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Given 1 ≤ 𝑝, 𝑞 ≤ ∞ and sequences of integers (𝑛
𝑘
)
𝑘
and (𝑛󸀠

𝑘
)
𝑘
such that 𝑛

𝑘
≤ 𝑛

󸀠

𝑘
≤ 𝑛

𝑘+1
, the generalized mixed norm space ℓI(𝑝, 𝑞)

is defined as those sequences (𝑎𝑗)𝑗 such that ((∑
𝑗∈𝐼𝑘

|𝑎𝑗|
𝑝
)
1/𝑝
)𝑘 ∈ ℓ

𝑞 where 𝐼𝑘 = {𝑗 ∈ N0 s.t. 𝑛𝑘 ≤ 𝑗 < 𝑛
󸀠

𝑘
}, 𝑘 ∈ N0. The necessary

and sufficient conditions for a sequence 𝜆 = (𝜆𝑗)𝑗 to belong to the space of multipliers (ℓI(𝑟, 𝑠), ℓJ(𝑢, V)), for different sequences
I andJ of intervals in N0, are determined.

1. Introduction

Let S be the space of complex valued sequences with
the locally convex vector topology given by means of the
seminorms 𝑝𝑗(𝜆) = |𝜆𝑗| where 𝜆 = (𝜆𝑗)𝑗∈N0

. Given two
Banach spaces 𝐴, 𝐵 continuously contained in S, we write
(𝐴, 𝐵) for the space of multipliers from 𝐴 into 𝐵. More
precisely,

(𝐴, 𝐵) = {𝜆 = (𝜆𝑗)𝑗
: (𝜆𝑗𝑎𝑗)𝑗

∈ 𝐵; ∀(𝑎𝑗)𝑗
∈ 𝐴} . (1)

We will use the notation supp(𝑎) = {𝑛 ∈ N0 : 𝑎𝑛 ̸= 0} and
𝜆 ∗ 𝑎 for the sequence (𝜆𝑗𝑎𝑗)𝑗∈N0 where 𝜆 = (𝜆𝑗)𝑗∈N0

and
𝑎 = (𝑎𝑗)𝑗∈N0

.
Of course for the classical ℓ𝑝 spaces, one easily sees that

(ℓ
𝑝1 , ℓ

𝑝2) = ℓ
𝑝 where 1/𝑝 = (1/𝑝2 − 1/𝑝1)

+. We use the
notation 𝑝2 ⊖ 𝑝1 = 𝑝 to mean 1/𝑝2 ⊖ 𝑝1 = 1/𝑝2 − 1/𝑝1

whenever 𝑝1 > 𝑝2 and 𝑝 = ∞ whenever 𝑝1 ≤ 𝑝2.
The above result can be extended (see [1]) to the class

of mixed norm sequence spaces, denoted ℓ(𝑝, 𝑞), which are
defined by the condition

(

∞

∑

𝑛=0

( ∑

2𝑛−1≤𝑘<2𝑛+1−1

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨

𝑝
)

𝑞/𝑝

)

1/𝑞

< ∞. (2)

Theorem 1. Let 1 ≤ 𝑟, 𝑠, 𝑢, V ≤ ∞. Then
(ℓ (𝑟, 𝑠) , ℓ (𝑢, V)) = ℓ (𝑢 ⊖ 𝑟, V ⊖ 𝑠) . (3)

In particular, the Köthe dual of ℓ(𝑝, 𝑞), defined by
(ℓ(𝑝, 𝑞), ℓ

1
), becomes ℓ(𝑝󸀠, 𝑞󸀠) for 1 ≤ 𝑝, 𝑞 < ∞ and 1/𝑝 +

1/𝑝
󸀠
= 1/𝑞 + 1/𝑞

󸀠
= 1.

Alsomultipliers between sequence spaces given by Taylor
coefficients of holomorphic functions in the disk have been
deeply studied in the literature. Since the time of Hardy and
Littlewood, mixed norm and related spaces have been used
to study function spaces on the unit disk and later to study
multipliers between such spaces. Special emphasis has been
put on the case where the spaces 𝐴 and 𝐵 correspond to
the sequence space of Taylor coefficient of analytic functions
such as Hardy spaces, Bergman spaces, mixed norm spaces
of analytic functions, and so forth. The theory of Hardy
spaces and mixed norm spaces of analytic functions was
originated in the work of Hardy and Littlewood (see [2, 3])
who implicitly considered the spaces 𝐻(𝑝, 𝑞, 𝛼) of functions
𝑓 ∈H(D) such that

(∫

1

0

(1 − 𝑟)
𝑞𝛼−1

𝑀
𝑞

𝑝
(𝑓, 𝑟)𝑑𝑟)

1/𝑞

< ∞. (4)

Their work on these spaces was continued by Flett and Sledd
(see [4–8]) and later on by Pavlović (see [9, 10]). Multipliers
on Hardy spaces were in fashion for a long time and much
work was done on them and related spaces. However nowa-
days complete descriptions of multipliers between Hardy
spaces (𝐻𝑝

, 𝐻
𝑞
) for certain values of 𝑝 and 𝑞 remain still
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open. The reader is referred to the surveys (see [11, 12])
for lots of results and references. Also many results on
multipliers between mixed norm spaces of analytic functions
have been established in the last decades (see [13–15] and
references thereby). For such a purpose, the use of solid
spaces (sequence spaces whose norm depends only on the
size of the coefficients), and in particular ℓ(𝑝, 𝑞) spaces, is
a rather important tool. It is worth mentioning that the
smallest solid space contained or which contains one of
classical Hardy, Bergman, and𝐻(𝑝, 𝑞, 𝛼) is actually𝐻(2, 𝑞, 𝛼)
for some values𝑝, 𝑞, and𝛼 (see [14, 15]) and this last space can
be identified with certain weighted ℓ(2, 𝑞), due to Plancherel’s
theorem.

Another appearance of mixed norm spaces comes with
the use of lacunary sequences, that is, 𝑎 = (𝑎𝑛), such that
supp(𝑎) ⊂ {𝑛𝑘 : 𝑘 ∈ N0} for a sequence of integers satisfying
inf 𝑛𝑘+1/𝑛𝑘 = 𝜆 > 1. Recently (see [16]) the description of
the Taylor coefficient of analytic functions 𝐹(𝑧) = ∑∞

𝑘=0
𝑏𝑘𝑧

𝑛𝑘 ,
where 𝑛𝑘 is a lacunary sequence, belonging to the weighted
Bergman-Besov space 𝐵1(𝜌) has been achieved under certain
conditions on the weight. It corresponds again with certain
weighted ℓ(2, 1).

In this paper, we consider families of intervals I = {𝐼𝑘 :

𝑘 ∈ N0} where 𝐼𝑘 = {𝑗 ∈ N0 s.t. 𝑛𝑘 ≤ 𝑗 < 𝑛
󸀠

𝑘
} for some

increasing sequences (𝑛𝑘)𝑘 and (𝑛
󸀠

𝑘
) such that 𝑛𝑘 < 𝑛

󸀠

𝑘
≤ 𝑛𝑘+1

and we use the notation ΛI = ∪𝐼𝑘. We will introduce the
spaces ℓI(𝑝, 𝑞) given by sequences 𝑎 = (𝑎𝑗)𝑗∈ΛI

verifying

((∑

𝑗∈𝐼𝑘

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝

)

1/𝑝

)

𝑘

∈ ℓ
𝑞 (5)

and the obvious modifications for 𝑝 = ∞ or 𝑞 = ∞.
In particular, ℓ(𝑝, 𝑞) = ℓI(𝑝, 𝑞) for 𝐼𝑘 = [2

𝑘
− 1, 2

𝑘+1
−

1) ∩ N0. Also a lacunary sequence 𝑎 = (𝑎𝑛)𝑛 corresponds to
supp(𝑎) ⊆ ΛI whereI = {𝐼𝑘 : 𝑘 ∈ N0} with 𝐼𝑘 = {𝑛𝑘} (that
is, 𝑛󸀠

𝑘
= 𝑛𝑘 + 1) for some inf𝑘𝑛𝑘+1/𝑛𝑘 = 𝜆 > 1.

We will give the necessary and sufficient conditions for
a sequence 𝜆 = (𝜆𝑗)𝑗 to belong to the multiplier space
(ℓ

I
(𝑟, 𝑠), ℓ

J
(𝑢, V)) whenever ΛI = ΛJ. We also get some

applications to multipliers between certain weighted mixed
norm spaces of analytic functions. The paper is organized as
follows. Section 2 contains the definitions and first properties
of the spaces ℓI(𝑝, 𝑞), studying inclusions between them
and conditions for coincidence results ℓI(𝑝, 𝑞) = ℓJ(𝑝, 𝑞).
Section 3 contains the main result, which is split into three
subsections: the case where intervals in J are union of
intervals inI, to be denotedI ≤ J, the case where for each
𝐼 ∈ I there exists 𝐽 ∈ J such that either 𝐼 ⊆ 𝐽 or 𝐽 ⊆ 𝐼, and
finally the case where there exists (𝐼, 𝐽) ∈ I × J such that
𝐼 ∩ 𝐽 ̸= 0 and 𝐼 ∩ 𝐽 ∉ I ∪ J. In Section 4, we include some
application to multipliers on spaces of analytic functions
and extend some recent result on weighted Bergman-Besov
classes.

From now on, we will write 𝐴 ≈ 𝐵 whenever there exists
𝐶 > 0 such that 𝐶−1

𝐴 ≤ 𝐵 ≤ 𝐶𝐴 and, as usual, #𝐼 stands for
the cardinal of 𝐼, 1/𝑝 + 1/𝑝󸀠 = 1 for 1 ≤ 𝑝 ≤ ∞ and also 𝐶
denotes a constant that may vary from line to line.

2. Generalized Mixed Norm Spaces

Definition 2. Let 1 ≤ 𝑝, 𝑞 ≤ ∞ and let I be a collection of
disjoint intervals in N0, say 𝐼𝑘 = N0 ∩ [𝑛𝑘, 𝑛

󸀠

𝑘
), where 𝑛𝑘 <

𝑛
󸀠

𝑘
≤ 𝑛𝑘+1. One sets ΛI = ∪𝑘∈N0

𝐼𝑘. One writes ℓ
I
(𝑝, 𝑞) for

the space of sequences (𝑎𝑛)𝑛∈ΛI
verifying

((∑

𝑗∈𝐼𝑘

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝

)

1/𝑝

)

𝑘

∈ ℓ
𝑞
. (6)

This space becomes a Banach space under the norm

‖𝑎‖
I
𝑝,𝑞
= (

∞

∑

𝑘=0

(∑

𝑗∈𝐼𝑘

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝

)

𝑞/𝑝

)

1/𝑞

(7)

with the obvious modifications for 𝑝 = ∞ or 𝑞 = ∞.

Remark 3. Of course ℓI(𝑝, 𝑝) = {(𝑎𝑛)𝑛∈ΛI
: (∑

𝑛
|𝑎𝑛|

𝑝
)
1/𝑝

<

∞}. In particular, ℓI(𝑝, 𝑝) = ℓ𝑝 whenever ΛI = N0.
An elementary approach, using Hölder’s inequality, leads

to the duality

ℓ
I
(𝑝, 𝑞)

∗
= ℓ

I
(𝑝

󸀠
, 𝑞

󸀠
) (8)

for 1 ≤ 𝑝, 𝑞 < ∞ and 1/𝑝 + 1/𝑝󸀠 = 1/𝑞 + 1/𝑞󸀠 = 1.

Remark 4. It is clear that (𝑎𝑗)𝑗 ∈ ℓI(𝑝, 𝑞) ⇔ (𝑎
𝑝

𝑗
)𝑗 ∈ ℓ

I
(1,

𝑞/𝑝) in the case 𝑝 < 𝑞 and also (𝑎𝑗)𝑗 ∈ ℓ
I
(𝑝, 𝑞) ⇔ (𝑎

𝑞

𝑗
)𝑗 ∈

ℓ
I
((𝑝/𝑞), 1) in the case 𝑝 > 𝑞.
Moreover, for 𝑎𝑝 = (𝑎𝑝

𝑗
)𝑗,

‖𝑎‖
I
𝑝,𝑞
= (
󵄩󵄩󵄩󵄩𝑎

𝑝󵄩󵄩󵄩󵄩

I

1,𝑞/𝑝
)

1/𝑝

= (
󵄩󵄩󵄩󵄩𝑎

𝑞󵄩󵄩󵄩󵄩

I

𝑝/𝑞,1
)

1/𝑞

. (9)

Remark 5. Let 𝑎 ∈ ℓI(𝑝, 𝑞).

(i) IfI󸀠 is a subcollection of intervals inI, then ‖𝑎‖I
󸀠

𝑝,𝑞
≤

‖𝑎‖
I
𝑝,𝑞
.

(ii) If I = I󸀠
∪I󸀠󸀠 for two disjoint collections I󸀠 and

I󸀠󸀠, then ‖𝑎‖I
𝑝,𝑞
= ((‖𝑎‖

I󸀠

𝑝,𝑞
)
𝑞
+ (‖𝑎‖

I󸀠󸀠

𝑝,𝑞
)
𝑞
)
1/𝑞.

