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Given 1 < p,q < 0o and sequences of integers (1), and (1), such that n; < my < n,,, the generalized mixed norm space 7 (p,q)

is defined as those sequences (a;); such that ((}, iely

|a]-|“’)1/"’),< € ¢Twhere I, = {j € Nysit.m, < j < n,’(},k € N,. The necessary

and sufficient conditions for a sequence A = (A j) jto belong to the space of multipliers (&7 (r,s), €7 (u,v)), for different sequences

& and 7 of intervals in N, are determined.

1. Introduction

Let & be the space of complex valued sequences with
the locally convex vector topology given by means of the
seminorms pj()t) = I)L]-I where A = (/\j)jgNo. Given two
Banach spaces A, B continuously contained in &, we write
(A, B) for the space of multipliers from A into B. More
precisely,

AB={A=(1) :(\a), e B ¥(a)) e 4} @

We will use the notation supp(a) = {n € N; : a,#0} and
A a for the sequence (A;a;) ey, where A = (1)) ey, and
a=(a))jen,-

Of course for the classical £# spaces, one easily sees that
(ePr,eP2) = ¢P where 1/p = (1/p, — 1/p,)". We use the
notation p, © p; = ptomean 1/p, © p; = 1/p, — 1/p;
whenever p;, > p, and p = co whenever p, < p,.

The above result can be extended (see [1]) to the class
of mixed norm sequence spaces, denoted €(p, q), which are
defined by the condition

1/q

o) alp
(Z( > |ak|p> ) < 0. 2)
n=0 \2"-1<k<2"1-1

Theorem 1. Let 1 < r,s,u,v < 00. Then

€ (r,s),(w,v))=€uoer,ves). (3)

In particular, the Kothe dual of €(p,q), defined by
(€(p,q), "), becomes &(p’,q') for 1 < p,q < coand 1/p +
1/p' =1/q+1/q =1.

Also multipliers between sequence spaces given by Taylor
coeflicients of holomorphic functions in the disk have been
deeply studied in the literature. Since the time of Hardy and
Littlewood, mixed norm and related spaces have been used
to study function spaces on the unit disk and later to study
multipliers between such spaces. Special emphasis has been
put on the case where the spaces A and B correspond to
the sequence space of Taylor coefficient of analytic functions
such as Hardy spaces, Bergman spaces, mixed norm spaces
of analytic functions, and so forth. The theory of Hardy
spaces and mixed norm spaces of analytic functions was
originated in the work of Hardy and Littlewood (see [2, 3])
who implicitly considered the spaces H(p, g, «) of functions
f € # (D) such that

(Ll a- r)q“_le,(f, r)dr>1/q < 00. (4)

Their work on these spaces was continued by Flett and Sledd
(see [4-8]) and later on by Pavlovi¢ (see [9, 10]). Multipliers
on Hardy spaces were in fashion for a long time and much
work was done on them and related spaces. However nowa-
days complete descriptions of multipliers between Hardy
spaces (H?, H1) for certain values of p and g remain still
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open. The reader is referred to the surveys (see [11, 12])
for lots of results and references. Also many results on
multipliers between mixed norm spaces of analytic functions
have been established in the last decades (see [13-15] and
references thereby). For such a purpose, the use of solid
spaces (sequence spaces whose norm depends only on the
size of the coefficients), and in particular €(p,q) spaces, is
a rather important tool. It is worth mentioning that the
smallest solid space contained or which contains one of
classical Hardy, Bergman, and H(p, g, ) is actually H(2, g, &)
for some values p, g, and « (see [14,15]) and this last space can
be identified with certain weighted £(2, q), due to Plancherel’s
theorem.

Another appearance of mixed norm spaces comes with
the use of lacunary sequences, that is, a = (a,), such that
supp(a) C {n; : k € Ny} for a sequence of integers satisfying
infm,,/nm, = A > 1. Recently (see [16]) the description of
the Taylor coefficient of analytic functions F(z) = Y12, bz™,
where 7, is a lacunary sequence, belonging to the weighted
Bergman-Besov space B'(p) has been achieved under certain
conditions on the weight. It corresponds again with certain
weighted £(2, 1).

In this paper, we consider families of intervals % = {I :
k € Ny} where I, = {j € Ny s.t.m < j < m} for some
increasing sequences (1), and (r;) such that m <, < .,
and we use the notation A ; = UI,. We will introduce the
spaces £ (p,q) given by sequences a = (@) jen , verifying

1/p
((Zl%lp> )ef” ©
jelk X

and the obvious modifications for p = co or g = oo.

In particular, £(p,q) = €7 (p,q) for I, = [2F — 1,28 -
1) N N,. Also a lacunary sequence a = (a,,),, corresponds to
supp(a) € A 5 where & = {I; : k € Ny} with I; = {n;} (that
is, = m + 1) for some infyry,;/m = A > 1.

We will give the necessary and sufficient conditions for
a sequence A = (A;); to belong to the multiplier space

7 (r,s), ¢/ (u,v)) whenever Ay = Az Wealso get some
applications to multipliers between certain weighted mixed
norm spaces of analytic functions. The paper is organized as
follows. Section 2 contains the definitions and first properties
of the spaces ¢ (p,q), studying inclusions between them
and conditions for coincidence results €7 (p,q) = €7 (p,q).
Section 3 contains the main result, which is split into three
subsections: the case where intervals in _# are union of
intervals in .7, to be denoted . < _Z, the case where for each
I € 7 there exists ] € £ such that either I € Jor J € I, and
finally the case where there exists (I,]) € # x 7 such that
INJ#0andIN]J ¢ F U _Z.In Section 4, we include some
application to multipliers on spaces of analytic functions
and extend some recent result on weighted Bergman-Besov
classes.

From now on, we will write A =~ B whenever there exists
C > 0 such that C"'A < B < CA and, as usual, #I stands for
the cardinal of I, 1/p + 1/p' = 1for 1 < p < oo and also C
denotes a constant that may vary from line to line.
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2. Generalized Mixed Norm Spaces

Definition 2. Let 1 < p,q < oo and let .¥ be a collection of
disjoint intervals in Ny, say I, = Ny N [1,n;), where n, <
n < M. One sets A ; = Uken, Ik- One writes Ej(p, q) for
the space of sequences (a,) .5 , verifying

1/p
<<Z|ajlp> > 32 ©)
JEI k

This space becomes a Banach space under the norm

o a/p\ V1
IIaIqu = <I;)< ZI: |aj|p> > (7)
=0\ €l

with the obvious modifications for p = co or g = co.

