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We discuss a new type of fully coupled forward-backward stochastic differential equations (FBSDEs) whose coefficients depend on
the states of the solution processes as well as their expected values, and we call them fully coupled mean-field forward-backward
stochastic differential equations (mean-field FBSDEs). We first prove the existence and the uniqueness theorem of such mean-
field FBSDEs under some certain monotonicity conditions and show the continuity property of the solutions with respect to the
parameters. Then we discuss the stochastic optimal control problems of mean-field FBSDEs. The stochastic maximum principles
are derived and the related mean-field linear quadratic optimal control problems are also discussed.

1. Introduction

Pardoux and Peng [1] in 1990 first introduced nonlinear
classical backward stochastic differential equations (BSDEs).
They proved the uniqueness and the existence of the solutions
of nonlinear BSDEs under Lipschitz assumption. Since then
the theory of BSDEs developed very fast and had foundmany
applications, for example, in the stochastic control and partial
differential equations. On the other hand, those stochastic
Hamilton systems, derived from the stochastic maximum
principle of stochastic optimal control problems, are forward-
backward stochastic differential equations (FBSDEs).

The theory of fully coupled FBSDEs develops also very
dynamically. There are many works on the existence and the
uniqueness of solutions of fully coupled FBSDEs. Antonelli
[2] first proved the existence and the uniqueness of solutions
of fully coupled FBSDEs driven by Brownian motion on a
small time interval with the fixed point theorem. There are
also many other methods to study fully coupled FBSDEs
on an arbitrarily given time interval, mainly three methods.
One is “four-step scheme” approach (see Ma et al. [3])
which combines PDEmethods and probability methods.The
authors proved the existence and the uniqueness for fully

coupled FBSDEs on an arbitrarily given time interval, but
they required the diffusion coefficients to be nondegenerate
and deterministic. Another one is purely probabilistic contin-
uation method; refer to Hu and Peng [4], Pardoux and Tang
[5], Peng andWu [6], Yong [7], and so on. Another method is
inspired by the numerical approaches for some linear FBSDEs
(see Delarue and Menozzi [8] and Zhang [9]). There are also
other methods; see Ma et al. [10]. For more details about fully
coupled FBSDEs, the readers also refer to Ma and Yong [11]
or Yong [7] and the references therein.

On the other hand, the theory of the modern optimal
control has been developed widely since Pontryagin et al.’s
work [12] about the maximum principle and Bellman’s work
[13] on the dynamic programming approach. Later there have
been a lot of works on the stochastic maximum principle; see,
for example, Kushner [14, 15], Bensoussan [16], Haussmann
[17], Peng [18], Wu [19], and so on. Wu [19] discussed the
stochastic maximum principle for the fully coupled FBSDEs.
Recently themethods of mean-field are used in various fields,
such as in Finance, Chemistry, and GameTheory.The mean-
field backward stochastic differential equations (mean-field
BSDEs) were introduced by [20]; for more properties about
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mean-field BSDEs we refer to [21].There are alsomany works
on stochastic maximum principle for SDEs of mean-field
type; see Andersson and Djehiche [22], Buckdahn et al. [23],
Li [24], Bensoussan et al. [25], and so on. For more details we
may refer to Yong [7].

In this paper, we consider the following fully coupled
mean-field forward-backward stochastic differential equa-
tions (mean-field FBSDEs in short):

𝑑𝑥 (𝑡) = 𝐸
󸀠
[𝑓 (𝑡, 𝜒 (𝑡))] 𝑑𝑡 + 𝐸

󸀠
[𝜎 (𝑡, 𝜒 (𝑡))] 𝑑𝐵

𝑡
,

−𝑑𝑦 (𝑡) = 𝐸
󸀠
[𝑔 (𝑡, 𝜒 (𝑡))] 𝑑𝑡 − 𝑧 (𝑡) 𝑑𝐵

𝑡
,

𝑥 (0) = 𝑎, 𝑦 (𝑇) = 𝐸
󸀠
[Φ (𝑥 (𝑇) , (𝑥 (𝑇))

󸀠
)] ,

(1)

where 𝜒(𝑡) := (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), (𝑥(𝑡))󸀠, (𝑦(𝑡))󸀠, (𝑧(𝑡))󸀠), (𝑥(⋅),
𝑦(⋅), 𝑧(⋅)) take values in R𝑛 × R𝑚 × R𝑚×𝑑; 𝑓, 𝜎, 𝑔, Φ are map-
pings with appropriate dimensions which are ̄F-progressively
measurable. The time duration 𝑇 ≥ 0 is an arbitrarily fixed
number. Our aim is first to find a triplet F-adapted processes
(𝑥(⋅), 𝑦(⋅), 𝑧(⋅)) satisfying (1) and then study the stochastic
maximum principle of mean-field FBSDEs with controls. For
more works we refer to Qin [26].

In Section 2, we introduce the mean-field BSDEs. In
Section 3, we prove the existence and the uniqueness of
solution of mean-field FBSDE by the continuation method.
In Section 4, we give the continuity of solutions of mean-
field FBSDE with respect to the parameters and also give
an example to show that our monotonicity conditions are
necessary. In Section 5 we study the stochastic maximum
principle formean-field FBSDEs with controls and obtain the
necessary condition of the stochastic maximum principle. In
Section 6 we discuss mean-field backward stochastic linear
quadratic optimal control problem as an example.

2. Preliminaries

Let (Ω,F, 𝑃) be a complete probability space with a standard
𝑑-dimensional Brownian motion 𝐵 = (𝐵

𝑡
)
𝑡≥0

, and let F
𝑡
be

the natural filtration generated by 𝐵 and augmented by all P-
null sets (i.e.,F

𝑡
= 𝜎{𝐵

𝑠
: 0 ≤ 𝑠 ≤ 𝑡}⋁N

𝑃
, 𝑡 ≥ 0, whereN

𝑃

is the set of all P-null subsets).𝑇 > 0 is the fixed time horizon.
F = {F

𝑡
, 𝑡 ≥ 0}.

Let (Ω̄, F̄, 𝑃̄) = (Ω × Ω,F ⊗ F, 𝑃 ⊗ 𝑃) be the
(noncompleted) product of (Ω,F, 𝑃)with itself.This product
space is endowed with the filtration ̄F = {F̄

𝑡
= F ⊗F

𝑡
, 0 ≤

𝑡 ≤ 𝑇}. A random variable 𝜉 ∈ 𝐿
0
(Ω,F, 𝑃;R𝑛) originally

defined on Ω is extended canonically to Ω̄ : 𝜉
󸀠
(𝜔
󸀠
, 𝜔) =

𝜉(𝜔
󸀠
), (𝜔
󸀠
, 𝜔) ∈ Ω̄ = Ω × Ω. For any 𝜃 ∈ 𝐿

1
(Ω̄, F̄, 𝑃̄) the

variable 𝜃(⋅, 𝜔) : Ω → R is in 𝐿1(Ω,F, 𝑃), 𝑃(𝑑𝜔)-a.s., and
its expectation is denoted by

𝐸
󸀠

[𝜃 (⋅, 𝜔)] = ∫
Ω

𝜃 (𝜔
󸀠
, 𝜔) 𝑃 (𝑑𝜔

󸀠
) . (2)

We notice that 𝐸󸀠[𝜃] = 𝐸󸀠[𝜃(⋅, 𝜔)] ∈ 𝐿1(Ω,F, 𝑃) and

𝐸̄ [𝜃] (= ∫
Ω̄

𝜃𝑑𝑃̄ = ∫
Ω

𝐸
󸀠

[𝜃 (⋅, 𝜔)] 𝑃 (𝑑𝜔)) = 𝐸 [𝐸
󸀠

[𝜃]] .

(3)

The generator of our mean-field BSDE is a mapping:

𝑓 = 𝑓 (𝑡, 𝜔, 𝜔
󸀠
, 𝑦, 𝑧, 𝑦, 𝑧̃) : [0, 𝑇] × Ω̄ ×R

𝑚

×R
𝑚×𝑑

×R
𝑚

×R
𝑚×𝑑

󳨀→ R
𝑚
,

(4)

which is ̄F-progressively measurable, for all (𝑦, 𝑧, 𝑦, 𝑧̃), and
satisfies the following assumptions.

We assume the following.
(H2.1)

(i) 𝑓(𝑡, 𝑦, 𝑧, 𝑦, 𝑧̃) is uniformly Lipschitz with respect to
𝑦, 𝑧, 𝑦, 𝑧̃;

(ii) 𝑓(⋅, 0, 0, 0, 0) ∈ 𝑀
2

̄F
(0, 𝑇;R𝑚); that is, 𝑓(⋅, 0,0,0,0)

is R𝑚-valued ̄F-progressively measurable and
𝐸̄[∫
𝑇

0
|𝑓(𝑡, 0, 0, 0, 0)|

2
𝑑𝑡] < +∞.

Lemma 1. Let (H2.1) hold, for any random variable 𝜉 ∈

𝐿
2
(Ω,F

𝑇
, 𝑃;R𝑚); the mean-field BSDE

𝑌
𝑡
= 𝜉 + ∫

𝑇

𝑡

𝐸
󸀠
[𝑓 (𝑠, 𝑌

𝑠
, 𝑍
𝑠
, (𝑌
𝑠
)
󸀠

, (𝑍
𝑠
)
󸀠

)] 𝑑𝑠

− ∫

𝑇

𝑡

𝑍
𝑠
𝑑𝐵
𝑠
, 0 ≤ 𝑡 ≤ 𝑇

(5)

has a unique solution (𝑌, 𝑍) ∈ 𝑆2F (0, 𝑇;R
𝑚
) ×𝑀

2

F (0, 𝑇;R
𝑚×𝑑

);
that is, 𝑌 is R𝑚-valued F-adapted continuous process and
𝐸[sup

0≤𝑡≤𝑇
|𝑌
𝑡
|
2
] < ∞; 𝑍 is R𝑚×𝑑-valued F-progressively

measurable process and 𝐸[∫𝑇
0
|𝑍
𝑡
|
2
𝑑𝑡] < ∞.

For the proof, the readers may refer to [20].

Remark 2. From the above notions, the generator of the above
mean-feld BSDE has to be understood as follows:

𝐸
󸀠
[𝑓 (𝑠, 𝑌

𝑠
, 𝑍
𝑠
, (𝑌
𝑠
)
󸀠

, (𝑍
𝑠
)
󸀠

)] (𝜔)

= 𝐸
󸀠
[𝑓 (𝑠, 𝑌

𝑠
(𝜔) , 𝑍

𝑠
(𝜔) , (𝑌

𝑠
)
󸀠

, (𝑍
𝑠
)
󸀠

)]

=∫
Ω

𝑓 (𝜔
󸀠
, 𝜔, 𝑠, 𝑌

𝑠
(𝜔) , 𝑍

𝑠
(𝜔) , 𝑌

𝑠
(𝜔
󸀠
) , 𝑍
𝑠
(𝜔
󸀠
)) 𝑃 (𝑑𝜔

󸀠
) ,

𝜔 ∈ Ω.

(6)

Remark 3. If we assume that

(i) 𝑏(⋅, 𝑥, 𝑥) and 𝜎(⋅, 𝑥, 𝑥) are ̄F-progressively measurable
continuous processes, for all 𝑥, 𝑥 ∈ R𝑛 and there
exists some constant 𝐶 > 0 such that |𝑏(𝑡, 𝑥, 𝑥)| +
|𝜎(𝑡, 𝑥, 𝑥)| ≤ 𝐶(1+|𝑥|+|𝑥|), 𝑎.𝑠. , 0 ≤ 𝑡 ≤ 𝑇, 𝑥, 𝑥 ∈ R𝑛,

(ii) 𝑏 and 𝜎 are Lipschitz in 𝑥, 𝑥,
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then, for any random variable 𝜁 ∈ 𝐿
2
(Ω,F

𝑇
, 𝑃;R𝑛), the

following mean-field SDE which is also the Mckean-Vlasov
SDE has a unique adapted solution𝑋 ∈ 𝑆

2

F (0, 𝑇;R
𝑛
):

𝑋
𝑡
= 𝜁 + ∫

𝑡

0

𝐸
󸀠
[𝑏 (𝑠, 𝑋

𝑠
, (𝑋
𝑠
)
󸀠

)] 𝑑𝑠

+ ∫

𝑡

0

𝐸
󸀠
[𝜎 (𝑠, 𝑋

𝑠
, (𝑋
𝑠
)
󸀠

)] 𝑑𝐵
𝑠
,

0 ≤ 𝑡 ≤ 𝑇.

(7)

For more details, the reader may refer to, for example, [20] or
[24].

3. Mean-Field FBSDE:
Existence and Uniqueness

We consider the following fully coupled mean-field forward-
backward stochastic differential equations:

𝑑𝑥 (𝑡) = 𝐸
󸀠
[𝑓 (𝑡, 𝜒 (𝑡))] 𝑑𝑡 + 𝐸

󸀠
[𝜎 (𝑡, 𝜒 (𝑡))] 𝑑𝐵

𝑡
,

−𝑑𝑦 (𝑡) = 𝐸
󸀠
[𝑔 (𝑡, 𝜒 (𝑡))] 𝑑𝑡 − 𝑧 (𝑡) 𝑑𝐵

𝑡
,

𝑥 (0) = 𝑎, 𝑦 (𝑇) = 𝐸
󸀠
[Φ (𝑥 (𝑇) , (𝑥 (𝑇))

󸀠
)] ,

(8)

where

𝜒 (𝑡) = (𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡) , (𝑥 (𝑡))
󸀠
, (𝑦 (𝑡))

󸀠

, (𝑧 (𝑡))
󸀠
) ,

𝑓 : [0, 𝑇] × Ω̄ ×R
𝑛
×R
𝑚
×R
𝑚×𝑑

×R
𝑛
×R
𝑚
×R
𝑚×𝑑

󳨀→ R
𝑛
,

𝜎 : [0, 𝑇] × Ω̄ ×R
𝑛
×R
𝑚
×R
𝑚×𝑑

×R
𝑛
×R
𝑚
×R
𝑚×𝑑

󳨀→ R
𝑛×𝑑

,

𝑔 : [0, 𝑇] × Ω̄ ×R
𝑛
×R
𝑚
×R
𝑚×𝑑

×R
𝑛
×R
𝑚
×R
𝑚×𝑑

󳨀→ R
𝑚
,

Φ : Ω̄ ×R
𝑛
×R
𝑛
󳨀→ R

𝑚
.

(9)

Remark 4. In Li [24], the author studied the stochastic max-
imum principle in mean-field controls; the related feedback
control system takes a special case of the mean-field FBSDE
(8).