We would like to analyze the embedding between
ℓ
I
(𝑝1, 𝑞1) and ℓ

I
(𝑝2, 𝑞2).

Proposition 6. Let I be a collection of disjoint intervals in
N0 and let 1 ≤ 𝑝1, 𝑝2, 𝑞 ≤ ∞ with 𝑝1 ̸= 𝑝2. Then ℓI(𝑝1, 𝑞) =
ℓ
I
(𝑝2, 𝑞) (with equivalent norms) if and only if

sup
𝑘∈N0

#𝐼𝑘 < ∞. (10)

In particular, if sup
𝑘∈N0

#𝐼𝑘 < ∞, then

ℓ
I
(𝑝, 𝑞) = {(𝑎𝑛)𝑛∈ΛI

: (∑

𝑛

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑞
)

1/𝑞

< ∞} . (11)
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Proof. ⇒) Assume, for instance, 𝑝1 < 𝑝2 and that ‖𝑎‖I
𝑝1,𝑞

≈

‖𝑎‖
I
𝑝2,𝑞

for all 𝑎 supported in ΛI. Hence, taking 𝑎 = 𝜒𝐼𝑘
,

one concludes that (𝑛󸀠
𝑘
− 𝑛𝑘)

1/𝑝1−1/𝑝2 ≤ 𝐶 for any 𝑘. Hence
sup

𝑘
#𝐼𝑘 < ∞.
⇐) Note that #𝐼𝑘 = (𝑛

󸀠

𝑘
− 𝑛𝑘) and assume𝑀 = sup

𝑘
(𝑛𝑘 −

𝑛
󸀠

𝑘
). Then

‖𝑎‖
I
𝑝1,𝑞

= (

∞

∑

𝑘=0

(∑

𝑗∈𝐼𝑘

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝1
)

𝑞/𝑝1

)

1/𝑞

≈ (

∞

∑

𝑘=0

(∑

𝑗∈𝐼𝑘

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝2
)

𝑞/𝑝2

)

1/𝑞

= ‖𝑎‖
I
𝑝2,𝑞

(12)

since ‖ ⋅ ‖𝑝1 ≈ ‖ ⋅ ‖𝑝2 in C𝑀.

Proposition 7. Let 1 ≤ 𝑝1, 𝑞1, 𝑝2, 𝑞2 ≤ ∞ and let I be a
collection of disjoint intervals in N0 with sup𝑘#𝐼𝑘 = ∞.

Then ℓI(𝑝1, 𝑞1) ⊆ ℓI(𝑝2, 𝑞2) if and only if 𝑝1 ≤ 𝑝2 and
𝑞1 ≤ 𝑞2.

Proof. ⇒)Assume that there exists 𝐶 > 0 such that ‖𝑎‖I
𝑝2,𝑞2

≤

𝐶‖𝑎‖
I
𝑝1,𝑞1

for all 𝑎 supported inΛI. Hence, taking 𝑘 ∈ N0 and
𝑎 = 𝜒𝐼𝑘

, one concludes that (#𝐼𝑘)
1/𝑝2−1/𝑝1 ≤ 𝐶. Hence 𝑝1 ≤ 𝑝2.

Let 𝑁 ∈ N0 and consider 𝑎 = ∑𝑁

𝑘=1
𝜒𝑛𝑘

. Applying the above
inequality, we obtain𝑁1/𝑞2−1/𝑞1 ≤ 𝐶. Therefore, 𝑞1 ≤ 𝑞2.

⇐) Let us denote

ℓ
𝑞
(ℓ

𝑝
) =

{

{

{

(𝑥𝑘)𝑘∈N0
: 𝑥𝑘 ∈ ℓ

𝑝
, (

∞

∑

𝑘=0

󵄩󵄩󵄩󵄩𝑥𝑘
󵄩󵄩󵄩󵄩

𝑞

ℓ𝑝
)

1/𝑞

< ∞

}

}

}

.

(13)

Hence the mapping

(𝑎𝑛)𝑛∈N0
󳨀→ ((𝑎𝑗)𝑗∈𝐼𝑘

)
𝑘∈N0

(14)

is an isometric embedding from ℓ
I
(𝑝, 𝑞) into ℓ𝑞(ℓ𝑝). Taking

into account that ℓ𝑟1(𝐸) ⊆ ℓ𝑟2(𝐸) for any Banach space 𝐸 and
𝑟1 ≤ 𝑟2, we conclude that

ℓ
I
(𝑝, 𝑞1) ⊆ ℓ

I
(𝑝, 𝑞2) , ℓ

I
(𝑝1, 𝑞) ⊆ ℓ

I
(𝑝2, 𝑞) . (15)

Therefore

ℓ
I
(𝑝1, 𝑞1) ⊆ ℓ

I
(𝑝2, 𝑞1) ⊆ ℓ

I
(𝑝2, 𝑞2) . (16)

We would like to analyze the embedding between ℓI(𝑝,
𝑞) and ℓJ(𝑝, 𝑞) forI ̸=J whenever ΛI = ΛJ.

Proposition 8. LetI = {𝐼𝑙 : 𝑙 ∈ N0} andJ = {𝐽𝑘 : 𝑘 ∈ N0}. If
ΛI = ΛJ, 𝑝 ≤ 𝑞 (respect. 𝑞 ≤ 𝑝), and sup𝑘#𝐽𝑘 < ∞ (respect.
sup

𝑙
#𝐼𝑙 < ∞), then

ℓ
I
(𝑝, 𝑞) ⊆ ℓ

J
(𝑝, 𝑞) (𝑟𝑒𝑠𝑝𝑒𝑐𝑡. ℓ

J
(𝑝, 𝑞) ⊆ ℓ

I
(𝑝, 𝑞)) . (17)

Proof. Proposition 6 gives ℓJ(𝑝, 𝑞) = ℓ
J
(𝑞, 𝑞), and clearly

ℓ
J
(𝑞, 𝑞) = ℓ

I
(𝑞, 𝑞). Then the result follows using ℓI(𝑝, 𝑞) ⊆

ℓ
I
(𝑞, 𝑞) whenever 𝑝 ≤ 𝑞.

Let us mention another particular case where they coin-
cide.

Proposition 9. Let I be such that 𝐼𝑘 = [𝑛𝑘, 𝑛󸀠𝑘) ∩ N0 with
𝑛
󸀠

2𝑘
= 𝑛2𝑘+1 and define

J = {𝐽𝑘 = 𝐼2𝑘 ∪ 𝐼2𝑘+1 : 𝑘 ∈ N0} . (18)

Then ℓI(𝑝, 𝑞) = ℓJ(𝑝, 𝑞).

Proof. Note that 𝐽𝑘 = 𝐼2𝑘 ∪ 𝐼2𝑘+1 is again an interval in N0.
Using that (𝑎 + 𝑏)𝛼 ≤ 𝐶𝛼(𝑎

𝛼
+ 𝑏

𝛼
) for 𝑎, 𝑏, 𝛼 > 0, then

‖𝑎‖
J
𝑝,𝑞
= (

∞

∑

𝑘=0

(∑

𝑗∈𝐽𝑘

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝

)

𝑞/𝑝

)

1/𝑞

= (

∞

∑

𝑘=0

(∑

𝑗∈𝐼2𝑘

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝

+ ∑

𝑗∈𝐼2𝑘+1

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝

)

𝑞/𝑝

)

1/𝑞

≤ 𝐶(

∞

∑

𝑘=0

(∑

𝑗∈𝐼2𝑘

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝

)

𝑞/𝑝

+

∞

∑

𝑘=0

( ∑

𝑗∈𝐼2𝑘+1

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝

)

𝑞/𝑝

)

1/𝑞

≤ 𝐶‖𝑎‖
I
𝑝,𝑞
.

(19)

On the other hand, using now (𝑎𝛽 + 𝑏𝛽) ≤ 𝐶𝛽(𝑎 + 𝑏)
𝛽 for

𝑎, 𝑏, 𝛽 > 0,

‖𝑎‖
I
𝑝,𝑞
= (

∞

∑

𝑘=0

(∑

𝑗∈𝐼2𝑘

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝

)

𝑞/𝑝

+ ( ∑

𝑗∈𝐼2𝑘+1

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝

)

𝑞/𝑝

)

1/𝑞

≤ 𝐶
󸀠
(

∞

∑

𝑘=0

( ∑

𝑗∈𝐼2𝑘∪𝐼2𝑘+1

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝

)

𝑞/𝑝

)

1/𝑞

≤ 𝐶
󸀠
‖𝑎‖

J
𝑝,𝑞
.

(20)

The previous idea is easily generalized using the following
definition.

Definition 10. LetI := {𝐼𝑙 : 𝑙 ∈ N0} andJ := {𝐽𝑘 : 𝑘 ∈ N0}.
One says thatI ≤ J if the following conditions hold:

(i) ΛI = ΛJ;
(ii) 𝐹𝑘 = 𝐹𝑘(I,J) := {𝑙 ∈ N0 : 𝐼𝑙 ⊆ 𝐽𝑘} ̸= 0 for all 𝑘 ∈ N0;
(iii) 𝐽𝑘 = ∪𝑙∈𝐹𝑘𝐼𝑙 for all 𝑘 ∈ N0.
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Proposition 11. Let 1 ≤ 𝑝, 𝑞 ≤ ∞ andI ≤ J. Then

(i) ℓJ(𝑝, 𝑞) ⊆ ℓI(𝑝, 𝑞) for 𝑝 ≤ 𝑞;
(ii) ℓI(𝑝, 𝑞) ⊆ ℓJ(𝑝, 𝑞) for 𝑞 ≤ 𝑝.
Moreover, the embeddings above are of norm 1.

Proof. (i) Case 𝑞 = ∞: let 𝑎 ∈ ℓJ(𝑝,∞) and 𝑙 ∈ N0. We know
that there is 𝑘 such that 𝐼𝑙 ⊆ 𝐽𝑘. Hence

(∑

𝑛∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝

≤ (∑

𝑛∈𝐽𝑘

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝

≤ ‖𝑎‖
J
𝑝,∞
. (21)

This gives ‖𝑎‖I
𝑝,∞

≤ ‖𝑎‖
J
𝑝,∞

.
The case 𝑝 = 1: let 𝑎 ∈ ℓJ(1, 𝑞) and 𝑞 ≥ 1. Therefore

(‖𝑎‖
J
1,𝑞
)
𝑞

= ∑

𝑘

(∑

𝑙∈𝐹𝑘

∑

𝑛∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨)

𝑞

≥ ∑

𝑘

∑

𝑙∈𝐹𝑘

(∑

𝑛∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨)

𝑞

= (‖𝑎‖
I
1,𝑞
)
𝑞

.

(22)

The case 1 < 𝑝 ≤ 𝑞 < ∞ follows using (9) and the previous
one.

(ii) The case 𝑝 = ∞: let 𝑎 ∈ ℓI(∞, 𝑞). Then

‖𝑎‖
J
∞,𝑞

= (∑

𝑘

sup
𝑙∈𝐹𝑘

(sup
𝑛∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨)

𝑞

)

1/𝑞

≤ (∑

𝑘

∑

𝑙∈𝐹𝑘

(sup
𝑛∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨)

𝑞

)

1/𝑞

= ‖𝑎‖
I
∞,𝑞
.

(23)

To cover the remaining cases, from (9), we simply need to
show that ℓI(𝑝, 1) ⊆ ℓJ(𝑝, 1) for 𝑝 ≥ 1. Now observe that

‖𝑎‖
J
𝑝,1
= ∑

𝑘

(∑

𝑙∈𝐹𝑘

∑

𝑛∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝

= ∑

𝑘

(∑

𝑙∈𝐹𝑘

󵄩󵄩󵄩󵄩󵄩
𝑎𝜒𝐼𝑙

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
)

1/𝑝

≤ ∑

𝑘

∑

𝑙∈𝐹𝑘

󵄩󵄩󵄩󵄩󵄩
𝑎𝜒𝐼𝑙

󵄩󵄩󵄩󵄩󵄩𝑝
= ∑

𝑙

(∑

𝑛∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝

= ‖𝑎‖
I
𝑝,1
.

(24)

Theorem 12. LetI ≤ J and 1 ≤ 𝑝, 𝑞 ≤ ∞ with 𝑝 ̸= 𝑞.
ℓ
I
(𝑝, 𝑞) = ℓ

J
(𝑝, 𝑞) (with equivalent norms) if and only if

sup
𝑘
#𝐹𝑘 < ∞.

Proof. ⇒) Assume that ‖𝑎‖J
𝑝,𝑞
≈ ‖𝑎‖

I
𝑝,𝑞

for all 𝑎 finitely sup-
ported Let 𝑘 ∈ N0 and define

𝑎
(𝑘)
= ∑

𝑙∈𝐹𝑘

(#𝐼𝑙)
−1/𝑝

𝜒𝐼𝑙
. (25)

Then ‖𝑎‖J
𝑝,𝑞
= (#𝐹𝑘)

1/𝑝 and ‖𝑎‖I
𝑝,𝑞
= (#𝐹𝑘)

1/𝑞.

