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We present a new algorithm for solving the two-set split common fixed point problem with total quasi-asymptotically
pseudocontractive operators and consider the case of quasi-pseudocontractive operators. Under some appropriate conditions, we
prove that the proposed algorithms have strong convergence. The results presented in this paper improve and extend the previous
algorithms and results of Censor and Segal (2009), Moudafi (2011 and 2010), Mohammed (2013), Yang et al. (2011), Chang et al.
(2012), and others.

1. Introduction

Let 𝐶 and 𝑄 be nonempty closed convex subsets of real
Hilbert spaces 𝐻

1
and 𝐻

2
, respectively. Let 𝐴 : 𝐻

1
→ 𝐻

2

be a bounded linear operator. To allow for constraints both in
the domain and range of 𝐴, Censor and Elfving [1] originally
formulated the split feasibility problem (SFP), which is to find
a member of set

Ω = {𝑥 ∈ 𝐶 : 𝐴𝑥 ∈ 𝑄} ̸= 0. (1)

A recent generalization, due to Censor and Segal in [2], is
called the split common fixed point problem (SCFPP), which
is to find a point 𝑥∗ satisfying

𝑥
∗
∈ 𝐶 :=

𝑡

⋂

𝑖=1

Fix (𝑈
𝑖
) , 𝐴𝑥

∗
∈ 𝑄 :=

𝑟

⋂

𝑗=1

Fix (𝑇
𝑗
) , (2)

where 𝑈
𝑖
: 𝐻
1
→ 𝐻
1
(𝑖 = 1, 2, . . . 𝑡) and 𝑇

𝑗
: 𝐻
2
→ 𝐻
2
(𝑗 =

1, 2, . . . , 𝑟) are some nonlinear operators and 𝐴 : 𝐻
1
→ 𝐻

2

is also a bounded linear operator. Denote the solution set of
SCFPP by

Γ = {𝑥
∗
∈ 𝐶 | 𝐴𝑥

∗
∈ 𝑄} . (3)

In particular, if 𝑡 = 𝑟 = 1, problem (2) is reduced to the
two-set SCFPP, where 𝐶 := Fix(𝑈) and 𝑄 := Fix(𝑇), and
the SFP can be retrieved by picking as operators 𝑈 and 𝑇

orthogonal projections.
Censor and Segal [2] invented the following CQ-

algorithmwith directed operators to solve the two-set SCFPP:

∀𝑥
0
∈ 𝐻
1
, 𝑥
𝑛+1

= 𝑈 (𝑥
𝑛
− 𝛾𝐴
∗
(𝐼 − 𝑇)𝐴𝑥

𝑛
) , 𝑛 ≥ 0,

(4)

where 𝑥
0
∈ 𝐻 and 𝛾 ∈ (0, 2/𝐿); 𝐿 is the largest eigenvalue of

the matrix 𝐴∗𝐴.
Inspired by the work of Censor and Segal, for 𝛼

𝑛
∈ (0, 1),

Moudafi presented the following iteration with the demi-
contractive mappings and quasi-nonexpansive operators in
papers [3] and [4], respectively:

𝑢
𝑛
= 𝑥
𝑛
− 𝛾𝐴
∗
(𝐼 − 𝑇)𝐴𝑥

𝑛
,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑢
𝑛
+ 𝛼
𝑛
𝑈 (𝑢
𝑛
) , ∀𝑥

0
∈ 𝐻
1
, 𝑛 ≥ 0.

(5)

Moudafi’s results areweak convergence. In [5, 6],Mohammed
utilized the strongly quasi-nonexpansive operators and
quasi-nonexpansive operators to solve recursion (5) and
obtain weak and strong convergence, respectively. Strong

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 309368, 7 pages
http://dx.doi.org/10.1155/2014/309368

http://dx.doi.org/10.1155/2014/309368


2 Abstract and Applied Analysis

convergence of (5) with pseudo-demicontractive and firmly
pseudo-demicontractive mappings can be found in [7, 8].
Furthermore, for several different strong convergence recur-
sions with nonexpansive operators for solving the SCFPP
see [9, 10]. For the purpose of generalization, papers [11–13]
discussed the total asymptotically strictly pseudocontractive
mappings and asymptotically strict pseudocontractive map-
pings for solving (2) and multiple-set fixed point problem
(MSSFP) by the following iteration:

𝑢
𝑛
= 𝑥
𝑛
− 𝛾𝐴
∗
(𝐼 − 𝑇

𝑛
) 𝐴𝑥
𝑛
,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑢
𝑛
+ 𝛼
𝑛
𝑈
𝑛
(𝑢
𝑛
) , ∀𝑥

1
∈ 𝐻
1
, 𝑛 ≥ 1,

(6)

which is of weak convergence; when 𝑈 is semicompact,
strong convergence of (6) can be deduced. Obviously, (5)
is the particular case of (6). On the other hand, papers
[14, 15] presented cyclic algorithms of the SCFPP for directed
operators and demicontractive mappings, and the results
converge weakly.

However, we found that the strong convergence of (6)
needs the condition of 𝑈 to be semicompact. In order
to obtain strong algorithm for the two-set SCFPP without
more constraints on 𝑈 or 𝑇 and continue to generalize the
operators, in this paper, we propose a different iteration,
which can ensure the strong convergence with more general
case when the operators are total quasi-asymptotically pseu-
docontractive, demiclosed at the origin. We can choose an
initial data 𝑥

1
∈ 𝐻
1
arbitrarily and define the sequence {𝑥

𝑛
}

by the recursion:

𝑢
𝑛
= 𝑥
𝑛
− 𝛾𝐴 (𝐼 − 𝑇

𝑛
) 𝐴𝑥
𝑛
,

𝑦
𝑛
= (1 − 𝛽) 𝑢

𝑛
+ 𝛽𝑈
𝑛
(𝑢
𝑛
) ,

𝑥
𝑛+1

= 𝛼
𝑛
𝜓 (𝑦
𝑛
) + (1 − 𝛼

𝑛
) 𝑦
𝑛
, 𝑛 ≥ 1,

(7)

where 𝜓 : 𝐻
1
→ 𝐻

1
is a 𝛿-contraction with 𝛿 ∈ (0, 1),

𝑇 and 𝑈 are total quasi-asymptotically pseudocontractive
mappings, and {𝛼

𝑛
}, {𝛽
𝑛
}, and {𝛾

𝑛
} are three real sequences

satisfying appropriate conditions. Under some mild con-
ditions, we prove that the sequence {𝑥

𝑛
} generated by (7)

converges strongly to the solution of the two-set SCFPP.

2. Preliminaries

In order to reach themain results, we first recall the following
facts.

Let 𝐶 be a nonempty closed and convex subset of a real
Hilbert space 𝐻 with the inner product ⟨⋅, ⋅⟩ and norm ‖ ⋅ ‖.
Denote by Fix(𝑇) the set of fixed points of a mapping 𝑇; that
is, Fix(𝑇) = {𝑥 ∈ 𝐶 : 𝑇𝑥 = 𝑥}.

Definition 1 (see [2, 3, 16, 17]). (i) Recalled that 𝑇 : 𝐶 → 𝐶 is
said to be a directed or firmly quasi-nonexpansive operator;
if 𝑝 ∈ Fix(𝑇), then

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑝

󵄩󵄩󵄩󵄩

2

− ‖𝑥 − 𝑇𝑥‖
2
, ∀𝑥 ∈ 𝐶. (8)

(ii) Let𝐷 be a closed convex nonempty set of 𝐶; 𝑇 : 𝐶 →

𝐶 is nonexpansive; we say that 𝑇 is attracting with respect to
𝐷, if, for every 𝑥 ∈ 𝐶 \ 𝐷, 𝑝 ∈ 𝐷,

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑝
󵄩󵄩󵄩󵄩 <

󵄩󵄩󵄩󵄩𝑥 − 𝑝
󵄩󵄩󵄩󵄩 . (9)

(iii) A mapping 𝑇 : 𝐶 → 𝐶 is said to be paracontracting
or quasi-nonexpansive; if 𝑝 ∈ Fix(𝑇), then

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑝
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑝
󵄩󵄩󵄩󵄩 . (10)

(iv) A mapping 𝑇 : 𝐶 → 𝐶 is said to be demicontractive
or strictly quasi-pseudocontractive; for 𝑝 ∈ Fix(𝑇), there
exists a constant 𝛽 ∈ [0, 1) such that

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛽‖𝑥 − 𝑇𝑥‖
2
, ∀𝑥 ∈ 𝐶. (11)

