
Research Article
The Exponential Diophantine Equation
(4𝑚2 + 1)

𝑥

+ (5𝑚2 − 1)
𝑦

= (3𝑚)𝑧

Juanli Su1 and Xiaoxue Li2

1 School of Arts and Sciences, Yangling Vocational and Technical College, Yangling, Shaanxi 712100, China
2 School of Mathematics, Northwest University, Xi’an, Shaanxi 710127, China

Correspondence should be addressed to Xiaoxue Li; lxx20072012@163.com

Received 28 January 2014; Accepted 18 March 2014; Published 9 April 2014

Academic Editor: Youyu Wang

Copyright © 2014 J. Su and X. Li.This is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let m be a positive integer. In this paper, using some properties of exponential diophantine equations and some results on the
existence of primitive divisors of Lucas numbers, we prove that if 𝑚 > 90 and 3|𝑚, then the equation (4𝑚2 + 1)𝑥 + (5𝑚

2
− 1)
𝑦

=

(3𝑚)
𝑧 has only the positive integer solution (𝑥, 𝑦, 𝑧) = (1, 1, 2).

1. Introduction

Let Z, N be the sets of all integers and positive integers,
respectively. Given a triple (𝑎, 𝑏, 𝑐) of coprime positive inte-
gers with min{𝑎, 𝑏, 𝑐} > 1, there are many papers that
investigated the equation

𝑎
𝑥
+ 𝑏
𝑦
= 𝑐
𝑧
, 𝑥, 𝑦, 𝑧 ∈ N (1)

(see [1–8]). Recently, Terai [8] proved that if 𝑎, 𝑏, 𝑐 satisfy

𝑎 = 4𝑚
2
+ 1, 𝑏 = 5𝑚

2
− 1, 𝑐 = 3𝑚, 𝑚 ∈ N, (2)

then (1) has only the solution (𝑥, 𝑦, 𝑧) = (1, 1, 2), provided
that 𝑚 ̸≡ 3(mod 6) or 𝑚 ≤ 20. The proof of this result
is based on elementary methods and Baker’s method. In
this paper, using some properties of exponential diophantine
equations and some results on the existence of primitive
divisors of Lucas numbers, we prove a general result as
follows.

Theorem 1. Let 𝑎, 𝑏, 𝑐 be positive integers satisfying (2). If𝑚 >

90 and 3 | 𝑚, then (1) has only the solution (𝑥, 𝑦, 𝑧) = (1, 1, 2).

Some Note. Combining Terai [8] and our Theorem, we know
that only the values 20 < 𝑚 ≤ 90, 3 | 𝑚 are left to investigate
(2). In this case, the equation (4𝑚

2
+ 1)
𝑥
+ (5𝑚

2
− 1)
𝑦
=

(3𝑚)
𝑧 has only finitely many solutions in (𝑥, 𝑦, 𝑧). Moreover,

they are not only effectively but also practically solvable.
With some computer assistance, we would be able to solve
completely the equation.

2. Preliminaries

In this section, we assume that 𝑎, 𝑏, 𝑐 are positive integers
satisfying (2). Then, (1) can be written as

(4𝑚
2
+ 1)
𝑥

+ (5𝑚
2
− 1)
𝑦

= (3𝑚)
𝑧
, 𝑥, 𝑦, 𝑧 ∈ N. (3)

Further, let (𝑥, 𝑦, 𝑧) be a solution of (3) with (𝑥, 𝑦, 𝑧) ̸=

(1, 1, 2).

Lemma 2. If𝑚 > 90, then 2 ∤ 𝑚, 2 ∤ 𝑦 and

𝑧 >
1

5
𝑚
2
. (4)

Proof . Since min{𝑥, 𝑦} ≥ 1, by (3), we have 𝑧 ≥ 2 and 1 +
(−1)
𝑦
≡ (4𝑚

2
+ 1)
𝑥
+ (5𝑚

2
− 1)
𝑦
≡ (3𝑚)

𝑧
≡ 0(mod𝑚2).