Given an𝑚 × 𝑛 full-rank matrix 𝐺. We use the following
notations:

𝜆 = (

𝑥

𝑦

𝑧

) , 𝜆̃ = (

𝑥

𝑦

𝑧̃

) ,

A (t, 𝜆, 𝜆̃) = (
−𝐺
𝑇
𝑔

𝐺𝑓

𝐺𝜎

)(𝑡, 𝜆, 𝜆̃) ,

(10)

where 𝐺𝜎 = (𝐺𝜎
1
, . . . , 𝐺𝜎

𝑑
). We use the standard inner

product and Euclidean norm in R𝑚×𝑑.

Definition 5. A triple of processes (𝑋, 𝑌, 𝑍) is called an
adapted solution of mean-field FBSDE (8), if (𝑋, 𝑌, 𝑍) ∈

𝑀
2

F (0, 𝑇;R
𝑛
× R𝑚 × R𝑚×𝑑), and satisfies mean-field FBSDE

(8).

We assume the following.
(H3.1)

(i) 𝐴(𝑡, 𝜆, 𝜆̃) is uniformly Lipschitz with respect to 𝜆, 𝜆̃;

(ii) for each 𝜆, 𝜆̃, 𝐴(⋅, 𝜆, 𝜆̃) is in𝑀2
̄F
(0, 𝑇);

(iii) Φ(𝑥, 𝑥) is uniformly Lipchitz with respect to 𝑥, 𝑥 ∈

R𝑛;
(iv) for each 𝑥, 𝑥, Φ(𝑥, 𝑥) is in 𝐿2(Ω̄, F̄

𝑇
, 𝑃̄);

(v) the coefficients (𝑓, 𝜎, 𝑔) are uniformly Lipschitz to
(𝑥, 𝑦, 𝑧, 𝑥, 𝑦, 𝑧̃).

We also need the following monotonicity assumptions.
(H3.2)

(i) ⟨𝐴(𝑡, 𝜆, 𝜆̃)−𝐴(𝑡, 𝜆̄, 𝜆̃), 𝜆−𝜆̄⟩ ≤ −𝛽
1
|𝑥|
2
−𝛽
2
(|𝑦|
2
+|𝑧̂|
2
);

(ii) ⟨Φ(𝑥, 𝑥) − Φ(𝑥̄, 𝑥), 𝐺(𝑥 − 𝑥̄)⟩ ≥ 𝜇
1
|𝑥|
2;

∀𝜆 = (𝑥, 𝑦, 𝑧) , 𝜆̃ = (𝑥, 𝑦, 𝑧̃) , 𝜆̄ = (𝑥̄, ̄𝑦, 𝑧̄) ,

𝑙̂ = 𝑙 − ̄𝑙, where 𝑙 = 𝑥, 𝑦, 𝑧, 𝑥, 𝑦, 𝑧̃, respectively.
(11)

𝛽
1
, 𝛽
2
, and 𝜇

1
are given nonnegative constants with 𝛽

1
−𝐿
𝐴
≥

0, 𝛽
2
− 𝐿
𝐴
≥ 0 (the equalities cannot be established at the

same time), and 𝜇
1
− 𝐿
Φ
𝜆
1
> 0; 𝐿

𝐴
, 𝐿
Φ
are the Lipschitz

constants of 𝐴,Φ with respect to 𝜆̃, 𝑥, respectively; and 𝜆
1

satisfies |𝐺𝑙̂(𝑇)| ≤ 𝜆
1
|̂𝑙(𝑇)|.

Or we need the following.
(H3.3)

(i) ⟨𝐴(𝑡, 𝜆, 𝜆̃)−𝐴(𝑡, 𝜆̄, 𝜆̃), 𝜆−𝜆̄⟩ ≥ 𝛽
1
|𝑥|
2
+𝛽
2
(|𝑦|
2
+|𝑧̂|
2
);

(ii) ⟨Φ(𝑥, 𝑥) − Φ(𝑥̄, 𝑥), 𝐺(𝑥 − 𝑥̄)⟩ ≤ −𝜇
1
|𝑥|
2;

∀𝜆 = (𝑥, 𝑦, 𝑧) , 𝜆̃ = (𝑥, 𝑦, 𝑧̃) , 𝜆̄ = (𝑥̄, ̄𝑦, 𝑧̄) ,

𝑙̂ = 𝑙 − ̄𝑙, where 𝑙 = 𝑥, 𝑦, 𝑧, 𝑥, 𝑦, 𝑧̃, respectively.
(12)

𝛽
1
, 𝛽
2
, and 𝜇

1
are given nonnegative constants with 𝛽

1
−𝐿
𝐴
≥

0, 𝛽
2
− 𝐿
𝐴
≥ 0 (the equalities cannot be established at the

same time), and 𝜇
1
− 𝐿
Φ
𝜆
1
> 0.

Then we have the following two main results in this
section.

Theorem 6. One assumes that (H3.1) and (H3.2) hold; then
mean-field FBSDE (8) has a unique adapted solution (𝑋, 𝑌, 𝑍).

Remark 7. Similarly, if (H3.1) and (H3.3) hold, then mean-
field FBSDE (8) has a unique adapted solution (𝑋, 𝑌, 𝑍).

Proof. We first prove the uniqueness. Let 𝜆(𝑡) = (𝑥(𝑡), 𝑦(𝑡),

𝑧(𝑡)) and 𝜆̄(𝑡) = (𝑥̄(𝑡), ̄𝑦(𝑡), 𝑧̄(𝑡)) be two solutions of (8). We
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set 𝑙̂ = 𝑙 − ̄𝑙, where 𝑙 = 𝑥, 𝑦, 𝑧, 𝑥, 𝑦, 𝑧̃, respectively. Applying
Itô’s formula to ⟨𝐺𝑥(𝑠), 𝑦(𝑠)⟩, we get

𝐸⟨(𝐸
󸀠
[Φ (𝑥 (𝑇) , (𝑥 (𝑇))

󸀠
)]

−𝐸
󸀠
[Φ (𝑥̄ (𝑇) , (𝑥̄ (𝑇))

󸀠
)]) , 𝐺 (𝑥 (𝑇) − 𝑥̄ (𝑇))⟩

= 𝐸∫

𝑇

0

⟨(𝐸
󸀠
[𝐴 (𝑡, 𝜆 (𝑡) , (𝜆 (𝑡))

󸀠
)]

−𝐸
󸀠
[𝐴 (𝑡, 𝜆̄ (𝑡) , (𝜆̄ (𝑡))

󸀠

)]) , 𝜆 (𝑡) − 𝜆̄ (𝑡)⟩ 𝑑𝑡.

(13)

From (H3.2) the monotonicity assumptions of Φ and 𝐴, we
get

(𝜇
1
− 𝐿
Φ
𝜆
1
) 𝐸 [|𝑥 (𝑇)|

2
]

≤ −𝐸∫

𝑇

0

[𝛽
1
|𝑥 (𝑡)|

2
+ 𝛽
2
(
󵄨󵄨󵄨󵄨𝑦 (𝑡)

󵄨󵄨󵄨󵄨
2

+ |𝑧̂ (𝑡)|
2
)] 𝑑𝑡

+ 𝐿
𝐴
𝐸∫

𝑇

0

[|𝑥 (𝑡)|
2
+
󵄨󵄨󵄨󵄨𝑦 (𝑡)

󵄨󵄨󵄨󵄨
2

+ |𝑧̂ (𝑡)|
2
] 𝑑𝑡.

(14)

When 𝛽
1
− 𝐿
𝐴
> 0, 𝛽

2
− 𝐿
𝐴
≥ 0, 𝜇

1
− 𝐿
Φ
𝜆
1
> 0, |𝑥(𝑡)|

2
=

0, ds dP-a.e. In this case we have 𝑥(𝑡) = 0, P-a.s., for all
𝑡 ∈ [0, 𝑇]. Thus, Φ(𝑥(𝑇), (𝑥(𝑇))󸀠) = Φ(𝑥̄(𝑇), (𝑥̄(𝑇))

󸀠
), 𝑃̄-a.s.

Therefore, from Lemma 1 it follows that 𝑦(𝑡) = ̄𝑦(𝑡), P-a.s.
and 𝑧(𝑡) = 𝑧̄(𝑡), P-a.s.a.e. When 𝛽

1
− 𝐿
𝐴
= 0, 𝛽

2
− 𝐿
𝐴
>

0, 𝜇
1
−𝐿
Φ
𝜆
1
> 0, thus𝑦(𝑡) = ̄𝑦(𝑡), 𝑧(𝑡) = 𝑧̄(𝑡), 𝑥(𝑇) = 𝑥̄(𝑇),

P-a.s.a.e. From the uniqueness of solutions ofMcKean-Vlasov
equations (refer to [20] or Remark 2), we get 𝑥(𝑡) = 𝑥̄(𝑡), P-
a.s., for all 𝑡 ∈ [0, 𝑇].

For the existence, we need to combine the above tech-
niques and an a priori estimate to construct a contraction
mapping. For this we first prove the following lemma.

For 𝛽
1
− 𝐿
𝐴

≥ 0, 𝛽
2
− 𝐿
𝐴

≥ 0, 𝜇
1
− 𝐿
Φ
𝜆
1
> 0

(the equalities cannot be established at the same time). We
consider the following mean-field FBSDEs parameterized by
𝛼 ∈ [0, 1]:

𝑑𝑥
𝛼

(𝑡)

= [𝛼𝐸
󸀠
[𝑓 (𝑡, 𝜒

𝛼

(𝑡))] + 𝐸
󸀠
[𝜙 (𝑡)]] 𝑑𝑡

+ [𝛼𝐸
󸀠
[𝜎 (𝑡, 𝜒

𝛼

(𝑡))] + 𝐸
󸀠
[𝜓 (𝑡)]] 𝑑𝐵

𝑡
,

− 𝑑𝑦
𝛼

(𝑡)

= [(1 − 𝛼) 𝛽
1
𝐺𝑥
𝛼

(𝑡) + 𝛼𝐸
󸀠
[𝑔 (𝑡, 𝜒

𝛼

(𝑡))] + 𝐸
󸀠
[𝛾 (𝑡)]] 𝑑𝑡

− 𝑧
𝛼

(𝑡) 𝑑𝐵
𝑡
,

𝑥
𝛼

(0) = 𝑎,

𝑦
𝛼

(𝑇) = 𝛼𝐸
󸀠
[Φ (𝑥

𝛼

(𝑇) , (𝑥
𝛼

(𝑇))
󸀠

)]

+ (1 − 𝛼)𝐺𝑥
𝛼

(𝑇) + 𝜉,

(15)

where 𝜒𝛼(𝑡) = (𝑥
𝛼
(𝑡), 𝑦
𝛼
(𝑡), 𝑧
𝛼
(𝑡), (𝑥

𝛼
(𝑡))
󸀠

, (𝑦
𝛼
(𝑡))
󸀠

, (𝑧
𝛼
(𝑡))
󸀠

)

and𝜙, 𝜓, and 𝛾 are given processes in𝑀2
̄F
(0, 𝑇)with values in

R𝑛, R𝑛×𝑑, andR𝑚, respectively. 𝜉 ∈ 𝐿2(Ω,F
𝑇
, 𝑃). Obviously,

when 𝛼 = 1, the existence of (15) implies that of (8). From the
existence and the uniqueness ofMckean-Vlasov equation and
mean-field BSDE, (15) has a unique solution when 𝛼 = 0. The
following lemma is needed.
Lemma 8. One assumes that (H3.1) and (H3.2) hold. If for
an 𝛼
0
∈ [0, 1) there exists a solution (𝑥

𝛼0 , 𝑦
𝛼0 , 𝑧
𝛼0) of (15),

then there exists a positive constant 𝛿
0
such that for each 𝛿 ∈

[0, 𝛿
0
] there exists a solution (𝑥𝛼0+𝛿, 𝑦𝛼0+𝛿, 𝑧𝛼0+𝛿) of mean-field

FBSDE (15) for 𝛼 = 𝛼
0
+ 𝛿.

Proof. Since for every 𝜙 ∈ 𝑀
2

̄F
(0, 𝑇;R𝑛), 𝛾 ∈ 𝑀

2

̄F
(0, 𝑇;

R𝑚), 𝜓 ∈ 𝑀
2

̄F
(0, 𝑇,R𝑛×𝑑), 𝛼

0
∈ [0, 1), there exists a (unique)

solution of (15); for each 𝑥(𝑇) ∈ 𝐿
2
(Ω,F

𝑇
, 𝑃) and a triple

(𝜆(𝑡))
0≤𝑡≤𝑇

= (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡))
0≤𝑡≤𝑇

∈ 𝑀
2

F (0, 𝑇;R
𝑛+𝑚+𝑚×𝑑

)

there exists a unique triple

(Λ (𝑡))
0≤𝑡≤𝑇

= (𝑋 (𝑡) , 𝑌 (𝑡) , 𝑍 (𝑡))
0≤𝑡≤𝑇

∈ 𝑀
2

F (0, 𝑇;R
𝑛+𝑚+𝑚×𝑑

)

(16)

satisfying the following mean-field FBSDEs:

𝑑𝑋 (𝑡) = [𝛼
0
𝐸
󸀠
[𝑓 (𝑡, Λ (𝑡) , (Λ (𝑡))

󸀠
)]

+𝛿𝐸
󸀠
[𝑓 (𝑡, 𝜆 (𝑡) , (𝜆 (𝑡))

󸀠
)] + 𝐸

󸀠
[𝜙 (𝑡)]] 𝑑𝑡

+ [𝛼
0
𝐸
󸀠
[𝜎 (𝑡, Λ (𝑡) , (Λ (𝑡))

󸀠
)]

+𝛿𝐸
󸀠
[𝜎 (𝑡, 𝜆 (𝑡) , (𝜆 (𝑡))

󸀠
)] + 𝐸

󸀠
[𝜓 (𝑡)]] 𝑑𝐵

𝑡
,

− 𝑑𝑌 (𝑡)

= [(1 − 𝛼
0
) 𝛽
1
𝐺𝑋 (𝑡) + 𝛼

0
𝐸
󸀠
[𝑔 (𝑡, Λ (𝑡) , (Λ (𝑡))

󸀠
)]

+ 𝛿 (−𝛽
1
𝐺𝑥 (𝑡) + 𝐸

󸀠
[𝑔 (𝑡, 𝜆 (𝑡) , (𝜆 (𝑡))

󸀠
)])

+𝐸
󸀠
[𝛾 (𝑡)]] 𝑑𝑡

− 𝑍 (𝑡) 𝑑𝐵
𝑡
,

𝑋 (0) = 𝑎,

𝑌 (𝑇)

= 𝛼
0
𝐸
󸀠
[Φ (𝑋 (𝑇) , (𝑋 (𝑇))

󸀠
)] + (1 − 𝛼

0
) 𝐺𝑋 (𝑇)

+ 𝛿 (𝐸
󸀠
[Φ (𝑥 (𝑇) , (𝑥 (𝑇))

󸀠
)] − 𝐺𝑥 (𝑇)) + 𝜉.