Remark 3. Of course Ej(p, P) = 1{@)nen , : . Ianlp)l/p <
oo}. In particular, &7 (p, p) = €7 whenever A , = N,.

An elementary approach, using Holder’s inequality, leads
to the duality

e’ (pa) =¢"(p.q) ®)
forl < p,g<ooand1/p+1/p =1/q+1/q =1.

Remark 4. It is clear that (aj)j € €J(p,q) S (af)j e e’(1,
q/p) in the case p < g and also (a;); € Ej(p, q & (a;?)]. €
27 ((p/q),1) in the case p > q.

Moreover, for a? = (af )js

7 1/p 7 1/q
||a||iq = (l'aP“l,q/p) = ("aq“p/q»l) ' ©)

Remark 5. Leta € €7 (p,q).

!
7 <

(i) If #' is a subcollection of intervals in .7, then ||a|| g S

5
lall; -
(i) If # = 7" U 7" for two disjoint collections .% "and
7", then |lall7 = ((lall] ) + (lall] )" "

We would like to analyze the embedding between
¢7(pyq,) and €7 (py, q).

Proposition 6. Let .7 be a collection of disjoint intervals in
No and let 1 < py, py,q < 00 with p, # p,. Then €7 (p,,q) =
EJ(pZ, q) (with equivalent norms) if and only if

sup#I, < co.
keN, (10)

In particular, if supyy #Ij < 00, then

¢7 (p.q) = {(an),,mf : (;Ianlq)l/q < oo}. (1)
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. J
Progf. =) Assume, for instance, p; < p, and that |al| g =
lall,,, for all a supported in A ;. Hence, taking a = ;.

one concludes that (1], — n,)"/P"/72 < C for any k. Hence
sup #I; < co.

&) Note that #I,, = (1, — n;) and assume M = sup, (r, —
n,’c). Then

. alp 1/q
p
lally = (};(};W ) >
= k

(12)
o . a/p, /g
~ 2 _ 5
<\ 2{ 2la = lalp,
k=0 \ j€I,
since || - ||, = |l ],, in C". O

Proposition 7. Let 1 < p;,q;, pr»q, < 00 and let F be a
collection of disjoint intervals in Ny with sup, #I;. = co.

Then €7 (p1,qy) € €7(py.q,) if and only if py < p, and
q1 < 49,
Proof. =) Assume that there exists C > 0 such that ||61||;:)q2 <
Cllallﬁ,ql forall a supported in A ;. Hence, taking k € N and
a = xp,» one concludes that (#Ik)l/Pfl/pl < C.Hence p, < p,.
Let N € N, and consider a = Z,Ij:l Xn,- Applying the above

inequality, we obtain N'/%71/% < C. Therefore, g, < g,.
<) Let us denote

0o 1/q
e1(eP) = {(xk)keN0 s x; € 6P, <Z||xk||zp> < oo} .
k=0
(13)

Hence the mapping

(a")nGNU

— (()),.,) (14)
j€l ) ken,

is an isometric embedding from ¢ (p, q) into £9(€?). Taking
into account that £ (E) € £"(E) for any Banach space E and
1, < 15, we conclude that

7 (pa) <’ (pay) »

Therefore

e (pvan) < ¢’ (Pran) < ¢’ (P2 a2)- (16)
O

¢ (prg) <€’ (pyq). (15

We would like to analyze the embedding between £ (p,
q) and €7 (p, q) for .7 # 7 whenever A ; = A ;.

Proposition 8. Let 7 = {[;: 1 e Ny} and 7 = {J : k € N} If

Ay = Ay, p<q(respect. q < p), and sup,#], < oo (respect.
sup;#I; < 00), then

¢ (p.q) < €7 (p.q) (respect. ¢/ (p.q) < ¢7 (p.q)). (17)

Proof. Proposition 6 gives ¢ (p,q) = ¢7(g,q), and clearly
¢7(q,q) = €7 (g, q). Then the result follows using ¢ (p,q) <
¢7 (g, q) whenever p < q. O

Let us mention another particular case where they coin-
cide.

Proposition 9. Let .7 be such that I, = [m,n;) N N, with
. = Ny, and define

F =1 = Ly UL,y k€Nt (18)

Then ¢ (p,q) = ¢ (p.q).

Proof. Note that J, = L, U L, is again an interval in N,,.
Using that (a + b)* < C,(a” + b*) for a,b,a > 0, then

o alp\ V4
||a||§q:<z<z|aj|"> >

k=0 \ j€Ji

- alp\ V4
=<Z<Z |“j'p+, |“j|p> >

k=0 \ j€ly j€hkn

- , ap , alp\ V4
o $( 3l ) 5[ 3 r)

k=0 \ j€ly k=0 \ j€lx

< Clall,,.
(19)

On the other hand, using now (@P +bP) < Cpla+ b)ﬁ for
a,b, >0,

o alp alp\ /1
= (S(Slol ) (3 1ol)
k=0 \ j€l j€hk
- a/p\ /4 (20)
(5 2 ) )
k=0 \ j€l Ul

!
< C'laly,-
O

The previous idea is easily generalized using the following
definition.

Definition 10. Let J :={I;: 1 € Ny} and 7 = {J, : k € Ng}.
One says that .7 < 7 if the following conditions hold:
@) Ay = A];
(11) Fk = Fk(j,j) = {l € NO : Il - ]k}#ﬂforallk € NO;
(111) ]k = UlEFkIl forallk € NO'



Proposition11. Let 1 < p,q < oo and 5 < F. Then
() ¢/ (p.q) < €7 (p.q) for p < ¢;
(i) €7 (p.q) < ¢/ (p.q) forq < p.
Moreover, the embeddings above are of norm 1.

