly, it follows the boundedness of {𝑢𝑚} and Lemma 10,

and one can check that there exists a positive number 𝜔 such
that ‖𝑥𝑚‖

𝐶
1−𝛼

≤ 𝜔, which implies that ‖𝑥𝑚‖
𝐶
1−𝛼

is uniformly
bounded.

Next, denote 𝑔
𝑚
(𝑡) = 𝑡

1−𝛼
𝑥
𝑚
(𝑡); like the proof of Steps 3

and 4 inTheorem 15, {𝑔 : 𝑔 = 𝑡
1−𝛼

𝑥(𝑡)} is equicontinuous and
relatively compact subsets of 𝐶(𝐽,𝑋). Hence, we can deduce
that {𝑥𝑚} is relatively compact on𝐶

1−𝛼
(𝐽, 𝑋).Therefore, there

exists a function 𝑥
0
∈ 𝐶

1−𝛼
(𝐽, 𝑋) such that

𝑥
𝑚

→ 𝑥
0 in 𝐶

1−𝛼 (𝐽, 𝑋) . (66)

Moreover, by 𝐻(1)(iii), we get

𝑓 (𝑡, 𝑥

𝑚
(𝑡)) − 𝑓 (𝑡, 𝑥

0
(𝑡))


≤ 𝜑 (𝑡)


𝑥
𝑚

− 𝑥
0𝐶
1−𝛼

, (67)

and then, in view of (66), we can obtain

𝑓 (𝑡, 𝑥
𝑚

(𝑡)) → 𝑓(𝑡, 𝑥
0
(𝑡)) , a.e. 𝑡 ∈ 𝐽. (68)

And by 𝐻(1)(ii), we get

𝑓 (𝑡, 𝑥
𝑚

(𝑡))
 ≤ 𝜙 (𝑡) + 𝜌𝑡

1−𝛼
‖𝑥 (𝑡)‖ ≤ 𝜙 (𝑡) + 𝜌𝜔. (69)

Thus, by applying the dominated convergence theorem,
one can prove that

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑇
𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥

𝑚
(𝑠)) 𝑑𝑠

→ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑇
𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥

0
(𝑠)) 𝑑𝑠, a.e. 𝑡 ∈ 𝐽.

(70)

Similarly, we have

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑇
𝛼 (𝑡 − 𝑠) 𝐵𝑢

𝑚
(𝑠) 𝑑𝑠

→ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑇
𝛼 (𝑡 − 𝑠) 𝐵𝑢

0
(𝑠) 𝑑𝑠, a.e. 𝑡 ∈ 𝐽.

(71)
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Hence, it follows from (65) that

𝑥
0
(𝑡) = 𝑡

𝛼−1
𝑇
𝛼 (𝑡) 𝑥0 + ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑇
𝛼 (𝑡 − 𝑠) 𝐵𝑢

0
(𝑠) 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑇
𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥

0
(𝑠)) 𝑑𝑠;

(72)

that is, 𝑥0 denotes the sequence of solutions of the system (1)
corresponding to 𝑢

0.
Note that 𝐻(4) implies that all of the assumptions of

Balder (seeTheorem 2.1 [27]) are satisfied. Hence, by Balder’s
theorem, we can conclude that (𝑥, 𝑢) → ∫

𝑏

0
L(𝑡, 𝑥(𝑡), 𝑢(𝑡))𝑑𝑡

is sequentially lower semicontinuous in the strong topology
of 𝐿1(𝐽, 𝑋) × 𝐿

1
(𝐽, 𝑌). Since 𝐿

𝑝
(𝐽, 𝑋) × 𝐿

𝑝
(𝐽, 𝑌) ⊂ 𝐿

1
(𝐽, 𝑋) ×

𝐿
1
(𝐽, 𝑌), J is also sequentially lower semicontinuous in

𝐿
𝑝
(𝐽, 𝑋)×𝐿

𝑝
(𝐽, 𝑌). Hence,J is weakly lower semicontinuous

on 𝐿
𝑝
(𝐽, 𝑋) × 𝐿

𝑝
(𝐽, 𝑌), and since, by 𝐻(4)(iv), J > −∞, J

attains its infimum at (𝑥0, 𝑢0) ∈ 𝐶
1−𝛼

(𝐽, 𝑋) × 𝑈ad; that is,

𝜉 = lim
𝑚→∞

∫

𝑏

0

L (𝑡, 𝑥
𝑚

(𝑡) , 𝑢
𝑚

(𝑡)) 𝑑𝑡

≥ ∫

𝑏

0

L (𝑡, 𝑥
0
(𝑡) , 𝑢

0
(𝑡)) 𝑑𝑡 = 𝐽 (𝑥

0
, 𝑢
0
) ≥ 𝜉.

(73)

The proof is completed.