Definition 2 (see [11, 18]). (i) Let 𝑇 : 𝐶 → 𝐶 be a total
quasi-asymptotically strictly pseudocontractive if 𝐹(𝑇) ̸= 0,
and there exist a constant 𝛽 ∈ [0, 1], sequences {𝜇

𝑛
} ⊂ [0,∞),

and {𝜉
𝑛
} ⊂ [0,∞)with 𝜇

𝑛
→ 0 and 𝜉

𝑛
→ 0 as 𝑛 → ∞ such

that
󵄩󵄩󵄩󵄩𝑇
𝑛
𝑥 − 𝑝

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛽
󵄩󵄩󵄩󵄩𝑥 − 𝑇

𝑛
𝑥
󵄩󵄩󵄩󵄩

2

+ 𝜇
𝑛
𝜙 (
󵄩󵄩󵄩󵄩𝑥 − 𝑝

󵄩󵄩󵄩󵄩) + 𝜉𝑛,

∀𝑛 ≥ 1, 𝑥 ∈ 𝐶, 𝑝 ∈ Fix (𝑇) ,
(12)

where 𝜙 : [0,∞) → [0,∞) is a continuous and strictly
increasing function with 𝜙(0) = 0.

(ii) A mapping 𝑇 : 𝐶 → 𝐶 is said to be total quasi-
asymptotically pseudocontractive if 𝐹(𝑇) ̸= 0, and there exist
sequences {𝜇

𝑛
} ⊂ [0,∞) and {𝜉

𝑛
} ⊂ [0,∞) with 𝜇

𝑛
→ 0 and

𝜉
𝑛
→ 0 as 𝑛 → ∞ such that

󵄩󵄩󵄩󵄩𝑇
𝑛
𝑥 − 𝑝

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑝

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑥 − 𝑇

𝑛
𝑥
󵄩󵄩󵄩󵄩

2

+ 𝜇
𝑛
𝜙 (
󵄩󵄩󵄩󵄩𝑥 − 𝑝

󵄩󵄩󵄩󵄩) + 𝜉𝑛,

∀𝑛 ≥ 1, 𝑥 ∈ 𝐶, 𝑝 ∈ Fix (𝑇) ,
(13)

where 𝜙 : [0,∞) → [0,∞) is a continuous and strictly
increasing function with 𝜙(0) = 0.

(iii) A mapping 𝑇 : 𝐶 → 𝐶 is said to be quasi-
pseudocontractive if Fix(𝑇) ̸= 0, such that

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥−𝑝

󵄩󵄩󵄩󵄩

2

+‖𝑥 − 𝑇𝑥‖
2
, 𝑥 ∈ 𝐶, 𝑝 ∈ Fix (𝑇) . (14)

(iv) A mapping 𝑇 : 𝐶 → 𝐶 is said to be uniformly 𝑘-
Lipschitzian if there is a constant 𝑘 > 0, such that

󵄩󵄩󵄩󵄩𝑇
𝑛
𝑥 − 𝑇
𝑛
𝑦
󵄩󵄩󵄩󵄩 ≤ 𝑘

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑛 ≥ 1, ∀𝑥, 𝑦 ∈ 𝐶. (15)

Remark 3. Note that the classes of directed operators and
attracting operators belong to the class of paracontracting
operators. The class of paracontracting operators belongs
to the class of demicontractive operators, while the class
of quasi-pseudocontractive operators includes the class of
demicontractive operators. Further, the class of total quasi-
asymptotically pseudocontractive operators, with quasi-
pseudocontractive operators as a special case, includes the
class of total quasi-asymptotically strictly pseudocontractive
operators.
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Remark 4. Let 𝑇 : 𝐶 → 𝐶 be a total quasi-asymptotically
pseudocontractive, if 𝐹(𝑇) ̸= 0, for each 𝑥 ∈ 𝐶 and 𝑞 ∈

Fix(𝑇); from (13)we can easily obtain the following equivalent
inequalities:

⟨𝑥 − 𝑇
𝑛
𝑥, 𝑥 − 𝑝⟩ ≥ −

𝜇
𝑛

2
𝜙 (
󵄩󵄩󵄩󵄩𝑥 − 𝑝

󵄩󵄩󵄩󵄩) −
𝜉
𝑛

2
; (16)