Proof. (i) Caseq = oo:leta € Ej(p, 00) and ] € N,. We know
that there is k such that I; € J;. Hence

1/p 1/p
<Z|anlp> s(ZIM") <lalfy. (D

nel; nejy
J
o < lalZ,

The case p = 1: leta € €](1 q) and q > 1. Therefore

@7 -3(E Z ol

leF, nel;

This gives llall”

. (22)
233 (Flal) - (1a,)"
k leF, \n€l;

The case 1 < p < g < co follows using (9) and the previous
one.
(ii) The case p = co:leta € EJ(oo,q). Then

q 1/q
||a||f0 = <Zsup(sup|a |> )
k l€F, \ n€l;
1/q
(Z Z(sup |a |> > = ||a||o‘];,q.
k leF, \ "€,

To cover the remaining cases, from (9), we simply need to
show that EJ(p, 1) ¢ Ej(p, 1) for p > 1. Now observe that

a7, = Z( 2. 2 la, |P>1/P

leFy nel

(23)

-3(ghu) .

leF,

3 o, -(Zwr)

nel,

= lal,
]

Theorem 12. Let ¥ < f and 1 < p,q < co with p#q.
¢7(p,q) = €7 (p,q) (with equivalent norms) if and only if
sup, #F, < oo.

Proof. =) Assume that lall” Iy IIaII for all a finitely sup-
ported Let k € N and define
(k) _ -1/p
= Z(#Il) X1 (25)
I€F,

1 5 1
Then [lall], = (#F)"/ and [lall} = (#F)"/%.
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One concludes that C, < (#F)"?""1 < C, which
implies, in the case p #q, sup, ¢y (#F) < co.

&) Case p < q. From Proposition 11, we only need to show
27 ( pq) < o7 ( P> q)- Using now Hoélder’s inequality for g/p >
17

1/p 1/p
(Zhr) < (z z|an|f’>
nejy IeF, nely

alp\ 1/
S(;(ZIW'P) p) (#E)"7.

Therefore, if M = sup, Fy, we have

o alp 1/q
||a||iq=<Z<Zlanl"> >
k=0 \nej;
alp 1/q
a5 5 (swr))
keN, I€F, \ nel; (27)

_ MI/PSQ<Z§O< ;I|an|f’>q/p>1/q

= M7

(26)

Case p > gq. Using again Proposition 11, we will show
(fj(P’ q) c ej(p, q) Using l/q = 1/q ep+ 1/p)

lall,, = (ZII ax )

(3 3ptt)”

k leF,

ol Ve e
( (Zhul) ¢ >)
IeF,
alp\ '/
sM”qep<Z<Z|a|P> >
nejy

1/g0 b
< M"®P|a)7 .

Let us now exhibit an example where neither £(p, q)‘y -
¢’ (p,q) nor ¢/ (p,q) < £7 (p, q).
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Example 13. Let1 < p < q < oo and take .7, # as shown in
Figure 1 with

card (1)) = n
card(I;) =--- = card(Inl) =1

card (Inlﬂ) =n,

card (In1+2) = card ([, ( n1+n2+1) 1
card (In1+n2+2) =n,,... (29)
card(J,) =+ = card(]nl) =1

card (]nl) =n

card (]n1+1) =-.. = card (I"1+"z) =1

card (]”1+”2+1) =1y,....

Let us see that neither ¢/ (p, q) c €7 (p,q) nor ¢ (p,q) c

¢’ (p,q).
Taking

ny "y 1y
a= (ﬁl,...,,81,0,...,O,ﬁz,...,ﬁz,o,

(30)
b=(0....0B,. /31,0 0/32,...
”1
we have
1/q
I _ J _ q,4/p
||a||p,q—||b||p,q—<zﬂ ) ,
(31)
1/q
S _ J o _ q
lallZ, = 1617, = (Zﬁjn,) .
j
-1/p .~1/q

Then it is enough to consider g > pand f8; = n;"'"'j
Now
1/q9 1/q
<Z/3q q”’) = (Zj“) =00 (32)
i

and, since n; > j,
1/q
-1 1 q/p>

() (3
()

Hence we have a € Ef(p, Q) \ Ej(p, q)and b € fj(p, 9\

¢ (p.g.
We would like to explain a procedure to analyze the
general case A 7 = A 5.

(33)

Definition 14. Let ¥ and 7 be families of disjoint intervals in
Ny with A 7 = A ;. For each k € N, one uses the notation,
as above, F, = {l € N : I; < J,} which now might be empty.
One also defines

We write ¢ and @ for the mappings given by
¢ (k) = min F,_, ® (k) = max F,. (35)

Similarly, interchanging .7 and _#, we define G, G;, w(l),
and y(I).

Definition 15. One defines the “left” and “right” part of the
interval J; by

Te = Tk 0 Iygrys Tk = Jie N Iy (36)

and, denoting J; = Use, Iy and T = Ujeg, I one has
T €Tk € T (37)

Je =T UT Ui (38)

where ],i = @ whenever F, = 0.

Similarly, interchanging .# and 7, we consider fl, Tl, Il',
and T,

With this notation out of the way we can classify intervals
in 7 into four different types (according to .¥). Note that for
each interval ] € 7 there are four possibilities: J coincides
with I for some I € .7, J can be written as a union of at least
two intervals in .7, ] is strictly contained into some interval
I € .7, or there exists I € ¥ which overlaps with ] and its
complement J°.

Therefore we decompose N, into four disjoint sets defined
as follows.

Definition 16. Let .7 and 7 be families of disjoint intervals in
Np with A 7 = A ;. One introduces

N7 = [k €Ng: # (F\ B) = 0,#F, = 1},
blg {k € NO (ﬁk \Fk) = 0, #ﬁk 2 2} >
~ ~ (39)
N7 o =1keNy:#(F\F)>0,#F, =1},
NZ o = {k €N : # (B \ F,) > 0,#F, > 2}.
We define the sets Nequal, Ngfg N pand N7 similarly.

Remark 17. Using (38), we can also give a description of the
sets above in terms of ¢ and ®:

N = k000 = 0 R). T = I}

blg {k¢(k)<®(k)’]szk} ( )
40
small k: (/5 (k) =0 (k) ,]k - I(/:(k)} .