One concludes that 𝐶2 ≤ (#𝐹𝑘)
1/𝑝−1/𝑞

≤ 𝐶1 which
implies, in the case 𝑝 ̸= 𝑞, sup

𝑘∈N0
(#𝐹𝑘) < ∞.

⇐) Case 𝑝 < 𝑞. From Proposition 11, we only need to show
ℓ
I
(𝑝, 𝑞) ⊆ ℓ

J
(𝑝, 𝑞). Using now Hölder’s inequality for 𝑞/𝑝 >

1,

(∑

𝑛∈𝐽𝑘

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝

≤ (∑

𝑙∈𝐹𝑘

∑

𝑛∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝

≤ (∑

𝑙∈𝐹𝑘

(∑

𝑛∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

𝑞/𝑝

)

1/𝑞

(#𝐹𝑘)
1/𝑝⊖𝑞

.

(26)

Therefore, if𝑀 = sup
𝑘
𝐹𝑘, we have

‖𝑎‖
J
𝑝,𝑞
= (

∞

∑

𝑘=0

(∑

𝑛∈𝐽𝑘

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

𝑞/𝑝

)

1/𝑞

≤ 𝑀
1/𝑝⊖𝑞

(∑

𝑘∈N0

∑

𝑙∈𝐹𝑘

(∑

𝑛∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

𝑞/𝑝

)

1/𝑞

= 𝑀
1/𝑝⊖𝑞

(∑

𝑙∈N0

(∑

𝑛∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

𝑞/𝑝

)

1/𝑞

= 𝑀
1/𝑝⊖𝑞

‖𝑎‖
I
𝑝,𝑞
.

(27)

Case 𝑝 > 𝑞. Using again Proposition 11, we will show
ℓ
J
(𝑝, 𝑞) ⊆ ℓ

I
(𝑝, 𝑞). Using 1/𝑞 = 1/𝑞 ⊖ 𝑝 + 1/𝑝,

‖𝑎‖
I
𝑝,𝑞
= (∑

𝑙

󵄩󵄩󵄩󵄩󵄩
𝑎𝜒𝐼𝑙

󵄩󵄩󵄩󵄩󵄩

𝑞

𝑝
)

1/𝑞

= (∑

𝑘

∑

𝑙∈𝐹𝑘

󵄩󵄩󵄩󵄩󵄩
𝑎𝜒𝐼𝑙

󵄩󵄩󵄩󵄩󵄩

𝑞

𝑝
)

1/𝑞

≤ (∑

𝑘

(∑

𝑙∈𝐹𝑘

󵄩󵄩󵄩󵄩󵄩
𝑎𝜒𝐼𝑙

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
)

𝑞/𝑝

(#𝐹𝑘)
𝑞/𝑞⊖𝑝

)

1/𝑞

≤ 𝑀
1/𝑞⊖𝑝

(∑

𝑘

(∑

𝑛∈𝐽𝑘

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

𝑞/𝑝

)

1/𝑞

≤ 𝑀
1/𝑞⊖𝑝

‖𝑎‖
J
𝑝,𝑞
.

(28)

Let us now exhibit an example where neither ℓ(𝑝, 𝑞)I ⊆

ℓ
J
(𝑝, 𝑞) nor ℓJ(𝑝, 𝑞) ⊆ ℓI(𝑝, 𝑞).
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Example 13. Let 1 ≤ 𝑝 < 𝑞 < ∞ and take I,J as shown in
Figure 1 with

card (𝐼0) = 𝑛1

card (𝐼1) = ⋅ ⋅ ⋅ = card (𝐼𝑛1) = 1

card (𝐼𝑛1+1) = 𝑛2

card (𝐼𝑛1+2) = ⋅ ⋅ ⋅ = card (𝐼𝑛1+𝑛2+1) = 1

card (𝐼𝑛1+𝑛2+2) = 𝑛3, . . .

card (𝐽0) = ⋅ ⋅ ⋅ = card (𝐽𝑛1) = 1

card (𝐽𝑛1) = 𝑛1

card (𝐽𝑛1+1) = ⋅ ⋅ ⋅ = card (𝐽𝑛1+𝑛2) = 1

card (𝐽𝑛1+𝑛2+1) = 𝑛2, . . . .

(29)

Let us see that neither ℓJ(𝑝, 𝑞) ⊂ ℓI(𝑝, 𝑞) nor ℓI(𝑝, 𝑞) ⊂
ℓ
J
(𝑝, 𝑞).
Taking

𝑎 = (

𝑛1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝛽1, . . . , 𝛽1,

𝑛1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0,

𝑛2
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝛽2, . . . , 𝛽2, 0, . . .) ,

𝑏 = (0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛1

, 𝛽1, . . . , 𝛽1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛1

, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛2

, 𝛽2, . . .)

(30)

we have

‖𝑎‖
I
𝑝,𝑞
= ‖𝑏‖

J
𝑝,𝑞
= (∑

𝑗

𝛽
𝑞

𝑗
𝑛
𝑞/𝑝

𝑗
)

1/𝑞

,

‖𝑎‖
J
𝑝,𝑞
= ‖𝑏‖

I
𝑝,𝑞
= (∑

𝑗

𝛽
𝑞

𝑗
𝑛𝑗)

1/𝑞

.

(31)

Then it is enough to consider 𝑞 > 𝑝 and 𝛽𝑗 = 𝑛
−1/𝑝

𝑗
𝑗
−1/𝑞.

Now

(∑

𝑗

𝛽
𝑞

𝑗
𝑛
𝑞/𝑝

𝑗
)

1/𝑞

= (∑

𝑗

𝑗
−1
)

1/𝑞

= ∞ (32)

and, since 𝑛𝑗 ≥ 𝑗,

(∑

𝑗

𝛽
𝑞

𝑗
𝑛𝑗)

1/𝑞

= (∑

𝑗

𝑗
−1
𝑛
1−𝑞/𝑝

𝑗
)

1/𝑞

≤ (∑

𝑗

𝑗
−𝑞/𝑝

)

1/𝑞

< ∞.

(33)

Hence we have 𝑎 ∈ ℓJ(𝑝, 𝑞) \ ℓI(𝑝, 𝑞) and 𝑏 ∈ ℓI(𝑝, 𝑞) \
ℓ
J
(𝑝, 𝑞).
We would like to explain a procedure to analyze the

general case ΛI = ΛJ.

Definition 14. LetI andJ be families of disjoint intervals in
N0 with ΛI = ΛJ. For each 𝑘 ∈ N0, one uses the notation,
as above, 𝐹𝑘 = {𝑙 ∈ N0 : 𝐼𝑙 ⊆ 𝐽𝑘} which now might be empty.
One also defines

𝐹𝑘 = {𝑙 ∈ N0 : 𝐽𝑘 ∩ 𝐼𝑙 ̸= 0} . (34)

We write 𝜙 and Φ for the mappings given by

𝜙 (𝑘) = min𝐹𝑘 , Φ (𝑘) = max𝐹𝑘. (35)

Similarly, interchangingI and J, we define 𝐺𝑙, 𝐺𝑙, 𝜓(𝑙),
and 𝜓(𝑙).

Definition 15. One defines the “left” and “right” part of the
interval 𝐽𝑘 by

̌𝐽𝑘 = 𝐽𝑘 ∩ 𝐼𝜙(𝑘), 𝐽𝑘 = 𝐽𝑘 ∩ 𝐼Φ(𝑘) (36)

and, denoting 𝐽󸀠
𝑘
= ∪𝑙∈𝐹𝑘

𝐼𝑙 and 𝐽𝑘 = ∪𝑙∈𝐹𝑘𝐼𝑙, one has

𝐽
󸀠

𝑘
⊆ 𝐽𝑘 ⊆ 𝐽𝑘, (37)

𝐽𝑘 = 𝐽
󸀠

𝑘
∪ 𝐽𝑘 ∪

̌𝐽𝑘, (38)

where 𝐽󸀠
𝑘
= 0 whenever 𝐹𝑘 = 0.

Similarly, interchanging I and J, we consider ̌𝐼𝑙, 𝐼𝑙, 𝐼
󸀠

𝑙
,

and 𝐼𝑙.
With this notation out of the way we can classify intervals

inJ into four different types (according toI). Note that for
each interval 𝐽 ∈ J there are four possibilities: 𝐽 coincides
with 𝐼 for some 𝐼 ∈ I, 𝐽 can be written as a union of at least
two intervals in I, 𝐽 is strictly contained into some interval
𝐼 ∈ I, or there exists 𝐼 ∈ I which overlaps with 𝐽 and its
complement 𝐽𝑐.

Thereforewe decomposeN0 into four disjoint sets defined
as follows.

Definition 16. LetI andJ be families of disjoint intervals in
N0 with ΛI = ΛJ. One introduces

𝑁
J

equal = {𝑘 ∈ N0 : # (𝐹𝑘 \ 𝐹𝑘) = 0, #𝐹𝑘 = 1} ,

𝑁
J

big = {𝑘 ∈ N0 : # (𝐹𝑘 \ 𝐹𝑘) = 0, #𝐹𝑘 ≥ 2} ,

𝑁
J

small = {𝑘 ∈ N0 : # (𝐹𝑘 \ 𝐹𝑘) > 0, #𝐹𝑘 = 1} ,

𝑁
J
inter = {𝑘 ∈ N0 : # (𝐹𝑘 \ 𝐹𝑘) > 0, #𝐹𝑘 ≥ 2} .

(39)

Wedefine the sets𝑁I
equal, 𝑁

I
big, 𝑁

I
small, and𝑁

I
inter similarly.

Remark 17. Using (38), we can also give a description of the
sets above in terms of 𝜙 and Φ:

𝑁
J

equal = {𝑘 : 𝜙 (𝑘) = Φ (𝑘) , 𝐽𝑘 = 𝐼𝜙(𝑘)} .

𝑁
J

big = {𝑘 : 𝜙 (𝑘) < Φ (𝑘) , 𝐽𝑘 = 𝐽𝑘} .

𝑁
J

small = {𝑘 : 𝜙 (𝑘) = Φ (𝑘) , 𝐽𝑘 ⊊ 𝐼𝜙(𝑘)} .

𝑁
J
inter = {𝑘 : 𝜙 (𝑘) < Φ (𝑘) , 𝐽𝑘 ⊊ 𝐽𝑘} .

(40)



6 Abstract and Applied Analysis

0

I0

J0

I1

J1

I2 In1

Jn1

In1+1

Jn1+1Jn1−1

In1+2 In1 n 12+ +

Jn1 n 12+ +
Jn1 n2+· · · · · ·
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Figure 1

Using the above decomposition, we can generalize Propo-
sitions 8 and 11 and Theorem 12. Note that sup

𝑘
#𝐽𝑘 < ∞

implies sup
𝑘
#𝐹𝑘 < ∞ and also that I ≤ J corresponds to

the case where𝑁J
inter ∪ 𝑁

J

small = 0 or equivalently #𝐺𝑙 = 1 for
any 𝑙 ∈ N0.

Theorem 18. Let 1 ≤ 𝑝 < 𝑞 ≤ ∞ and I,J be collections of
intervals such that

ℓ
I
(𝑝, 𝑞) ⊆ ℓ

J
(𝑝, 𝑞) ⇐⇒ sup {#𝐹𝑘; 𝑘 ∈ N0} < ∞. (41)

Proof. ⇒) Arguing as in Theorem 12, for 𝑘 ∈ N0 we consider

𝑎
(𝑘)
= ∑

𝑙∈𝐹𝑘

(# (𝐼𝑙 ∩ 𝐽𝑘))
−1/𝑝

𝜒𝐼𝑙∩𝐽𝑘
. (42)

Hence

󵄩󵄩󵄩󵄩󵄩
𝑎
(𝑘)󵄩󵄩󵄩󵄩󵄩

J

𝑝,𝑞
= (∑

𝑛∈𝐽𝑘

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝

= (∑

𝑙∈𝐹𝑘

∑

𝑛∈𝐼𝑙∩𝐽𝑘

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝

= (#𝐹𝑘)
1/𝑝

,

󵄩󵄩󵄩󵄩󵄩
𝑎
(𝑘)󵄩󵄩󵄩󵄩󵄩

I

𝑝,𝑞
= (∑

𝑙∈𝐹𝑘

( ∑

𝑛∈𝐼𝑙∩𝐽𝑘

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

𝑞/𝑝

)

1/𝑞

= (#𝐹𝑘)
1/𝑞

.

(43)

Therefore, using that ‖𝑎(𝑘)‖
J

𝑝,𝑞
≤ 𝐶‖𝑎

(𝑘)
‖
I

𝑝,𝑞
and 𝑝 < 𝑞, we

conclude that sup{#𝐹𝑘; 𝑘 ∈ N0} < ∞.
⇐) Denote sup

𝑘
(#𝐹𝑘) = 𝑀 ≥ 0 and let 𝑘 ∈ N0.