⟨𝑥 − 𝑇
𝑛
𝑥, 𝑝 − 𝑇

𝑛
𝑥⟩ ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑇
𝑛
𝑥
󵄩󵄩󵄩󵄩

2

+
𝜇
𝑛

2
𝜙 (
󵄩󵄩󵄩󵄩𝑥 − 𝑝

󵄩󵄩󵄩󵄩) +
𝜉
𝑛

2
;

(17)

⟨𝑥 − 𝑝, 𝑇
𝑛
𝑥 − 𝑝⟩ ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑝
󵄩󵄩󵄩󵄩

2

+
𝜇
𝑛

2
𝜙 (
󵄩󵄩󵄩󵄩𝑥 − 𝑝

󵄩󵄩󵄩󵄩) +
𝜉
𝑛

2
. (18)

Lemma 5 (see [19]). Consider
(i)‖𝑥 ± 𝑦‖2 = ‖𝑥‖

2
± 2⟨𝑥, 𝑦⟩ + ‖𝑦‖

2, for all 𝑥, 𝑦 ∈ 𝐻;
(ii)‖(1 − 𝑡)𝑥 + 𝑡𝑦‖2 = (1−𝑡)‖𝑥‖

2
+𝑡‖𝑦‖

2
−𝑡(1−𝑡)‖𝑥 − 𝑦‖

2,
for all 𝑥, 𝑦 ∈ 𝐻 and 𝑡 ∈ R.

Lemma 6 (see [18]). Let 𝐶 be a bounded and closed convex
subset of a real Hilbert space𝐻. Let𝑇 : 𝐶 → 𝐶 be a uniformly
𝐿-Lipschitz and total quasi-asymptotically pseudocontractive
mapping with Fix(𝑇) ̸= 0. Suppose there exist positive constants
𝑀 and 𝑀∗, for the function 𝜙 in (13), 𝜙(𝜁) ≤ 𝑀

∗
𝜁
2 for all

𝜁 ≥ 𝑀 such that

𝜙 (𝜁) ≤ 𝜙 (𝑀) +𝑀
∗
𝜁
2
. (19)

Then Fix(𝑇) is a closed convex subset of 𝐶.

Lemma 7 (see [20]). A mapping 𝐼 − 𝑇 : 𝐶 → 𝐶 is said to
be demiclosed at zero, if for any sequence {𝑥

𝑛
} ∈ 𝐶, such that

𝑥
𝑛
⇀ 𝑥
∗
∈ 𝐶 and (𝐼−𝑇)𝑥

𝑛
→ 0 as 𝑛 → ∞; then (𝐼−𝑇)𝑥∗ =

0.

Lemma 8 (see [21]). Let {𝑟
𝑛
}, {𝑠
𝑛
}, and {𝑡

𝑛
} be sequences of

nonnegative real numbers satisfying

𝑟
𝑛+1

≤ (1 + 𝑡
𝑛
) 𝑟
𝑛
+ 𝑠
𝑛
, 𝑛 ≥ 1. (20)

If ∑∞
𝑛=1

𝑡
𝑛
< ∞ and ∑∞

𝑛=1
𝑠
𝑛
< ∞, then the limit lim

𝑛→∞
𝑟
𝑛

exists.

Lemma 9 (see [22]). Let a sequence {𝑡
𝑛
} ∈ [0, 1) satisfy

lim
𝑛→∞

𝑡
𝑛
= 0 and ∑

∞

𝑛=1
𝑡
𝑛
= ∞. Let {𝑎

𝑛
} be a sequence

of nonnegative real numbers that satisfies any of the following
conditions.

(i) For all 𝜀 > 0, there exists an integer 𝑁 ≥ 1 such that,
for all 𝑛 ≥ 𝑁,

𝑎
𝑛+1

≤ (1 − 𝑡
𝑛
) 𝑎
𝑛
+ 𝑡
𝑛
𝜀; (21)

(ii) 𝑎
𝑛+1

≤ (1 − 𝑡
𝑛
)𝑎
𝑛
+ 𝑜
𝑛
, 𝑛 ≥ 0, where 𝑜

𝑛
≥ 0 satisfies

lim
𝑛→∞

𝑜
𝑛
/𝑡
𝑛
= 0;

(iii) 𝑎
𝑛+1

≤ (1 − 𝑡
𝑛
)𝑎
𝑛
+ 𝑡
𝑛
𝑐
𝑛
, where lim

𝑛→∞
𝑐
𝑛
≤ 0.

Then lim
𝑛→∞

𝑎
𝑛
= 0.

