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We consider that the linear differential equations 𝑓(𝑘) +𝐴𝑘−1(𝑧)𝑓
(𝑘−1) + ⋅ ⋅ ⋅ + 𝐴1(𝑧)𝑓

 +𝐴0(𝑧)𝑓 = 0, where 𝐴𝑗 (𝑗 = 0, 1, . . . , 𝑘 − 1),
are entire functions. Assume that there exists 𝑙 ∈ {1, 2, . . . , 𝑘 − 1}, such that 𝐴 𝑙 is extremal for Yang’s inequality; then we will give
some conditions on other coefficients which can guarantee that every solution 𝑓( ̸≡ 0) of the equation is of infinite order. More
specifically, we estimate the lower bound of hyperorder of 𝑓 if every solution 𝑓( ̸≡ 0) of the equation is of infinite order.

1. Introduction and Main Results

Wewill assume that the reader is familiar with the fundamen-
tal results and the standard notations of Nevanlinna theory
of meromorphic functions (see [1, 2] or [3]). In addition, for
a meromorphic function 𝑓 in the complex plane C, we will
use the notations 𝜌(𝑓) and 𝜇(𝑓) to denote its order and lower
order, respectively.

In order to estimate the rate of growth of meromorphic
function of infinite order more precisely, we recall the
following definition.

Definition 1 (see [4]). Let𝑓 be ameromorphic function in the
complex planeC.Then one defines the hyperorder 𝜌2(𝑓) of𝑓
by

𝜌2 (𝑓) = lim sup
𝑟→∞

log+log+𝑇 (𝑟, 𝑓)
log 𝑟

. (1)

Consider the second order linear differential equation

𝑓 + 𝐴 (𝑧) 𝑓
 + 𝐵 (𝑧) 𝑓 = 0, (2)

where𝐴 and 𝐵( ̸≡ 0) are entire functions. It is well known that
if 𝐴 is an entire function, 𝐵( ̸≡ 0) is a transcendental entire
function, and𝑓1,𝑓2 are two linearly independent solutions of
(2), then at least one of𝑓1,𝑓2must have infinite order. On the

other hand, there are some equations of form (2) that possess
a solution 𝑓( ̸≡ 0) of finite order; for example, 𝑓(𝑧) = 𝑒𝑧

satisfies 𝑓 + 𝑒−𝑧𝑓 − (𝑒−𝑧 + 1)𝑓 = 0. Therefore, one may ask,
what assumptions on𝐴(𝑧) and 𝐵(𝑧)will guarantee that every
solution 𝑓 ̸≡ 0 of (2) is of infinite order? From the works
of Gundersen (see [5]) and Hellerstein et al. (see [6]), we
know that if 𝐴(𝑧) and 𝐵(𝑧) are entire functions with 𝜌(𝐴) <
𝜌(𝐵), or 𝐴(𝑧) is a polynomial, and 𝐵(𝑧) is transcendental, or
𝜌(𝐵) < 𝜌(𝐴) ≤ 1/2, then every solution 𝑓( ̸≡ 0) of (2) is of
infinite order. More results can be found in [7–12]. For entire
solutions of infinite order more precise estimates for their
rate of growth would be an important achievement.There are
many authors investigating the hyperorder 𝜌2(𝑓) of solutions
of (2), such as Chen and Yang (see [8, 13]) and Kwon (see
[14, 15]).

In this paper, we will introduce the deficient value and
Borel direction into the studies of the complex differential
equations. In order to give the definition of the Borel
direction, we need the following notation. Let 𝛼 < 𝛽 such
that 𝛽 − 𝛼 < 2𝜋 and 𝑟 > 0; set Ω(𝛼, 𝛽) = {𝑧 : 𝛼 < arg 𝑧 < 𝛽},
Ω(𝛼, 𝛽, 𝑟) = {𝑧 : 𝛼 < arg 𝑧 < 𝛽}⋂{𝑧 : |𝑧| < 𝑟}.

Definition 2. Let 𝑓 be a meromorphic function in the com-
plex plane C with 0 < 𝜇(𝑓) < ∞. Let 𝜇(𝑓) ≤ 𝜆 ≤ 𝜌(𝑓) be a
finite constant. A ray arg 𝑧 = 𝜃(0 ≤ 𝜃 < 2𝜋) from the origin
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is called a Borel direction of order ≥ 𝜆 of 𝑓, if for any positive
number 𝜀 > 0 and for any complex number 𝑎 ∈ C⋃{∞},
possibly with two exceptions, the following inequality holds:

lim sup
𝑟→∞

log 𝑛 (Ω (𝜃 − 𝜀, 𝜃 + 𝜀, 𝑟) , 𝑓 = 𝑎)
log 𝑟

≥ 𝜆, (3)

where 𝑛(Ω(𝜃−𝜀, 𝜃+𝜀, 𝑟), 𝑓 = 𝑎) denotes the number of zeros,
counting the multiplicities, of 𝑓− 𝑎 in the regionΩ(𝜃 − 𝜀, 𝜃 +
𝜀, 𝑟).