Case 𝑞 = ∞. If 𝑘 ∈ 𝑁J

small ∪ 𝑁
J

equal, then

(∑

𝑛∈𝐽𝑘

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝

≤ ( ∑

𝑛∈𝐼𝜙(𝑘)

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝

≤ ‖𝑎‖
I
𝑝,∞
. (44)

If 𝑘 ∈ 𝑁J

big ∪ 𝑁
J
inter, we have

(∑

𝑛∈𝐽𝑘

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝

= (∑

𝑙∈𝐹𝑘

∑

𝑛∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
+ ∑

𝑛∈ ̆𝐽𝑘∪𝐽𝑘

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝

≤ (∑

𝑙∈𝐹𝑘

∑

𝑛∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝

+ ( ∑

𝑛∈𝐼𝜙(𝑘)

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝

+ ( ∑

𝑛∈𝐼Φ(𝑘)

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝

≤ 𝐶(sup
𝑙∈𝐹𝑘

(∑

𝑛∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝

× (#𝐹𝑘)
1/𝑝
+ 2‖𝑎‖

I
𝑝,∞
) .

(45)

This shows ℓI(𝑝,∞) ⊆ ℓJ(𝑝,∞).

Case 𝑞 < ∞. Arguing as in Proposition 11, we simply show
that ℓI(1, 𝑞) ⊆ ℓJ(1, 𝑞) for 𝑞 > 1.

Observe that

∑

𝑘∈𝑁
J

small

(∑

𝑛∈𝐽𝑘

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨)

𝑞

≤ ∑

𝑙∈𝑁
I
big∪𝑁

I
inter

∑

𝜙(𝑘)=𝑙

(∑

𝑛∈𝐽𝑘

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨)

𝑞

≤ ∑

𝑙∈𝑁
I
big∪𝑁

I
inter

( ∑

𝜙(𝑘)=𝑙

∑

𝑛∈𝐽𝑘

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨)

𝑞

= ∑

𝑙∈𝑁
I
big∪𝑁

I
inter

(∑

𝑛∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨)

𝑞

≤ (‖𝑎‖
I
1,𝑞
)
𝑞

.

(46)

Also we have

∑

𝑘∈𝑁
J

equal∪𝑁
J

big

(∑

𝑛∈𝐽𝑘

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨)

𝑞

≤ ∑

𝑘∈𝑁
J

equal∪𝑁
J

big

(∑

𝑙∈𝐹𝑘

∑

𝑛∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨)

𝑞

≤ ∑

𝑘∈𝑁
J

equal∪𝑁
J

big

(#𝐹𝑘)
𝑞−1
∑

𝑙∈𝐹𝑘

(∑

𝑛∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨)

𝑞
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≤ 𝑀
𝑞−1

∑

𝑘∈𝑁
J

equal∪𝑁
J

big

∑

𝑙∈𝐹𝑘

(∑

𝑛∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨)

𝑞

≤ 𝑀
𝑞−1
(‖𝑎‖

I
1,𝑞
)
𝑞

.

(47)

Finally

∑

𝑘∈𝑁
J
inter

(∑

𝑛∈𝐽𝑘

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨)

𝑞

≤ ∑

𝑘∈𝑁
J
inter

(∑

𝑙∈𝐹𝑘

∑

𝑛∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 + ∑

𝑛∈ ̌𝐽𝑘

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 + ∑

𝑛∈𝐽𝑘

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨)

𝑞

≤ 𝐶 ∑

𝑘∈𝑁
J
inter

(#𝐹𝑘)
𝑞−1
∑

𝑙∈𝐹𝑘

(∑

𝑛∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨)

𝑞

+ 𝐶 ∑

𝑘∈𝑁
J
inter

(∑

𝑛∈ ̌𝐽𝑘

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨)

𝑞

+ 𝐶 ∑

𝑘∈𝑁
J
inter

(∑

𝑛∈𝐽𝑘

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨)

𝑞

≤ 𝐶𝑀
𝑞−1

∑

𝑙∈𝑁
I
inter∪𝑁

I
small

(∑

𝑛∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨)

𝑞

+ 𝐶 ∑

𝑘∈𝑁
J
inter

( ∑

𝑛∈𝐼𝜙(𝑘)

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨)

𝑞

+ ∑

𝑘∈𝑁
J
inter

( ∑

𝑛∈𝐼Φ(𝑘)

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨)

𝑞

≤ 𝐶(‖𝑎‖
I
1,𝑞
)
𝑞

.

(48)

Combining the above estimates, we conclude this implica-
tion.

Corollary 19. Let 1 ≤ 𝑝 < 𝑞 ≤ ∞ andI,J be such that

ℓ
J
(𝑝, 𝑞) ⊆ ℓ

I
(𝑝, 𝑞) ⇐⇒ sup {#𝐺𝑙; 𝑙 ∈ N0} < ∞. (49)

The next result can be achieved using duality, but we
include a direct proof.

Theorem 20. Let 1 ≤ 𝑞 < 𝑝 ≤ ∞ andI,J be such that

ℓ
J
(𝑝, 𝑞) ⊆ ℓ

I
(𝑝, 𝑞) ⇐⇒ sup {#𝐹𝑘; 𝑘 ∈ N0} < ∞. (50)

Proof. ⇒) Repeat the argument presented in the direct
implication of Theorem 18.

⇐) Denote again sup
𝑘
(#𝐹𝑘) = 𝑀.

Case 𝑝 = ∞. Observe first that if 𝑙 ∈ 𝑁I
big ∪ 𝑁

I
equal, we have

(sup
𝑛∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨)

𝑞

=
󵄨󵄨󵄨󵄨𝑎𝑛(𝑙)

󵄨󵄨󵄨󵄨

𝑞
≤ (sup

𝑛∈𝐽𝑘

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨)

𝑞

(51)

for some 𝑘 = 𝑘(𝑙) ∈ 𝑁J

small∪𝑁
J

equal. Since 𝑘(𝑙) ̸= 𝑘(𝑙
󸀠
) for 𝑙 ̸= 𝑙󸀠 ∈

𝑁
I
big ∪ 𝑁

I
equal, we obtain

∑

𝑙∈𝑁
I
big∪𝑁

I
equal

(sup
𝑛∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨)

𝑞

≤ ∑

𝑘∈𝑁
J

small∪𝑁
J

equal

(sup
𝑛∈𝐽𝑘

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨)

𝑞

. (52)

Also if 𝑙 ∈ 𝑁I
inter, then (sup𝑛∈𝐼𝑙 |𝑎𝑛|)

𝑞
= |𝑎𝑛(𝑙)|

𝑞 where 𝑛(𝑙) ∈
𝐼
󸀠

𝑙
∪ 𝐼𝑙 ∪

̌𝐼𝑙. Note that 𝑛(𝑙) ∈ 𝐽𝑘 for some 𝑘 ∈ 𝑁J

small ∪𝑁
J
inter and

1 ≤ # ({𝑙 ∈ 𝑁I
inter : 𝑛 (𝑙) ∈ 𝐽𝑘}) ≤ 2. (53)

Hence

∑

𝑙∈𝑁
I
inter

(sup
𝑛∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨)

𝑞

≤ 2 ∑

𝑘∈𝑁
J

small∪𝑁
J
inter

(sup
𝑛∈𝐽𝑘

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨)

𝑞

. (54)

On the other hand,

∑

𝑙∈𝑁
I
small

(sup
𝑛∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨)

𝑞

≤ ∑

𝑘∈𝑁
J

big∪𝑁
J
inter

∑

𝜓(𝑙)=𝑘

(sup
𝑛∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨)

𝑞

≤ ∑

𝑘∈𝑁
J

big∪𝑁
J
inter

(sup
𝑛∈𝐽𝑘

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨)

𝑞

(#𝐹𝑘)
𝑞

≤ 𝑀
𝑞
(‖𝑎‖

J
𝑝,∞
)
𝑞

.

(55)

Combining the previous cases, we get ℓJ(∞, 𝑞) ⊆

ℓ
I
(∞, 𝑞).

Case 𝑝 < ∞. Arguing as in Proposition 11, we simply show
that ℓJ(𝑝, 1) ⊆ ℓI(𝑝, 1) for 𝑝 > 1. Consider

‖𝑎‖
I
𝑝,1
= ∑

𝑙

(∑

𝑛∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝

≤ ∑

𝑙∈𝑁
I
small

(∑

𝑛∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝

+ ∑

𝑙∈𝑁
I
equal∪𝑁

I
big

(∑

𝑘∈𝐺𝑙

∑

𝑛∈𝐽𝑘

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝

+ ∑

𝑙∈𝑁
I
inter

( ∑

𝑘∈𝐺𝑙

∑

𝑛∈𝐽𝑘

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝

+∑

𝑛∈ ̆𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
+ ∑

𝑛∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝

= 𝐼1 + 𝐼2 + 𝐼3.

(56)
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Now observe that

𝐼1 ≤ ∑

𝑘∈𝑁
J

big∪𝑁
J
inter

∑

𝑙∈𝐹𝑘

(∑

𝑛∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝

≤ ∑

𝑘∈𝑁
J

big∪𝑁
J
inter

(∑

𝑛∈𝐽𝑘

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝

# (𝐹𝑘) ≤ 𝑀‖𝑎‖
J
𝑝,1
.

(57)

Also note, since 𝑝 > 1,

𝐼2 ≤ ∑

𝑙∈𝑁
I
equal∪𝑁

I
big

∑

𝑘∈𝐺𝑙

(∑

𝑛∈𝐽𝑘

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝

≤ ‖𝑎‖
J
𝑝,1
. (58)

Finally

𝐼3 ≤ ∑

𝑙∈𝑁
I
inter

(∑

𝑘∈𝐺𝑙

∑

𝑛∈𝐽𝑘

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝

+ (∑

𝑛∈ ̌𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝

+ (∑

𝑛∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝

≤ ∑

𝑘∈𝑁
J
inter∪𝑁

J

small

(∑

𝑛∈𝐽𝑘

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝

+ ∑

𝑙∈𝑁
I
inter

( ∑

𝑛∈𝐽𝜓(𝑙)

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝

+ ∑

𝑙∈𝑁
I
inter

( ∑

𝑛∈𝐽Ψ(𝑙)

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝

≤ 𝐶∑

𝑘

(∑

𝑛∈𝐽𝑘

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝

= 𝐶‖𝑎‖
J
𝑝,1
.

(59)

The converse implication is now complete.

Corollary 21. Let 1 ≤ 𝑞 < 𝑝 ≤ ∞ andI,J be collections of
intervals such that

ℓ
I
(𝑝, 𝑞) ⊆ ℓ

J
(𝑝, 𝑞) ⇐⇒ sup {#𝐺𝑙; 𝑙 ∈ N0} < ∞. (60)

Corollary 22. Let 1 ≤ 𝑝, 𝑞 ≤ ∞ with 𝑝 ̸= 𝑞 and I,J be
collections of intervals such that

ℓ
J
(𝑝, 𝑞) = ℓ

I
(𝑝, 𝑞) ⇐⇒ sup {(#𝐹𝑘) (#𝐺𝑙) ; 𝑘, 𝑙 ∈ N0} < ∞.

(61)

Proof. It suffices to show the case 𝑝 < 𝑞. Note that ℓI(𝑝, 𝑞) ⊆
ℓ
J
(𝑝, 𝑞) and ℓJ(𝑝, 𝑞) ⊆ ℓ

I
(𝑝, 𝑞) are equivalent, due to

Theorem 18 and Corollary 19, to the facts sup
𝑘
(#𝐹𝑘) < ∞ and

sup
𝑙
(#𝐺𝑙) < ∞, or equivalently

sup {(#𝐹𝑘) (#𝐺𝑙) ; 𝑘, 𝑙 ∈ N0} = sup
𝑘

(#𝐹𝑘) sup
𝑙

(#𝐺𝑙) < ∞.

(62)

3. Multipliers on Generalized Mixed
Norm Spaces

In this section, we consider 1 ≤ 𝑟, 𝑠, 𝑢, V ≤ ∞ andI,J such
that ΛI = ΛJ. We define

(ℓ
I
(𝑟, 𝑠) , ℓ

J
(𝑢, V))

= {𝜆 = (𝜆𝑛)𝑛∈ΛI∩ΛJ
:
󵄩󵄩󵄩󵄩󵄩󵄩
(𝜆𝑛𝑎𝑛)𝑛∈ΛJ

󵄩󵄩󵄩󵄩󵄩󵄩

J

𝑢,V

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
(𝑎𝑛)𝑛∈ΛI

󵄩󵄩󵄩󵄩󵄩

I

𝑟,𝑠
} .

(63)

The case I = J can be shown repeating the proof for
I = {𝐼𝑘 : 𝑘 ∈ N0} where 𝐼𝑘 = [2

𝑘
− 1, 2

𝑘+1
− 1) ∩ N0 (see [1,

Theorem 1]).

Theorem 23. Consider 1 ≤ 𝑟, 𝑠, 𝑢, V ≤ ∞. Then

(ℓ
I
(𝑟, 𝑠) , ℓ

I
(𝑢, V)) = ℓI (𝑢 ⊖ 𝑟, V ⊖ 𝑠) . (64)

We define the Köthe dual ℓI(𝑝, 𝑞)𝐾 = (ℓ
I
(𝑝, 𝑞),

ℓ
I
(1, 1)).