=1
mter {k(l)(k) <q)(k):]k§7k}
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L

/\ L L In mr I”1+2 T I”’IJr ny+1
1 1L — 1L — 1L — 1 T 1 1 — 1L — 1L —_ 1L
T L L L T T T L L L
0 nl 2m, 2n1 + 1, 2(ny + ny)
et \/ S =

o T In] fwl o Toyemet

FIGURE 1

Using the above decomposition, we can generalize Propo-
sitions 8 and 11 and Theorem 12. Note that sup,#J;, < 0o
implies sup, #F, < oo and also that .# < # corresponds to

the case where Nmter U N:; 1 = 0 or equivalently #G, = 1 for
anyl € N,.

Theorem 18. Let 1 < p < g < oo and .7, ¥ be collections of
intervals such that
¢” (p,q) < ¢’ (p,q) & sup {#Fk;k € NO} <oo. (41)

Proof. =) Arguing as in Theorem 12, for k € N, we consider

= Z(# (1 n]k))_l/PXI,rUk' (42)
leF,
Hence
S e
- (Sl )
nejfy
1/p
(YY) =R @
leﬁknelln]k
5 alp\ /1 y
- (Z( 2 ml) ) -
leF, \n€LnJi
Therefore, using that IIa(k)IIj < Clla(k)llj and p < g, we
’ pa = pa ’

conclude that sup{#F; k € N} < co.
&) Denote sup, (#F,) = M > 0 and let k € N,

Caseq=o00.Ifk € Ns’;au U N::ual, then

1/p 1/p
(Zloal") s(ZMl") < lally o
nejy nEIw()

Ifk € Nig u Nmter, we have

1/p
(z |an|f’)
nejy

(44)

1/p

> Dlal”+

leF, nel;

> laff

nefiUJi

1/p 1/p
(z zw) ( 5 |an|f’>
I€F, nel, n€lyg

IA

1/p
[z
nelq)(k)
1/p
< (sup(Z]a |p>
leFy \ nel,

x (#F )P + 2||a||ioo>.

(45)

This shows Ej(p, 00) € Ej(p, 00).

Case q < co. Arguing as in Proposition 11, we simply show
that Ej(l,q) c €](1,q) forg > 1.

Observe that
q
: (50)
kEN;]nmu neji

< v 3(xu)

leN7 UN (k)= l<n61k

2

big = Vinter
. (46)
3 (35
1N UN, \ $(k)=L ney
q
= 2 (ZI%I) < (lall7,)".
leN7 UNY _\n€l,

big inter

Also we have

)

keN” UN7

equal

(3 )

3 (z3m)

keN7 UNZ
qual ig
q
q-1
= z (#Fk) Z(Z |an|>
keN” UN” leF, \n€l;

equal “*Vbig
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< M7

2 )

keNZ, UNY J€F \nel

equal

-1 J\4
< MT'(Jlally,)".

(47)
Finally
q
% (T )
keNZ,.. \n€Jx
q
< 22 2l 2 lad+ Y lad
AN e M s
q
<C Z (#Fk)q_lz<z |an|>
keNZ,.. IeF, \ n€l,

! C)
tC Y | Xlal)+c X | Xlal
keNj. \n€ keNZ,. \ n€j;

q
< CMT! Z (Z |an|>
leN7 UNZ  \n€l,
1 q
e s (i) (5 )
keNZ,.. \"€lya keNZ .\ 7€log
< C(lall7,)"

Combining the above estimates, we conclude this implica-
tion.

Corollary19. Let 1 < p < g < co and .7, F be such that
¢’ (pq) <€’ (p,q) = sup {#Gl;l € NO} <oo. (49)

The next result can be achieved using duality, but we
include a direct proof.

Theorem 20. Let1 < g < p <ooand. 7, ¥ be such that
¢ (p,q) < ¢’ (p,q) = sup {#Fk;k € NO} <o0o. (50)

Proof. =) Repeat the argument presented in the direct
implication of Theorem 18.
&) Denote again sup, (#F,) = M.

Case p = co. Observe first that if | € N7 UN? . we have

big equal’

q q
(sup Ian|> = |a,p|" < (sup Ia,,|> (51)
nel; nejy

forsomek = k(1) € N7 UN7 .Sincek(l) k(') for1#1' €

smal equal”
7 7 .
Nbig U Nequal’ we obtain
q q
> (sup I%I) < ) (suplan|> - (52)
nel; ne
1N UNZ 1 keNZ. aHuNgf1 ol Tk

Also if [ € Nm]ter, then (supndllanl)q = Ian(,)lq where n(l) €

I/ UT, U, Note that n(l) € J; for somek € N7 UNZ _and

small inter
1<#({leNJ, :n()e}) <2 (53)

Hence

q q
Z (sup|an|) <2 Z (suplanl) . (54)
keN”

leN7. nel; UNY nejy

inter small inter

On the other hand,
1 q
> (sup|‘1n|> < ) (sup|an|)
IeN nel; l<eleigu1\r‘f/:ler w()=k \ "€l

q
< Z (sup |an|) (#F,)? (55)

keN? uNZ Nk

big inter

< M(lall/ )"

Combining the previous cases, we get £7(co0,q) <
¢7(c0,9).

Case p < 00. Arguing as in Proposition 11, we simply show
that (Zj(p, 1) ¢ Zj(p, 1) for p > 1. Consider

lall,), = Z( ZI%I") "

I \n€]

sz(ﬂwy

leN7 \n€l;
small

P Sar)

leN7 UNZ \keG neji

equal

(56)

2 2 2l

lEN{fm keG, nejy
1/p
+2 el + Xl
nel, nel,
=1, +1, + 1.



Now observe that

e 5 y(3er)

keNJ UNZ, 1€F \n€l,
ig

inter

(57)

1/p
< ) (Zlanlp) #(F,) < Mal7,.
N]

keN7 U nej
g

inter

Also note, since p > 1,

1/p
L Y Z(Zlanl"> <lalf,  (58)

leN” uNggkeGl nejy

equal

Finally

be 3 (3 3r)

1eN7 keG, nejy

inter

1/p 1/p
(30)"(30)
nel, nel,

<y (zw)up

keN/ UNZ \n€Ji

inter small

3 (zer)

leNZ \ 1€y

inter

3 (zer)

leN7 \ 1€y

inter

(59)

1/p
< cZ( D |an|P> = Clal?,.
k

nejfy
The converse implication is now complete. O

Corollary 21. Let1 < g < p < oo and .7, 7 be collections of
intervals such that

¢7 (p,q) < ¢’ (p,q) = sup {#Gl;l € NO} <co. (60)

Corollary 22. Let 1 < p,q < oo with p#q and .7, 7 be
collections of intervals such that

¢ (p,q) = €7 (p,q) = sup {(#Fk) (#Gl) sk, e NO} < 00.