The fundamental result in angular distribution, due to
Valiron, says that a meromorphic function of order 𝜌 > 0
must have at least one Borel direction of order 𝜌; for example,
see [3].

It is well known that deficient values and Borel directions
are very important concepts in Nevanlinna theory of mero-
morphic functions. These two concepts are extensively stud-
ied. There is a striking relationship between them which was
found by Yang and Zhang and says that, for a meromorphic
function 𝑓 of order 𝜌, the number of deficient values is less
or equal to the number of Borel directions of order 𝜌 of 𝑓.
In 1988, Yang extended the above 𝑌-𝑍 inequality to the case
of entire function of finite lower order. In order to use Yang’s
result to study the complex differential equations, we will use
the followingTheoremwhich can be easily derived from [16].

Theorem 3 (see [16]). Suppose that 𝑓 is an entire function of
finite lower order 𝜇 > 0. Let 𝑞 (< ∞) denote the number of
Borel directions of order ≥ 𝜇 and 𝑝 denote the number of finite
deficient values of 𝑓; then 𝑝 ≤ 𝑞/2.

Note thatTheorem 3 is explicitly stated in [17]. To see the
valid of the conclusion of the theorem, we note that, in [17,
Corollary 1],Wuhas proved that if𝑓(𝑧) is of finite lower order
𝜇 and the number of Borel directions of order ≥ 𝜇 is finite,
then the order 𝜌 of 𝑓(𝑧) is also finite. As each Borel direction
of order 𝜌 is also a Borel direction of order ≥ 𝜇, this implies
that, for𝑓(𝑧), the number of the Borel directions of order 𝜌 is
fewer or equal to the number of the Borel directions of order
≥ 𝜇. Therefore Theorem 3 follows fromTheorem 6.7 in [3].

In the sequel, we will say that an entire function 𝑓 is
extremal for Yang’s inequality if 𝑓 satisfies the assumptions
of Theorem 3 with 𝑝 = 𝑞/2.

The simplest entire function extremal for Yang’s inequal-
ity is 𝑒𝑧. A little bit complicated example is 𝐴(𝑧) = ∫𝑧

0
𝑒−𝑡
𝑛

𝑑𝑡,
(𝑛 ≥ 2). We know that (see [3]) 𝐴(𝑧) has 𝑛 deficient values

𝑎𝑙 = 𝑒
𝑖(2𝜋𝑙/𝑛) ∫

∞

0

𝑒−𝑡
𝑛

𝑑𝑡, (𝑙 = 1, 2, . . . , 𝑛) (4)

and 𝑞 = 2𝑛 Borel direction arg 𝑧 = ((2𝑘 − 1)/2𝑛)𝜋(𝑘 =
1, 2, . . . , 2𝑛). So 𝑝 = 𝑞/2.

Furthermore, we state the following result due to present
authors (see, [18]).

Theorem 4 (see [18]). Let𝐴 be an entire function extremal for
Yang’s inequality, and let 𝐵 be a transcendental entire function
such that 𝜌(𝐴) ̸= 𝜌(𝐵). Then every solution 𝑓( ̸≡ 0) of (2) is of
infinite order.

In this paper, we will consider the higher order linear
differential equation

𝑓(𝑘) + 𝐴𝑘−1 (𝑧) 𝑓
(𝑘−1) + ⋅ ⋅ ⋅ + 𝐴1 (𝑧) 𝑓

 + 𝐴0 (𝑧) 𝑓 = 0, (5)

where 𝐴𝑗 (𝑗 = 0, 1, . . . , 𝑘 − 1) are entire functions. Many
authors have also investigated the growth of solutions of (5)
and obtained lots of results on order and hyperorder of the
solutions of (5) (see [19–23]). We will introduce the deficient
value and Borel directions into the studies of (5). The main
result in the paper is as follows.

Theorem 5. Let 𝐴𝑗 (𝑗 = 0, 1, . . . , 𝑘 − 1) be entire functions.
Suppose that there exists an integer 𝑙 ∈ {1, 2, . . . , 𝑘 − 1}, such
that 𝐴 𝑙(𝑧) is extremal for Yang’s inequality. Suppose that 𝐴0
is a transcendental entire function with 𝜌(𝐴0) ̸= 𝜌(𝐴 𝑙) and
𝜌(𝐴 𝑖) < 𝜌(𝐴0) for 𝑖 ̸= 𝑙 (1 ≤ 𝑖 ≤ 𝑘 − 1). Then every solution
𝑓( ̸≡ 0) of (5) satisfies 𝜌(𝑓) = ∞ and 𝜌2(𝑓) ≥ 𝜌(𝐴0).

The paper is organized as follows. In Section 2, we will
give some lemmas. In Section 3, we will prove Theorem 5. In
Section 4, we will discuss some further results related to the
two entire coefficients in (5) which are extremal for Yang’s
inequality.

2. Lemmas

In this section, we need some auxiliary results. The following
lemma is by Gundersen.