Corollary 24. Consider 1 ≤ 𝑟, 𝑠, 𝑢, V ≤ ∞. Then

ℓ
I
(𝑟, 𝑠)

𝐾
= ℓ

I
(𝑟

󸀠
, 𝑠

󸀠
) . (65)

There are some other cases where the set of multipliers can be
easily determined. Using Proposition 6 and Corollary 22, one
easily obtains the following results.

Proposition 25. (i) If sup
𝑘∈N0

#𝐽𝑘 < ∞, then (ℓ
I
(𝑟, 𝑠),

ℓ
J
(𝑢, V)) = ℓI(V ⊖ 𝑟, V ⊖ 𝑠).
(ii) If sup

𝑙∈N0
#𝐼𝑙 < ∞, then (ℓI(𝑟, 𝑠), ℓJ(𝑢, V)) = ℓJ(𝑢 ⊖

𝑠, V ⊖ 𝑠).
(iii) If sup{(#𝐹𝑘)(#𝐺𝑙); 𝑘, 𝑙 ∈ N0} < ∞, then

(ℓ
I
(𝑟, 𝑠) , ℓ

J
(𝑢, V)) = ℓJ (𝑢 ⊖ 𝑟, V ⊖ 𝑠) = ℓI (𝑢 ⊖ 𝑟, V ⊖ 𝑠) .

(66)

Also as a direct consequence ofTheorem 18 we obtain the
following.

Proposition 26. If 𝑟 ≤ 𝑢, 𝑠 ≤ V, and 𝑢 < V and sup{#𝐹𝑘; 𝑘 ∈
N0} < ∞, then

(ℓ
I
(𝑟, 𝑠) , ℓ

J
(𝑢, V)) = {(𝜆𝑛)𝑛∈ΛI

: sup
𝑛

󵄨󵄨󵄨󵄨𝜆𝑛
󵄨󵄨󵄨󵄨 < ∞} . (67)

Proof. If 𝜆 = (𝜆𝑛)𝑛 is a multiplier then the sequence (𝜆𝑛) is
necessarily bounded.

{(𝜆𝑛)𝑛∈ΛI
: sup

𝑛

󵄨󵄨󵄨󵄨𝜆𝑛
󵄨󵄨󵄨󵄨 < ∞} ⊆ (ℓ

I
(𝑟, 𝑠) , ℓ

J
(𝑢, V)) (68)

is equivalent to ℓI(𝑟, 𝑠) ⊆ ℓJ(𝑢, V). Now use the embedding
ℓ
I
(𝑟, 𝑠) ⊆ ℓ

I
(𝑢, V) and Theorem 18 to conclude the result.
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Definition 27. Given two families of intervals,I,J, such that
ΛI = ΛJ, one defines the collection of pairwise disjoint
intervals in N0 as

Ĩ ∩J = {𝐼𝑙 ∩ 𝐽𝑘 : 𝑘 ∈ N0, 𝑙 ∈ 𝐹𝑘} . (69)

It coincides with {𝐼𝑙 ∩ 𝐽𝑘 : 𝑙 ∈ N0, 𝑘 ∈ 𝐺𝑙}.

Proposition 28. Let 1 ≤ 𝑟, 𝑠, 𝑢, V ≤ ∞.

(i) If 𝑟 ≤ 𝑠, V ≤ 𝑢, then (ℓI(𝑟, 𝑠), ℓJ(𝑢, V)) ⊆ ℓĨ∩J
(𝑢 ⊖

𝑟, V ⊖ 𝑠).

In particular, if sup
𝑘
#𝐹𝑘 < ∞, then

(ℓ
I
(𝑟, 𝑠) , ℓ

J
(𝑢, V)) ⊆ ℓJ (𝑢 ⊖ 𝑟, V ⊖ 𝑠) . (70)

(ii) If 𝑠 ≤ 𝑟, 𝑢 ≤ V, then ℓĨ∩J
(𝑢 ⊖ 𝑟, V ⊖ 𝑠) ⊆

(ℓ
I
(𝑟, 𝑠), ℓ

J
(𝑢, V)).

In particular, if sup
𝑙
#𝐺𝑙 < ∞, then

ℓ
I
(𝑢 ⊖ 𝑟, V ⊖ 𝑠) ⊆ (ℓI (𝑟, 𝑠) , ℓJ (𝑢, V)) . (71)

Proof. (i) Note that Ĩ ∩J ≤ I and Ĩ ∩J ≤ J. Hence,
from Proposition 11,

ℓ
Ĩ∩J

(𝑝, 𝑞) ⊆ ℓ
I
(𝑝, 𝑞) , 𝑝 ≥ 𝑞,

ℓ
J
(𝑝, 𝑞) ⊆ ℓ

Ĩ∩J
(𝑝, 𝑞) , 𝑝 ≤ 𝑞.

(72)

Now using (72) andTheorem 23, we obtain

(ℓ
I
(𝑟, 𝑠) , ℓ

J
(𝑢, V)) ⊆ (ℓĨ∩J

(𝑟, 𝑠) , ℓ
Ĩ∩J

(𝑢, V))

= ℓ
Ĩ∩J

(𝑢 ⊖ 𝑟, V ⊖ 𝑠) .

(73)

Also we have

𝐹𝑘 (Ĩ ∩J,J) = {𝑙 ∈ N0 : 𝐼𝑙 ∩ 𝐽𝑘 ⊆ 𝐽𝑘} = 𝐹𝑘,

𝐺𝑙 (Ĩ ∩J,I) = {𝑘 ∈ N0 : 𝐼𝑙 ∩ 𝐽𝑘 ⊆ 𝐼𝑙} = 𝐺𝑙.

(74)

Using nowTheorem 12,

ℓ
Ĩ∩J

(𝑝, 𝑞) = ℓ
J
(𝑝, 𝑞) ⇐⇒ sup

𝑘

#𝐹𝑘 < ∞, (75)

ℓ
Ĩ∩J

(𝑝, 𝑞) = ℓ
I
(𝑝, 𝑞) ⇐⇒ sup

𝑙

#𝐺𝑙 < ∞. (76)

The particular case follows now applying (75).
(ii) is similar to the previous one and left to the reader.

Our purpose is to get a final description of multipliers
(ℓ

I
(𝑟, 𝑠), ℓ

J
(𝑢, V)). We will deal first with the case I ≤ J

and get a reduction to this situation in the remaining cases.

3.1. The Case I ≤ J. In this section, we consider I and J
such that N0 = 𝑁

J

big ∪𝑁
J

equal. This means that 𝐹𝑘 = 𝐹𝑘 ̸= 0 and
𝐽𝑘 = ∪𝑙∈𝐹𝑘

𝐼𝑙 for all 𝑘. Notice that 𝑙 ∈ 𝐹𝑘 means 𝐼𝑙 ⊆ 𝐽𝑘 and we
have

𝐹𝑘 = {𝑙 ∈ N0 : 𝜙 (𝑘) ≤ 𝑙 ≤ Φ (𝑘)} . (77)

We use the notationJ/I = {𝐹𝑘 : 𝑘 ∈ N0}.
We will need the following well-known fact.

Lemma 29. Let 0 < 𝑢, 𝑟 ≤ ∞, 𝐴 ⊆ N0, and (𝜆𝑖)𝑖∈𝐴. There
exists (𝑎𝑖)𝑖∈𝐴 such that

(∑

𝑖∈𝐴

󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨

𝑟
)

1/𝑟

= 1,

(∑

𝑖∈𝐴

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

𝑢⊖𝑟
)

1/𝑢⊖𝑟

= (∑

𝑖∈𝐴

󵄨󵄨󵄨󵄨𝑎𝑖𝜆𝑖
󵄨󵄨󵄨󵄨

𝑢
)

1/𝑢

(78)

(with the obvious modifications whenever 𝑢, 𝑟 or 𝑢 ⊖ 𝑟 equals
∞).

Proof. For 𝑟 = ∞ (then 𝑢⊖𝑟 = 𝑢), it suffices to take 𝑎𝑖 = 1, 𝑖 ∈
𝐴.

If 𝑟 < ∞ and 𝑢 ≥ 𝑟 (hence 𝑢 ⊖ 𝑟 = ∞), it suffices to take

𝑎𝑖 = {
1 𝑖 = 𝑖 (𝐴)

0 otherwise
(79)

for 𝑖(𝐴) such that sup
𝑖∈𝐴
|𝜆𝑖| = |𝜆𝑖(𝐴)|.

If 𝑢 < 𝑟 < ∞, take

𝑎𝑖 = (∑

𝑖∈𝐴

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

𝑢⊖𝑟
)

−1/𝑟

𝜆
𝑢⊖𝑟/𝑟

𝑖
, 𝑖 ∈ 𝐴. (80)

Using 1 + 𝑢 ⊖ 𝑟/𝑟 = 𝑢 ⊖ 𝑟/𝑢, one shows the result.

Theorem 30. IfI ≤ J, then

(ℓ
I
(𝑟, 𝑠) , ℓ

J
(𝑢, V))

=

{{{

{{{

{

(𝜆𝑛)𝑛
: ((∑

𝑖∈𝐼𝑙

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

𝑢⊖𝑟
)

1/𝑢⊖𝑟

)

𝑙

∈ ℓ
J/I

(𝑢 ⊖ 𝑠, V ⊖ 𝑠)
}}}

}}}

}

.

(81)

Proof. ⊆) Assume that (𝜆𝑛)𝑛 ∈ (ℓ
I
(𝑟, 𝑠), ℓ

J
(𝑢, V)).

We use Lemma 29 with 𝐴 = 𝐼𝑙 to select for each 𝑙 ∈ N0

a sequence (𝑎(𝑙)
𝑖
)𝑖∈𝐼𝑙

such that (∑
𝑖∈𝐼𝑙
|𝑎

(𝑙)

𝑖
|
𝑟

)
1/𝑟

= 1 and 𝛽𝑙 =
(∑

𝑖∈𝐼𝑙
|𝜆𝑖|

𝑢⊖𝑟
)
1/𝑢⊖𝑟

= (∑
𝑖∈𝐼𝑙
|𝜆𝑖𝑎

(𝑙)

𝑖
|
𝑢

)
1/𝑢.

Now, again use Lemma 29 with 𝐴 = 𝐹𝑘 for each 𝑘 ∈

N0 to choose (𝛼𝑙)𝑙∈𝐹𝑘 verifying (∑
𝑙∈𝐹𝑘

|𝛼𝑙|
𝑠
)
1/𝑠

= 1 and
(∑

𝑙∈𝐹𝑘
𝛽
𝑢⊖𝑠

𝑙
)
1/𝑢⊖𝑠

= (∑
𝑙∈𝐹𝑘

|𝛽𝑙𝛼𝑙|
𝑢
)
1/𝑢.
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Finally, using Lemma 29 for 𝐴 = N0, one more time, take
𝛾 = (𝛾𝑘)𝑘 verifying (∑𝑘

|𝛾𝑘|
𝑠
)
1/𝑠
= 1 and

(∑
𝑘
(∑

𝑙∈𝐹𝑘
𝛽
𝑢⊖𝑠

𝑙
)
V⊖𝑠/𝑢⊖𝑠

)
1/V⊖𝑠

= (∑
𝑘
𝛾
V
𝑘
(∑

𝑙∈𝐹𝑘
𝛽
𝑢⊖𝑠

𝑙
)
V/𝑢⊖𝑠

)
1/V

.
This procedure allows us to obtain the sequence 𝑎 = (𝑎𝑖)𝑖,

𝑎𝑖 = 𝛾𝑘𝛼𝑙𝑎
(𝑙)

𝑖
where 𝑖 ∈ 𝐼𝑙, 𝑙 ∈ 𝐹𝑘, and 𝑘 ∈ N0. With this choice,

we get that ‖𝑎‖I
𝑟,𝑠
= 1 and
󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩

J/I

𝑢⊖𝑠,V⊖𝑠 = ‖𝜆 ∗ 𝑎‖
J
𝑢,V ≤ ‖𝜆‖ . (82)

⊇) Let 𝑎 = (𝑎𝑖)𝑖 ∈ ℓ
I
(𝑟, 𝑠) and 𝜆 = (𝜆𝑖)𝑖 such that (𝛽𝑙)𝑙 ∈

ℓ
J/I

(𝑢 ⊖ 𝑠, V ⊖ 𝑠) where

𝛽𝑙 = (∑

𝑖∈𝐼𝑙

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

𝑢⊖𝑟
)

1/𝑢⊖𝑟

. (83)

Fix 𝑘 ∈ N0:

(∑

𝑖∈𝐽𝑘

󵄨󵄨󵄨󵄨𝜆𝑖𝑎𝑖
󵄨󵄨󵄨󵄨

𝑢
)

1/𝑢

= (∑

𝑙∈𝐹𝑘

∑

𝑖∈𝐼𝑙

󵄨󵄨󵄨󵄨𝜆𝑖𝑎𝑖
󵄨󵄨󵄨󵄨

𝑢
)

1/𝑢

≤ (∑

𝑙∈𝐹𝑘

(∑

𝑖∈𝐼𝑙

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

𝑢⊖𝑟
)

𝑢/𝑢⊖𝑟

(∑

𝑖∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨

𝑟
)

𝑢/𝑟

)

1/𝑢

≤ (∑

𝑙∈𝐹𝑘

(∑

𝑖∈𝐼𝑙

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

𝑢⊖𝑟
)

𝑢⊖𝑠/𝑢⊖𝑟

)

1/𝑢⊖𝑠

× (∑

𝑙∈𝐹𝑘

(∑

𝑖∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨

𝑟
)

𝑠/𝑟

)

1/𝑠

.