5. An Example

Consider the following initial-boundary value problem of
fractional parabolic control system with Riemann-Liouville
fractional derivatives:

𝐿
𝐷
𝛼

𝑡
𝑥 (𝑡, 𝑦) =

𝜕
2

𝜕𝑦2
𝑥 (𝑡, 𝑦) + 𝑒

−𝑡
+

𝑡
1−𝛼

(𝑡 + 6)
2
sin (𝑥 (𝑡, 𝑦))

+ ∫

1

0

𝑞 (𝑦, 𝜏) 𝑢 (𝜏, 𝑡) 𝑑𝜏,

𝑡 ∈ 𝐽 = [0, 1] , 𝑦 ∈ [0, 𝜋] , 𝑢 ∈ 𝑈ad,

𝑥 (𝑡, 0) = 𝑥 (𝑡, 𝜋) = 0, 𝑡 ∈ 𝐽 = [0, 1] ,

𝐼
1−𝛼

0
+ 𝑥 (𝑡, 𝑦)

𝑡=0
= 𝑥

0
(𝑦) , 𝑡 ∈ [0, 1] , 𝑦 ∈ [0, 𝜋] ,

(74)

with the cost function

J (𝑥, 𝑢) = ∫

1

0

∫

𝜋

0

𝑥(𝑡, 𝑦)


2
𝑑𝑦𝑑𝑡 + ∫

1

0

∫

𝜋

0

𝑢 (𝑡, 𝑦)


2
𝑑𝑦𝑑𝑡,

(75)

where 𝛼 = 2/3, 𝑞 : [0, 1] × [0, 1] → 𝑅 is continuous, and
𝑢 ∈ 𝐿

2
(𝐽, [0, 𝜋]).

Take 𝑋 = 𝑌 = 𝐿
2
(𝐽, [0, 𝜋]) and the operator 𝐴 : 𝐷(𝐴) ⊂

𝑋 → 𝑋 is defined by

𝐴𝜔 = 𝜔

, (76)

where the domain 𝐷(𝐴) is given by

{𝜔 ∈ 𝑋 : 𝜔, 𝜔
are absolutely continuous,

𝜔


∈ 𝑋, 𝜔 (0) = 𝜔 (𝜋) = 0} .

(77)

Then, 𝐴 can be written as

𝐴𝜔 =

∞

∑

𝑛=1

𝑛
2
(𝜔, 𝜔

𝑛
) 𝜔
𝑛
, 𝜔 ∈ 𝐷 (𝐴) , (78)

where 𝜔
𝑛
(𝑥) = √2/𝜋 sin 𝑛𝑥(𝑛 = 1, 2, . . .) is an orthonormal

basis of 𝑋. It is well known that 𝐴 is the infinitesimal
generator of a compact semigroup 𝑇(𝑡)(𝑡 > 0) in 𝑋 given by

𝑇 (𝑡) 𝑥 =

∞

∑

𝑛=1

exp−𝑛
2
𝑡
(𝑥, 𝑥

𝑛
) 𝑥
𝑛
, 𝑥 ∈ 𝑋,

‖𝑇 (𝑡)‖ ≤ 𝑒
−1

< 1 = 𝑀.

(79)

We take the functions𝑢 : Φ𝑥([0, 𝜋]) → 𝑅 as the controls,
such that 𝑢 ∈ 𝐿

2
(Φ𝑥([0, 𝜋])). It means that 𝑡 → 𝑢(𝑡) going

from 𝐽 into 𝑌 is measurable. Set 𝑈(𝑡) := {𝑢 ∈ 𝑌 : ‖𝑢‖
𝑌

≤ 𝜗},
where 𝜗 ∈ 𝐿

2
(𝐽, 𝑅

+
). And restrict the admissible controls sets

Uad to be all 𝑢 ∈ 𝐿
2
(Φ𝑥([0, 𝜋])) such that ‖𝑢(⋅, 𝑡)‖

2
≤ 𝜗(𝑡), a.e.

𝑡 ∈ 𝐽.
Denote that 𝑥(𝑡, 𝑦) = 𝑥(𝑡)(𝑦); then

𝑓 (𝑡, 𝑥 (𝑡)) (𝑦) = 𝑒
−𝑡

+
𝑡
1−𝛼

(𝑡 + 6)
2
sin (𝑥 (𝑡)) (𝑦) ,

𝐵 (𝑡) 𝑢 (𝑡) (𝑦) = [∫

1

0

𝑞 (𝜏) 𝑢 (𝜏, 𝑡) 𝑑𝜏] (𝑦) .

(80)

It is easy to see that

𝑓 (𝑡, 𝑥 (𝑡))
 = 𝑒

−𝑡
+

1

36
𝑡
1−𝛼

‖𝑥 (𝑡)‖ := 𝜙 (𝑡) + 𝜌𝑡
1−𝛼

‖𝑥 (𝑡)‖ ,

(81)

and, for any 𝑥, 𝑦 ∈ 𝑋,
𝑓 (𝑡, 𝑥 (𝑡)) − 𝑓 (𝑡, 𝑦 (𝑡))



≤
1

(𝑡 + 6)
2

𝑥 − 𝑦
𝐶
1−𝛼

:= 𝜑 (𝑡)
𝑥 − 𝑦

𝐶
1−𝛼

.

(82)

Hence, all the conditions of Theorem 16 are satisfied, and
the system (74) has an optimal pair solution.
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