(61)
Proof. It suffices to show the case p < gq. Note that L’J( pq <
¢ (p,q) and ¢/ (p,q) < ¢7(p,q) are equivalent, due to
Theorem 18 and Corollary 19, to the facts sup, (#F,) < co and
sup;(#G)) < 0o, or equivalently

sup {(#Fk) (#G,);k,l € NO} = sup (#Fk) sup (#Gl) < 00.
k I

(62)
O
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3. Multipliers on Generalized Mixed
Norm Spaces

In this section, we consider 1 < r,s,u,v < 0o and .#, # such
that A ; = A ;. We define

(é’] (r,s), 4 (u, v))

7

u,v

= {/\ = (An)neA]ﬁA; : “(A”a”)”e‘/\f

-
The case .¥ = £ can be shown repeating the proof for

F ={I, : k € Ny} where I, = [2 — 1,251 — 1) n N, (see [1,
Theorem 1]).

(63)

< C|(a,)

neA 5

Theorem 23. Consider 1 < r,s,u,v < 0o. Then

((,’J (r,s),EJ (u, v)) =¢ (uwer,ves). (64)
We define the Kéthe dual €7 (p,q) = (¢7(p,q),
¢7(1,1)).
Corollary 24. Consider 1 < r,s,u,v < co. Then
ej(r, s)K =¢ (r',s') . (65)

There are some other cases where the set of multipliers can be
easily determined. Using Proposition 6 and Corollary 22, one
easily obtains the following results.

Proposition 25. (i) If supyy #Ji < ©0, then &7 (r,s),
o’ (u,v)) =" (vor,ves).

(ii) IfsupleNo#Il < 00, then (¢7(r,s), ¢ (u,v)) = ¢/ (ue
S, VO%s). o

(iii) If sup{(#F, ) (#G)); k, 1 € Ny} < o0, then

(Ej(r,s),fj(u,v)) =€j(uer,ves) =€J(uer,ves).
(66)

Also as a direct consequence of Theorem 18 we obtain the
following.

Proposition 26. Ifr < u, s < v, and u < v and sup{#F; k €
No} < 0o, then

(67 (r,5), 07 (w,v)) = {(M)neA,, : sup A, < oo} . (67)

Proof. If A = (A,)),, is a multiplier then the sequence (A,,) is
necessarily bounded.

{(AH)%AJ csup |4, < oo} < (67 (5),6” V) (68)

is equivalent to ¢7 (r,s) € €7 (u,v). Now use the embedding
¢7(r,s) < €7 (u,v) and Theorem 18 to conclude the result.
O
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Definition 27. Given two families of intervals, .7, 7, such that
Ay = A4, one defines the collection of pairwise disjoint
intervals in N as

InF={[nJkeNyleFl. (69)
It coincides with {I, N J, : € Ny, k € G;}.
Proposition 28. Let1 <r,s,u,v < co.

Q) Ifr <sv<u then (¢’ (r,s),¢’ wv) c 77 (e
7,V Os).

In particular, if sup,#F, < 0o, then

(6‘7 (r,s),ej (u, v)) ce’ (uer,ves). (70)

(i)Ifs < r,u < v, then E‘W(u er,ves) <
(&7 (r,s), €7 (u,v)).

In particular, if sup#G, < oo, then
¢” (werves)c (¢ (rs), e wv)). (71)

Proof. (i) Note that m < J and m < ¥. Hence,
from Proposition 11,

e’ (pg)ct’ (pg), p=4

s (72)

e (pa)ce”™ (pq), p<q

Now using (72) and Theorem 23, we obtain

(EJ (r,s), ¢’ (u, V)) c (EW (r,s), EW (u, v))
(73)
= Ew(uer,ves).
Also we have
Fk(m,f) ={l€ NO:Ilﬂ]k g]k} =ka,

(74)

G(Fng.I)={keN, :In JycI} =G,

Using now Theorem 12,

7 (p.q) = ¢ (p.q) = SUptF, <00, (75)

7 (p.q) = ¢ (p.q) = sxllp#éz <0o.  (76)

The particular case follows now applying (75).
(ii) is similar to the previous one and left to the reader.
O

Our purpose is to get a final description of multipliers
(&7 (r,5), 67 (u,v)). We will deal first with the case .7 < 7
and get a reduction to this situation in the remaining cases.

3.1. The Case . < #. In this section, we consider ¥ and ¢

such that N, = Nig U Nj;ual. This means that Fy, = F, # 0 and

Jk = Ujeg 1 for all k. Notice that | € F; means I; € J; and we
have
Fo={leNy:¢ (k) <I<(Kk)}. (77)

We use the notation /.7 = {F;. : k € Ny}.
We will need the following well-known fact.

Lemma 29. Let 0 < u,r < 0o, A € N, and (A;);c4. There
exists (a;);c o such that

1/r
(Slar) -1
icA

1/uer 1/u
(Z|Ai|u97> _ (Z'aihi|u>
i€cA i€cA

(with the obvious modifications whenever u,r or u © r equals
00).

(78)

Proof. Forr = oo (thenuer = u), it suffices to takeg; = 1,i €
A.
If r < coand u > r (hence u © r = 00), it suffices to take

i=i(A)

a; = L (79)
"7 ]o otherwise

for i(A) such that sup;,|A;] = |44l
Ifu < r < oo, take

—1/r
a = (ZI%I””) ALl e A (80)
icA
Using 1 + uer/r = u©r/u, one shows the result. O

Theorem 30. If .7 < 7, then

(EJ (r,s), o7 (u, v))

1/uer
=1(4),: ((leiluer) )

Efj/‘](ues,ves)

(81)

Proof. ) Assume that (1,), € 7 (r,s), ¢ (u,v)).