Since𝑚 > 1, we get

2 ∤ 𝑦. (5)

Since (𝑥, 𝑦, 𝑧) ̸= (1, 1, 2), we have max{𝑥, 𝑦} ≥ 2 and
(3𝑚)
𝑧
> min{(4𝑚2 + 1)2, (5𝑚2 − 1)2} > 16𝑚

4. It implies that

𝑧 ≥ 4. (6)
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Hence, by (3), (5), and (6), we get

4𝑥 + 5𝑦 ≡ 0 (mod𝑚2) . (7)

If 2 | 𝑚, then from (7) we get 2 | 𝑦, which contradicts (5).
So we have

2 ∤ 𝑚. (8)

Since 4𝑥 + 5𝑦 is a positive integer, by (7), we have

4𝑥 + 5𝑦 ≥ 𝑚
2
. (9)

On the other hand, by (3), we have (3𝑚)𝑧 > (4𝑚
2
+ 1)
𝑥 and

(3𝑚)
𝑧
> (5𝑚

2
− 1)
𝑦. It implies that

𝑧

2
> 𝑥

log (4𝑚2 + 1)
log (9𝑚2)

,
𝑧

2
> 𝑦

log (5𝑚2 − 1)
log (9𝑚2)

; (10)

whence we obtain

𝑧 >
4𝑥 + 5𝑦

2 log (9𝑚2) / log (4𝑚2 + 1) + 5 log (9𝑚2) /2 log (5𝑚2 − 1)
.

(11)

Since 𝑚 > 90, we have (log(9𝑚2))/ log(5𝑚2 − 1) <

(log(9𝑚2))/ log(4𝑚2 + 1) < 1.08. Thus, by (9) and (11), we
get (4). The lemma is proved.

Let 𝐷
1
, 𝐷
2
, 𝑘 be positive integers such that

min{𝐷
1
, 𝐷
2
, 𝑘} > 1 and gcd(𝐷

1
, 𝐷
2
) = gcd(𝑘, 2𝐷

1
𝐷
2
) =

1.

Lemma3 ([9, Lemmas 1 and 6]). If (𝑋, 𝑌, 𝑍) is a fixed solution
of the equation

𝐷
1
𝑋
2
+ 𝐷
2
𝑌
2
= 𝑘
𝑍
, 𝑋, 𝑌, 𝑍 ∈ Z,

gcd (𝑋, 𝑌) = 1, 𝑍 > 0,

(12)

then there exists a unique positive integer 𝑙 such that

𝑙 ≡ −
𝐷
1
𝑋

𝑌
(mod 𝑘) , 𝑙 < 𝑘. (13)

The positive integer 𝑙 is called the characteristic number of the
solution (𝑋, 𝑌, 𝑍) and is denoted by the symbol ⟨𝑋, 𝑌, 𝑍⟩.

Lemma 4 ([9, Theorems 1 and 3]). For a fixed characteristic
number 𝑙, let 𝑆(𝑙) be the set of all solutions (𝑋, 𝑌, 𝑍) of (13)with
⟨𝑋, 𝑌, 𝑍⟩ ≡ ±𝑙(mod 𝑘). Then one has the following.

(i) 𝑆(𝑙) has a unique solution (𝑋
1
, 𝑌
1
, 𝑍
1
) satisfying 𝑋

1
>

0, 𝑌
1
> 0 and 𝑍

1
≤ 𝑍, where 𝑍 through all solutions

(𝑋, 𝑌, 𝑍) of 𝑆(𝑙). Such (𝑋
1
, 𝑌
1
, 𝑍
1
) is called the least

solution of 𝑆(𝑙).
(ii) Every element (𝑋, 𝑌, 𝑍) of 𝑆(𝑙) can be expressed as

𝑍 = 𝑍
1
𝑡, 𝑡 ∈ N, 2 ∤ 𝑡,

𝑋√𝐷
1
+ 𝑌√−𝐷

2
= 𝜆
1
(𝑋
1
√𝐷
1
+ 𝜆
2
𝑌
1
√−𝐷
2
)

𝑡

,

𝜆
1
, 𝜆
2
∈ {±1} .