(17)

We want to prove that if 𝛿 is small enough, the mapping
defined by 𝐼

𝛼0+𝛿
(𝜆×𝑥(𝑇)) = Λ×𝑋(𝑇) : 𝑀

2

F (0, 𝑇;R
𝑛+𝑚+𝑚×𝑑

)×

𝐿
2
(Ω,F

𝑇
,P) 󳨃→ 𝑀

2

F (0, 𝑇;R
𝑛+𝑚+𝑚×𝑑

) × 𝐿
2
(Ω,F

𝑇
,P) is a

contraction. Let 𝜆̄ = (𝑥̄, ̄𝑦, 𝑧̄) ∈ 𝑀
2

F (0, 𝑇;R
𝑛+𝑚+𝑚×𝑑

) and
Λ̄ × 𝑋̄(𝑇) = 𝐼

𝛼0+𝛿
(𝜆̄ × 𝑥̄(𝑇)). We define 𝜆̂ = (𝑥, 𝑦, 𝑧̂) = (𝑥 −

𝑥̄, 𝑦− ̄𝑦, 𝑧−𝑧̄), 𝜆̂
󸀠
= (𝑥
󸀠
, 𝑦
󸀠
) = (𝑥

󸀠
−𝑥̄
󸀠
, 𝑦
󸀠
− ̄𝑦
󸀠
, 𝑧
󸀠
−𝑧̄
󸀠
), Λ̂ =

(𝑋, 𝑌̂, 𝑍) = (𝑋 − 𝑋̄, 𝑌 − 𝑌̄, 𝑍 − 𝑍̄), Λ̂
󸀠
= (𝑋
󸀠
, 𝑌̂
󸀠
, 𝑍
󸀠
) =

(𝑋
󸀠
− 𝑋̄
󸀠
, 𝑌
󸀠
− 𝑌̄
󸀠
, 𝑍
󸀠
− 𝑍̄
󸀠
).
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Applying Itô’s formula to ⟨𝐺𝑋(𝑡), 𝑌̂(𝑡)⟩, it yields

𝐸⟨𝛼
0
𝐸
󸀠
[Φ (𝑋 (𝑇) , (𝑋 (𝑇))

󸀠
) − Φ(𝑋̄ (𝑇) , (𝑋̄ (𝑇))

󸀠

)]

+ (1 − 𝛼
0
) 𝐺𝑋 (𝑇)

+ 𝛿 (𝐸
󸀠
[Φ (𝑥 (𝑇) , (𝑥 (𝑇))

󸀠
) − Φ (𝑥̄ (𝑇) , (𝑥̄ (𝑇))

󸀠
)]

−𝐺𝑥 (𝑇)) , 𝐺𝑋 (𝑇) ⟩

= 𝐸∫

𝑇

0

{⟨𝛼
0
𝐸
󸀠
[𝐴 (𝑡, Λ (𝑡) , (Λ (𝑡))

󸀠
)

−𝐴 (𝑡, Λ̄ (𝑡) , (Λ̄ (𝑡))
󸀠

)] , Λ̂ (𝑡)⟩

− (1 − 𝛼
0
) 𝛽
1
⟨𝐺𝑋 (𝑡) , 𝐺𝑋 (𝑡)⟩

+ 𝛿𝐸
󸀠
[𝛽
1
⟨𝐺𝑋 (𝑡) , 𝐺𝑥 (𝑡)⟩ + ⟨𝐺𝑋 (𝑡) , 𝑔 (𝑡)⟩

+ ⟨𝐺
𝑇
𝑌̂ (𝑡) , 𝑓 (𝑡)⟩

+ ⟨𝐺
𝑇
𝑍 (𝑡) , 𝜎̂ (𝑡)⟩ ]} 𝑑𝑡,

(18)

where 𝑓(𝑡) = 𝑓(𝑡, 𝜆(𝑡), (𝜆(𝑡))󸀠) − 𝑓(𝑡, 𝜆̄(𝑡), (𝜆̄(𝑡))󸀠), 𝑔(𝑡) = −𝑔
(𝑡, 𝜆(𝑡), (𝜆(𝑡))

󸀠
) + 𝑔(𝑡, 𝜆̄(𝑡), (𝜆̄(𝑡))

󸀠

), 𝜎̂(𝑡) = 𝜎(𝑡, 𝜆(𝑡), (𝜆(𝑡))
󸀠
) −

𝜎(𝑡, 𝜆̄(𝑡), (𝜆̄(𝑡))
󸀠

).
From (H3.1) and (H3.2), we know that if 𝛽

1
−𝐿
𝐴
= 0, 𝜇

1
−

𝐿
Φ
𝜆
1
> 0, then 𝛽

2
− 𝐿
𝐴
> 0. Then, we have

𝐸[∫

𝑇

0

(
󵄨󵄨󵄨󵄨󵄨
𝑌̂ (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑍 (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

) 𝑑𝑡]

≤ 𝛿𝐶
2
𝐸{∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
Λ̂ (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡 +
󵄨󵄨󵄨󵄨󵄨
𝑋 (𝑇)

󵄨󵄨󵄨󵄨󵄨

2

+∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝜆̂ (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡 + |𝑥 (𝑇)|
2
} .

(19)

On the other hand, from standard technique to the forward
equation for𝑋(𝑡) = 𝑋(𝑡) − 𝑋̄(𝑡), we get

sup
0≤𝑡≤𝑇

𝐸 [
󵄨󵄨󵄨󵄨󵄨
𝑋 (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

]

≤ 𝛿𝐶
2
𝐸[∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝜆̂ (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡]

+ 𝐶
2
𝐸[∫

𝑇

0

[
󵄨󵄨󵄨󵄨󵄨
𝑌̂ (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑍 (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

] 𝑑𝑡] .

(20)

From the above two estimates, we have

𝐸{∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
Λ̂ (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡 +
󵄨󵄨󵄨󵄨󵄨
𝑋 (𝑇)

󵄨󵄨󵄨󵄨󵄨

2

}

≤ 𝐶̄𝛿𝐸{∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝜆̂ (𝑡)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑡 + |𝑥 (𝑇)|

2
} .

(21)

Here the constant 𝐶̄ depends on the Lipschitz constants,
𝜆
1
, 𝛽
1
, 𝛽
2
, and 𝑇.

If 𝛽
1
− 𝐿
𝐴
> 0, 𝜇

1
− 𝐿
Φ
𝜆
1
> 0, then 𝛽

2
− 𝐿
𝐴
≥ 0. Then,

we have

𝐸 [
󵄨󵄨󵄨󵄨󵄨
𝑋 (𝑇)

󵄨󵄨󵄨󵄨󵄨

2

] + 𝐸 [∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝑋 (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡]

≤ 𝛿𝐶
1
𝐸{∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
Λ̂ (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡

+∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝜆̂ (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡 + |𝑥 (𝑇)|
2
+
󵄨󵄨󵄨󵄨󵄨
𝑋 (𝑇)

󵄨󵄨󵄨󵄨󵄨

2

} .

(22)

Then from the standard estimate of themean-field BSDEpart,
we get

𝐸[∫

𝑇

0

(
󵄨󵄨󵄨󵄨󵄨
𝑌̂ (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑍 (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

) 𝑑𝑡]

≤ 𝐶
1
𝛿𝐸{∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝜆̂ (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡 + |𝑥 (𝑇)|
2
}

+ 𝐶
1
{𝐸∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝑋 (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡 + 𝐸
󵄨󵄨󵄨󵄨󵄨
𝑋 (𝑇)

󵄨󵄨󵄨󵄨󵄨

2

} .

(23)

Here the constant 𝐶
1
depends on the Lipschitz constants,

𝜆
1
, 𝛽
1
, 𝜇
1
, 𝛼
0
, and 𝑇.

From the above two estimates and the standard estimate
of𝑋(𝑡), it follows that, for the sufficiently small 𝛿 > 0,

𝐸{∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
Λ̂ (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡 +
󵄨󵄨󵄨󵄨󵄨
𝑋 (𝑇)

󵄨󵄨󵄨󵄨󵄨

2

}

≤ 𝐶̄𝛿𝐸{∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝜆̂ (𝑡)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑡 + |𝑥 (𝑇)|

2
} .

(24)

Here the constant 𝐶̄ depends only on the Lipschitz constants,
𝜆
1
, 𝛽
1
, 𝜇
1
, 𝛼
0
, and 𝑇.

From above all, we now choose 𝛿
0
= 1/2𝐶̄. Obviously, for

every fixed 𝛿 ∈ [0, 𝛿
0
], the mapping 𝐼

𝛼0+𝛿
is a contraction in

the sense that

𝐸{∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
Λ̂ (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡 +
󵄨󵄨󵄨󵄨󵄨
𝑋 (𝑇)

󵄨󵄨󵄨󵄨󵄨

2

}

≤
1

2
𝐸{∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝜆̂ (𝑡)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑡 + |𝑥 (𝑇)|

2
} .

(25)

It means immediately that this mapping has a unique fixed
point:

Λ
𝛼0+𝛿 = (𝑋

𝛼0+𝛿, 𝑌
𝛼0+𝛿, 𝑍

𝛼0+𝛿) , (26)

which is the solution of (15) for 𝛼 = 𝛼
0
+ 𝛿.

Now we can give the proof of the existence of the solution
of mean-field FBSDE (8).

Proof (continued). When 𝛼 = 0, (15) has a unique solution.
Then from Lemma 8, there exists a positive constant 𝛿

0
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depending on Lipschitz constants, 𝛽
1
, 𝜇
1
, 𝜆
1
, 𝜆
2
, and 𝑇,

such that, for every 𝛿 ∈ [0, 𝛿
0
], (15) for 𝛼 = 𝛿 has a unique

solution. We can repeat this process 𝑁 times where 1 ≤

𝑁𝛿
0
≤ 1 + 𝛿

0
. It means that, in particular, mean-field FBSDE

(15) for 𝛼 = 1 has a unique solution; that is, (8) has a unique
solution.

The proof is complete.

Example 9. We consider

𝑑𝑥 (𝑡) = 𝐸
󸀠
[−𝑦
󸀠

(𝑡) − 2𝑦 (𝑡)] 𝑑𝑡 + 𝐸
󸀠
[−𝑧
󸀠

(𝑡) − 2𝑧 (𝑡)] 𝑑𝐵
𝑡
,

𝑡 ∈ [0, 𝑇] ,

−𝑑𝑦 (𝑡) = 𝐸
󸀠
[𝑥
󸀠

(𝑡) + 2𝑥 (𝑡)] 𝑑𝑡 − 𝑧 (𝑡) 𝑑𝐵
𝑡
, 𝑡 ∈ [0, 𝑇] ,

𝑥 (0) = 1,

𝑦 (𝑇) = 𝐸
󸀠
[𝑥
󸀠

(𝑇) + 2𝑥 (𝑇)] .

(27)

The above FBSDE satisfes (H3.1) and (H3.2), formTheorem 6,
we know it has a unique solution.

Remark 10. The proof of Remark 7 is similar. Notice that (15)
should be changed into the following form:

𝑑𝑥
𝛼

(𝑡) = [𝛼𝐸
󸀠
[𝑓 (𝑡, 𝜒

𝛼

(𝑡))] + 𝐸
󸀠
[𝜙 (𝑡)]] 𝑑𝑡

+ [𝛼𝐸
󸀠
[𝜎 (𝑡, 𝜒

𝛼

(𝑡))] + 𝐸
󸀠
[𝜓 (𝑡)]] 𝑑𝐵

𝑡
,

−𝑑𝑦
𝛼

(𝑡) = [ − (1 − 𝛼) 𝛽
1
𝐺𝑥
𝛼

(𝑡)

+𝛼𝐸
󸀠
[𝑔 (𝑡, 𝜒

𝛼

(𝑡))] + 𝐸
󸀠
[𝛾 (𝑡)]] 𝑑𝑡 − 𝑧

𝛼

(𝑡) 𝑑𝐵
𝑡
,

𝑥
𝛼

(0) = 𝑎,

𝑦
𝛼

(𝑇) = 𝛼𝐸
󸀠
[Φ (𝑥

𝛼

(𝑇) , (𝑥
𝛼

(𝑇))
󸀠

)]

− (1 − 𝛼)𝐺𝑥
𝛼

(𝑇) + 𝜉.

(28)

Remark 11. When Φ does not depend on 𝑥, 𝑥, that is,
Φ(𝑥, 𝑥) = 𝜉 ∈ 𝐿

2
(Ω,F

𝑇
, 𝑃) is given, for the existence and

the uniqueness of the solution of mean-field FBSDE (8), the
monotonicity assumption (H3.2) can be weakened as

⟨𝐴 (𝑡, 𝜆, 𝜆̃) − 𝐴 (𝑡, 𝜆̄, 𝜆̃) , 𝜆 − 𝜆̄⟩ ≤ −𝛽
1
|𝑥|
2
− 𝛽
2

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
2

; (29)

similarly, (H3.3) can be weakened as

⟨𝐴 (𝑡, 𝜆, 𝜆̃) − 𝐴 (𝑡, 𝜆̄, 𝜆̃) , 𝜆 − 𝜆̄⟩ ≥ 𝛽
1
|𝑥|
2
+ 𝛽
2

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
2

, (30)

where 𝛽
1
, 𝛽
2
, and 𝜇

1
are given nonnegative constants with

𝛽
1
− 𝐿
𝐴

≥ 0, 𝛽
2
− 𝐿
𝐴

≥ 0, and 𝜇
1
− 𝐿
Φ
𝜆
1

> 0,
where the equalities cannot be established at the same time;
𝐿
𝐴
, 𝐿
Φ
are the Lipchitz constants of𝐴,Φwith respect to 𝜆̃, 𝑥,

respectively; and 𝜆
1
satisfies |𝐺𝑙̂(𝑇)| ≤ 𝜆

1
|̂𝑙(𝑇)|.