We use Lemma 29 with A = I; to select for each ] € N,
a sequence (ai(l))idl such that (Ziell |ai(l)|r)1/r = land f =
Sieg P = (S N 1)

Now, again use Lemma 29 with A = F, for each k ¢
Ny to choose (&), verifying (¥;cp, lgl)'* = 1 and

(Sier, B = (e, 1Byl
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Finally, using Lemma 29 for A = N, one more time, take
= (yp) verifying (3 [yel’ )'* =1 and

sy ves/uosy 1/ves ©sV/ue
(Zk(ZleFk /90 = (k Vk(ZZEFk /7))
This procedure allows us to obtain the sequence a=(a);

a; = ykoc,ai(l) wherei € I},1 € F, and k € N,. With this choice,

1/v

we get that IIaII;ys =1land
5
1BIZL . = 1A+ all, < 1A (82)

D) Leta = (g); € ¢7(r,s)and A =
¢/!7 (uwes,ve s) where

1/uer
B = (ZIMi””) : (83)

(A,); such that (), €

icl,
Fix k € Ng:
1/u
<Z|A,-ai| ZZ|Aa|>
iely IeE, €],

u/uer ufr\ Vv
o2
leF, \ i€l i€l

ues/uer 1/ues
|A |u9r >

s/r 1/s
x < > <Z|“i|r> > .
leF, \i€];

lEFk i€l

(84)
Taking the v-norm, we get
viu 1/v
<Z<Z|/\iai|u> )
k \i€J,
v/ues s/r v/s v
(2(ze=) ((zwr) )
k \leF;, leF, \i€],
vOs/uds 1/ves
< (Z( Zﬁu95> >
IeF,
(85)
(22 (gwr )
k leF, \i€l,
vOs/uds 1/ves
_ Z( ues
k leFk
(5(zr ) )
1 \ie,
Hence (,),, € (7 (r,s), ¢’ (u,v)) and ||A] < "/3”{4]e/£es' O
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Corollary 31. Let # < . and1 <r,s,u,v < 0o. Then

(€j (r,s), 4 (u, v))

1/uer
— A . /\Auer
{( ), ((z| ) ) w

€ Zj/j(ver,ves) }

Proof. Recall that G; = = {k e N
Ukeg,Jk- We now denote J/f = {G;:
duals we actually have

(€j (r,9) N4 (u, v)) = (€j (u',v') d (r',s')). (87)

Taking into account that p' ©q' = ge p for all p, g, the result
follows from Theorem 30.

C L}and I =
l € N } Using Kothe

32 TheCase I N € FU J. Let ¥ = {I, : | € Ny} and
F=1:ke NO} be such that A ; = A ;. We assume in this

- 7 ' -
section that Nlnter @and N7, = 0, that is to say, for a given

I € N, either there exists k such that I; € J or there exists
k' such that J,; C I,. In other words, each interval in Jng
belongs either to ¥ or to 7.

To extend the result on multipliers to this setting we will
use the following lemma whose easy proof is left to the reader.

Lemma 32. Let F = {I;: | € Ny} and 7 = {J, : k € N} be
such that A ; = A ; and let .7; (respect. 7;) be subcollections
of J (respect. F) fori =1,...,m where F = U" | .7; (respect.

J =UL.7,)satisfying A ; = A 7 fori=1,...,m. Then
A=M)yen, € (67 rs), 67 wm) (88)
if and only if
A0 = (An)ne/\ (f‘y" (r,s), ¢ (u, v)), i=1,...,m
(89)

Moreover Al = Y7 IA9].

Theorem 33. Let W c J U J. Then (A,), €
(€7 (r,5), 7 (u, v)) if and only if it satisfies the conditions

1/uer
<<Z|Ai|uer> > € eves) (90)
i€]k keN”

equal

1/uer
((Zwuer) > €’ esves), (O
i€l; IENY

small

1/uer
<<Z|)ti|uer> > eeg(ver,ves), (92)
i€]i keN”

small

where F = {F: k € Njj yand & = {G; : 1 € Ny }.



Abstract and Applied Analysis

Proof. Let us consider the following collection of intervals:
o= {] kike Nt{g}
j {]k ke Nequal} (93)

j {]k ke Nsmall}

and similarly for .7.
If J, € 7, (respect. I; € ), wehave F, ={l e N, : [; ¢
Ji} #0 (respect. G, =1{k e Ny : J ¢ I} #0) and

(feSPeCt Iy = U Jio Ji € j)
(94)

Je =Vl L€

Hence 7 = 7, U f,U f, S =5, US, U5 and
je = {]k ke Nequal} {Il le Nequal} je' (95)

Observe that 7 < 7, and 7, < .7, and, in particular, & =
jh/fs and g:]b/js'

We use Lemma 32 and observe that, denoting A, = A 7.
A=Az =Ag,andA,=Ay; =Ag,,

(Aﬂ)ner €

corresponds to (90) invoking Theorem 23, also that

(An)neA1 € (ej

corresponds to (91) invoking Theorem 30, and, finally, that

(An)neAz €

corresponds to (92) invoking Corollary 31. O

(67 (r,5), €7 (V) (96)
“(r,s), €7 (u, v)) (97)

(€7 (r,5), 07 () (98)

3.3. The General Case. In this section, we assume that there
existk € Nyand! € F suchthat [nJ, € #N Fand,NJ, ¢
JUJ.

Since the notation may be a bit confusing, we will
illustrate the idea. Let .7, 7 be different partitions of N, as
shown in Figure 2.

The situation we are handling now corresponds to
# 0 (and hence Nlnter +0).

mter

Definition 34. Consider
I ={Ji = Uep I - k € Ny, #F, > 0},
H=INF\ (T, (99)

jS = {]k ke Nsmall}

Denote #"' = 7' U £ and 7., = F UX.
We use similar notations for .7.

Recalling that ¢(k) = min F, and CD(k) = maxﬁk for

k € N, we easily observe that o( equa1) c equal, PN, big) €

4
small’ ¢(Nsmall) = Nblg UN mter’ and ¢(Nmter) = Nsmall U Nmter
Same results hold for ®.

1

Lemma 35. Consider the families defined in the previous def-
inition. Then:

{]k ke Nznter ¢(k) € mter}

U{]k ke N’

inter?