(84)
Taking the V-norm, we get

(∑

𝑘

(∑

𝑖∈𝐽𝑘

󵄨󵄨󵄨󵄨𝜆𝑖𝑎𝑖
󵄨󵄨󵄨󵄨

𝑢
)

V/𝑢

)

1/V

≤ (∑

𝑘

(∑

𝑙∈𝐹𝑘

𝛽
𝑢⊖𝑠

𝑙
)

V/𝑢⊖𝑠

(∑

𝑙∈𝐹𝑘

(∑

𝑖∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨

𝑟
)

𝑠/𝑟

)

V/𝑠

)

1/V

≤ (∑

𝑘

(∑

𝑙∈𝐹𝑘

𝛽
𝑢⊖𝑠

𝑙
)

V⊖𝑠/𝑢⊖𝑠

)

1/V⊖𝑠

× (∑

𝑘

∑

𝑙∈𝐹𝑘

(∑

𝑖∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨

𝑟
)

𝑠/𝑟

)

1/𝑠

= (∑

𝑘

(∑

𝑙∈𝐹𝑘

𝛽
𝑢⊖𝑠

𝑙
)

V⊖𝑠/𝑢⊖𝑠

)

1/V⊖𝑠

× (∑

𝑙

(∑

𝑖∈𝐼𝑙

󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨

𝑟
)

𝑠/𝑟

)

1/𝑠

.

(85)

Hence (𝜆𝑛)𝑛 ∈ (ℓ
I
(𝑟, 𝑠), ℓ

J
(𝑢, V)) and ‖𝜆‖ ≤ ‖𝛽‖J/I

𝑢⊖𝑠,V⊖𝑠.

Corollary 31. LetJ ≤ I and 1 ≤ 𝑟, 𝑠, 𝑢, V ≤ ∞. Then

(ℓ
I
(𝑟, 𝑠) , ℓ

J
(𝑢, V))

=

{

{

{

(𝜆𝑛)𝑛
: ((∑

𝑖∈𝐽𝑘

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

𝑢⊖𝑟
)

1/𝑢⊖𝑟

)

𝑘

∈ ℓ
I/J

(V ⊖ 𝑟, V ⊖ 𝑠)
}

}

}

.

(86)

Proof. Recall that 𝐺𝑙 = 𝐺𝑙 = {𝑘 ∈ N0 : 𝐽𝑘 ⊆ 𝐼𝑙} and 𝐼𝑙 =
∪𝑘∈𝐺𝑙

𝐽𝑘. We now denote I/J = {𝐺𝑙 : 𝑙 ∈ N0}. Using Köthe
duals. we actually have

(ℓ
I
(𝑟, 𝑠) , ℓ

J
(𝑢, V)) = (ℓJ (𝑢󸀠, V󸀠) , ℓI (𝑟󸀠, 𝑠󸀠)) . (87)

Taking into account that 𝑝󸀠 ⊖ 𝑞󸀠 = 𝑞 ⊖ 𝑝 for all 𝑝, 𝑞, the result
follows fromTheorem 30.

3.2. The Case Ĩ ∩J ⊆ I ∪ J. Let I = {𝐼𝑙 : 𝑙 ∈ N0} and
J = {𝐽𝑘 : 𝑘 ∈ N0} be such that ΛI = ΛJ. We assume in this
section that𝑁I

inter = 0 and𝑁
J
inter = 0, that is to say, for a given

𝑙 ∈ N0 either there exists 𝑘 such that 𝐼𝑙 ⊆ 𝐽𝑘 or there exists
𝑘
󸀠 such that 𝐽𝑘󸀠 ⊆ 𝐼𝑙. In other words, each interval in Ĩ ∩J

belongs either toI or toJ.
To extend the result on multipliers to this setting we will

use the following lemmawhose easy proof is left to the reader.

Lemma 32. Let I = {𝐼𝑙 : 𝑙 ∈ N0} and J = {𝐽𝑘 : 𝑘 ∈ N0} be
such that ΛI = ΛJ and letI𝑖 (respect. J𝑖) be subcollections
ofI (respect. J) for 𝑖 = 1, . . . , 𝑚 whereI = ∪

𝑚

𝑖=1
I𝑖 (respect.

J = ∪
𝑚

𝑖=1
J𝑖) satisfying ΛI𝑖

= ΛJ𝑖
for 𝑖 = 1, . . . , 𝑚. Then

𝜆 = (𝜆𝑛)𝑛∈ΛI
∈ (ℓ

I
(𝑟, 𝑠) , ℓ

J
(𝑢, V)) (88)

if and only if

𝜆
(𝑖)
= (𝜆𝑛)𝑛∈ΛI𝑖

∈ (ℓ
I𝑖
(𝑟, 𝑠) , ℓ

J𝑖
(𝑢, V)) , 𝑖 = 1, . . . , 𝑚.

(89)

Moreover ‖𝜆‖ ≈ ∑𝑚

𝑖=1
‖𝜆

(𝑖)
‖.

Theorem 33. Let Ĩ ∩J ⊆ I ∪ J. Then (𝜆𝑛)𝑛 ∈

(ℓ
I
(𝑟, 𝑠), ℓ

J
(𝑢, V)) if and only if it satisfies the conditions

((∑

𝑖∈𝐽𝑘

󵄨󵄨󵄨󵄨
𝜆𝑖
󵄨󵄨󵄨󵄨

𝑢⊖𝑟
)

1/𝑢⊖𝑟

)

𝑘∈𝑁
J

𝑒𝑞𝑢𝑎𝑙

∈ ℓ
V⊖𝑠
, (90)

((∑

𝑖∈𝐼𝑙

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

𝑢⊖𝑟
)

1/𝑢⊖𝑟

)

𝑙∈𝑁
I
𝑠𝑚𝑎𝑙𝑙

∈ ℓ
F
(𝑢 ⊖ 𝑠, V ⊖ 𝑠) , (91)

((∑

𝑖∈𝐽𝑘

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

𝑢⊖𝑟
)

1/𝑢⊖𝑟

)

𝑘∈𝑁
J

𝑠𝑚𝑎𝑙𝑙

∈ ℓ
G
(V ⊖ 𝑟, V ⊖ 𝑠) , (92)

whereF = {𝐹𝑘 : 𝑘 ∈ 𝑁
J

big} andG = {𝐺𝑙 : 𝑙 ∈ 𝑁
I
big}.
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Proof. Let us consider the following collection of intervals:

J𝑏 = {𝐽𝑘 : 𝑘 ∈ 𝑁
J

big} ,

J𝑒 = {𝐽𝑘 : 𝑘 ∈ 𝑁
J

equal} ,

J𝑠 = {𝐽𝑘 : 𝑘 ∈ 𝑁
J

small}

(93)

and similarly forI.
If 𝐽𝑘 ∈ J𝑏 (respect. 𝐼𝑙 ∈ I𝑏), we have 𝐹𝑘 = {𝑙 ∈ N0 : 𝐼𝑙 ⊊

𝐽𝑘} ̸= 0 (respect. 𝐺𝑙 = {𝑘 ∈ N0 : 𝐽𝑘 ⊊ 𝐼𝑙} ̸= 0) and

𝐽𝑘 = ∪𝑙∈𝐹𝑘
𝐼𝑙, 𝐼𝑙 ∈ I𝑠 (respect. 𝐼𝑙 = ∪𝑙∈𝐺𝑙𝐽𝑘, 𝐽𝑘 ∈ J𝑠) .

(94)

HenceJ = J𝑒 ∪J𝑏 ∪J𝑠,I = I𝑒 ∪I𝑏 ∪I𝑠, and

J𝑒 = {𝐽𝑘 : 𝑘 ∈ 𝑁
J

equal} = {𝐼𝑙 : 𝑙 ∈ 𝑁
I
equal} = I𝑒. (95)

Observe that I𝑠 ≤ J𝑏 and J𝑠 ≤ I𝑏 and, in particular, G =

I𝑏/J𝑠 and F = J𝑏/I𝑠.
We use Lemma 32 and observe that, denoting Λ 0 = ΛJ𝑒

,
Λ 1 = ΛJ𝑏

= ΛI𝑠
, and Λ 2 = ΛJ𝑠

= ΛI𝑏
,

(𝜆𝑛)𝑛∈Λ 0
∈ (ℓ

J𝑒
(𝑟, 𝑠) , ℓ

I𝑒
(𝑢, V)) (96)

corresponds to (90) invokingTheorem 23, also that

(𝜆𝑛)𝑛∈Λ 1
∈ (ℓ

I𝑠
(𝑟, 𝑠) , ℓ

J𝑏
(𝑢, V)) (97)

corresponds to (91) invokingTheorem 30, and, finally, that

(𝜆𝑛)𝑛∈Λ 2
∈ (ℓ

I𝑏
(𝑟, 𝑠) , ℓ

J𝑠
(𝑢, V)) (98)

corresponds to (92) invoking Corollary 31.

3.3. The General Case. In this section, we assume that there
exist 𝑘 ∈ N0 and 𝑙 ∈ 𝐹𝑘 such that 𝐼𝑙 ∩ 𝐽𝑘 ∈ Ĩ ∩J and 𝐼𝑙 ∩ 𝐽𝑘 ∉
I ∪J.

Since the notation may be a bit confusing, we will
illustrate the idea. Let I,J be different partitions of N0 as
shown in Figure 2.

The situation we are handling now corresponds to
𝑁

J
inter ̸= 0 (and hence𝑁I

inter ̸= 0).

Definition 34. Consider

J
󸀠
= {𝐽

󸀠

𝑘
= ∪𝑙∈𝐹𝑘

𝐼𝑙 : 𝑘 ∈ N0, #𝐹𝑘 > 0} ,

H = Ĩ ∩J \ (I ∪J) ,

J𝑠 = {𝐽𝑘 : 𝑘 ∈ 𝑁
J

small} .

(99)

DenoteJ󸀠󸀠
= J󸀠

∪J𝑠 andJnew = J󸀠󸀠
∪H.

We use similar notations forI.

Recalling that 𝜙(𝑘) = min𝐹𝑘 and Φ(𝑘) = max𝐹𝑘 for
𝑘 ∈ N0, we easily observe that 𝜙(𝑁

J

equal) ⊆ 𝑁
I
equal, 𝜙(𝑁

J

big) ⊆

𝑁
I
small, 𝜙(𝑁

J

small) ⊆ 𝑁
I
big∪𝑁

I
inter, and 𝜙(𝑁

J
inter) ⊆ 𝑁

I
small∪𝑁

I
inter.

Same results hold for Φ.

Lemma 35. Consider the families defined in the previous def-
inition. Then:

H = {𝐽𝑘 : 𝑘 ∈ 𝑁
J
𝑖𝑛𝑡𝑒𝑟
, 𝜙 (𝑘) ∈ 𝑁

I
𝑖𝑛𝑡𝑒𝑟
}

∪ { ̌𝐽𝑘 : 𝑘 ∈ 𝑁
J
𝑖𝑛𝑡𝑒𝑟
, Φ (𝑘) ∈ 𝑁

I
𝑖𝑛𝑡𝑒𝑟
} .

(100)

Proof. ⊆) Let 𝐼 ∈H. Since 𝐼 ∈ Ĩ ∩J, then there exist 𝑘 ∈ N0

and 𝑙 ∈ 𝐹𝑘 such that 𝐼 = 𝐼𝑙 ∩ 𝐽𝑘. On the other hand, since
𝐼 ∉ I ∪ J, we have that 𝐼 ⊊ 𝐼𝑙 and 𝐼 ⊊ 𝐽𝑘. Hence, either
𝜙(𝑘) = 𝑙 and 𝜓(𝑙) = 𝑘 or Φ(𝑘) = 𝑙 and 𝜓(𝑙) = 𝑘. This gives
either 𝑘 ∈ 𝑁J

inter and 𝜙(𝑘) ∈ 𝑁
I
inter (and hence 𝐼 = 𝐽𝑘) or

𝑘 ∈ 𝑁
J
inter and Φ(𝑘) ∈ 𝑁

I
inter (and hence 𝐼 = ̌𝐽𝑘).

⊇) Let 𝑘 ∈ 𝑁J
inter with 𝜙(𝑘) ∈ 𝑁

I
inter and consider 𝐽𝑘 =

𝐽𝑘∩𝐼𝜙(𝑘) ∈ Ĩ ∩J.Then 𝐽𝑘 ⊊ 𝐽𝑘 (hence 𝐽𝑘 ∉ J) and 𝐽𝑘 ⊊ 𝐼𝜙(𝑘)
(hence 𝐽𝑘 ∉ I). One may proceed similarly for ̆𝐽𝑘 in the case
𝑘 ∈ 𝑁

J
inter with Φ(𝑘) ∈ 𝑁

I
inter.