Lemma 6 (see [24]). Let (𝑓, Γ) denote a pair that consists of a
transcendental meromorphic function 𝑓 and a finite set

Γ = {(𝑘1, 𝑗1) , (𝑘2, 𝑗2) , . . . , (𝑘𝑞, 𝑗𝑞)} (6)

of distinct pairs of integers that satisfy 𝑘𝑖 > 𝑗𝑖 ≥ 0 for 𝑖 =
1, . . . , 𝑞. Let 𝛼 > 1 and 𝜀 > 0 be given real constants. Then the
following three statements hold.

(i) There exists a set 𝐸1 ⊂ [0, 2𝜋) that has linear measure
zero, and there exists a constant 𝑐 > 0 that depends only on 𝛼
and Γ, such that if 𝜓0 ∈ [0, 2𝜋) − 𝐸1, then there is a constant
𝑅0 = 𝑅0(𝜓0) > 1 such that, for all 𝑧 satisfying arg 𝑧 = 𝜓0 and
|𝑧| = 𝑟 ≥ 𝑅0 and for all (𝑘, 𝑗) ∈ Γ, we have



𝑓(𝑘) (𝑧)

𝑓(𝑗) (𝑧)


≤ 𝑐(

𝑇 (𝛼𝑟, 𝑓)

𝑟
log𝛼𝑟 log𝑇 (𝛼𝑟, 𝑓))

𝑘−𝑗

. (7)

In particular, if 𝑓 has finite order 𝜌(𝑓), then (7) is replaced
by



𝑓(𝑘) (𝑧)

𝑓(𝑗) (𝑧)


≤ |𝑧|
(𝑘−𝑗)(𝜌(𝑓)−1+𝜀). (8)

(ii)There exists a set𝐸2 ⊂ (1,∞) that has finite logarithmic
measure, and there exists a constant 𝑐 > 0 that depends only
on 𝛼 and Γ, such that, for all 𝑧 satisfying |𝑧| = 𝑟 ∉ 𝐸2⋃[0, 1]
and for all (𝑘, 𝑗) ∈ Γ, inequality (7) holds.

In particular, if 𝑓 has finite order 𝜌(𝑓), then inequality (8)
holds.
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(iii) There exists a set 𝐸3 ⊂ [0,∞) that has finite linear
measure, and there exists a constant 𝑐 > 0 that depends only
on 𝛼 and Γ, such that, for all 𝑧 satisfying |𝑧| = 𝑟 ∉ 𝐸3 and for
all (𝑘, 𝑗) ∈ Γ, we have



𝑓(𝑘) (𝑧)

𝑓(𝑗) (𝑧)


≤ 𝑐(𝑇 (𝛼𝑟, 𝑓) 𝑟𝜀 log𝑇 (𝛼𝑟, 𝑓))𝑘−𝑗. (9)

In particular, if 𝑓 has finite order 𝜌(𝑓), then (9) is replaced
by



𝑓(𝑘) (𝑧)

𝑓(𝑗) (𝑧)


≤ |𝑧|
(𝑘−𝑗)(𝜌(𝑓)+𝜀). (10)

Let 𝑓 be an entire function extremal for Yang’s inequality
𝑝 = 𝑞/2. Suppose that the rays arg 𝑧 = 𝜃𝑘 (𝑘 = 1, 2, . . . , 𝑞)
(0 ≤ 𝜃1 < 𝜃2 < ⋅ ⋅ ⋅ < 𝜃𝑞 < 𝜃𝑞+1 = 𝜃1 + 2𝜋) are the 𝑞
distinct Borel directions of order≥ 𝜇 of𝑓. In [17],Wu studied
the entire functions which are extremal for Yang’s inequality
systematically.The following results play an important role in
the proof of our results.

Lemma 7 (see [17]). Suppose that 𝑓 is extremal for Yang’s
inequality. Then 𝜇(𝑓) = 𝜌(𝑓). Moreover, for every deficient
value 𝑎𝑖 (𝑖 = 1, 2, . . . , 𝑝) there exists a corresponding angular
domain Ω(𝜃𝑘

𝑖

, 𝜃𝑘
𝑖
+1) = {𝑧 : 𝜃𝑘

𝑖

< arg 𝑧 < 𝜃𝑘
𝑖
+1} such that for

every 𝜀 > 0 inequality

log 1
𝑓 (𝑧) − 𝑎𝑖


> 𝐶 (𝜃𝑘

𝑖

, 𝜃𝑘
𝑖
+1, 𝜀, 𝛿 (𝑎𝑖, 𝑓)) 𝑇 (|𝑧| , 𝑓) (11)

holds for 𝑧 ∈ Ω(𝜃𝑘
𝑖

+𝜀, 𝜃𝑘
𝑖
+1−𝜀, 𝑟, +∞) = {𝑧 : 𝜃𝑘

𝑖

+𝜀 < arg 𝑧 <
𝜃𝑘
𝑖
+1 − 𝜀}⋂{𝑧 : 𝑟 < |𝑧| < ∞}, where 𝐶(𝜃𝑘

𝑖

, 𝜃𝑘
𝑖
+1, 𝜀, 𝛿(𝑎𝑖, 𝑓)) is

a positive constant depending only on 𝜃𝑘
𝑖

, 𝜃𝑘
𝑖
+1, 𝜀 and 𝛿(𝑎𝑖, 𝑓).