(100)
Y (k) € Nmter}

Proof. <) LetI € #.Sincel € 7 N _7, then there exist k € N,
and | € F, such that I = I, N J;. On the other hand, since
I ¢ FU 7, wehavethat] ¢ I; and I & Ji. Hence, either
¢(k) = I and w(l) = k or O(k) = land y(I) = k. This gives

either k ¢ Nlnter and ¢(k) e N7 (and hence I = J;) or
ke Nmter and q)(k) €N, mter (and hence I = J).
2) Letk € N7, with ¢(k) € N and consider J, =

JeNIye € JnJg. Then J; ¢ J, (henceJ, ¢ #)andJ, ¢ I4(k)
(hence J; ¢ .7). One may proceed similarly for J, in the case
k € N7, with ®(k) € N =

inter mter

Remark 36. Note that J, = J, N I, if and only if [, = I, N J,.
Therefore,

H = {Il le Nmter’w (l) € mter}

{Il ke Nmter’ (l) € 1nter}

Lemma 37. Consider the different families defined in
Definition 34. Then:

(101)

gl c s ugus,cs vy 102

Proof. Let] € ' U F and ] € F' U 7, with I N ] #0. The
case] € S and ] € F cannothold. If] € F and ] € j',
thenInJ =1 € 7. Similarlyif I € " and J € 7, then
INJ=]¢€ 7, FinallyifI € ' and ] € #',thenl =] €
Fo=F. O

Theorem 38. A ¢ (¢7(r,s),¢7 (u,v)) if and only if (A,),

satisfies
1/uer
((zr) ) e
i€]k keN”

equal

1/uer
<<Z|/\i|uer> > e’ (ues,ves)
iel; leN”

small

1/uer
((Zmir‘er) ) ct’(ver,ves)  (105)
i€f; kENj

small

1/uer
< Z |Ai|u9r>
iy

keA,

1/uer
(ZW’) ces,
il

kel

(103)

(104)

(106)
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where Recently, weights with the following condition had been
P considered in [16]: there exist C,,C, > 0 and K(n, p) such
{k € Nmter’q) (k) € Nmter} that
1= (ke Niue 6 ) € N} o) o [ YD ar <k o)
0
¢ ={G,:1€ Ny, UN;,...#G, > 0}, (110)
ig m er L—p—(n41)
i p(1-7)
7 7 <G, r —2dr,
F = {Fe 1k € N UN7,,. #F; > 0}. - 1—r

Proof. Using J, = ],L U fk U fk and Lemma 35, one obtains
Fnew < J and J ., < J. Clearly, #F/(F oo F) < 3 and
#F (7 pew> &) < 3 for all k. Therefore, using Theorem 12, we
have 67 (p, q) = €7 (p,q) and €7 (p,q) = €7 (p, q), which
gives

(EJ (r,s), 4 (u, v)) = (€J‘“W (r,s), 67w (u, v)) . (108)

Taking into account Lemma 35 and Remark 36, we
observethat Az = A, UA and A v = A 4.

Since fpew = JF UX and I, = I U X, we can
apply Lemma 32 to conclude that A € (€‘7(r, s),€j (u,v)) if
and only if (A,),cn, € (€7 (r,5), €7 (u,v)) and (A,)gp, €
@ (r,), 67" (u,v)).

Now apply Theorem 23 to obtain (4,,),.¢5 ,
s) which corresponds to (106).

On the other hand, comparing .#" and 7 ", we notice that
Ie J,’D'ig corresponds to I = I} for some [ € Nblg UN  and
#G; > 1. Hence we obtain that & = {G; : I € J{)'ig} and
similarly & = {F; : ] € j{)’ig}.

We now use Lemma 37 together with Theorem 33 to
obtain the equivalence with (103), (104), and (105) and

e ¢” (uer,ve

Auga, € €7 (1), 67" (u,v)). O
4. An Application
Let p : [0,1) — [0,00) be a nondecreasing function such

that p(0) = 0 and p(t)/t € L'([0,1)); we define the weighted
Bergman-Besov space B'(p) as those analytic functions F in
the unit disk such that

J |F' (= )| P( I)dA(z) < co. (109)

An analytic function F is called lacunary if F(z) =
ZneAg a,z" where & = {{n;} : k € Ny} for some (1) such
that inf,ny., | /n > 1.

and the following result has been shown.

Theorem 39 (see [16]). Let F(z) = ), Ay O z" be a lacunary
functzon and let p be a weight satisfying (110) Then F belongs

to B'(p) if and only if

Z<Z|a| )1/221( (k, p) < o0,

k=0 \nejy

(111)

where J, = {n: 28 —1<n <2 —1}.

We will extend the previous result for more general classes
of weight functions and families of intervals 7.

Definition 40. Let 0 < q < co;let # be a collection of disjoint
intervals in N, say J, = Ny N [my, my,,), where m, = 0 and
(my,) is some increasing sequence in Ny. And let p : [0,1) —
[0, 00) be a measurable function such that p(t)/t € L'([0, 1)).

We say that p is g-adapted to ,# whenever there exists C >
0 depending on m,,, g and p such that

! 1- 1-
J pmPA1) g CJ prma P g, (112)
0 1-r A, 1-r
foralln > Owhere A; = [0,1-1/m;) and A, = [1-1/m,, 1
1/m,,,) forn > 1.
We denote
1
1-—
t, (s) = J rsP( r) dr, s>0. (113)
0 _

In particular, from condition (112) if p is g-adapted to 7, we
get that
Mp (qmn) = .up (qmnﬂ) . (114)

Note also that condition (110) means that p is 1/2-adapted for
F wherem,, = 2" — 1.
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Proposition 41. Let p,(t) = t* witha > 0 and § =
{lm,,m,. ) NNy : n € Ny} The following statements are
equivalent:

(i) p, is g-adapted to ¥ forall q > 0,
(ii) py is g-adapted to F for some q > 0,
(iil) sup, m,,,/m, < co.

Proof. (i) = (ii) It is trivial.

(ii) = (iii) It is well known that B(n + 1, @) = IOI (1 -
r)*'dr =~ n™* and therefore Uy, (gm,) = m,*.

Hence it follows from (114) that m,,, = m,,. Therefore
sup m,,,/m,, < 0o.