Lemma 12. When 𝜎 does not depend on 𝑧, 𝑧
󸀠, the mean-

field FBSDE (8) also has a unique adapted solution, but the
monotonicity (H3.2) should be weakened as

(i) ⟨𝐴(𝑡, 𝜆, 𝜆̃) − 𝐴(𝑡, 𝜆̄, 𝜆̃), 𝜆 − 𝜆̄⟩ ≤ −𝛽
1
|𝑥|
2;

(ii) ⟨Φ(𝑥, 𝑥) − Φ(𝑥̄, 𝑥), 𝐺(𝑥 − 𝑥̄)⟩ ≥ 𝜇
1
|𝑥|
2;

similarly, (H3.3) can be weakened as

(i) ⟨𝐴(𝑡, 𝜆, 𝜆̃) − 𝐴(𝑡, 𝜆̄, 𝜆̃), 𝜆 − 𝜆̄⟩ ≥ 𝛽
1
|𝑥|
2;

(ii) ⟨Φ(𝑥, 𝑥) − Φ(𝑥̄, 𝑥), 𝐺(𝑥 − 𝑥̄)⟩ ≤ −𝜇
1
|𝑥|
2,

where 𝛽
1
and 𝜇 are given nonnegative constants. Moreover, one

has 𝛽
1
> 𝐿
𝐴
+ 2𝐿
𝐴
𝐶
𝐿𝑔 ,𝑇

, 𝜇
1
> 𝐿
Φ
𝜆
1
+ 8𝐶
𝐿𝑔 ,𝑇

𝐿
2

Φ
𝐿
𝐴
, and

𝐶
𝐿𝑔 ,𝑇

= exp{(4𝐿
𝑔
+ 12𝐿

2

𝑔
+ 1)𝑇}.

The proof of this lemma is similar to that of Theorem 6;
we now only give the proof of the uniqueness.

Proof. Let 𝜆(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) and 𝜆̄(𝑡) = (𝑥̄(𝑡), ̄𝑦(𝑡), 𝑧̄(𝑡))

be two solutions of (8). We set 𝑙̂ = 𝑙 − ̄𝑙, where
𝑙 = 𝑥, 𝑦, 𝑧, 𝑥, 𝑦, 𝑧̃, respectively. Applying Itô’s formula to
⟨𝐺𝑥(𝑠), 𝑦(𝑠)⟩, we get

𝐸⟨(𝐸
󸀠
[Φ (𝑥 (𝑇) , (𝑥 (𝑇))

󸀠
)] − 𝐸

󸀠
[Φ (𝑥̄ (𝑇) , (𝑥̄ (𝑇))

󸀠
)]) ,

𝐺 (𝑥 (𝑇) − 𝑥̄ (𝑇)) ⟩

= 𝐸∫

𝑇

0

⟨(𝐸
󸀠
[𝐴 (𝑡, 𝜆 (𝑡) , (𝜆 (𝑡))

󸀠
)]

−𝐸
󸀠
[𝐴 (𝑡, 𝜆̄ (𝑡) , (𝜆̄ (𝑡))

󸀠

)]) ,

𝜆 (𝑡) − 𝜆̄ (𝑡) ⟩ 𝑑𝑡.

(31)

From (H3.2) the monotonicity assumptions of Φ and 𝐴, we
get

(𝜇
1
− 𝐿
Φ
𝜆
1
) 𝐸 [|𝑥 (𝑇)|

2
]

≤ − (𝛽
1
− 𝐿
𝐴
) 𝐸∫

𝑇

0

|𝑥 (𝑡)|
2
𝑑𝑡

+ 𝐿
𝐴
𝐸∫

𝑇

0

(
󵄨󵄨󵄨󵄨𝑦 (𝑡)

󵄨󵄨󵄨󵄨
2

+ |𝑧̂ (𝑡)|
2
) 𝑑𝑡.

(32)

Applying Itô’s formula to 𝑒𝛽𝑠|𝑦(𝑠)|2, we get

𝑑𝑒
𝛽𝑠󵄨󵄨󵄨󵄨𝑦 (𝑠)

󵄨󵄨󵄨󵄨
2

= 𝛽𝑒
𝛽𝑠󵄨󵄨󵄨󵄨𝑦 (𝑠)

󵄨󵄨󵄨󵄨
2

𝑑𝑠 + 2𝑒
𝛽𝑠
𝑦 (𝑠) 𝑑𝑦 (𝑠) + 𝑒

𝛽𝑠
(𝑑𝑦 (𝑠))

2

= 𝛽𝑒
𝛽𝑠󵄨󵄨󵄨󵄨𝑦 (𝑠)

󵄨󵄨󵄨󵄨
2

𝑑𝑠 − 2𝑒
𝛽𝑠
𝑦 (𝑠) 𝐸

󸀠
[𝑔] 𝑑𝑠

+ 2𝑒
𝛽𝑠
𝑦 (𝑠) 𝑧̂ (𝑠) 𝑑𝐵

𝑠
+ 𝑒
𝛽𝑠

|𝑧̂ (𝑠)|
2
𝑑𝑠,

(33)

where 𝑔(𝑠) = 𝑔(𝑠, 𝜆(𝑠), 𝜆󸀠(𝑠)) − 𝑔(𝑠, 𝜆̄(𝑠), (𝜆̄(𝑠))󸀠).
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Then we get

𝐸∫

𝑇

0

𝛽𝑒
𝛽𝑠󵄨󵄨󵄨󵄨𝑦 (𝑠)

󵄨󵄨󵄨󵄨
2

𝑑𝑠 + 𝐸∫

𝑇

0

𝑒
𝛽𝑠

|𝑧̂ (𝑠)|
2
𝑑𝑠

= 𝐸 [𝑒
𝛽𝑇󵄨󵄨󵄨󵄨𝑦 (𝑇)

󵄨󵄨󵄨󵄨
2

] + 𝐸∫

𝑇

0

2𝑒
𝛽𝑠
𝑦 (𝑠) 𝐸

󸀠
[𝑔] 𝑑𝑠

≤ 4𝑒
𝛽𝑇
𝐿
2

Φ
𝐸|𝑥 (𝑇)|

2
+ 𝐸∫

𝑇

0

𝑒
𝛽𝑠

|𝑥 (𝑠)|
2
𝑑𝑠

+
1

2
𝐸∫

𝑇

0

𝑒
𝛽𝑠

|𝑧̂ (𝑠)|
2
𝑑𝑠

+ (4𝐿
𝑔
+ 12𝐿

2

𝑔
) 𝐸∫

𝑇

0

𝑒
𝛽𝑠󵄨󵄨󵄨󵄨𝑦 (𝑠)

󵄨󵄨󵄨󵄨
2

𝑑𝑠.

(34)

Hence, we have

𝐸∫

𝑇

0

(𝛽 − 4𝐿
𝑔
− 12𝐿

2

𝑔
) 𝑒
𝛽𝑠󵄨󵄨󵄨󵄨𝑦 (𝑠)

󵄨󵄨󵄨󵄨
2

𝑑𝑠

+
1

2
𝐸∫

𝑇

0

𝑒
𝛽𝑠

|𝑧̂ (𝑠)|
2
𝑑𝑠

≤ 4𝑒
𝛽𝑇
𝐿
2

Φ
𝐸|𝑥 (𝑇)|

2
+ 𝑒
𝛽𝑇
𝐸∫

𝑇

0

|𝑥 (𝑠)|
2
𝑑𝑠.

(35)

Thus, taking 𝛽 = 4𝐿
𝑔
+ 12𝐿

2

𝑔
+ 1, we get

𝐸∫

𝑇

0

(
󵄨󵄨󵄨󵄨𝑦 (𝑠)

󵄨󵄨󵄨󵄨
2

+ |𝑧̂ (𝑠)|
2
) 𝑑𝑠

≤ 8𝐶
𝐿𝑔 ,𝑇

𝐿
2

Φ
𝐸|𝑥 (𝑇)|

2
+ 2𝐶
𝐿𝑔 ,𝑇

𝐸∫

𝑇

0

|𝑥 (𝑠)|
2
𝑑𝑠,

(36)

where 𝐶
𝐿𝑔 ,𝑇

= exp{(4𝐿
𝑔
+ 12𝐿

2

𝑔
+ 1)𝑇}.

Combining with (32), we have

(𝜇
1
− 𝐿
Φ
𝜆
1
− 8𝐶
𝐿𝑔 ,𝑇

𝐿
2

Φ
𝐿
𝐴
)𝐸 [|𝑥 (𝑇)|

2
]

≤ − (𝛽
1
− 𝐿
𝐴
− 2𝐶
𝐿𝑔 ,𝑇

𝐿
𝐴
)𝐸∫

𝑇

0

|𝑥 (𝑡)|
2
𝑑𝑡.

(37)

When𝛽
1
> 𝐿
𝐴
+2𝐿
𝐴
𝐶
𝐿𝑔 ,𝑇

,𝜇
1
> 𝐿
Φ
𝜆
1
+8𝐶
𝐿𝑔 ,𝑇

𝐿
2

Φ
𝐿
𝐴
, we have

|𝑥(𝑡)|
2
= 0 𝑑𝑠 𝑑𝑃-a.e. In this case we have 𝑥(𝑡) = 0, P-a.s., for

all 𝑡 ∈ [0, 𝑇]. Thus, Φ(𝑥(𝑇), (𝑥(𝑇))󸀠) = Φ(𝑥̄(𝑇), (𝑥̄(𝑇))
󸀠
), 𝑃̄-

a.s.Therefore, from Lemma 1 it follows that 𝑦(𝑡) = ̄𝑦(𝑡), P-a.s.
and 𝑧(𝑡) = 𝑧̄(𝑡), P-a.s.

4. Continuity Property on the Parameters

In this section we will discuss the continuity of the solution
of (8) depending on parameters. We consider the following
mean-field FBSDEs with coefficients (𝑓

𝛼
, 𝜎
𝛼
, 𝑔
𝛼
, Φ
𝛼
), 𝛼 ∈ R:

𝑑𝑥
𝛼

(𝑡) = 𝐸
󸀠
[𝑓
𝛼
(𝑡, 𝜒
𝛼

(𝑡))] 𝑑𝑡 + 𝐸
󸀠
[𝜎
𝛼
(𝑡, 𝜒
𝛼

(𝑡))] 𝑑𝐵
𝑡
,

−𝑑𝑦
𝛼

(𝑡) = 𝐸
󸀠
[𝑔
𝛼
(𝑡, 𝜒
𝛼

(𝑡))] 𝑑𝑡 − 𝑧
𝛼

(𝑡) 𝑑𝐵
𝑡
,

𝑥
𝛼

(0) = 𝑎,

𝑦
𝛼

(𝑇) = 𝐸
󸀠
[Φ
𝛼
(𝑥
𝛼

(𝑇) , (𝑥
𝛼

(𝑇))
󸀠

)] ,

(38)

where 𝜒𝛼(𝑡) = (𝑥
𝛼
(𝑡), 𝑦
𝛼
(𝑡), 𝑧
𝛼
(𝑡), (𝑥𝛼(𝑡))󸀠, (𝑦𝛼(𝑡))󸀠, (𝑧𝛼(𝑡))󸀠)

and 𝑓
𝛼
, 𝜎
𝛼
, 𝑔
𝛼
, Φ
𝛼
, 𝛼 ∈ R, satisfy (H3.1) and (H3.2) for each

𝛼 ∈ R. Then, from Theorem 6 we know that mean-field
FBSDE (38) has a unique solution (𝑥𝛼, 𝑦𝛼, 𝑧𝛼) for each 𝛼 ∈ R.

Let us give some more assumptions.
(H4.1)

(i) The coefficients (𝑓
𝛼
, 𝜎
𝛼
, 𝑔
𝛼
, Φ
𝛼
), 𝛼 ∈ R, are uni-

formly Lipschitz to (𝑥, 𝑦, 𝑧, 𝑥, 𝑦, 𝑧̃);

(ii) the mappings 𝛼 󳨃→ (𝑓
𝛼
, 𝜎
𝛼
, 𝑔
𝛼
, Φ
𝛼
), 𝛼 ∈ R, are

continuous, respectively.

Then we have the following continuity property.

Theorem 13. Let the coefficients (𝑓
𝛼
, 𝜎
𝛼
, 𝑔
𝛼
, Φ
𝛼
), 𝛼 ∈ R,

satisfy (H3.1), (H3.2), and (H4.1), and the associated solution
of mean-field FBSDE (38) is denoted by (𝑥𝛼, 𝑦𝛼, 𝑧𝛼). Then, the
mappings

𝛼 󳨃󳨀→ (𝑥
𝛼
, 𝑦
𝛼
, 𝑧
𝛼
, 𝑥
𝛼

(𝑇)) : R 󳨃󳨀→ 𝑀
2

F

× (0, 𝑇;R
𝑛
×R
𝑚
×R
𝑚×𝑑

)

× 𝐿
2
(Ω,F

𝑇
,P;R𝑛)

(39)

are continuous.

Proof. For simplicity of notations, we only prove the continu-
ity of the solutions (𝑥𝛼, 𝑦𝛼, 𝑧𝛼, 𝑥𝛼(𝑇)) of mean-field FBSDE
(38) at 𝛼 = 0. We want to prove that (𝑥𝛼, 𝑦𝛼, 𝑧𝛼, 𝑥𝛼(𝑇))
converges to (𝑥

0
, 𝑦
0
, 𝑧
0
, 𝑥
0
(𝑇)) in 𝑀

2

F (0, 𝑇;R
𝑛
× R𝑚 ×

R𝑚×𝑑) × 𝐿
2
(Ω,F

𝑇
,P;R𝑛) as 𝛼 tends to 0. We set 𝜆𝛼(𝑡) =

(𝑥
𝛼
(𝑡), 𝑦
𝛼
(𝑡), 𝑧
𝛼
(𝑡)) and 𝜆̂(𝑡) = (𝜆

𝛼
(𝑡) − 𝜆

0
(𝑡)) = (𝑥(𝑡),

𝑦(𝑡), 𝑧̂(𝑡)) = (𝑥
𝛼
(𝑡) − 𝑥

0
(𝑡), 𝑦
𝛼
(𝑡) − 𝑦

0
(𝑡), 𝑧
𝛼
(𝑡) − 𝑧

0
(𝑡)); then

from (38) we know that

𝑑𝑥 (𝑡) = 𝐸
󸀠
[𝑓
𝛼
(𝑡, 𝜆
𝛼

(𝑡) , (𝜆
𝛼

(𝑡))
󸀠

)

−𝑓
0
(𝑡, 𝜆
0

(𝑡) , (𝜆
0

(𝑡))
󸀠

)] 𝑑𝑡

+ 𝐸
󸀠
[𝜎
𝛼
(𝑡, 𝜆
𝛼

(𝑡) , (𝜆
𝛼

(𝑡))
󸀠

)

−𝜎
0
(𝑡, 𝜆
0

(𝑡) , (𝜆
0

(𝑡))
󸀠

)] 𝑑𝐵
𝑡
,

− 𝑑𝑦 (𝑡) = 𝐸
󸀠
[𝑔
𝛼
(𝑡, 𝜆
𝛼

(𝑡) , (𝜆
𝛼

(𝑡))
󸀠

)

−𝑔
0
(𝑡, 𝜆
0

(𝑡) , (𝜆
0

(𝑡))
󸀠

)] 𝑑𝑡

− 𝑧̂ (𝑡) 𝑑𝐵
𝑡
,

𝑥 (0) = 0,

𝑦 (𝑇) = 𝐸
󸀠
[Φ
𝛼
(𝑥
𝛼

(𝑇) , (𝑥
𝛼

(𝑇))
󸀠

)

−Φ
0
(𝑥
0

(𝑇) , (𝑥
0

(𝑇))
󸀠

)] .