Remark 36. Note that 𝐽𝑘 = 𝐽𝑘 ∩ 𝐼𝑙 if and only if ̌𝐼𝑙 = 𝐼𝑙 ∩ 𝐽𝑘.
Therefore,

H = {𝐼𝑙 : 𝑙 ∈ 𝑁
I
inter, 𝜓 (𝑙) ∈ 𝑁

J
inter}

∪ { ̌𝐼𝑙 : 𝑘 ∈ 𝑁
I
inter, Ψ (𝑙) ∈ 𝑁

J
inter} .

(101)

Lemma 37. Consider the different families defined in
Definition 34. Then:

Ĩ󸀠󸀠
∩J󸀠󸀠

⊆ I𝑠 ∪J𝑠 ∪I𝑒 ⊆ I
󸀠󸀠
∪J

󸀠󸀠
. (102)

Proof. Let 𝐼 ∈ I󸀠
∪I𝑠 and 𝐽 ∈ J󸀠

∪ J𝑠 with 𝐼 ∩ 𝐽 ̸= 0. The
case 𝐼 ∈ I𝑠 and 𝐽 ∈ J𝑠 can not hold. If 𝐼 ∈ I𝑠 and 𝐽 ∈ J󸀠,
then 𝐼 ∩ 𝐽 = 𝐼 ∈ I𝑠. Similarly if 𝐼 ∈ I󸀠 and 𝐽 ∈ J𝑠, then
𝐼 ∩ 𝐽 = 𝐽 ∈ J𝑠. Finally if 𝐼 ∈ I󸀠 and 𝐽 ∈ J󸀠, then 𝐼 = 𝐽 ∈
I𝑒 = J𝑒.

Theorem 38. 𝜆 ∈ (ℓ
I
(𝑟, 𝑠), ℓ

J
(𝑢, V)) if and only if (𝜆𝑛)𝑛

satisfies

((∑

𝑖∈𝐽𝑘

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

𝑢⊖𝑟
)

1/𝑢⊖𝑟

)

𝑘∈𝑁
J

𝑒𝑞𝑢𝑎𝑙

∈ ℓ
V⊖𝑠 (103)

((∑

𝑖∈𝐼𝑙

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

𝑢⊖𝑟
)

1/𝑢⊖𝑟

)

𝑙∈𝑁
I
𝑠𝑚𝑎𝑙𝑙

∈ ℓ
F
(𝑢 ⊖ 𝑠, V ⊖ 𝑠) (104)

((∑

𝑖∈𝐽𝑘

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

𝑢⊖𝑟
)

1/𝑢⊖𝑟

)

𝑘∈𝑁
J

𝑠𝑚𝑎𝑙𝑙

∈ ℓ
G
(V ⊖ 𝑟, V ⊖ 𝑠) (105)

((∑

𝑖∈ ̌𝐽𝑘

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

𝑢⊖𝑟
)

1/𝑢⊖𝑟

)

𝑘∈Λ 𝑟

+((∑

𝑖∈𝐽𝑘

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

𝑢⊖𝑟
)

1/𝑢⊖𝑟

)

𝑘∈Λ 𝑙

∈ ℓ
V⊖𝑠
,

(106)
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where

Λ 𝑟 = {𝑘 ∈ 𝑁
J
𝑖𝑛𝑡𝑒𝑟
, Φ (𝑘) ∈ 𝑁

I
𝑖𝑛𝑡𝑒𝑟
} ,

Λ 𝑙 = {𝑘 ∈ 𝑁
J
𝑖𝑛𝑡𝑒𝑟
, 𝜙 (𝑘) ∈ 𝑁

I
𝑖𝑛𝑡𝑒𝑟
} ,

G = {𝐺𝑙 : 𝑙 ∈ 𝑁
I
𝑏𝑖𝑔
∪ 𝑁

I
𝑖𝑛𝑡𝑒𝑟
, #𝐺𝑙 > 0} ,

F = {𝐹𝑘 : 𝑘 ∈ 𝑁
J

𝑏𝑖𝑔
∪ 𝑁

J
𝑖𝑛𝑡𝑒𝑟
, #𝐹𝑘 > 0} .

(107)

Proof. Using 𝐽𝑘 = 𝐽󸀠𝑘 ∪ 𝐽𝑘 ∪ ̌𝐽𝑘 and Lemma 35, one obtains
Jnew ≤ J and Inew ≤ I. Clearly, #𝐹𝑙(Inew,I) ≤ 3 and
#𝐹𝑘(Jnew,J) ≤ 3 for all 𝑘. Therefore, using Theorem 12, we
have ℓJnew(𝑝, 𝑞) = ℓ

J
(𝑝, 𝑞) and ℓInew(𝑝, 𝑞) = ℓ

I
(𝑝, 𝑞), which

gives

(ℓ
I
(𝑟, 𝑠) , ℓ

J
(𝑢, V)) = (ℓInew

(𝑟, 𝑠) , ℓ
Jnew

(𝑢, V)) . (108)

Taking into account Lemma 35 and Remark 36, we
observe that ΛH = Λ 𝑟 ∪ Λ 𝑙 and ΛI󸀠󸀠 = ΛJ󸀠󸀠 .

Since Jnew = J󸀠󸀠
∪ H and Inew = I󸀠󸀠

∪ H, we can
apply Lemma 32 to conclude that 𝜆 ∈ (ℓI(𝑟, 𝑠), ℓJ(𝑢, V)) if
and only if (𝜆𝑛)𝑛∈ΛH

∈ (ℓ
H
(𝑟, 𝑠), ℓ

H
(𝑢, V)) and (𝜆𝑛)𝑛∉ΛH

∈

(ℓ
I󸀠󸀠
(𝑟, 𝑠), ℓ

J󸀠󸀠
(𝑢, V)).

Now applyTheorem 23 to obtain (𝜆𝑛)𝑛∈ΛH
∈ ℓ

H
(𝑢⊖𝑟, V⊖

𝑠) which corresponds to (106).
On the other hand, comparingI󸀠󸀠 andJ󸀠󸀠, we notice that

𝐼 ∈ I󸀠󸀠

big corresponds to 𝐼 = 𝐼
󸀠

𝑙
for some 𝑙 ∈ 𝑁I

big ∪ 𝑁
I
inter and

#𝐺𝑙 ≥ 1. Hence we obtain that G = {𝐺𝐼 : 𝐼 ∈ I󸀠󸀠

big} and
similarlyF = {𝐹𝐽 : 𝐽 ∈ J

󸀠󸀠

big}.
We now use Lemma 37 together with Theorem 33 to

obtain the equivalence with (103), (104), and (105) and
(𝜆𝑛)𝑛∉ΛH

∈ (ℓ
I󸀠󸀠
(𝑟, 𝑠), ℓ

J󸀠󸀠
(𝑢, V)).

4. An Application

Let 𝜌 : [0, 1) → [0,∞) be a nondecreasing function such
that 𝜌(0) = 0 and 𝜌(𝑡)/𝑡 ∈ 𝐿1([0, 1)); we define the weighted
Bergman-Besov space 𝐵1(𝜌) as those analytic functions 𝐹 in
the unit disk such that

∫

D

󵄨󵄨󵄨󵄨󵄨
𝐹
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

𝜌 (1 − |𝑧|)

1 − |𝑧|
𝑑𝐴 (𝑧) < ∞. (109)

An analytic function 𝐹 is called lacunary if 𝐹(𝑧) =

∑
𝑛∈ΛL

𝑎𝑛𝑧
𝑛 where L = {{𝑛𝑘} : 𝑘 ∈ N0} for some (𝑛𝑘) such

that inf𝑘𝑛𝑘+1/𝑛𝑘 > 1.

Recently, weights with the following condition had been
considered in [16]: there exist 𝐶1, 𝐶2 > 0 and 𝐾(𝑛, 𝜌) such
that

𝐶1 ∫

1

0

𝑟
2
𝑛
−1 𝜌 (1 − 𝑟)

1 − 𝑟
𝑑𝑟 ≤ 𝐾 (𝑛, 𝜌)

≤ 𝐶2 ∫

1−2
−(𝑛+1)

1−2−𝑛
𝑟
2
𝑛+1

−1 𝜌 (1 − 𝑟)

1 − 𝑟
𝑑𝑟,

(110)

and the following result has been shown.

Theorem 39 (see [16]). Let 𝐹(𝑧) = ∑
𝑛∈ΛL

𝑎𝑛𝑧
𝑛 be a lacunary

function and let 𝜌 be a weight satisfying (110). Then 𝐹 belongs
to 𝐵1(𝜌) if and only if

∞

∑

𝑘=0

(∑

𝑛∈𝐽𝑘

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

2
)

1/2

2
𝑘
𝐾(𝑘, 𝜌) < ∞, (111)

where 𝐽𝑘 = {𝑛 : 2𝑘 − 1 ≤ 𝑛 < 2𝑘+1 − 1}.

Wewill extend the previous result formore general classes
of weight functions and families of intervalsJ.

Definition 40. Let 0 < 𝑞 < ∞; letJ be a collection of disjoint
intervals in N0, say 𝐽𝑘 = N0 ∩ [𝑚𝑘, 𝑚𝑘+1), where 𝑚0 = 0 and
(𝑚𝑘) is some increasing sequence in N0. And let 𝜌 : [0, 1) →
[0,∞) be a measurable function such that 𝜌(𝑡)/𝑡 ∈ 𝐿1([0, 1)).

We say that 𝜌 is 𝑞-adapted toJwhenever there exists𝐶 >
0 depending on𝑚𝑛, 𝑞 and 𝜌 such that

∫

1

0

𝑟
𝑞𝑚𝑛
𝜌 (1 − 𝑟)

1 − 𝑟
𝑑𝑟 ≤ 𝐶∫

𝐴𝑛

𝑟
𝑞𝑚𝑛+1

𝜌 (1 − 𝑟)

1 − 𝑟
𝑑𝑟 (112)

for all 𝑛 ≥ 0where𝐴0 = [0, 1−1/𝑚1) and 𝐴𝑛 = [1−1/𝑚𝑛, 1−

1/𝑚𝑛+1) for 𝑛 ≥ 1.
We denote

𝜇𝜌 (𝑠) = ∫

1

0

𝑟
𝑠 𝜌 (1 − 𝑟)

1 − 𝑟
𝑑𝑟, 𝑠 ≥ 0. (113)

In particular, from condition (112) if 𝜌 is 𝑞-adapted to J, we
get that

𝜇𝜌 (𝑞𝑚𝑛) ≈ 𝜇𝜌 (𝑞𝑚𝑛+1) . (114)

Note also that condition (110) means that 𝜌 is 1/2-adapted for
J where𝑚𝑛 = 2

𝑛
− 1.



Abstract and Applied Analysis 13

Proposition 41. Let 𝜌𝛼(𝑡) = 𝑡
𝛼 with 𝛼 > 0 and J =

{[𝑚𝑛, 𝑚𝑛+1) ∩ N0 : 𝑛 ∈ N0}. The following statements are
equivalent:

(i) 𝜌𝛼 is 𝑞-adapted toJ for all 𝑞 > 0,

(ii) 𝜌𝛼 is 𝑞-adapted toJ for some 𝑞 > 0,

(iii) sup
𝑛
𝑚𝑛+1/𝑚𝑛 < ∞.

Proof. (i) ⇒ (ii) It is trivial.
(ii) ⇒ (iii) It is well known that 𝐵(𝑛 + 1, 𝛼) = ∫1

0
𝑟
𝑛
(1 −

𝑟)
𝛼−1
𝑑𝑟 ≈ 𝑛

−𝛼 and therefore 𝜇𝜌𝛼(𝑞𝑚𝑛) ≈ 𝑚
−𝛼

𝑛
.

Hence it follows from (114) that 𝑚𝑛+1 ≈ 𝑚𝑛. Therefore
sup𝑚𝑛+1/𝑚𝑛 < ∞.

(iii) ⇒ (i) Let sup𝑚𝑛+1/𝑚𝑛 = 𝛿 and take 𝑞 > 0. Now
observe that

∫

1−1/𝑚𝑛+1

1−1/𝑚𝑛

𝑟
𝑞𝑚𝑛+1

(1 − 𝑟)
𝛼−1
𝑑𝑟

≥ (1 −
1

𝑚𝑛

)

𝑞𝑚𝑛+1

∫

1/𝑚𝑛

1/𝑚𝑛+1

𝑠
𝛼−1
𝑑𝑠

≥
1

𝛼
(1 −

1

𝑚𝑛

)

𝑞𝑚𝑛+1

𝑚
−𝛼

𝑛
(1 − (

𝑚𝑛

𝑚𝑛+1

)

𝛼

)

≥
1

𝛼
((1 −

1

𝑚𝑛

)

𝑚𝑛

)

𝛿𝑞

𝑚
−𝛼

𝑛
(1 −

1

𝛿
𝛼
)

≥ 𝐶𝜇𝜌𝛼
(𝑞𝑚𝑛) .

(115)

We now modify the proof of Lemma 3 in [14] to obtain
the following result.