3. Main Results

In this section, we will prove the strong convergence of (7) to
solve the two-set SCFPP.

Theorem 10. Let 𝐶 and 𝑄 be nonempty closed convex subsets
of real Hilbert spaces 𝐻

1
and 𝐻

2
, respectively. Let 𝑈 : 𝐻

1
→

𝐻
1
be a uniformly 𝑘

1
-Lipschitz and ({𝜇

(1)

𝑛
}, {𝜉
(1)

𝑛
}, 𝜙
1
)-total

quasi-asymptotically pseudocontractive mapping, 𝑇 : 𝐻
2
→

𝐻
2
a uniformly 𝑘

2
-Lipschitz, and ({𝜇(2)

𝑛
}, {𝜉
(2)

𝑛
}, 𝜙
2
)-total quasi-

asymptotically pseudocontractive mappings satisfying the fol-
lowing conditions:

(𝐶
1
) 𝐶 := Fix(𝑈) ̸= 0, 𝑄 := Fix(𝑇) = 0;

(𝐶
2
) 𝜇
𝑛
= max{𝜇(1)

𝑛
, 𝜇
(2)

𝑛
}, 𝜉
𝑛
= max{𝜉(1)

𝑛
, 𝜉
(2)

𝑛
}, 𝑛 ≥ 1, and

∑
∞

𝑛=1
𝜇
𝑛
< ∞, ∑∞

𝑛=1
𝜉
𝑛
< ∞;

(𝐶
3
) 𝜙 = max{𝜙

1
, 𝜙
2
} and ∃𝑀,𝑀

∗
> 0.

Let 𝜓 : 𝐻
1
→ 𝐻

1
be a 𝛿-contraction with 𝛿 ∈ (0, 1).

Let 𝐴 : 𝐻
1
→ 𝐻

2
be a bounded linear operator. For ∀𝑥

1
∈

𝐻
1
, sequence {𝑥

𝑛
} can be generated by the iteration (7), where

the sequence {𝛼
𝑛
} ⊂ (0, 1) satisfies (i) lim

𝑛→∞
𝛼
𝑛
= 0 and (ii)

∑
∞

𝑛=0
𝛼
𝑛
= ∞, {𝛽} ⊂ [𝑎, 𝑏] with 𝑎, 𝑏 ∈ (0, 1/(1 + 𝑘

1
)), and

{𝛾} ⊂ (0, 2/𝐿) with 𝐿 being the largest eigenvalue of the matrix
𝐴
𝑇
𝐴. Assume that 𝐼 − 𝑈 and 𝐼 − 𝑇 are demiclosed at zero. If

Γ ̸= 0, then {𝑥
𝑛
} generated by (7) converges strongly to a solution

of the two-set SCFPP.

Proof. (1) First of all, we show that, for∀𝑝 ∈ Γ, {𝑥
𝑛
} generated

by (7) is bounded.
From (7), (16), and Lemma 6, we have

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝 + 𝛾𝐴

∗
(𝑇
𝑛
− 𝐼)𝐴𝑥

𝑛

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛾
2󵄩󵄩󵄩󵄩𝐴
∗
(𝐼 − 𝑇

𝑛
) 𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝛾 ⟨𝐴𝑥
𝑛
− 𝐴𝑝, 𝑇

𝑛
𝐴𝑥
𝑛
− 𝐴𝑥
𝑛
⟩

(22)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛾
2
𝐿
2󵄩󵄩󵄩󵄩(𝐼 − 𝑇

𝑛
) 𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩

2

+ 𝛾𝜇
𝑛
𝜙 (
󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝐴𝑝

󵄩󵄩󵄩󵄩) + 𝛾𝜉𝑛

(23)

≤ (1 + 𝛾𝜇
𝑛
𝑀
∗
𝐿)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛾
2
𝐿
2󵄩󵄩󵄩󵄩(𝐼−𝑇

𝑛
)𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩

2

+𝛾𝜇
𝑛
𝜙 (𝑀) +𝛾𝜉

𝑛
.