(40)
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From assumptions (H3.1), (H3.2), and (H4.1) and standard
estimates of 𝑥(𝑡) and (𝑦(𝑡), 𝑧̂(𝑡)), we get

sup
0≤𝑡≤𝑇

𝐸|𝑥 (𝑡)|
2

≤ 𝐶
1
𝐸∫

𝑇

0

(
󵄨󵄨󵄨󵄨𝑦 (𝑡)

󵄨󵄨󵄨󵄨
2

+ |𝑧̂ (𝑡)|
2
) 𝑑𝑡

+ 𝐶
1
𝐸̄ ∫

𝑇

0

[
󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

+ |𝜎̂ (𝑡)|
2
] 𝑑𝑡;

(41)

𝐸∫

𝑇

0

(
󵄨󵄨󵄨󵄨𝑦 (𝑡)

󵄨󵄨󵄨󵄨
2

+ |𝑧̂ (𝑡)|
2
) 𝑑𝑡

≤ 𝐶
1
{𝐸∫

𝑇

0

|𝑥 (𝑡)|
2
𝑑𝑡 + 𝐸|𝑥 (𝑇)|

2

+𝐸̄∫

𝑇

0

󵄨󵄨󵄨󵄨𝑔 (𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝑡 + 𝐸̄ [
󵄨󵄨󵄨󵄨󵄨
Φ̂ (𝑇)

󵄨󵄨󵄨󵄨󵄨

2

]} ,

(42)

where 𝐶
1
depends on the Lipchitz constants and 𝑇, where

𝑓 (𝑡) = 𝑓
𝛼
(𝑡, 𝜆
0

(𝑡) , (𝜆
0

(𝑡))
󸀠

) − 𝑓
0
(𝑡, 𝜆
0

(𝑡) , (𝜆
0

(𝑡))
󸀠

) ,

𝜎̂ (𝑡) = 𝜎
𝛼
(𝑡, 𝜆
0

(𝑡) , (𝜆
0

(𝑡))
󸀠

) − 𝜎
0
(𝑡, 𝜆
0

(𝑡) , (𝜆
0

(𝑡))
󸀠

) ,

𝑔 (𝑡) = −𝑔
𝛼
(𝑡, 𝜆
0

(𝑡) , (𝜆
0

(𝑡))
󸀠

) + 𝑔
0
(𝑡, 𝜆
0

(𝑡) , (𝜆
0

(𝑡))
󸀠

) ,

Φ̂ (𝑇) = Φ
𝛼
(𝑥
0

(𝑇) , (𝑥
0

(𝑇))
󸀠

) − Φ
0
(𝑥
0

(𝑇) , (𝑥
0

(𝑇))
󸀠

) .

(43)

Applying Itô’s formula to ⟨𝐺𝑥(𝑡), 𝑦(𝑡)⟩, it yields

𝐸⟨𝐸
󸀠
[Φ
𝛼
(𝑥
𝛼

(𝑇) , (𝑥
𝛼

(𝑇))
󸀠

)

−Φ
𝛼
(𝑥
0

(𝑇) , (𝑥
0

(𝑇))
󸀠

)] , 𝐺𝑥 (𝑇)⟩

+ 𝐸⟨𝐸
󸀠
[Φ
𝛼
(𝑥
0

(𝑇) , (𝑥
0

(𝑇))
󸀠

)

−Φ
0
(𝑥
0

(𝑇) , (𝑥
0

(𝑇))
󸀠

)] , 𝐺𝑥 (𝑇)⟩

= 𝐸∫

𝑇

0

𝐸
󸀠
⟨𝐴
𝛼
(𝑡, 𝜆
𝛼

(𝑡) , (𝜆
𝛼

(𝑡))
󸀠

)

−𝐴
𝛼
(𝑡, 𝜆
0

(𝑡) , (𝜆
0

(𝑡))
󸀠

) , 𝜆̂ (𝑡)⟩ 𝑑𝑡

+ 𝐸∫

𝑇

0

𝐸
󸀠
[⟨𝐺𝑥 (𝑡) , 𝑔 (𝑡)⟩ + ⟨𝐺

𝑇
𝑦 (𝑡) , 𝑓 (𝑡)⟩

+⟨𝐺
𝑇
𝑧̂ (𝑡) , 𝜎̂ (𝑡)⟩] 𝑑𝑡,

(44)

where

𝐴
𝛼
(𝑡, 𝜆, 𝜆

󸀠
) = (

−𝐺
𝑇
𝑔
𝛼

𝐺𝑓
𝛼

𝐺𝜎
𝛼

)(𝑡, 𝜆, 𝜆
󸀠
) . (45)

Then, we have

(𝛽
1
− 𝐿
𝐴
) 𝐸∫

𝑇

0

|𝑥 (𝑡)|
2
𝑑𝑡 + (𝜇

1
− 𝐿
Φ
𝜆
1
) 𝐸|𝑥 (𝑇)|

2

+ (𝛽
2
− 𝐿
𝐴
) 𝐸

× ∫

𝑇

0

(
󵄨󵄨󵄨󵄨𝑦 (𝑡)

󵄨󵄨󵄨󵄨
2

+ |𝑧̂ (𝑡)|
2
) 𝑑𝑡

≤ 𝐶
2
𝐸[𝐸
󸀠󵄨󵄨󵄨󵄨󵄨
Φ̂ (𝑇)

󵄨󵄨󵄨󵄨󵄨

2

+∫

𝑇

0

𝐸
󸀠
(
󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑔 (𝑡)

󵄨󵄨󵄨󵄨
2

+ |𝜎̂ (𝑡)|
2
) 𝑑𝑡]

+ 𝛿 [𝐸|𝑥 (𝑇)|
2
+ 𝐸∫

𝑇

0

(|𝑥 (𝑡)|
2
+
󵄨󵄨󵄨󵄨𝑦 (𝑡)

󵄨󵄨󵄨󵄨
2

+ |𝑧̂ (𝑡)|
2
) 𝑑𝑡] .

(46)

From (H3.2) we know if 𝛽
1
− 𝐿
𝐴
> 0, 𝜇

1
− 𝐿
Φ
𝜆
1
> 0, then

𝛽
2
− 𝐿
𝐴
≥ 0. Then, from (46) we have

(𝛽
1
− 𝐿
𝐴
) 𝐸∫

𝑇

0

|𝑥 (𝑡)|
2
𝑑𝑡 + (𝜇

1
− 𝐿
Φ
𝜆
1
) 𝐸|𝑥 (𝑇)|

2

≤ 𝐶
2
𝐸[𝐸
󸀠󵄨󵄨󵄨󵄨󵄨
Φ̂ (𝑇)

󵄨󵄨󵄨󵄨󵄨

2

+∫

𝑇

0

𝐸
󸀠
(
󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑔 (𝑡)

󵄨󵄨󵄨󵄨
2

+ |𝜎̂ (𝑡)|
2
) 𝑑𝑡]

+ 𝛿 [𝐸|𝑥 (𝑇)|
2
+ 𝐸∫

𝑇

0

(|𝑥 (𝑡)|
2
+
󵄨󵄨󵄨󵄨𝑦 (𝑡)

󵄨󵄨󵄨󵄨
2

+ |𝑧̂ (𝑡)|
2
) 𝑑𝑡] .

(47)

With the help of (42) and (47) we can take sufficiently small
𝛿 such that

𝐸|𝑥 (𝑇)|
2
+ 𝐸∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝜆̂ (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡

≤ 𝐶𝐸̄ [
󵄨󵄨󵄨󵄨󵄨
Φ̂ (𝑇)

󵄨󵄨󵄨󵄨󵄨

2

+∫

𝑇

0

(
󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑔 (𝑡)

󵄨󵄨󵄨󵄨
2

+ |𝜎̂ (𝑡)|
2
) 𝑑𝑡] ,

(48)

where the constant 𝐶 only depends on 𝐶
1
, 𝐶
2
, 𝛽
1
, 𝜇
1
, 𝐿
𝐴
, 𝐿
Φ
.
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Similarly, if 𝛽
1
−𝐿
𝐴
= 0, 𝜇

1
−𝐿
Φ
𝜆
1
> 0, then 𝛽

2
−𝐿
𝐴
> 0.

Then, from (46) we have

(𝛽
2
− 𝐿
𝐴
) 𝐸∫

𝑇

0

(
󵄨󵄨󵄨󵄨𝑦 (𝑡)

󵄨󵄨󵄨󵄨
2

+ |𝑧̂ (𝑡)|
2
) 𝑑𝑡

≤ 𝐶
2
𝐸[𝐸
󸀠󵄨󵄨󵄨󵄨󵄨
Φ̂ (𝑇)

󵄨󵄨󵄨󵄨󵄨

2

+∫

𝑇

0

𝐸
󸀠
(
󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑔 (𝑡)

󵄨󵄨󵄨󵄨
2

+ |𝜎̂ (𝑡)|
2
) 𝑑𝑡]

+ 𝛿 [𝐸|𝑥 (𝑇)|
2

+𝐸∫

𝑇

0

(|𝑥 (𝑡)|
2
+
󵄨󵄨󵄨󵄨𝑦 (𝑡)

󵄨󵄨󵄨󵄨
2

+ |𝑧̂ (𝑡)|
2
) 𝑑𝑡] .

(49)

With the help of (41) and (49) we can take sufficiently small
𝛿 such that

𝐸|𝑥 (𝑇)|
2
+ 𝐸∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝜆̂ (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡

≤ 𝐶𝐸̄ [
󵄨󵄨󵄨󵄨󵄨
Φ̂ (𝑇)

󵄨󵄨󵄨󵄨󵄨

2

+ ∫

𝑇

0

(
󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑔 (𝑡)

󵄨󵄨󵄨󵄨
2

+ |𝜎̂ (𝑡)|
2
) 𝑑𝑡] ,

(50)

where the constant 𝐶 only depends on 𝐶
1
, 𝐶
2
, 𝛽
2
, 𝐿
𝐴
, 𝐿
Φ
.

Hence, we have that (𝑥𝛼, 𝑦𝛼, 𝑧𝛼, 𝑥𝛼(𝑇)) converges to (𝑥0,
𝑦
0
, 𝑧
0
, 𝑥
0
(𝑇)) in𝑀2F (0, 𝑇;R

𝑛
×R𝑚×R𝑚×𝑑)×𝐿2(Ω,F

𝑇
,P;R𝑛)

as 𝛼 tends to 0.

Now we will give an example to explain that (H3.2) (or
(H3.3)) is necessary; that is, if the coefficients do not satisfy
(H3.2) (or (H3.3)), then (8) may not have a solution. We take
𝑚 = 𝑛 = 𝑑 = 1 here. We consider

𝑑𝑥 (𝑡) = 𝐸 [𝑦 (𝑡)] 𝑑𝑡 + 𝑑𝐵
𝑡
, 𝑡 ∈ [0,

3

4
𝜋] ,

−𝑑𝑦 (𝑡) = 𝐸 [𝑥 (𝑡)] 𝑑𝑡 − 𝑧 (𝑡) 𝑑𝐵
𝑡
, 𝑡 ∈ [0,

3

4
𝜋] ,

𝑥 (0) = 1, 𝑦 (
3

4
𝜋) = −𝐸 [𝑥 (

3

4
𝜋)] , 𝑡 ∈ [0,

3

4
𝜋] .

(51)

It is easy to check that this equation does not satisfy (H3.2) (or
(H3.3)); we point out that, there is also no adapted solution. In
fact, if (𝑥, 𝑦, 𝑧)

0≤𝑡≤(3/4)𝜋
is the solution of mean-field FBSDE

(51), then (𝐸[𝑥(𝑡)], 𝐸[𝑦(𝑡)]) is the solution of the following
ordinary differential equation:

𝑋̇ = 𝑌, 𝑌̇ = −𝑋,

𝑋 (0) = 1, 𝑌 (
3

4
𝜋) = −𝑋(

3

4
𝜋) , 𝑡 ∈ [0,

3

4
𝜋] .

(52)

But we know this ODE has no solution; therefore, there is no
adapted solution of (51).

5. Maximum Principle for the Controlled
Mean-Field FBSDEs

We consider the following controlled mean-field fully cou-
pled forward-backward SDEs:

𝑑𝑥 (𝑡) = 𝐸
󸀠
[𝑓 (𝑡, 𝜒 (𝑡) , V (𝑡))] 𝑑𝑡 + 𝐸󸀠 [𝜎 (𝑡, 𝜒 (𝑡) , V (𝑡))] 𝑑𝐵

𝑡
,

−𝑑𝑦 (𝑡) = 𝐸
󸀠
[𝑔 (𝑡, 𝜒 (𝑡) , V (𝑡))] 𝑑𝑡 − 𝑧 (𝑡) 𝑑𝐵

𝑡
,

𝑥 (0) = 𝑎, 𝑦 (𝑇) = 𝐸
󸀠
[Φ (𝑥 (𝑇) , (𝑥 (𝑇))

󸀠
)] ,

(53)

where 𝜒(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), (𝑥(𝑡))󸀠, (𝑦(𝑡))󸀠, (𝑧(𝑡))󸀠), (𝑥, 𝑦, 𝑧)
takes value inR𝑛 ×R𝑚 ×R𝑚×𝑑. Let 𝑈 be a nonempty convex
subset of R𝑘

Uad

= {V (⋅) ∈ 𝑀2̄F (0, 𝑇;R
𝑘
) | V (𝑡) ∈ 𝑈, 0 ≤ 𝑡 ≤ 𝑇, 𝑃̄ -a.s.} .