In the sequel, we will say that 𝑓 decays exponentially to
𝑎𝑖 in Ω(𝜃𝑘

𝑖

, 𝜃𝑘
𝑖
+1), if (11) holds in Ω(𝜃𝑘

𝑖

, 𝜃𝑘
𝑖
+1). Note that if 𝑓

is extremal for Yang’s inequality, then 𝜇(𝑓) = 𝜌(𝑓). Thus, for
these functions, we need only to consider the Borel direction
of order 𝜌(𝑓).

Lemma 8 (see [18]). Let 𝑓 be extremal for Yang’s inequality.
Suppose that there exists 𝜃 ∈ Ω (𝜃𝑗, 𝜃𝑗+1) (1 ≤ 𝑗 ≤ 𝑞) such
that

lim sup
𝑟→∞

log+log+ 𝑓 (𝑟𝑒
𝑖𝜃)


log 𝑟
= 𝜌 (𝑓) , (12)

where arg 𝑧 = 𝜃𝑗 (𝑗 = 1, 2, . . . , 𝑞) are Borel directions of 𝑓.
Then 𝜃𝑗+1 − 𝜃𝑗 = 𝜋/𝜌(𝑓).

Before stating the following lemmas, for 𝐸 ⊂ [0,∞),
we define the Lebesgue measure of 𝐸 by mes(𝐸) and the
logarithmic measure of 𝐸 ⊂ [1,∞) by 𝑚𝑙(𝐸) = ∫𝐸(𝑑𝑡/𝑡) and
define the upper and lower logarithmic density of𝐸 ⊂ [1,∞),
respectively, by

log dens𝐸 = lim
𝑟→∞

𝑚𝑙 (𝐸⋂ [1, 𝑟])

log 𝑟
,

log dens𝐸 = lim
𝑟→∞

𝑚𝑙 (𝐸⋂ [1, 𝑟])

log 𝑟
.

(13)

Lemma 9 (see [25]). Let 𝑓 be an entire function with 𝜌(𝑓) =
𝜌 < 1/2 and suppose that𝑚(𝑟) is defined as

𝑚(𝑟) = inf
|𝑧|=𝑟

log 𝑓 (𝑧)
 . (14)

If 𝜎 < 𝜌, then the set {𝑟 : 𝑚(𝑟) > 𝑟𝜎} has a positive upper
logarithmic density.

Lemma 10 (see [26]). Let 𝑔(𝑟) and ℎ(𝑟) be monotone nonde-
creasing functions on (0,∞) such that 𝑔(𝑟) ≤ ℎ(𝑟) for all 𝑟
outside some set of finite logarithmic measure. Let 𝜆 > 1 be a
given real constant. Then there exists a constant 𝑟0 > 0 such
that 𝑔(𝑟) ≤ ℎ(𝜆𝑟) for all 𝑟 ≥ 𝑟0.

Lemma 11. Let 𝑓(𝑧) be an entire function with order 𝜌(0 <
𝜌 < ∞), let and Ω(𝜙1, 𝜙2) = {𝑧 : 𝜙1 < arg 𝑧 < 𝜙2} be a
sector with 𝜙2 − 𝜙1 < 𝜋/𝜌. If there is Borel direction of 𝑓(𝑧)
in Ω(𝜙1, 𝜙2), then there exists at least one of the two rays 𝐿𝑗 :
arg 𝑧 = 𝜙𝑗 (𝑗 = 1, 2), without lose of generality, says, 𝐿2, such
that

lim sup
𝑟→∞

log+log+ 𝑓 (𝑟𝑒
𝑖𝜙
2)


log 𝑟
= 𝜌. (15)

Lemma 11 can be founded in [27, Lemma 1], which can be
proved by using a result in [28, Page 119-120].

3. Proof of Theorem 5

Now we prove our main result.
Since 𝜌(𝐴 𝑖) < 𝜌(𝐴0) (𝑖 ̸= 𝑙, 1 ≤ 𝑖 ≤ 𝑘 − 1), we know that

for any given constant 𝜂withmax{𝜌(𝐴 𝑖), 𝑖 ̸= 𝑙, 1 ≤ 𝑖 ≤ 𝑘−1} <
𝜂 < 𝜌(𝐴0), there exists a constant 𝑅1 > 0 such that

𝐴 𝑖 (𝑧)
 ≤ exp (𝑟𝜂) (16)

holds for all |𝑧| = 𝑟 > 𝑅1.
We consider the following two cases.