(14)

Lemma 5. If min{𝐷
1
, 𝐷
2
} ≥ 4 and 3 ∤ 𝐷

1
𝐷
2
, then the

equality

𝐷
𝑟

1
√𝐷
1
+ 𝐷
𝑠

2
√−𝐷
2
= 𝜆
1
(√𝐷
1
+ 𝜆
2
√−𝐷
2
)

𝑡

,

𝜆
1
, 𝜆
2
∈ {±1} ,

𝑟, 𝑠, 𝑡 ∈ Z, 𝑟 ≥ 0, 𝑠 ≥ 0, 𝑡 > 1, 2 ∤ 𝑡

(15)

cannot hold.

Proof. If (15) holds, then

𝐷
𝑟

1
= 𝜆
1

(𝑡−1)/2

∑

𝑖=0

(−𝑖)
𝑖
(
𝑡

2𝑖
)𝐷
(𝑡−1)/2−𝑖

1
𝐷
𝑖

2
,

𝐷
𝑠

2
= 𝜆
1
𝜆
2

(𝑡−1)/2

∑

𝑖=0

(−𝑖)
𝑖
(

𝑡

2𝑖 + 1
)𝐷
(𝑡−1)/2−𝑖

1
𝐷
𝑖

2
,

(16)

𝐷
𝑟

1
√𝐷
1
− 𝐷
𝑠

2
√−𝐷
2
= 𝜆
1
(√𝐷
1
− 𝜆
2
√−𝐷
2
)

𝑡

. (17)

By (15) and (17), we have

𝐷
2𝑟+1

1
+ 𝐷
2𝑠+1

2
= (𝐷
1
+ 𝐷
2
)
𝑡

. (18)

Wemay assume that𝐷2𝑟+1
1

< 𝐷
2𝑠+1

2
; then, by (18), we have

2𝐷
2𝑠+1

2
> (𝐷
1
+ 𝐷
2
)
𝑡

> 𝐷
𝑡

2
. (19)

Since 𝐷
2
≥ 4 and 𝑡 ≥ 3, we see from (19) that 𝑠 ≥ 1. Further,

since gcd(𝐷
1
, 𝐷
2
) = 1, by (16), we get

𝐷
2
| 𝑡. (20)

It implies that 2 ∤ 𝐷
2
.

Let 𝑝 be an odd prime divisor of 𝐷
2
. Since 3 ∤ 𝐷

2
, we

have 𝑝 ≥ 5. Further let

𝑝
𝛼 
𝐷
2
, 𝑝
𝛽 𝑡, 𝑝

𝛾𝑗

2𝑗 + 1, 𝑗 = 1, . . . ,

𝑡 − 1

2
. (21)

Since 𝑝 ≥ 5, by (21), we have

𝛾
𝑗
≤
log (2𝑗 + 1)

log𝑝
< 𝑗, 𝑗 = 1, . . . ,

𝑡 − 1

2
. (22)

Further, by (21) and (22), we get

(−1)
𝑗
(

𝑡

2𝑗 + 1
)𝐷
(𝑡−1)/2−𝑗

1
𝐷
𝑗

2
≡ (−1)

𝑗
𝑡 (

𝑡 − 1

2𝑗
)𝐷
(𝑡−1)/2−𝑗

1

𝐷
𝑗

2

2𝑗 + 1
≡ 0 (mod𝑝𝛽+1) , 𝑗 = 1, . . . ,

𝑡 − 1

2
.

(23)

Therefore, by (16), (21), and (23), we obtain

𝛼𝑠 ≥ 𝛽. (24)
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Putting 𝑝 through all odd prime divisors of 𝐷
2
, we get from

(24) that𝐷𝑠
2
| 𝑡 and

𝑡 ≥ 𝐷
𝑠

2
. (25)

By (19) and (25), we have𝐷2𝑠+2
2

> 2𝐷
2𝑠+1

2
> 𝐷
𝑡

2
≥ 𝐷
𝐷
𝑠
2

2
and

2𝑠 + 2 > 𝐷
𝑠

2
≥ 4
𝑠
. (26)

But (26) is impossible for any positive integer 𝑠. Thus, (15) is
false. The lemma is proved.