Lemma 42. Let 0 < 𝑞 ≤ 1, let J be a collection of disjoint
intervals in N0, and assume 𝜌 is a weight 𝑞-adapted to J. If
(𝛼𝑛) ≥ 0, then

∫

1

0

(

∞

∑

𝑛=0

𝛼𝑛𝑟
𝑛
)

𝑞
𝜌 (1 − 𝑟)

1 − 𝑟
𝑑𝑟 ≈

∞

∑

𝑛=0

(∑

𝑘∈𝐽𝑛

𝛼𝑘)

𝑞

𝜇𝜌 (𝑞𝑚𝑛) , (116)

where 𝐽𝑛 = {𝑘 : 𝑚𝑛 ≤ 𝑘 < 𝑚𝑛+1}.

Proof. As above, 𝐴0 = [0, 1 − 1/𝑚1) and 𝐴𝑛 = [1 − 1/𝑚𝑛, 1 −

1/𝑚𝑛+1) for 𝑛 ≥ 1. Then

∫

1

0

(

∞

∑

𝑛=0

𝛼𝑛𝑟
𝑛
)

𝑞
𝜌 (1 − 𝑟)

1 − 𝑟
𝑑𝑟

=

∞

∑

𝑛=0

∫

𝐴𝑛

(

∞

∑

𝑛=0

𝛼𝑛𝑟
𝑛
)

𝑞
𝜌 (1 − 𝑟)

1 − 𝑟
𝑑𝑟

≥

∞

∑

𝑛=0

∫

𝐴𝑛

(∑

𝑘∈𝐽𝑛

𝛼𝑘𝑟
𝑘
)

𝑞

𝜌 (1 − 𝑟)

1 − 𝑟
𝑑𝑟

≥

∞

∑

𝑛=0

∫

𝐴𝑛

(∑

𝑘∈𝐽𝑛

𝛼𝑘)

𝑞

𝑟
𝑞𝑚𝑛+1

𝜌 (1 − 𝑟)

1 − 𝑟
𝑑𝑟

≥ 𝐶
−1

∞

∑

𝑛=0

(∑

𝑘∈𝐽𝑛

𝛼𝑘)

𝑞

𝜇𝜌 (𝑞𝑚𝑛) .

(117)

Conversely, since 𝑞 ≤ 1,

∫

1

0

(

∞

∑

𝑛=0

𝛼𝑛𝑟
𝑛
)

𝑞
𝜌 (1 − 𝑟)

1 − 𝑟
𝑑𝑟

≤ ∫

1

0

∞

∑

𝑛=0

(∑

𝑘∈𝐽𝑛

𝛼𝑘𝑟
𝑘
)

𝑞

𝜌 (1 − 𝑟)

1 − 𝑟
𝑑𝑟

≤

∞

∑

𝑛=0

(∑

𝑘∈𝐽𝑛

𝛼𝑘)

𝑞

(∫

1

0

𝑟
𝑞𝑚𝑛
𝜌 (1 − 𝑟)

1 − 𝑟
𝑑𝑟)

≤

∞

∑

𝑛=0

(∑

𝑘∈𝐽𝑛

𝛼𝑘)

𝑞

𝜇𝜌 (𝑞𝑚𝑛) .

(118)

We first note that for lacunary functions 𝐹 and 0 < 𝑝 <
∞, we have (see [17])

𝑀𝑝 (𝐹, 𝑟) = (∫

2𝜋

0

󵄨󵄨󵄨󵄨󵄨
𝐹 (𝑟𝑒

𝑖𝜃
)
󵄨󵄨󵄨󵄨󵄨

𝑝 𝑑𝜃

2𝜋
)

1/𝑝

≈ 𝑀2 (𝐹, 𝑟)

= (∫

2𝜋

0

󵄨󵄨󵄨󵄨󵄨
𝐹 (𝑟𝑒

𝑖𝜃
)
󵄨󵄨󵄨󵄨󵄨

2 𝑑𝜃

2𝜋
)

1/2

.

(119)

Therefore, for lacunary functions 𝐹, one has that 𝐹 ∈ 𝐵1(𝜌) if
and only if

∫

1

0

𝑀2 (𝐹
󸀠
, 𝑟)

𝜌 (1 − 𝑟)

1 − 𝑟
𝑑𝑟 < ∞. (120)

Therefore, invoking Plancherel’s theorem and Lemma 42, we
recover Theorem 39.

Recall that an analytic function 𝐹 : D → C with 𝐹(𝑧) =
∑

∞

𝑛=0
𝑎𝑛𝑧

𝑛 is said to belong to 𝐻(𝑝, 𝑞, 𝜌) (see [14, Definition
2]) whenever

‖𝐹‖𝐻(𝑝,𝑞,𝜌) = (∫

1

0

𝑀
𝑞

𝑝
(𝐹, 𝑟)

𝜌(1 − 𝑟
2
)

1 − 𝑟
2
𝑟𝑑𝑟)

1/𝑞

< ∞. (121)

We use the notation𝐻(𝑝, 𝑞, 𝛼) if 𝜌(𝑡) = 𝑡𝛼.
A consequence of Lemma 42 is the following result.

Corollary 43. Let 0 < 𝑞 ≤ 2, let J be a collection of disjoint
intervals in N0, and let 𝜌 be a weight 𝑞/2-adapted toJ. Then

‖𝐹‖𝐻(2,𝑞,𝜌) ≈ (

∞

∑

𝑛=0

(∑

𝑘∈𝐽𝑛

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨

2
)

𝑞/2

𝜇𝜌 (
𝑞𝑚𝑛

2
))

1/𝑞

. (122)
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Moreover, if 𝐹 is lacunary and 0 < 𝑝 < ∞, then

‖𝐹‖𝐻(𝑝,𝑞,𝜌) ≈ (

∞

∑

𝑛=0

( ∑

𝑘∈𝐽𝑛∩ΛL

|𝑎𝑘|
2
)

𝑞/2

𝜇𝜌 (
𝑞𝑚𝑛

2
))

1/𝑞

. (123)

Theorem 44. Let 0 < 𝑞 < ∞, let J be a collection of disjoint
intervals in N0, and assume 𝜌 is a weight 𝑞-adapted to J.
Define 𝜆 = (𝜆𝑘)𝑘 such that

𝜆𝑘 = (∫

1

0

𝑟
𝑞𝑚𝑛
𝜌(1 − 𝑟)

1 − 𝑟
)

1/𝑞

, 𝑘 ∈ 𝐽𝑛
(124)

and 𝜆𝑘 = 0 otherwise. Then (𝜆𝑘)𝑘 ∈ (𝐻(1, 𝑞, 𝜌), ℓJ(∞, 𝑞)).

Proof. We will show that

(

∞

∑

𝑛=0

(sup
𝑘∈𝐽𝑛

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨)

𝑞

𝜇𝜌(𝑞𝑚𝑛))

1/𝑞

≤ 𝐶‖𝐹‖𝐻(1,𝑞,𝜌).
(125)

Recall that

sup
𝑘∈𝐽𝑛−1

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 𝑟

𝑘
≤ 𝑀1 (𝐹, 𝑟) (126)

and therefore, if 𝐴0 = [0, 1 − 1/𝑚1) and 𝐴𝑛 = [1 − 1/𝑚𝑛, 1 −

1/𝑚𝑛+1) for 𝑛 ≥ 1, then
∞

∑

𝑛=0

(sup
𝑘∈𝐽𝑛

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨)

𝑞

𝜇𝜌 (𝑞𝑚𝑛)

≤ 𝐶

∞

∑

𝑛=0

(sup
𝑘∈𝐽𝑛

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨)

𝑞

∫

𝐴𝑛

𝑟
𝑞𝑚𝑛+1

𝜌 (1 − 𝑟)

1 − 𝑟
𝑑𝑟

≤ 𝐶

∞

∑

𝑛=0

∫

𝐴𝑛

(sup
𝑘∈𝐽𝑛

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 𝑟

𝑘
)

𝑞

𝜌 (1 − 𝑟)

1 − 𝑟
𝑑𝑟

≤ 𝐶

∞

∑

𝑛=0

∫

𝐴𝑛

𝑀
𝑞

1
(𝐹, 𝑟)

𝜌 (1 − 𝑟)

1 − 𝑟
𝑑𝑟

= 𝐶‖𝐹‖
𝑞

𝐻(1,𝑞,𝜌)
.

(127)

Theorem 45. Let 1 ≤ 𝑞2 < 𝑞1 ≤ 2 and let J and I be
collections of disjoint intervals in N0, generated by sequences
𝑚𝑘 and 𝑛𝑘, respectively, such thatI ≤ J. Assume that 𝜌1 is a
weight 𝑞1/2-adapted to I and 𝜌2 is a weight 𝑞2/2-adapted to
J. Denote

𝜇𝜌1 ,𝜌2
(𝑘)

= ((𝜇𝜌2
(
𝑞2𝑚𝑘

2
))

1/𝑞2

(𝜇𝜌1
(
𝑞1𝑛𝑘

2
))

−1/𝑞1

)

1/𝑞2⊖𝑞1

;

(128)

then
(𝐻 (2, 𝑞1, 𝜌1) ,𝐻 (2, 𝑞2, 𝜌2))

= {(𝜆𝑛)𝑛
; (sup

𝑘∈𝐼𝑛

𝜇𝜌1 ,𝜌2
(𝑘)
󵄨󵄨󵄨󵄨𝜆𝑘
󵄨󵄨󵄨󵄨) ∈ ℓ

J/I
(∞, 𝑞2 ⊖ 𝑞1)} .

(129)

Proof. Let

𝐹I (𝑧) =

∞

∑

𝑘=0

(𝜇𝜌1
(
𝑞1𝑛𝑘

2
))

1/𝑞1

(∑

𝑗∈𝐼𝑘

𝑧
𝑗
) ,

𝐹I (𝑧) =

∞

∑

𝑘=0

(𝜇𝜌1
(
𝑞1𝑛𝑘

2
))

−1/𝑞1

(∑

𝑗∈𝐼𝑘

𝑧
𝑗
) ,

𝐺J (𝑧) =

∞

∑

𝑘=0

(𝜇𝜌2
(
𝑞2𝑚𝑘

2
))

1/𝑞2

(∑

𝑗∈𝐽𝑘

𝑧
𝑗
) .

(130)

UsingCorollary 43, one has that𝑓 ∈ 𝐻(2, 𝑞1, 𝜌1) if and only if
𝑓∗𝐹I ∈ ℓ

I
(2, 𝑞1) and 𝑔 ∈ 𝐻(2, 𝑞2, 𝜌2) if and only if 𝑔∗𝐺J ∈

ℓ
J
(2, 𝑞2).
We use that 𝜆 ∈ (𝐻(2, 𝑞1, 𝜌1),𝐻(2, 𝑞2, 𝜌2)) is equivalent

to 𝜆 ∗ 𝐺J ∈ (𝐻(2, 𝑞1, 𝜌1), ℓ
J
(2, 𝑞2)) and also equivalent to

𝜆 ∗ 𝐺J ∗ 𝐹I ∈ (ℓ
I
(2, 𝑞1), ℓ

J
(2, 𝑞2)).

Making use of Theorem 30, we have

(ℓ
I
(2, 𝑞1) , ℓ

J
(2, 𝑞2))

= {(𝛾𝑛)𝑛
; (sup

𝑘∈𝐼𝑛

󵄨󵄨󵄨󵄨𝛾𝑘
󵄨󵄨󵄨󵄨)

𝑛

∈ ℓ
J/I

(∞, 𝑞2 ⊖ 𝑞1)} .

(131)

This concludes the result.

Let us finish by observing some examples to apply the
above results.

Example 46. Let 𝜆 > 1 and denote 𝑚0(𝜆) = 0 and 𝑚𝑘(𝜆) =

[𝜆
𝑘
] for 𝑘 ∈ N0 and J(𝜆) the partition of intervals 𝐽𝑘(𝜆) =

[𝑚𝑘(𝜆), 𝑚𝑘+1(𝜆)) ∩ N0. In this case, 𝜇𝜌𝛼(𝑞𝑚𝑛) ≈ 𝜆
−𝛼𝑛, and

then, from Proposition 41, 𝜌𝛼 is 𝑞-adapted to J(𝜆) for any
value of 𝑞 > 0.

Let 𝜆 > 𝛾 > 1 with 𝜆 = 𝛾𝑁 with 𝑁 ∈ N0. Then J(𝛾) ≤
J(𝜆) because

𝑚𝑘 (𝜆) = [𝜆
𝑘
] = [𝛾

𝑁𝑘
] = 𝑚𝑁𝑘 (𝛾) (132)

and therefore

𝐽𝑘 (𝜆) = ∪𝑙∈𝐹𝑘
𝐽𝑙 (𝛾) , (133)

where 𝐹𝑘 = {𝑙 : 𝑁𝑘 ≤ 𝑙 < 𝑁𝑘 + 𝑁}. Hence J(𝜆)/J(𝛾) = I
where 𝐼𝑘 = [𝑁𝑘,𝑁(𝑘 + 1)) ∩ N0; that is,𝑚𝑘(I) = 𝑁𝑘.
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