(54)

An element V ofUad is called an admissible control.We define
the following cost functional:

𝐽 (V (⋅)) = 𝐸 [∫
𝑇

0

𝐸
󸀠
[𝐿 (𝜒 (𝑡) , V (𝑡))] 𝑑𝑡

+𝐸
󸀠
[𝜑 (𝑥 (𝑇) , (𝑥 (𝑇))

󸀠
)] + ℎ (𝑦 (0)) ] ,

(55)

where

𝑓 : [0, 𝑇] ×R
𝑛
×R
𝑚
×R
𝑚×𝑑

×R
𝑛
×R
𝑚
×R
𝑚×𝑑

×R
𝑘
󳨀→ R

𝑛
,

𝜎 : [0, 𝑇] ×R
𝑛
×R
𝑚
×R
𝑚×𝑑

×R
𝑛
×R
𝑚
×R
𝑚×𝑑

×R
𝑘
󳨀→ R

𝑛×𝑑
,

𝑔 : [0, 𝑇] ×R
𝑛
×R
𝑚
×R
𝑚×𝑑

×R
𝑛
×R
𝑚
×R
𝑚×𝑑

×R
𝑘
󳨀→ R

𝑚
,

𝐿 : [0, 𝑇] ×R
𝑛
×R
𝑚
×R
𝑚×𝑑

×R
𝑛
×R
𝑚
×R
𝑚×𝑑

×R
𝑘
󳨀→ R,

Φ : R
𝑛
×R
𝑛
󳨀→ R

𝑚
,

𝜑 : R
𝑛
×R
𝑛
󳨀→ R, ℎ : R

𝑚
󳨀→ R.

(56)

The optimal control problem is to minimize the cost func-
tional 𝐽(V(⋅)) over all admissible controls. An admissible
control 𝑢(⋅) is called an optimal control if the cost functional
𝐽(V(⋅)) attains theminimum at 𝑢(⋅). Equation (53) is called the
state equation; the solution (𝑥(⋅), 𝑦(⋅), 𝑧(⋅)) corresponding to
𝑢(⋅) is called the optimal trajectory.
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We assume the following.
(H5.1)

(i) 𝑓, 𝑔, 𝜎, 𝐿, Φ, 𝜑 and ℎ are continuously differen-
tiable to (𝑥, 𝑦, 𝑧, 𝑥, 𝑦, 𝑧̃, V);

(ii) the derivatives of 𝑓, 𝑔, 𝜎, Φ are bounded;

(iii) the derivatives of 𝐿 are bounded by 𝐶(1 + |𝑥| + |𝑦| +
|𝑧| + |𝑥| + |𝑦| + |𝑧̃| + |V|);

(iv) the derivatives of 𝜑 and ℎ are bounded by 𝐶(1 + |𝑥| +
|𝑥|) and 𝐶(1 + |𝑦|), respectively;

(v) for any given admissible control V(⋅), the coefficients
satisfy (H3.1) and (H3.2).

Let 𝑢(⋅) be an optimal control and let (𝑥(⋅), 𝑦(⋅), 𝑧(⋅)) be
the corresponding optimal trajectory. Let V(⋅) be such that
𝑢(⋅) + V(⋅) ∈ Uad. Since 𝑈 is convex, then for any 0 ≤ 𝜌 ≤

1, 𝑢
𝜌
(⋅) = 𝑢(⋅) + 𝜌V(⋅) is also inUad.

We introduce the following linear mean-field FBSDE:

𝑑𝑥
1

(𝑡)

= {𝐸
󸀠
[𝑓
𝑥
(𝜃 (𝑡))] 𝑥

1

(𝑡) + 𝐸
󸀠
[𝑓
𝑦
(𝜃 (𝑡))] 𝑦

1

(𝑡)

+ 𝐸
󸀠
[𝑓
𝑧
(𝜃 (𝑡))] 𝑧

1

(𝑡) + 𝐸
󸀠
[𝑓V (𝜃 (𝑡)) V (𝑡)]

+ 𝐸
󸀠
[𝑓
𝑥
(𝜃 (𝑡)) (𝑥

1

(𝑡))
󸀠

] + 𝐸
󸀠
[𝑓
𝑦
(𝜃 (𝑡)) (𝑦

1

(𝑡))
󸀠

]

+𝐸
󸀠
[𝑓
𝑧
(𝜃 (𝑡)) (𝑧

1

(𝑡))
󸀠

]} 𝑑𝑡

+ {𝐸
󸀠
[𝜎
𝑥
(𝜃 (𝑡))] 𝑥

1

(𝑡) + 𝐸
󸀠
[𝜎
𝑦
(𝜃 (𝑡))] 𝑦

1

(𝑡)

+ 𝐸
󸀠
[𝜎
𝑧
(𝜃 (𝑡))] 𝑧

1

(𝑡) + 𝐸
󸀠
[𝜎V (𝜃 (𝑡)) V (𝑡)]

+ 𝐸
󸀠
[𝜎
𝑥
(𝜃 (𝑡)) (𝑥

1

(𝑡))
󸀠

] + 𝐸
󸀠
[𝜎
𝑦
(𝜃 (𝑡)) (𝑦

1

(𝑡))
󸀠

]

+𝐸
󸀠
[𝜎
𝑧̃
(𝜃 (𝑡)) (𝑧

1

(𝑡))
󸀠

]} 𝑑𝐵
𝑡
,

− 𝑑𝑦
1

(𝑡)

= {𝐸
󸀠
[𝑔
𝑥
(𝜃 (𝑡))] 𝑥

1

(𝑡) + 𝐸
󸀠
[𝑔
𝑦
(𝜃 (𝑡))] 𝑦

1

(𝑡)

+ 𝐸
󸀠
[𝑔
𝑧
(𝜃 (𝑡))] 𝑧

1

(𝑡)

+ 𝐸
󸀠
[𝑔V (𝜃 (𝑡)) V (𝑡)] + 𝐸

󸀠
[𝑔
𝑥
(𝜃 (𝑡)) (𝑥

1

(𝑡))
󸀠

]

+ 𝐸
󸀠
[𝑔
𝑦
(𝜃 (𝑡)) (𝑦

1

(𝑡))
󸀠

]

+𝐸
󸀠
[𝑔
𝑧̃
(𝜃 (𝑡)) (𝑧

1

(𝑡))
󸀠

]} 𝑑𝑡

− 𝑧
1

(𝑡) 𝑑𝐵
𝑡
,

𝑥
1

(0) = 0,

𝑦
1

(𝑇) = 𝐸
󸀠
[Φ
𝑥
(𝑥 (𝑇) , (𝑥 (𝑇))

󸀠
) 𝑥
1

(𝑇) ,

+Φ
𝑥
(𝑥 (𝑇) , (𝑥 (𝑇))

󸀠
) (𝑥
1

(𝑇))
󸀠

] ,

(57)

where 𝜃(𝑡) = (𝑡, 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), (𝑥(𝑡))󸀠, (𝑦(t))󸀠, (𝑧(𝑡))󸀠, 𝑢(𝑡)).

Remark 14. When 𝑙 = 𝑓, 𝑔, 𝜎, 𝐿, respectively, 𝑙
𝑥
is the partial

derivative of 𝑙(𝑡, 𝑥, 𝑦, 𝑧, 𝑥, 𝑦, 𝑧̃, V) with respect to 𝑥; 𝑙
𝑥
is the

partial derivative of 𝑙(𝑡, 𝑥, 𝑦, 𝑧, 𝑥, 𝑦, 𝑧̃, V) with respect to 𝑥,
similar to 𝑙

𝑦
, 𝑙
𝑦
, 𝑙
𝑧
, 𝑙
𝑧̃
, 𝑙V.

From (H5.1), it is easy to verify that (57) satisfies (H3.1)
and (H3.2); then there exists a unique solution (𝑥1, 𝑦1, 𝑧1) of
mean-field FBSDE (57). Equation (57) is called the variational
equation.

We denote by (𝑥
𝜌
(⋅), 𝑦
𝜌
(⋅), 𝑧
𝜌
(⋅)) the trajectory corre-

sponding to 𝑢
𝜌
. Then we have the following convergence

result.

Lemma 15. One assumes (H5.1) holds.Then, lim
𝜌→0

((𝑥
𝜌
(𝑡)−

𝑥(𝑡))/𝜌) = 𝑥
1
(𝑡), lim

𝜌→0
((𝑦
𝜌
(𝑡) − 𝑦(𝑡))/𝜌) = 𝑦

1
(𝑡), and

lim
𝜌→0

((𝑧
𝜌
(𝑡) − 𝑧(𝑡))/𝜌) = 𝑧

1
(𝑡), in𝑀2F (0, 𝑇).

Proof. Let 𝑥(𝑡) = 𝑥
𝜌
(𝑡) − 𝑥(𝑡), 𝑦(𝑡) = 𝑦

𝜌
(𝑡) − 𝑦(𝑡), 𝑧̂(𝑡) =

𝑧
𝜌
(𝑡) − 𝑧(𝑡). Then

𝑑𝑥 (𝑡) = 𝐸
󸀠
[𝑓 (𝜒
𝜌
(𝑡) , 𝑢 (𝑡) + 𝜌V (𝑡)) − 𝑓 (𝜒 (𝑡) , 𝑢 (𝑡))] 𝑑𝑡

+ 𝐸
󸀠
[𝜎 (𝜒
𝜌
(𝑡) , 𝑢 (𝑡) + 𝜌V (𝑡))

−𝜎 (𝜒 (𝑡) , 𝑢 (𝑡)) ] 𝑑𝐵
𝑡
,

−𝑑𝑦 (𝑡) = 𝐸
󸀠
[𝑔 (𝜒
𝜌
(𝑡) , 𝑢 (𝑡) + 𝜌V (𝑡)) − 𝑔 (𝜒 (𝑡) , 𝑢 (𝑡))] 𝑑𝑡

− 𝑧̂ (𝑡) 𝑑𝐵
𝑡
,

𝑥 (0) = 0,

𝑦 (𝑇) = 𝐸
󸀠
[Φ (𝑥

𝜌
(𝑇) , (𝑥

𝜌
(𝑇))
󸀠

)

−Φ (𝑥 (𝑇) , (𝑥 (𝑇))
󸀠
) ] ,

(58)

𝜒
𝜌
(𝑡) = (𝑡, 𝑥

𝜌
(𝑡), 𝑦

𝜌
(𝑡), 𝑧

𝜌
(𝑡), (𝑥

𝜌
(𝑡))
󸀠
, (𝑦
𝜌
(𝑡))
󸀠,

(𝑧
𝜌
(𝑡))
󸀠
) and 𝜒(𝑡) = (𝑡, 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡),(𝑥(𝑡))󸀠, (𝑦(𝑡))󸀠, (𝑧(𝑡))󸀠).

From Theorem 13, it is easy to know that (𝑥(⋅), 𝑦(⋅), 𝑧̂(⋅))
converges to 0 in𝑀2F (0, 𝑇) as 𝜌 tends to 0. Now, we define

Δ𝑥 (𝑡) =
𝑥
𝜌
(𝑡) − 𝑥 (𝑡)

𝜌
, Δ𝑦 (𝑡) =

𝑦
𝜌
(𝑡) − 𝑦 (𝑡)

𝜌
,

Δ𝑧 (𝑡) =
𝑧
𝜌
(𝑡) − 𝑧 (𝑡)

𝜌
,

𝜆 (𝑡) = (𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡)) ,

𝜆
𝜌
(𝑡) = (𝑥

𝜌
(𝑡) , 𝑦
𝜌
(𝑡) , 𝑧
𝜌
(𝑡)) .

(59)
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Then,

𝑑Δ𝑥 (𝑡) =
1

𝜌
𝐸
󸀠
[𝑓 (𝑡, 𝜆

𝜌
(𝑡) , (𝜆

𝜌
(𝑡))
󸀠

, 𝑢 (𝑡) + 𝜌V (𝑡))

−𝑓 (𝑡, 𝜆 (𝑡) , (𝜆 (𝑡))
󸀠
, 𝑢 (𝑡)) ] 𝑑𝑡

+
1

𝜌
𝐸
󸀠
[𝜎 (𝑡, 𝜆

𝜌
(𝑡) , (𝜆

𝜌
(𝑡))
󸀠

, 𝑢 (𝑡) + 𝜌V (𝑡))

−𝜎 (𝑡, 𝜆 (𝑡) , (𝜆 (𝑡))
󸀠
, 𝑢 (𝑡)) ] 𝑑𝐵

𝑡
,

− 𝑑Δ𝑦 (𝑡)

=
1

𝜌
𝐸
󸀠
[𝑔 (𝑡, 𝜆

𝜌
(𝑡) , (𝜆

𝜌
(𝑡))
󸀠

, 𝑢 (𝑡) + 𝜌V (𝑡))

−𝑔 (𝑡, 𝜆 (𝑡) , (𝜆 (𝑡))
󸀠
, 𝑢 (𝑡)) ] 𝑑𝑡

− Δ𝑧 (𝑡) 𝑑𝐵
𝑡
,

Δ𝑥 (0) = 0,

Δ𝑦 (𝑇) =
1

𝜌
𝐸
󸀠
[Φ (𝑥

𝜌
(𝑇) , (𝑥

𝜌
(𝑇))
󸀠

)

−Φ (𝑥 (𝑇) , (𝑥 (𝑇))
󸀠
) ] .