Case 1. We suppose that 𝜌(𝐴 𝑙) < 𝜌(𝐴0). Now to the contrary
assume that there is a solution𝑓( ̸≡ 0) of (5) with 𝜌(𝑓) < +∞.
We will seek a contradiction. By Lemma 6(ii), there exists a
set 𝐸1 ⊂ [1, +∞) that has finite logarithmic measure, such
that the following inequality



𝑓(𝑚) (𝑧)

𝑓 (𝑧)


≤ |𝑧|
𝑘𝜌(𝑓), 𝑚 = 1, 2, . . . , 𝑘 (17)

holds for all 𝑧 with |𝑧| = 𝑟 ∉ 𝐸1⋃[0, 1].
We deduce from (17) and (5) that

𝐴0 (𝑧)
 ≤


𝑓(𝑘)

𝑓


+
𝐴𝑘−1 (𝑧)





𝑓(𝑘−1)

𝑓



+ ⋅ ⋅ ⋅ +
𝐴 𝑙 (𝑧)





𝑓(𝑙)

𝑓


+ ⋅ ⋅ ⋅ +

𝐴1 (𝑧)




𝑓

𝑓



≤ |𝑧|
𝑘𝜌(𝑓) (1 +

𝐴𝑘−1 (𝑧)


+ ⋅ ⋅ ⋅ +
𝐴 𝑙 (𝑧)

 + ⋅ ⋅ ⋅ +
𝐴1 (𝑧)

)

(18)

holds for all 𝑧 with |𝑧| = 𝑟 ∉ 𝐸1⋃[0, 1].
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Thus,

𝑇 (𝑟, 𝐴0) ≤ 𝑘𝜌 (𝑓) log 𝑟 + (𝑘 − 1) 𝑇 (𝑟, 𝐴 𝑖) (19)

holds for all 𝑧 with |𝑧| = 𝑟 ∉ 𝐸1⋃[0, 1], where 𝑇(𝑟, 𝐴 𝑖) =
max1≤ℎ≤𝑘−1𝑇(𝑟, 𝐴ℎ). By Lemma 10, we have 𝜌(𝐴0) ≤ 𝜌(𝐴 𝑖);
this is a contradiction. Therefore, every solution 𝑓( ̸≡ 0) of
(5) is of infinite order.

By using similar methods as [14], we can easily prove that
𝜌2(𝑓) ≥ 𝜌(𝐴0) in this case. We omit the details here.

Case 2. We suppose that 𝜌(𝐴 𝑙) > 𝜌(𝐴0). Now to the contrary
assume that there is a solution𝑓( ̸≡ 0) of (5) with 𝜌(𝑓) < +∞.
We will seek a contradiction.

Suppose that 𝑎𝑖 (𝑖 = 1, 2, . . . , 𝑝) are all the finite deficient
values of 𝐴 𝑙(𝑧). Thus we have 2𝑝 angular domains 𝑆𝑗 = {𝑧 |
𝜃𝑗 < arg 𝑧 < 𝜃𝑗+1} (𝑗 = 1, 2, . . . , 2𝑝). For any 𝜀 > 0, by
using Lemmas 7 and 11, we can easily obtain that 𝐴 𝑙(𝑧) has
the following properties: in each sector 𝑆𝑗, either there exists
some 𝑎𝑖 such that

log 1
𝐴 𝑙 (𝑧) − 𝑎𝑖


> 𝐶 (𝜃𝑗, 𝜃𝑗+1, 𝜀, 𝛿 (𝑎𝑖, 𝐴 𝑙)) 𝑇 (|𝑧| , 𝐴 𝑙)

(20)

holds for 𝑧 ∈ Ω(𝜃𝑗 + 𝜀, 𝜃𝑗+1 − 𝜀, 𝑟, +∞), where 𝐶(𝜃𝑗, 𝜃𝑗+1, 𝜀,
𝛿(𝑎𝑖, 𝐴 𝑙)) is a positive constant depending only on 𝜃𝑗, 𝜃𝑗+1, 𝜀
and 𝛿(𝑎𝑖, 𝐴 𝑙), or there exists 𝜃 ∈ 𝑆𝑗 such that

lim sup
𝑟→∞

log+log+ 𝐴 𝑙 (𝑟𝑒
𝑖𝜃)


log 𝑟
= 𝜌 (𝐴 𝑙) (21)

holds. For the sake of simplicity, in the sequel we use 𝐶
to represent 𝐶(𝜃𝑗, 𝜃𝑗+1, 𝜀, 𝛿(𝑎𝑖, 𝐴 𝑙)). Note that if there exists
some 𝑎𝑖 such that (20) holds in 𝑆𝑗, then there exists 𝜃 such
that (21) holds in 𝑆𝑗−1 and 𝑆𝑗+1. And if there exists 𝜃 ∈ 𝑆𝑗 such
that (21) holds, then there are 𝑎𝑖 (𝑎𝑖) such that (20) holds in
𝑆𝑗−1 and 𝑆𝑗+1, respectively.

Without loss of generality, we assume that there is a ray
arg 𝑧 = 𝜃 in 𝑆1 such that (21) holds. Therefore, there exists
a ray in each sector 𝑆3, 𝑆5, . . . , 𝑆2𝑝−1, such that (21) holds. By
using Lemma 8, we know that all the sectors have the same
magnitude 𝜋/𝜌(𝐴 𝑙).