(iii) = (@) Let supm,,,/m, = § and take g > 0. Now
observe that

1_l/mnﬂ
J‘ rm (1 — )" dr
1-1/m,,

1 QM 1/m, 3
> <l - —) J s ds
mn l/mn+1

g,y @
21(1_L> m;“<1—< m, > ) (115)
(24 mn mn+l
2(0=5) ) 030
T m, " o«
> Cu, (qm,)
O

We now modify the proof of Lemma 3 in [14] to obtain
the following result.

Lemma 42. Let 0 < q < 1, let ¥ be a collection of disjoint
intervals in Ny, and assume p is a weight q-adapted to ¢. If
(a,) = 0, then

1/ 00 q _ [e) 4
J (Z(xnr”) p(ll_ rr)dr: Z(thk> u, (gm,), (116)

0 \n=0 n=0 \ keJ,

where ], ={k :m, <k <m,}.

Proof. Asabove, A; =1[0,1-1/m;) and A, =[1-1/m,,1-
1/m,,,) for n > 1. Then

13
S P 1-7)
ey P r
2 J “k M1 d
oo q
2 Clz< ZOCk> n"ip (qmn)
n=0 \ keJ,
117)
Conversely, since g < 1,
1 / o0 q 1—
J‘ (Z‘xnrn) P( r)dr
0 n=0 l-r
q
1 o© 1-—
< J Z (xkrk Pl T)dr
0 =0\ keJ L-r
q (118)
© ! m, P (1 - 7’)
< Z o <J- rl ”—dr)
n=0 \ keJ, 0 1-r
o q
< Z( “k) Aup (qmn) .
n=0 \ keJ,
O

We first note that for lacunary functions F and 0 < p <
00, we have (see [17])

2 ) 1/p
Mp(F,r)=(L lF(re’e)Pg) ~ M, (F7)

([ g)/

0
Therefore, for lacunary functions F, one has that F € B I p)if
and only if

(119)

(120)

1
J- M, (F',r) pa r)dr < 00
0 1-r

Therefore, invoking Plancherel’s theorem and Lemma 42, we
recover Theorem 39.

Recall that an analytic function F : D — C with F(z) =
Yo, a,2" is said to belong to H(p, g, p) (see [14, Definition
2]) whenever

1 p(1 - rz) 1/q
- q
1 erpq0) = (L MP(F’ T)vrdi’> <oo. (121)

We use the notation H(p, g, «) if p(t) = t*.
A consequence of Lemma 42 is the following result.

Corollary 43. Let 0 < q < 2, let ¥ be a collection of disjoint
intervals in Ny, and let p be a weight q/2-adapted to . Then

. q/2 1/q
m,
”F"H(Z:%P) = <Z< Z |ak|2> [-’lp <q7>> . (122)
n=0 \ keJ,
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Moreover, if F is lacunary and 0 < p < oo, then

o a/2
qm
Flpan = X Yl ) w(B2)
n=0 \ keJ,NA o

Theorem 44. Let 0 < g < 00, let ¥ be a collection of disjoint

intervals in Ny, and assume p is a weight q-adapted to 7.
Define A = (Ay); such that

1 _ 1/q
Ak:(J- rW’WM) ) kG]n
0

1-r

1/q
. (123)

(124)

and Ay = 0 otherwise. Then (M), € (H(1, g, p),Kf(oo, q))-

Proof. We will show that

o q 1/q
<Z<Sup Iak|> [’lp(qmn)> < C"F”H(l,q,p)' (125)
€Jn

n=0
Recall that
sup |a] < M, (F,r) (126)
kE]n—l
and therefore,if A; = [0,1-1/m;) and A, = [1-1/m,, 1
1/m,,,) for n > 1, then
q
Z(suplad) u, (am,)
= ! (1-7)
< CZ sup |ay| J pam P d
n=0 \ k€J, A, 1 r
s 1 (127)
SCZJ sup |a| P r)d
n=0 YA \ k€J, r
O (1-r)
<C J M P d
ZO , MIED
= CIIFIIH(qu
O

Theorem 45. Let 1 < q, < q, < 2 and let ¥ and 5 be
collections of disjoint intervals in N, generated by sequences
my and ny, respectively, such that 5 < 7. Assume that p, is a
weight q, [2-adapted to F and p, is a weight q,[2-adapted to
. Denote

#pr’z (k)

1/g,0q, (128)

(o () e 22 )™

(H(2,91,0),H (2,95, p))

= {(An)n; (iulpup],pz (k) Mkl) € ¢/ (00,q, eql)} :
eVl

(129)
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Proof. Let

F;(z) = i(#}’l <%)>l/ql <je[kzj> )

k=0
Z]
=

G, () - 12)(%2( zmk>> 1/ <Jdkz;>

Using Corollary 43, one has that f € H(2, q,, p;) ifand only if
f*F,ee’(2,q,)and g € H(2,q,, p,) ifandonlyif g+ G, €
ej(2> )

We use that A € (H(2,q,,p,),H(2,4,,p,)) is equivalent
to A Gf~€ (H(2,q,, py)» €7 (2,9,)) and also equivalent to
AxGy*Fy€ (ef(z,ql),ef(z, 9))-

Making use of Theorem 30, we have

o0

Fro= o (42)) ™

k=0

(130)

[

(67 (2q).¢7 (2.q,))

‘l()’n (iuplyk|> € ¢717 (00,q, eql)} :

This concludes the result. O

(131)

Let us finish by observing some examples to apply the
above results.

Example 46. Let A > 1 and denote my(A) = 0 and m (L) =
[AF] for k € N, and _7(A) the partition of intervals J;(1) =
[m; (L), my,1(A)) N Ny. In this case, U, (gm,) = A" and
then, from Proposition 41, p, is g- adapted to Z(A) for any
value of g > 0.

LetA >y > 1 with A = y™ with N € N,. Then £(y) <
F(A) because

my (A) = [Ak] = [YNk] = my (y) (132)

and therefore

Jk A) = Uier i () » (133)
where F, = {l : Nk <1 < Nk + N}. Hence #(A)/ 7(y) = .F
where I, = [Nk, N(k + 1)) N N; that is, m (.F) =
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