(60)

The above Equation(60) can be rewritten as the following:

𝑑Δ𝑥 (𝑡) = 𝐸
󸀠
[ ̄𝑓 (Δ𝜒 (𝑡) , V (𝑡))] 𝑑𝑡

+ 𝐸
󸀠
[𝜎̄ (Δ𝜒 (𝑡) , V (𝑡))] 𝑑𝐵

𝑡
,

−𝑑Δ𝑦 (𝑡) = 𝐸
󸀠
[ ̄𝑔 (Δ𝜒 (𝑡) , V (𝑡))] 𝑑𝑡 − Δ𝑧 (𝑡) 𝑑𝐵

𝑡
,

Δ𝑥 (0) = 0,

Δ𝑦 (𝑇) = 𝐸
󸀠
[𝐾̄
𝑙

(𝑇) Δ𝑥 (𝑇) + 𝑀̄
𝑙

(𝑇) (Δ𝑥 (𝑇))
󸀠
] ,

(61)

where

Δ𝜒 (𝑡)

= (𝑡, Δ𝑥 (𝑡) , Δ𝑦 (𝑡) , Δ𝑧 (𝑡) , (Δ𝑥 (𝑡))
󸀠
, (Δ𝑦 (𝑡))

󸀠

, (Δ𝑧 (𝑡))
󸀠
) ,

̄𝑙 (𝑡, 𝑥, 𝑦, 𝑧, 𝑥, 𝑦, 𝑧̃, V)

= 𝐴
𝑙

(𝑡) 𝑥 + 𝐵
𝑙

(𝑡) 𝑦 + 𝐶
𝑙

(𝑡) 𝑧

+ 𝐷
𝑙

(𝑡) 𝑥 + 𝐸
𝑙

(𝑡) 𝑦 + 𝐹
𝑙

(𝑡) 𝑧̃ + 𝐺
𝑙

(𝑡) V,
(62)

where 𝑙 = 𝑓, 𝑔, 𝜎, respectively, and

𝐴 (𝑡)

=
1

𝑥
𝜌
(𝑡) − 𝑥 (𝑡)

⋅ [𝑙 (𝑡, 𝑥
𝜌
(𝑡) , 𝑦
𝜌
(𝑡) , 𝑧
𝜌
(𝑡) , (𝜆

𝜌
(𝑡))
󸀠

, 𝑢 (𝑡) + 𝜌V (𝑡))

−𝑙 (𝑡, 𝑥 (𝑡) , 𝑦
𝜌
(𝑡) , 𝑧
𝜌
(𝑡) , (𝜆

𝜌
(𝑡))
󸀠

, 𝑢 (𝑡) + 𝜌V (𝑡))] ,

𝐵 (𝑡)

=
1

𝑦
𝜌
(𝑡) − 𝑦 (𝑡)

⋅ [𝑙 (𝑡, 𝑥 (𝑡) , 𝑦
𝜌
(𝑡) , 𝑧
𝜌
(𝑡) , (𝜆

𝜌
(𝑡))
󸀠

, 𝑢 (𝑡) + 𝜌V (𝑡))

−𝑙 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧
𝜌
(𝑡) , (𝜆

𝜌
(𝑡))
󸀠

, 𝑢 (𝑡) + 𝜌V (𝑡))] ,

𝐶 (𝑡)

=
1

𝑧
𝜌
(𝑡) − 𝑧 (𝑡)

⋅ [𝑙 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧
𝜌
(𝑡) , (𝜆

𝜌
(𝑡))
󸀠

, 𝑢 (𝑡) + 𝜌V (𝑡))

−𝑙 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡) , (𝜆
𝜌
(𝑡))
󸀠

, 𝑢 (𝑡) + 𝜌V (𝑡))] ,

𝐷 (𝑡)

=
1

(𝑥
𝜌
(𝑡))
󸀠

− (𝑥 (𝑡))
󸀠

⋅ [𝑙 (𝑡, 𝜆 (𝑡) , (𝑥
𝜌
(𝑡))
󸀠

, (𝑦
𝜌
(𝑡))
󸀠

, (𝑧
𝜌
(𝑡))
󸀠

, 𝑢 (𝑡)+𝜌V (𝑡))

−𝑙 (𝑡, 𝜆 (𝑡) , (𝑥 (𝑡))
󸀠
, (𝑦
𝜌
(𝑡))
󸀠

, (𝑧
𝜌
(𝑡))
󸀠

, 𝑢 (𝑡)+𝜌V (𝑡))] ,

𝐸 (𝑡)

=
1

(𝑦
𝜌
(𝑡))
󸀠

− (𝑦 (𝑡))
󸀠

⋅ [𝑙 (𝑡, 𝜆 (𝑡) , (𝑥 (𝑡))
󸀠
, (𝑦
𝜌
(𝑡))
󸀠

, (𝑧
𝜌
(𝑡))
󸀠

, 𝑢 (𝑡) + 𝜌V (𝑡))

−𝑙 (𝑡, 𝜆 (𝑡) , (𝑥 (𝑡))
󸀠
, (𝑦 (𝑡))

󸀠

, (𝑧
𝜌
(𝑡))
󸀠

, 𝑢 (𝑡)+𝜌V (𝑡))] ,

𝐹 (𝑡)

=
1

(𝑧
𝜌
(𝑡))
󸀠

− (𝑧 (𝑡))
󸀠

⋅ [𝑙 (𝑡, 𝜆 (𝑡) , (𝑥 (𝑡))
󸀠
, (𝑦 (𝑡))

󸀠

, (𝑧
𝜌
(𝑡))
󸀠

, 𝑢 (𝑡) + 𝜌V (𝑡))

−𝑙 (𝑡, 𝜆 (𝑡) , (𝑥 (𝑡))
󸀠
, (𝑦 (𝑡))

󸀠

, (𝑧 (𝑡))
󸀠
, 𝑢 (𝑡) + 𝜌V (𝑡))] ,
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𝐺 (𝑡)

=
1

𝜌V (𝑡)
⋅ [𝑙 (𝑡, 𝜆 (𝑡) , (𝜆 (𝑡))

󸀠
, 𝑢 (𝑡) + 𝜌V (𝑡))

−𝑙 (𝑡, 𝜆 (𝑡) , (𝜆 (𝑡))
󸀠
, 𝑢 (𝑡))] ,

𝐾 (𝑇) =
1

𝑥
𝜌
(𝑇) − 𝑥 (𝑇)

× [Φ(𝑥
𝜌
(𝑇) , (𝑥

𝜌
(𝑇))
󸀠

)−Φ(𝑥 (𝑇) , (𝑥
𝜌
)
󸀠

(𝑇))] ,

𝑀 (𝑇) =
1

(𝑥
𝜌
(𝑇))
󸀠

− (𝑥 (𝑇))
󸀠

× [Φ(𝑥 (𝑇) , (𝑥
𝜌
(𝑇))
󸀠

)−Φ (𝑥 (𝑇) , (𝑥 (𝑇))
󸀠
)] ,

𝐴
𝑙

(𝑡) = {
𝐴 (𝑡) , 𝑥

𝜌
(𝑡) − 𝑥 (𝑡) ̸= 0,

0, otherwise,

𝐵
𝑙

(𝑡) = {
𝐵 (𝑡) , 𝑦

𝜌
(𝑡) − 𝑦 (𝑡) ̸= 0,

0, otherwise,

𝐶
𝑙

(𝑡) = {
𝐶 (𝑡) , 𝑧

𝜌
(𝑡) − 𝑧 (𝑡) ̸= 0,

0, otherwise,

𝐷
𝑙

(𝑡) = {
𝐷 (𝑡) , (𝑥

𝜌
(𝑡))
󸀠

− (𝑥 (𝑡))
󸀠
̸= 0,

0, otherwise,

𝐸
𝑙

(𝑡) = {
𝐸 (𝑡) , (𝑦

𝜌
(𝑡))
󸀠

− (𝑦 (𝑡))
󸀠

̸= 0,

0, otherwise,

𝐹
𝑙

(𝑡) = {
𝐹 (𝑡) , (𝑧

𝜌
(𝑡))
󸀠

− (𝑧 (𝑡))
󸀠
̸= 0,

0, otherwise,

𝐺
𝑙

(𝑡) = {
𝐺 (𝑡) , 𝜌V (𝑡) ̸= 0,

0, otherwise,

𝐾
𝑙

(𝑇) = {
𝐾 (𝑇) , 𝑥

𝜌
(𝑇) − 𝑥 (𝑇) ̸= 0,

0, otherwise,

𝑀
𝑙

(𝑇) = {
𝑀(𝑇) , (𝑥

𝜌
(𝑇))
󸀠

− (𝑥 (𝑇))
󸀠
̸= 0,

0, otherwise.
(63)

From (H5.1) and the fact that (𝑥(⋅), 𝑦(⋅), 𝑧̂(⋅)) converges to 0
in𝑀2F (0, 𝑇) as 𝜌 tends to 0, we know that

lim
𝜌→0

(𝐴
𝑙

(𝑡) − 𝑙
𝑥
(𝜃 (𝑡))) = 0,

lim
𝜌→0

(𝐵
𝑙

(𝑡) − 𝑙
𝑦
(𝜃 (𝑡))) = 0,

lim
𝜌→0

(𝐶
𝑙

(𝑡) − 𝑙
𝑧
(𝜃 (𝑡))) = 0,

lim
𝜌→0

(𝐷
𝑙

(𝑡) − 𝑙
𝑥
(𝜃 (𝑡))) = 0,

lim
𝜌→0

(𝐸
𝑙

(𝑡) − 𝑙
𝑦
(𝜃 (𝑡))) = 0,

lim
𝜌→0

(𝐹
𝑙

(𝑡) − 𝑙
𝑧̃
(𝜃 (𝑡))) = 0,

lim
𝜌→0

(𝐺
𝑙

(𝑡) − 𝑙V (𝜃 (𝑡))) = 0,

0 = lim
𝜌→0

{ ̄𝑙 (𝑡, Δ𝑥 (𝑡) , Δ𝑦 (𝑡) , Δ𝑧 (𝑡) , (Δ𝑥 (𝑡))
󸀠
,

(Δ𝑦 (𝑡))
󸀠

, (Δ𝑧 (𝑡))
󸀠
, V (𝑡))

− 𝑙
𝑥
(𝜃 (𝑡)) Δ𝑥 (𝑡) − 𝑙

𝑦
(𝜃 (𝑡)) Δ𝑦 (𝑡)

− 𝑙
𝑧
(𝜃 (𝑡)) Δ𝑧 (𝑡) − 𝑙

𝑥
(𝜃 (𝑡)) (Δ𝑥 (𝑡))

󸀠

− 𝑙
𝑦
(𝜃 (𝑡)) (Δ𝑦 (𝑡))

󸀠

−𝑙
𝑧̃
(𝜃 (𝑡)) (Δ𝑧 (𝑡))

󸀠
− 𝑙V (𝜃 (𝑡)) V (𝑡)} ,

(64)

where 𝜃(𝑡) = (𝑡, 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), (𝑥(𝑡))
󸀠
, (𝑦(𝑡))

󸀠, (𝑧(𝑡))
󸀠
,

𝑢(𝑡)). Δ𝑦(𝑇) has similar results.
As we know, (57) has a unique solution (𝑥

1
(⋅),

𝑦
1
(⋅), 𝑧
1
(⋅)). Therefore, the solution (Δ𝑥(⋅), Δ𝑦(⋅), Δ𝑧(⋅))

converges to (𝑥1(⋅), 𝑦1(⋅), 𝑧1(⋅)) in𝑀2F (0, 𝑇;R
𝑛+𝑚+𝑚×𝑑

) as 𝜌
tends to 0.

Because 𝑢(⋅) is an optimal control, then

𝜌
−1
[𝐽 (𝑢 (⋅) + 𝜌V (⋅)) − 𝐽 (𝑢 (⋅))] ≥ 0. (65)

From (65) and Lemma 15, we have the following.

Lemma 16. One supposes that (H5.1) holds. Then, the follow-
ing variational inequality holds:

0 ≤ 𝐸∫

𝑇

0

𝐸
󸀠
[𝐿
𝑥
(𝜃 (𝑡)) 𝑥

1

(𝑡) + 𝐿
𝑦
(𝜃 (𝑡)) 𝑦

1

(𝑡)

+ 𝐿
𝑧
(𝜃 (𝑡)) 𝑧

1

(𝑡) + 𝐿
𝑥
(𝜃 (𝑡)) (𝑥

1

(𝑡))
󸀠

+ 𝐿
𝑦
(𝜃 (𝑡)) (𝑦

1

(𝑡))
󸀠

+𝐿
𝑧̃
(𝜃 (𝑡)) (𝑧

1

(𝑡))
󸀠

+ 𝐿V (𝜃 (𝑡)) V (𝑡)] 𝑑𝑡

+ 𝐸 [𝐸
󸀠
[𝜑
𝑥
(𝑥 (𝑇) , (𝑥 (𝑇))

󸀠
) 𝑥
1

(𝑇)

+𝜑
𝑥
(𝑥 (𝑇) , (𝑥 (𝑇))

󸀠
) (𝑥
1

(𝑇))
󸀠

]

+ℎ
𝑦
(𝑦 (0)) 𝑦

1

(0) ] ,

(66)

where 𝜃(𝑡) = (𝑡, 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), (𝑥(𝑡))󸀠, (𝑦(𝑡))󸀠, (𝑧(𝑡))󸀠, 𝑢(𝑡)).
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Proof. Let 𝜌 → 0 in (65); from Lemma 15 and (H5.1), it is
obvious that

𝜌
−1
𝐸 (𝐸
󸀠
[𝜑 (𝑥
𝜌
(𝑇)) , (𝑥

𝜌
(𝑇)
󸀠
)

−𝜑 (𝑥 (𝑇) , (𝑥 (𝑇))
󸀠
)])

󳨀→ 𝐸𝐸
󸀠
[𝜑
𝑥
(𝑥 (𝑇) , (𝑥 (𝑇))

󸀠
) 𝑥
1

(𝑇)

+𝜑
𝑥
(𝑥 (𝑇) , (𝑥 (𝑇))

󸀠
) (𝑥
1

(𝑇))
󸀠

] ;

𝜌
−1
𝐸 [ℎ (𝑦

𝜌
(0)) − ℎ (𝑦 (0))] 󳨀→ 𝐸 [ℎ

𝑦
(𝑦 (0)) 𝑦

1

(0)] ;

𝜌
−1
𝐸∫

𝑇

0

𝐸
󸀠
[𝐿 (𝜒
𝜌
(𝑡) , 𝑢 (𝑡) + 𝜌V (𝑡)) − 𝐿 (𝜃 (𝑡))] 𝑑𝑡

󳨀→ 𝐸∫

𝑇

0

𝐸
󸀠
[𝐿
𝑥
(𝜃 (𝑡)) 𝑥

1

(𝑡)

+ 𝐿
𝑦
(𝜃 (𝑡)) 𝑦

1

(𝑡) + 𝐿
𝑧
(𝜃 (𝑡)) 𝑧

1

(𝑡)

+ 𝐿
𝑥
(𝜃 (𝑡)) (𝑥

1

(𝑡))
󸀠

+ 𝐿
𝑦
(𝜃 (𝑡)) (𝑦

1

(𝑡))
󸀠

+ 𝐿
𝑧̃
(𝜃 (𝑡)) (𝑧

1

(𝑡))
󸀠

+𝐿V (𝜃 (𝑡)) V (𝑡) ] 𝑑𝑡.
(67)

The proof is complete.