Firstly, suppose that 𝜌(𝐴0) ≥ 1/2. Since 𝐴0(𝑧)must have
a Borel direction of order 𝜌(𝐴0), by using Lemma 11, we can
see that there exists a sectorΩ(𝛼, 𝛽)(𝛼 < 𝛽) such that 𝛽−𝛼 ≥
𝜋/𝜌(𝐴0) and such that for all the rays arg 𝑧 = 𝜃 (𝛼 < 𝜃 < 𝛽)
we have

lim sup
𝑟→∞

log+log+ 𝐴0 (𝑟𝑒
𝑖𝜃)


log 𝑟
= 𝜌 (𝐴0) . (22)

Note that 𝜌(𝐴 𝑙) > 𝜌(𝐴0). It is not hard to see that there
exists a sector Ω(𝛼, 𝛽)(𝛼 < 𝛼 < 𝛽 < 𝛽) such that there is
an 𝑎𝑗

0

such that

log 1
𝐴 𝑙 (𝑟𝑒

𝑖𝜃) − 𝑎𝑗
0



> 𝐶𝑇 (𝑟, 𝐴 𝑙) (23)

holds for all 𝛼 ≤ 𝜃 ≤ 𝛽.

By Lemma 6(i), there exist 𝜃0 (𝛼
 ≤ 𝜃0 ≤ 𝛽

) and 𝑅2 > 0
such that



𝑓(𝑚) (𝑟𝑒𝑖𝜃0)

𝑓 (𝑟𝑒𝑖𝜃0)



≤ 𝑟𝑘𝜌(𝑓), 𝑚 = 1, 2, . . . , 𝑘 (24)

holds for all 𝑟 > 𝑅2.
Note that

lim sup
𝑟→∞

log+log+ 𝐴0 (𝑟𝑒
𝑖𝜃
0)


log 𝑟
= 𝜌 (𝐴0) . (25)

Thus there is a sequence of {𝑟𝑛} with lim𝑛→∞𝑟𝑛 = ∞ such
that

𝐴0 (𝑟𝑛𝑒
𝑖𝜃
0)
 ≥ exp (𝑟𝜌(𝐴0)−𝜀𝑛 ) (26)

holds for every 0 < 𝜀 < (𝜌(𝐴0) − 𝜂)/2. Therefore, we deduce
from (16), (23), and (24) that
𝐴0 (𝑟𝑛𝑒

𝑖𝜃
0)


≤ 𝑟𝑘𝜌(𝑓)𝑛 (1 +
𝐴𝑘−1 (𝑟𝑛𝑒

𝑖𝜃
0)
 + ⋅ ⋅ ⋅ +

𝐴 𝑙 (𝑟𝑛𝑒
𝑖𝜃
0) − 𝑎𝑗

0



+
𝑎𝑗0
 + ⋅ ⋅ ⋅ +

𝐴1 (𝑟𝑛𝑒
𝑖𝜃
0)
)

≤ 𝑟𝑘𝜌(𝑓)𝑛 (1 + exp (𝑟𝜂𝑛) + ⋅ ⋅ ⋅ + exp {−𝐶𝑇 (𝑟𝑛, 𝐴 𝑙)}

+
𝑎𝑗0
 + ⋅ ⋅ ⋅ + exp (𝑟

𝜂

𝑛))

(27)

holds for all sufficiently large 𝑛. Therefore, combining (26)
with (27), we have that

exp {𝑟𝜌(𝐴0)−𝜀𝑛 }

< 𝑟𝑘𝜌(𝑓)𝑛 (1 + (𝑘 − 2) exp (𝑟𝜂𝑛) + exp {−𝐶𝑇 (𝑟𝑛, 𝐴 𝑙)} +
𝑎𝑗0
)

(28)

holds for all sufficiently large 𝑛. This is a contradiction, so
every solution 𝑓( ̸≡ 0) of (5) is infinite order in this case.

Secondly, suppose that 0 < 𝜌(𝐴0) < 1/2. By Lemma 9,
there is a sequence of {𝑟𝑛} with lim𝑛→∞𝑟𝑛 = ∞ such that for
any 𝜃 ∈ [0.2𝜋), we must have

𝐴0 (𝑟𝑛𝑒
𝑖𝜃)
 > exp (𝑟𝜌(𝐴0)−𝜀𝑛 ) . (29)

Thus we can get a contradiction by using similar argu-
ment for the proof of case 𝜌(𝐴0) ≥ 1/2. So every solution
𝑓( ̸≡ 0) of (5) is infinite order in this case.