Let 𝛼, 𝛽 be algebraic integers. If 𝛼+𝛽 and 𝛼𝛽 are nonzero
coprime integers and 𝛼/𝛽 is not a root of unity, then (𝛼, 𝛽) is
called a Lucas pair. Further, let 𝐴 = 𝛼 + 𝛽 and 𝐶 = 𝛼𝛽. Then
we have

𝛼 =
1

2
(𝐴 + 𝜆√𝐵) , 𝛽 =

1

2
(𝐴 − 𝜆√𝐵) , 𝜆 ∈ {±1} , (27)

where 𝐵 = 𝐴
2
− 4𝐶. We call (𝐴, 𝐵) the parameters of the

Lucas pair (𝛼, 𝛽). Two Lucas pairs (𝛼
1
, 𝛽
1
) and (𝛼

2
, 𝛽
2
) are

equivalent if 𝛼
1
/𝛼
2
= 𝛽
1
/𝛽
2
= ±1. Given a Lucas pair (𝛼, 𝛽),

one defines the corresponding sequence of Lucas numbers by

𝐿
𝑛
(𝛼, 𝛽) =

𝛼
𝑛
− 𝛽
𝑛

𝛼 − 𝛽
, 𝑛 = 0, 1, 2, . . . . (28)

For equivalent Lucas pairs (𝛼
1
, 𝛽
1
) and (𝛼

2
, 𝛽
2
), we have

𝐿
𝑛
(𝛼
1
, 𝛽
1
) = ±𝐿

𝑛
(𝛼
2
, 𝛽
2
) for any 𝑛. A prime 𝑝 is called

a primitive divisor of 𝐿
𝑛
(𝛼, 𝛽)(𝑛 > 1) if 𝑝 | 𝐿

𝑛
(𝛼, 𝛽)

and 𝑝 ∤ 𝐵𝐿
1
(𝛼, 𝛽), . . . , 𝐿

𝑛−1
(𝛼, 𝛽). A Lucas pair (𝛼, 𝛽) such

that 𝐿
𝑛
(𝛼, 𝛽) has no primitive divisors will be called an 𝑛-

defective Lucas pair. Further, a positive integer 𝑛 is called
totally nondefective if no Lucas pair is 𝑛-defective.

Lemma 6 (see [10]). Let 𝑛 satisfy 4 < 𝑛 ≤ 30 and 𝑛 ̸= 6. Then,
up to equivalence, all parameters of n-defective Lucas pair are
given as follows:

(i) 𝑛 = 5, (𝐴, 𝐵) = (1, 5), (1, −7), (2, −40), (1, −11),
(1, −15), (12, −76), (12, −1364),

(ii) 𝑛 = 7, (𝐴, 𝐵) = (1, −7), (1, −19),
(iii) 𝑛 = 8, (𝐴, 𝐵) = (2, −24), (1, −7),
(iv) 𝑛 = 10, (𝐴, 𝐵) = (2, −8), (5, −3), (5, −47),
(v) 𝑛 = 12, (𝐴, 𝐵) = (1, 5), (1, −7), (1, −11), (2, −56),

(1, −15), (1, −19),
(vi) 𝑛 ∈ {13, 18, 30}, (𝐴, 𝐵) = (1, −7).

Lemma 7 (see [11]). If 𝑛 > 30, then 𝑛 is totally nondefective.
Let 𝐷, 𝑘 be positive integers such that min{𝐷, 𝑘} > 1 and

gcd(𝑘, 2𝐷) = 1.

Lemma8 (see [9,Theorems 1 and 3]). Every solution (𝑋, 𝑌, 𝑍)
of the equation

𝑋
2
+ 𝐷𝑌
2
= 𝑘
𝑍
, 𝑋, 𝑌, 𝑍 ∈ Z,

gcd (𝑋, 𝑌) = 1, 𝑍 > 0

(29)

can be expressed as

𝑍 = 𝑍
1
𝑡, 𝑡 ∈ N, (30)

𝑋 + 𝑌√−𝐷 = 𝜆
1
(𝑋
1
+ 𝜆
2
𝑌
1
√−𝐷)

𝑡

, 𝜆
1
, 𝜆
2
∈ {±1} , (31)

where𝑋
1
, 𝑌
1
, 𝑍
1
are positive integers satisfying

𝑋
2

1
+ 𝐷𝑌
2

1
= 𝑘
𝑍1
,

gcd (𝑋
1
, 𝑌
1
) = 1, ℎ (−4𝐷) ≡ 0 (mod 𝑍

1
) ,

(32)

where ℎ(−4𝐷) is the class number of positive binary quadratic
primitive forms of discriminant −4𝐷.