Now we introduce the following adjoint mean-field
FBSDE to (57):

𝑑𝑝 (𝑡) = 𝐸
󸀠
[𝑔
𝑇

𝑦
(𝜃 (𝑡)) 𝑝 (𝑡) − 𝑓

𝑇

𝑦
(𝜃 (𝑡)) 𝑞 (𝑡)

− 𝜎
𝑇

𝑦
(𝜃 (𝑡)) 𝑘 (𝑡) − 𝐿

𝑦
(𝜃 (𝑡))

+ 𝑔
𝑇

𝑦
(󰜚 (𝑡)) (𝑝 (𝑡))

󸀠

− 𝑓
𝑇

𝑦
(󰜚 (𝑡)) (𝑞 (𝑡))

󸀠

− 𝜎
𝑇

𝑦
(󰜚 (𝑡)) (𝑘 (𝑡))

󸀠

−𝐿
𝑦
(󰜚 (𝑡)) ] 𝑑𝑡

+ 𝐸
󸀠
[𝑔
𝑇

𝑧
(𝜃 (𝑡)) 𝑝 (𝑡) − 𝑓

𝑇

𝑧
(𝜃 (𝑡)) 𝑞 (𝑡)

− 𝜎
𝑇

𝑧
(𝜃 (𝑡)) 𝑘 (𝑡) − 𝐿

𝑧
(𝜃 (𝑡))

+ 𝑔
𝑇

𝑧̃
(󰜚 (𝑡)) (𝑝 (𝑡))

󸀠

− 𝑓
𝑇

𝑧̃
(󰜚 (𝑡)) (𝑞 (𝑡))

󸀠

− 𝜎
𝑇

𝑧̃
(󰜚 (𝑡)) (𝑘 (𝑡))

󸀠

−𝐿
𝑧̃
(󰜚 (𝑡)) ] 𝑑𝐵

𝑡
,

− 𝑑𝑞 (𝑡) = 𝐸
󸀠
[ − 𝑔
𝑇

𝑥
(𝜃 (𝑡)) 𝑝 (𝑡) + 𝑓

𝑇

𝑥
(𝜃 (𝑡)) 𝑞 (𝑡)

+ 𝜎
𝑇

𝑥
(𝜃 (𝑡)) 𝑘 (𝑡)

+ 𝐿
𝑥
(𝜃 (𝑡)) − 𝑔

𝑇

𝑥
(󰜚 (𝑡)) (𝑝 (𝑡))

󸀠

+ 𝑓
𝑇

𝑥
(󰜚 (𝑡)) (𝑞 (𝑡))

󸀠

+ 𝜎
𝑇

𝑥
(󰜚 (𝑡)) (𝑘 (𝑡))

󸀠

+𝐿
𝑥
(󰜚 (𝑡)) ] 𝑑𝑡 − 𝑘 (𝑡) 𝑑𝐵

𝑡

𝑝 (0) = −ℎ
𝑦
(𝑦 (0)) ,

𝑞 (𝑇) = 𝐸
󸀠
[𝜑
𝑥
(𝑥 (𝑇) , (𝑥 (𝑇))

󸀠
)

+ 𝜑
𝑥
((𝑥 (𝑇))

󸀠
, 𝑥 (𝑇))

− Φ
𝑥
(𝑥 (𝑇) , 𝑥

󸀠

(𝑇)) 𝑝 (𝑇)

−Φ
𝑥
(𝑥
󸀠

(𝑇) , 𝑥 (𝑇)) (𝑝 (𝑇))
󸀠

] ,

(68)

where 𝜃(𝑡) = (𝑡, 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), (𝑥(𝑡))󸀠, (𝑦(𝑡))󸀠, (𝑧(𝑡))󸀠,
𝑢(𝑡)) and 󰜚(𝑡) = (𝑡, (𝑥(𝑡))

󸀠
, (𝑦(𝑡))

󸀠
, (𝑧(𝑡))

󸀠
, 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡),

(𝑢(𝑡))
󸀠
). FromTheorem 6, we know that there exists a unique

triple (𝑝(⋅), 𝑞(⋅), 𝑘(⋅)) satisfying (68).
We define the Hamiltonian function𝐻 as follows:

𝐻(𝑡, 𝑥, 𝑦, 𝑧, 𝑥, 𝑦, 𝑧̃, V, 𝑝, 𝑞, 𝑘)

= ⟨𝑝, −𝑔 (𝑡, 𝑥, 𝑦, 𝑧, 𝑥, 𝑦, 𝑧̃, V)⟩

+ ⟨𝑞, 𝑓 (𝑡, 𝑥, 𝑦, 𝑧, 𝑥, 𝑦, 𝑧̃, V)⟩

+ ⟨𝑘, 𝜎 (𝑡, 𝑥, 𝑦, 𝑧, 𝑥, 𝑦, 𝑧̃, V)⟩

+ 𝐿 (𝑡, 𝑥, 𝑦, 𝑧, 𝑥, 𝑦, 𝑧̃, V) .

(69)

Then we have the following maximum principle.

Theorem 17. Let 𝑢(⋅) be an optimal control and let (𝑥(⋅),
𝑦(⋅), 𝑧(⋅)) be the corresponding trajectory. Then, one has

𝐸
󸀠
⟨𝐻V (𝑡, 𝜒 (𝑡) , 𝑢 (𝑡) , 𝑝 (𝑡) , 𝑞 (𝑡) , 𝑘 (𝑡)) , V − 𝑢 (𝑡)⟩

≥ 0, ∀V ∈ 𝑈, 𝑑𝑡 𝑑𝑃-a.e.,
(70)

where 𝜒(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), (𝑥(𝑡))
󸀠
, (y(𝑡))󸀠, (𝑧(𝑡))󸀠), (𝑝, 𝑞, 𝑘)

is the solution of the adjoint (68).

Proof. Applying Itô’s formula to ⟨𝑥1(𝑡), 𝑞(𝑡)⟩ + ⟨𝑦1(𝑡), 𝑝(𝑡)⟩,
from (57) and (68) and (H3.1), (H3.2), (H3.3), and (H5.1),
with the help of (66) and (69), for V(⋅) such that 𝑢(⋅) + V(⋅) ∈
Uad, we get

𝐸∫

𝑇

0

𝐸
󸀠
⟨𝐻V (𝑡, 𝜒 (𝑡) , 𝑢 (𝑡) , 𝑝 (𝑡) , 𝑞 (𝑡) , 𝑘 (𝑡)) , V⟩ 𝑑𝑡 ≥ 0.

(71)

Therefore, we have

𝐸
󸀠
⟨𝐻V (𝑡, 𝜒 (𝑡) , 𝑢 (𝑡) , 𝑝 (𝑡) , 𝑞 (𝑡) , 𝑘 (𝑡)) , V − 𝑢 (𝑡)⟩

≥ 0, ∀V ∈ 𝑈, a.s. a.e.
(72)
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6. Application to the Mean-Field LQ Problems

In this section, we consider a linear-quadratic control prob-
lem as an example. For simplicity, we only consider one-
dimensional case; that is, 𝑚 = 𝑛 = 𝑑 = 1. The state equation
can be written as follows:

𝑑𝑥 (𝑡) = 𝐸
󸀠
[𝑎
1
(𝑥 (𝑡))

󸀠
+ 𝑎
2
𝑥 (𝑡)

−𝑎
3
(𝑎
3
𝑦 (𝑡) + 𝑎

4
𝑧 (𝑡)) + 𝛼V (𝑡) ] 𝑑𝑡

+ 𝐸
󸀠
[𝑎
5
(𝑥 (𝑡))

󸀠
+ 𝑎
6
𝑥 (𝑡)

−𝑎
4
(𝑎
3
𝑦 (𝑡) + 𝑎

4
𝑧 (𝑡)) + 𝛽V (𝑡) ] 𝑑𝐵

𝑡
,

− 𝑑𝑦 (𝑡) = 𝐸
󸀠
[𝑎
1
(𝑦 (𝑡))

󸀠

+ 𝑎
2
𝑦 (𝑡) + 𝑎

5
(𝑧 (𝑡))

󸀠

+𝑎
6
𝑧 (𝑡) + 𝑎

7
𝑥 (𝑡) + 𝛾V (𝑡) ] 𝑑𝑡 − 𝑧 (𝑡) 𝑑𝐵

𝑡
,

𝑥 (0) = 𝑎, 𝑦 (𝑇) = 𝜂,

(73)

where the constants 𝑎
𝑖
, 𝑖 = 1, . . . , 7, 𝛼, 𝛽, 𝛾 are positive and

V ∈ U. The cost functional is

𝐽 (V (⋅))

=
1

2
𝐸𝐸
󸀠
[∫

𝑇

0

[𝑀 (𝑡) 𝑦
2

(𝑡) + 𝑅 (𝑡) 𝑧
2

(𝑡) + 𝑆 (𝑡) 𝑢
2

(𝑡)] 𝑑𝑡

+𝑄𝑦
2

(0) ] ,

(74)

where 𝑀(𝑡), 𝑅(𝑡), 𝑄 are bounded and nonnegative and 𝑆(𝑡)
is bounded and positive. Then, the adjoint equation is the
following mean-field FBSDE:

𝑑𝑝 (𝑡) = 𝐸
󸀠
[𝑎
2
𝑝 (𝑡) + 𝑎

2

3
𝑞 (𝑡) + 𝑎

3
𝑎
4
𝑘 (𝑡)

−𝑀 (𝑡) 𝑦 (𝑡) + 𝑎
1
(𝑝 (𝑡))

󸀠

] 𝑑𝑡

+ 𝐸
󸀠
[𝑎
6
𝑝 (𝑡) + 𝑎

3
𝑎
4
𝑞 (𝑡)

+𝑎
2

4
𝑘 (𝑡) − 𝑅 (𝑡) 𝑧 + 𝑎

5
(𝑝 (𝑡))

󸀠

] 𝑑𝐵
𝑡
,

− 𝑑𝑞 (𝑡) = 𝐸
󸀠
[ − 𝑎
7
𝑝 (𝑡) + 𝑎

2
𝑞 (𝑡) + 𝑎

6
𝑘 (𝑡)

+𝑎
1
𝑞
󸀠

(𝑡) + 𝑎
5
(𝑘 (𝑡))

󸀠
] 𝑑𝑡

− 𝑘 (𝑡) 𝑑𝐵
𝑡
,

𝑝 (0) = −𝑄𝑦 (0) , 𝑞 (𝑇) = 0.

(75)

Let

𝐻(𝑡, 𝑥, 𝑦, 𝑧, 𝑥, 𝑦, 𝑧̃, V, 𝑝, 𝑞, 𝑘)

= −𝑝 (𝑎
1
𝑦 + 𝑎
2
𝑦 + 𝑎
5
𝑧̃ + 𝑎
6
𝑧 + 𝑎
7
𝑥 + 𝛾V)

+ 𝑞 (𝑎
1
𝑥 + 𝑎
2
𝑥 − 𝑎
3
(𝑎
3
𝑦 + 𝑎
4
𝑧) + 𝛼V)

+ 𝑘 (𝑎
5
𝑥 + 𝑎
6
𝑥 − 𝑎
4
(𝑎
3
𝑦 + 𝑎
4
𝑧) + 𝛽V)

+
1

2
(𝑀 (𝑡) 𝑦

2

(𝑡) + 𝑅 (𝑡) 𝑧
2

(𝑡) + 𝑆 (𝑡) 𝑢
2

(𝑡)) .

(76)

Then, from the stochastic maximum principle
(Theorem 17), we have

−𝑝 (𝑡) 𝛾 + 𝑞 (𝑡) 𝛼 + 𝑘 (𝑡) 𝛽 + 𝑆 (𝑡) 𝑢
∗

(𝑡) = 0; (77)

that is,

𝑢
∗

(𝑡) = −𝑆
−1

(𝑡) (−𝑝 (𝑡) 𝛾 + 𝑞 (𝑡) 𝛼 + 𝑘 (𝑡) 𝛽) . (78)

However, the maximum principle gives only the necessary
condition for optimal control.

Nowweprove that𝑢∗ is the optimal control. For all V ∈ U,
let (𝑥V(⋅), 𝑦V(⋅), 𝑧V(⋅)) be the corresponding trajectory. Then

𝐽 (V (⋅)) − 𝐽 (𝑢∗ (⋅))

=
1

2
𝐸𝐸
󸀠
[∫

𝑇

0

[𝑀 (𝑡) ((𝑦
V
(𝑡))
2

− (𝑦
∗

(𝑡))
2

)

+ 𝑅 (𝑡) ((𝑧
V
(𝑡))
2

− (𝑧
∗

(𝑡))
2

)

+𝑆 (𝑡) ((V (𝑡))2 − (𝑢∗ (𝑡))2) ] 𝑑𝑡

+𝑄 ((𝑦
V
(0))
2

− (𝑦
∗

(0))
2

) ]

≥ 𝐸𝐸
󸀠
∫

𝑇

0

[𝑀 (𝑡) 𝑦
∗

(𝑡) (𝑦
V
(𝑡) − 𝑦

∗

(𝑡))

+ 𝑅 (𝑡) 𝑧
∗

(𝑡) (𝑧
V
(𝑡) − 𝑧

∗

(𝑡))

+𝑆 (𝑡) 𝑢
∗

(𝑡) (V (𝑡) − 𝑢∗ (𝑡))] 𝑑𝑡

+ 𝑄𝑦
∗

(0) (𝑦
V
(0) − 𝑦

∗

(0)) .

(79)

We apply Itô’s formula to 𝑝(𝑡)(𝑦V(𝑡) − 𝑦
∗
(𝑡)) + 𝑞(𝑡)(𝑥

V
(𝑡) −

𝑥
∗
(𝑡)), where (𝑝(𝑡), 𝑞(𝑡), 𝑘(𝑡)) is the solution of adjoint

equation with the state process (𝑥∗(𝑡), 𝑦∗(𝑡), 𝑧∗(𝑡)); notice
that when 𝑐 is a constant, then 𝐸𝐸

󸀠
[𝑐𝑋(𝑡)(𝑋(𝑡))

󸀠
] =

𝐸𝐸
󸀠
[𝑐(𝑋(𝑡))

󸀠
𝑋(𝑡)] and we get

𝐸𝐸
󸀠
[𝑄𝑦
∗

(0) (𝑦
V
(0) − 𝑦

∗

(0))]

= 𝐸𝐸
󸀠
∫

𝑇

0

[(−𝑝 (𝑡) 𝛾 + 𝑞 (𝑡) 𝛼 + 𝑘 (𝑡) 𝛽) (V (𝑡) − 𝑢∗ (𝑡))

− 𝑀 (𝑡) 𝑦
∗

(𝑡) (𝑦
V
(𝑡) − 𝑦

∗

(𝑡))

−𝑅 (𝑡) 𝑧
∗

(𝑡) (𝑧
V
(𝑡) − 𝑧

∗

(𝑡))] 𝑑𝑡.

(80)
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Therefore, from the definition of 𝑢∗(𝑡),

𝐽 (V (⋅)) − 𝐽 (𝑢∗ (⋅))

≥ 𝐸𝐸
󸀠
[∫

𝑇

0

(−𝑝 (𝑡) 𝛾 + 𝑞 (𝑡) 𝛼 + 𝑘 (𝑡) 𝛽 + 𝑆 (𝑡) 𝑢
∗

(𝑡))

× (V (𝑡) − 𝑢∗ (𝑡)) ] 𝑑𝑡 = 0,

(81)

for any V ∈ U. It means that 𝑢∗(𝑡) is an optimal control.

Remark 18. Under our assumption, the existence and the
uniqueness of the solution of (73) and (75) can be obtained
by combining the method ofTheorem 3.1 andTheorem 2.1 in
[6]. We omit the proof.
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