Lastly, suppose that 𝜌(𝐴0) = 0. Note that 𝐴0(𝑧) is a
transcendental entire function. By using the results of [29] or
[8], for any 𝜃 ∈ [0.2𝜋), we have

lim sup
𝑟→∞

log 𝐴0 (𝑟𝑒
𝑖𝜃)


log 𝑟
= ∞. (30)

Thus we can get a contradiction by using similar argument
for the proof of case 𝜌(𝐴0) ≥ 1/2. Therefore, every solution
𝑓( ̸≡ 0) of (5) is infinite order in this case.
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Next we prove that 𝜌2(𝑓) ≥ 𝜌(𝐴0). Firstly, suppose that
𝜌(𝐴0) > 0. By using similar argument as above, there exists
𝜃0(𝛼
 ≤ 𝜃0 ≤ 𝛽) and there is a sequence of {𝑟𝑛} with

lim𝑛→∞𝑟𝑛 = ∞ such that (23) and (26) (or (29)) hold for
all sufficiently large 𝑛.

By Lemma 6(i) that there exist 𝜃0 (𝛼
 ≤ 𝜃0 ≤ 𝛽

) and
constants 𝑅3 > 0, 𝑑 > 0, such that the following inequality



𝑓(𝑚) (𝑧)

𝑓 (𝑧)


≤ 𝑑𝑇(2𝑟, 𝑓)

2𝑘
, 𝑚 = 1, . . . , 𝑘 (31)

holds for |𝑧| = 𝑟 > 𝑅3.
Hence, calculating at the points 𝑧𝑛 = 𝑟𝑛𝑒

𝑖𝜃
0 with 𝑟𝑛 ∉

[0, 𝑅1]⋃[0, 𝑅3], from (16), (23), (26) (or (29)), and (31), we
get

exp (𝑟𝜌(𝐴0)−𝜀𝑛 ) ≤ 𝑑𝑇(2𝑟𝑛, 𝑓)
2𝑘
(1 + (𝑘 − 2) exp (𝑟𝜂𝑛)

+ exp {−𝐶𝑇 (𝑟𝑛, 𝐴 𝑙)} +
𝑎𝑗0
) .

(32)

Thus

lim
𝑟→∞

log+log+𝑇 (𝑟, 𝑓)
log 𝑟

≥ 𝜌 (𝐴0) . (33)

This gives 𝜌2(𝑓) ≥ 𝜌(𝐴0).
If 𝜌(𝐴0) = 0, obviously, 𝜌2(𝑓) ≥ 0. The proof of

Theorem 5 is completed.

4. Further Results

In this section, we will study (5) with coefficients 𝐴0 and 𝐴 𝑙
which are both extremal for Yang’s inequality.

Theorem 12. Let 𝐴𝑗 (𝑗 = 0, 1, . . . , 𝑘 − 1) be entire functions.
Suppose that there exists an integer 𝑙 ∈ {1, 2, . . . , 𝑘 − 1}, such
that 𝐴 𝑙 is extremal for Yang’s inequality 𝑝1 = 𝑞1/2. Suppose
that𝐴0 is an entire function extremal for Yang’s inequality𝑝2 =
𝑞2/2 and 𝜌(𝐴 𝑖) < 𝜌(𝐴0) for 𝑖 ̸= 𝑙 (1 ≤ 𝑖 ≤ 𝑘 − 1). Suppose that
one of the following conditions holds:

(1) 𝑞1 ̸= 𝑞2,
(2) 𝑞1 = 𝑞2, and the set of Borel directions of𝐴 𝑙 is different

from that of 𝐴0.

Then every solution 𝑓( ̸≡ 0) of (5) satisfies 𝜌(𝑓) = ∞ and
𝜌2(𝑓) ≥ 𝜌(𝐴0).

Proof. We first treat the case that the entire functions 𝐴 𝑙 and
𝐴0 satisfy condition (1).

Note that if 𝜌(𝐴 𝑙) ̸= 𝜌(𝐴0), then the conclusion of
Theorem 12 follows from Theorem 5. Now suppose that
𝜌(𝐴 𝑙) = 𝜌(𝐴0) = 𝜌. We divide the proof into two cases: (a)
𝑞1 < 𝑞2 and (b) 𝑞1 > 𝑞2.

Now suppose that (a) 𝑞1 < 𝑞2 holds. It is easy to see from
Lemmas 7 and 8 that there are 𝑞2/2 sectors with magnitude
𝜋/𝜌 such that

lim sup
𝑟→∞

log+log+ 𝐴0 (𝑟𝑒
𝑖𝜃)


log 𝑟
= 𝜌, (34)

while there are 𝑞1/2 sectors with magnitude 𝜋/𝜌 such that

lim sup
𝑟→∞

log+log+ 𝐴 𝑙 (𝑟𝑒
𝑖𝜃)


log 𝑟
= 𝜌. (35)

Note that 𝑞1 < 𝑞2. It is easy to see that there exists a sector
Ω(𝛼, 𝛽)(0 < 𝛼 < 𝛽 < 2𝜋) such that, for every 𝜃 ∈ (𝛼, 𝛽),
𝐴 𝑙(𝑧)must be bounded inΩ(𝛼, 𝛽), while𝐴0(𝑧) satisfies (34).
So, by using the same argument in the proof ofTheorem 5, we
can easily prove the theorem.