For any positive integer 𝑎, let 𝑃(𝑎) denote the set of distinct
prime divisors of 𝑎.

Lemma 9. If (𝑋, 𝑌, 𝑍) is a solution of (29) with 𝑃(|𝑌|) ⊆

𝑃(𝐷), then ℎ(−4𝐷) ≡ 0(mod 𝑍), except the possibility of the
following cases:

(i) 𝑡 ∈ {2, 3, 4, 6}, where 𝑡 is defined as in (30),
(ii) (𝐷, 𝑘, 𝑋, 𝑌, 𝑍) = (10, 11, ±401, ±5, 5), (19, 55, ±22434,

±1, 5), (341, 377, ±2759646, ±1, 5).

Proof. Let (𝑋, 𝑌, 𝑍) be a solution of (29) with 𝑃(|𝑌|) ⊆ 𝑃(𝐷).
By Lemma 8, 𝑋,𝑌, and 𝑍 satisfy (30) and (31), where 𝑋

1
, 𝑌
1
,

and 𝑍
1
satisfy (32). Let

𝛼 = 𝑋
1
+ 𝑌
1
√−𝐷, 𝛽 = 𝑋

1
− 𝑌
1
√−𝐷. (33)

By (32) and (33), we have that 𝛼 + 𝛽 = 2𝑋
1
, 𝛼 − 𝛽 =

2𝑌
1
√−𝐷, 𝛼𝛽 = 𝑘

𝑍1 , and 𝛼/𝛽 satisfies 𝑘𝑍1(𝛼/𝛽)2 − 2(𝑋
2

1
−

𝐷𝑌
2

1
)(𝛼/𝛽) + 𝑘

𝑍1 = 0. It implies that (𝛼, 𝛽) is a Lucas pair
with parameters (2𝑋

1
, −4𝐷𝑌

2

1
). Let 𝐿

𝑛
(𝛼, 𝛽)(𝑛 = 0, 1, 2, . . .)

denote the corresponding Lucas numbers. By (28), (31), and
(33), we get

𝑌 = 𝑌
1



𝛼
𝑡
− 𝛽
𝑡

𝛼 − 𝛽



= 𝑌
1

𝐿 𝑡 (𝛼, 𝛽)
 .

(34)

Since 𝑃(|𝑌|) ⊆ 𝑃(𝐷), by the definition of primitive divisors,
we see from (34) that either 𝑡 = 1 or 𝑡 > 1 and the Lucas
number 𝐿

𝑡
(𝛼, 𝛽) has no primitive divisor.

If 𝑡 = 1, then from (30) and (32) we get ℎ(−4𝐷) ≡

0(mod 𝑍). If 𝑡 > 1, by Lemmas 6 and 7, using an easy
computation, the solution (𝑋, 𝑌, 𝑍) satisfies the case (i) or (ii).
Thus, the lemma is proved.

Lemma 10 ([12, Theorems 12.10.1 and 12.14.3]). For any
positive integer𝐷, one has

ℎ (−4𝐷) <
4

𝜋

√𝐷 log (2𝑒√𝐷) . (35)

3. Proof of Theorem

We now assume that (𝑥, 𝑦, 𝑧) is a solution of (3) with
(𝑥, 𝑦, 𝑧) ̸= (1, 1, 2). By Lemma 2, we have

2 ∤ 𝑚, 2 ∤ 𝑦. (36)
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We first consider the case that 2 ∤ 𝑥.Then, by (3) and (36),
the equation

(4𝑚
2
+ 1)𝑋

2
+ (5𝑚

2
− 1)𝑌

2
= (3𝑚)

𝑍
, 𝑋, 𝑌, 𝑍 ∈ Z,

gcd (𝑋, 𝑌) = 1, 𝑍 > 0

(37)

has a solution

(𝑋, 𝑌, 𝑍) = ((4𝑚
2
+ 1)
(𝑥−1)/2

, (5𝑚
2
− 1)
(𝑦−1)/2

, 𝑧) . (38)

Let 𝑙 = ⟨(4𝑚
2
+ 1)
(𝑥−1)/2

, (5𝑚
2
− 1)
(𝑦−1)/2

, 𝑧⟩. Since 3 | 𝑚, we
have 3𝑚 | 𝑚

2. Hence, by Lemma 3, we get

𝑙 ≡ −

(4𝑚
2
+ 1)
(𝑥−1)/2

(5𝑚
2
− 1)
(𝑦−1)/2

≡ (−1)
(𝑦+1)/2

(mod 3𝑚) . (39)

In addition, (37) has another solution

(𝑋, 𝑌, 𝑍) = (1, 1, 2) . (40)

Let 𝑙 = ⟨1, 1, 2⟩. We have

𝑙

≡ − (4𝑚

2
+ 1) ≡ −1 (mod 3𝑚) . (41)

By (39) and (41), we get 𝑙 ≡ ±𝑙(mod3𝑚). It implies that the
solutions (38) and (40) belong to a same class 𝑆(𝑙) of solutions
of (37). Further, since (4𝑚2+1)𝑋2+(5𝑚2−1)𝑌2 ≥ (4𝑚

2
+1)+

(5𝑚
2
−1) = (3𝑚)

2, (40) is the least solution of 𝑆(𝑙).Therefore,
applying Lemma 4 to (38), we get 2 | 𝑧, 2 ∤ 𝑧/2, and

(4𝑚
2
+ 1)
(𝑥−1)/2

√4𝑚
2
− 1

+ (5𝑚
2
− 1)
(𝑦−1)/2

√− (5𝑚
2
− 1)

= 𝜆
1
(√4𝑚

2
+ 1 + 𝜆

2
√− (5𝑚

2
− 1))

𝑧/2

,

𝜆
1
, 𝜆
2
∈ {±1} .

(42)

However, since (𝑥, 𝑦, 𝑧) ̸= (1, 1, 2) and 3 | 𝑚, we have 𝑧/2 > 1

and 3 ∤ (4𝑚2 + 1)(5𝑚2 − 1). By Lemma 5, (42) is false.
We finally consider the case that 2 | 𝑥. Then the equation

𝑋
2
+ (5𝑚

2
− 1)𝑌

2
= (3𝑚)

𝑍
, 𝑋, 𝑌, 𝑍 ∈ Z,

gcd (𝑋, 𝑌) = 1, 𝑍 > 0

(43)

has a solution

(𝑋, 𝑌, 𝑍) = ((4𝑚
2
+ 1)
𝑥/2

, (5𝑚
2
− 1)
(𝑦−1)/2

, 𝑧) . (44)

Since 2 ∤ 3𝑚, applying Lemma 8 to (44), we have

𝑧 = 𝑍
1
𝑡, 𝑡 ∈ N, (45)

(4𝑚
2
+ 1)
𝑥/2

+ (5𝑚
2
− 1)
(𝑦−1)/2

√− (5𝑚
2
− 1)

= 𝜆
1
(𝑋
1
+ 𝜆
2
𝑌
1
√− (5𝑚

2
− 1))

𝑡

,

(46)

where 𝜆
1
, 𝜆
2
∈ {±1},𝑋

1
, 𝑌
1
, 𝑍
1
are positive integers satisfying

𝑋
2

1
+ (5𝑚

2
− 1)𝑌

2

1
= (3𝑚)

𝑍1
, gcd (𝑋

1
, 𝑌
1
) = 1,

ℎ (−4 (5𝑚
2
− 1)) ≡ 0 (mod 𝑍

1
) .

(47)

If 2 | 𝑡, then from (46) we get

(4𝑚
2
+ 1)
𝑥/2

+ (5𝑚
2
− 1)
(𝑦−1)/2

√− (5𝑚
2
− 1)

= 𝜆
1
(𝑋
2
+ 𝑌
2
√− (5𝑚

2
− 1))

2

,

(48)

where𝑋
2
, 𝑌
2
are integers satisfying

𝑋
2

2
+ (5𝑚

2
− 1)𝑌

2

2
= (3𝑚)

𝑍/2
, gcd (𝑋

2
, 𝑌
2
) = 1. (49)

By (49), we have

(4𝑚
2
+ 1)
𝑥/2

= 𝜆
1
(𝑋
2

2
− (5𝑚

2
− 1)𝑌

2

2
) ,

(5𝑚
2
− 1)
(𝑦−1)/2

= 2𝜆
1
𝑋
2
𝑌
2
.