We next suppose that (b) 𝑞1 > 𝑞2. It is not hard to see that
there must exist a sector Ω(𝛼, 𝛽) such that 𝐴 𝑙(𝑧) is bounded
in Ω(𝛼, 𝛽), while for any 𝜃 ∈ Ω(𝛼, 𝛽)𝐴0(𝑧) satisfies (34). By
using similar arguments as we did before, we can prove the
theorem under the condition that𝐴 𝑙(𝑧) and𝐴0(𝑧) satisfy (1).

We turn to the case that 𝐴 𝑙(𝑧) and 𝐴0(𝑧) satisfy (2). In
this case, it is easy to see that there exists a sector such that
in it 𝐴 𝑙(𝑧) is bounded, while 𝐴0(𝑧) satisfies (34). By using
similar arguments as we did before, we can prove the theorem
in this case.We omit the details here.The proof ofTheorem 12
is completed.

Finally, in [16], we note that if an entire function 𝑓 is
extremal for Yang’s inequality 𝑝 = 𝑞/2, then for any positive
integer𝑚,𝑓(𝑚) also has some special properties. In the sectors
where, for any 𝜃, 𝑓 satisfies

lim sup
𝑟→∞

log+log+ 𝑓 (𝑟𝑒
𝑖𝜃)


log 𝑟
= 𝜌, (36)

for any 𝜃, 𝑓(𝑚) satisfies

lim sup
𝑟→∞

log+log+ 𝑓
(𝑚) (𝑟𝑒𝑖𝜃)


log 𝑟

= 𝜌, (37)

𝑓 decays to some deficient values exponentially and 𝑓(𝑚)
decays to 0 exponentially.Therefore, in the samemanner as in
the proofs ofTheorems 5 and 12, we have the following result.

Theorem 13. Let 𝐴𝑗 (𝑗 = 0, 1, . . . , 𝑘 − 1) be entire functions.
Suppose that there exists an integer 𝑙 ∈ {1, 2, . . . , 𝑘 − 1}, such
that 𝐴 𝑙 is extremal for Yang’s inequality 𝑝1 = 𝑞1/2. Suppose
that𝐴0 is a transcendental entire function with 𝜌(𝐴0) ̸= 𝜌(𝐴 𝑙)
and 𝜌(𝐴 𝑖) < 𝜌(𝐴0) for 𝑖 ̸= 𝑙 (1 ≤ 𝑖 ≤ 𝑘−1).Then every solution
𝑓 ̸≡ 0 of

𝑓(𝑘) + 𝐴𝑘−1 (𝑧) 𝑓
(𝑘−1) + ⋅ ⋅ ⋅ + 𝐴(𝑚)

𝑙
(𝑧) 𝑓
(𝑙) + ⋅ ⋅ ⋅ + 𝐴0 (𝑧) 𝑓

= 0

(38)

satisfies 𝜌(𝑓) = ∞ and 𝜌2(𝑓) ≥ 𝜌(𝐴0).

Moreover, suppose that 𝐴0 is an entire function extremal
for Yang’s inequality 𝑝2 = 𝑞2/2 and that one of the following
assumptions holds:

(1) 𝑞1 ̸= 𝑞2,
(2) 𝑞1 = 𝑞2, and the set of Borel directions of 𝐴 𝑙 is

different from that of 𝐴0.
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Then every solution 𝑓( ̸≡ 0) of

𝑓(𝑘) + 𝐴𝑘−1𝑓
(𝑘−1) + ⋅ ⋅ ⋅ + 𝐴(𝑚)

𝑙
(𝑧) 𝑓
(𝑙) + ⋅ ⋅ ⋅ + 𝐴(𝑛)0 (𝑧) 𝑓 = 0

(39)

satisfies 𝜌(𝑓) = ∞ and 𝜌2(𝑓) ≥ 𝜌(𝐴0), where 𝑚 and 𝑛 are
two nonnegative integers.

Finally we give an example satisfying the conditions of
Theorem 12. Let again 𝐴𝑛(𝑧) = ∫

𝑧

0
𝑒−𝑡
𝑛

𝑑𝑡, (𝑛 ≥ 2). So if we let
𝐴 𝑙 = 𝐴𝑛(𝑧),𝐴0 = 𝐴𝑚(𝑧) = ∫

𝑧

0
𝑒−𝑡
𝑚

𝑑𝑡with 𝑛 ̸=𝑚 and all other
coefficients 𝐴 𝑖 satisfy 𝜌(𝐴 𝑖) < 𝜌(𝐴0) for 𝑖 ̸= 𝑙 (1 ≤ 𝑖 ≤ 𝑘 − 1),
then, by Theorem 12(1), every solution 𝑓( ̸≡ 0) of (5) satisfies
𝜌(𝑓) = ∞ and 𝜌2(𝑓) ≥ 𝜌(𝐴0). Furthermore, if we let𝐴0(𝑧) =
𝐴𝑛(𝑒
𝑖𝜃𝑧) with 𝜃 ∈ (0, 𝜋/2𝑛), then, by Theorem 12(2), every

solution 𝑓( ̸≡ 0) of (5) satisfies 𝜌(𝑓) = ∞ and 𝜌2(𝑓) ≥ 𝜌(𝐴0).
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