(50)

Further, since gcd(4𝑚2 + 1, 5𝑚
2
− 1) = 1, we see from (50)

that |𝑋
2
| = ±1, |𝑌

2
| = (5𝑚

2
− 1)
(𝑦−1)/2

/2 and

(4𝑚
2
+ 1)
𝑥/2

=
1

4
(5𝑚
2
− 1)
𝑦

− 1. (51)

Furthermore, by (51), we get 1 ≡ (4𝑚
2
+ 1)
𝑥/2

≡ (1/4)(5𝑚
2
−

1)
𝑦
− 1 ≡ −1/4 − 1(mod𝑚2); whence we obtain 𝑚2 | 9. But,

since𝑚 > 90, it is impossible. So we have 2 ∤ 𝑡.
If 𝑡 = 3, then from (46) we get

(4𝑚
2
+ 1)
𝑥/2

= 𝜆
1
𝑋
1
(𝑋
2

1
− 3 (5𝑚

2
− 1)𝑌

2

1
) , (52)

(5𝑚
2
− 1)
(𝑦−1)/2

= 𝜆
1
𝜆
2
𝑌
1
(3𝑋
2

1
− (5𝑚

2
− 1)𝑌

2

1
) . (53)

Since gcd(3𝑋
1
, 5𝑚
2
− 1) = 1, by (47), we see from (53) that

𝑌
1
= (5𝑚

2
− 1)
(𝑦−1)/2 and

3𝑋
2

1
− (5𝑚

2
− 1)
𝑦

= ±1. (54)

Further, since 3 | 𝑚 and 2 ∤ 𝑦, by (54), we have

3𝑋
2

1
− (5𝑚

2
− 1)
𝑦

= 1. (55)

But, since 2 ∤ 𝑚, we get from (55) that 4 | 5𝑚
2
− 1, 2 ∤ 𝑋

1
,

and 3 ≡ 3𝑋
2

1
− (5𝑚

2
− 1)
𝑦
≡ 1(mod 4), a contradiction. So

we have 𝑡 ̸= 3.
Notice that the solution (44) satisfies 𝑃(|𝑌|) ⊆ 𝑃(5𝑚

2
−

1). Therefore, since 2 ∤ 𝑡 and 𝑡 ̸= 3, by Lemma 9, we have
ℎ(−4(5𝑚

2
− 1)) ≡ 0(mod 𝑧) and

𝑧 ≤ ℎ (−4 (5𝑚
2
− 1)) . (56)

Further, applying Lemma 10 to (56), we get

𝑧 <
4

𝜋

√5𝑚
2
− 1 log (2𝑒√5𝑚2 − 1) . (57)
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On the other hand, by Lemma 2, 𝑧 satisfies (4).The combina-
tion of (4) and (57) yields

𝑚
2
<
20

𝜋

√5𝑚
2
− 1 log (2𝑒√5𝑚2 − 1) . (58)

But (58) is false for 𝑚 > 90. Thus, the solution (𝑥, 𝑦, 𝑧) with
(𝑥, 𝑦, 𝑧) ̸= (1, 1, 2) does not exist. The theorem is proved.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

Theauthorswould like to thank the referee for his very helpful
and detailed comments, which have significantly improved
the presentation of this paper. This work is supported by
the N.S.F. (11071194) of China, the Scientific Research Pro-
gram Funded by Shaanxi Provincial Education Department
(Program no. 12JK0871), and the Scientific Research Program
Funded by Yangling Vocational and Technical College (Pro-
gram no. A2013027).

References

[1] Y. Fujita and T. Miyazaki, “Jeśmanowicz’ conjecture with con-
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Jeśmanowicz’ conjecture concerning Pythagorean triples,”
Journal of Number Theory, vol. 133, no. 2, pp. 583–595, 2013.

[7] T. Miyazaki and A. Togbé, “The Diophantine equation
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