(24)

Since
󵄩󵄩󵄩󵄩(𝐼 − 𝑇

𝑛
) 𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝐴𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇
𝑛
𝐴𝑥
𝑛
− 𝐴𝑝

󵄩󵄩󵄩󵄩

≤ (‖𝐴‖ + 𝑘2 ‖𝐴‖)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ,

(25)

substituting (25) into (24), we have

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ [1 + 𝛾𝜇
𝑛
𝑀
∗
𝐿 + 𝛾
2
𝐿
2
(‖𝐴‖ + 𝑘2 ‖𝐴‖)

2

]

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛾𝜇
𝑛
𝜙 (𝑀) + 𝛾𝜉

𝑛

= (1 + 𝑎
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛾𝜇
𝑛
𝜙 (𝑀) + 𝛾𝜉

𝑛
,

(26)
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where 𝑎
𝑛
= 𝛾𝜇
𝑛
𝑀
∗
𝐿+𝛾
2
𝐿
2
(‖𝐴‖ + 𝑘

2
‖𝐴‖)
2; by condition (𝐶

2
),

we know
∞

∑

𝑛=1

𝑎
𝑛
< ∞. (27)

Next, from (7), (13), and Lemma 5, we can get
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(1 − 𝛽)(𝑢𝑛 − 𝑝) + 𝛽 (𝑈

𝑛
(𝑢
𝑛
) − 𝑝)

󵄩󵄩󵄩󵄩

2

= (1 − 𝛽)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛽
󵄩󵄩󵄩󵄩𝑈
𝑛
(𝑢
𝑛
) − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛽 (1 − 𝛽)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑈

𝑛
(𝑢
𝑛
)
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛽)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+𝛽 [
󵄩󵄩󵄩󵄩𝑢𝑛−𝑝

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑢𝑛−𝑈

𝑛
(𝑢
𝑛
)
󵄩󵄩󵄩󵄩

2

+𝜇
𝑛
𝜙 (
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩) + 𝜉𝑛
2

]

− 𝛽 (1 − 𝛽)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑈

𝑛
(𝑢
𝑛
)
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛽
2󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑈

𝑛
(𝑢
𝑛
)
󵄩󵄩󵄩󵄩

2

+ 𝛽𝜇
𝑛
𝜙 (
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩) + 𝛽𝜉𝑛;

(28)

we also can see that
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑈

𝑛
(𝑢
𝑛
)
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑈
𝑛
(𝑢
𝑛
) − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 + 𝑘
1
)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ;

(29)

then substituting (29) into (28) and from (26), we have
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

≤ [1 + 𝛽
2
(1 + 𝑘

1
)
2

]
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛽𝜇
𝑛
𝜙 (
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩) + 𝛽𝜉𝑛

≤ [1 + 𝛽
2
(1 + 𝑘

1
)
2

+ 𝛽𝜇
𝑛
𝑀
∗
]
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛽𝜇
𝑛
𝜙 (𝑀) + 𝛽𝜉

𝑛

≤ (1 + 𝑏
𝑛
) (1 + 𝑎

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝜇
𝑛
𝜙 (𝑀)

× [(1 + 𝑏
𝑛
) 𝛾 + 𝛽] + 𝜉

𝑛
[(1 + 𝑏

𝑛
) 𝛾 + 𝛽] ,

(30)

where 𝑏
𝑛
= 𝛽
2
(1 + 𝑘

1
)
2
+ 𝛽𝜇
𝑛
𝑀
∗, and we also know that

∞

∑

𝑛=1

𝑏
𝑛
< ∞. (31)

From (7) and Lemma 5, we also have
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛼𝑛 [𝜓 (𝑦𝑛) − 𝑝] + (1 − 𝛼𝑛) (𝑦𝑛 − 𝑝)

󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝜓 (𝑦𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

≤ (1 + 2𝛼
𝑛
𝛿)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛

󵄩󵄩󵄩󵄩𝜓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 + 2𝛼
𝑛
𝛿)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛

󵄩󵄩󵄩󵄩𝜓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

2

.

(32)

Substituting (30) into (32) and simplifying it we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 + 2𝛼
𝑛
𝛿) (1 + 𝑏

𝑛
) (1 + 𝑎

𝑛
)

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛

󵄩󵄩󵄩󵄩𝜓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 + 2𝛼
𝑛
𝛿) {𝜇
𝑛
𝜙 (𝑀) [(1 + 𝑏

𝑛
) 𝛾 + 𝛽]

+𝜉
𝑛
[(1 + 𝑏

𝑛
) 𝛾 + 𝛽]}

= [1 + 𝑎
𝑛
+ (1 + 𝑎

𝑛
) (𝑏
𝑛
+ 2𝑎
𝑛
𝛿 + 2𝑎

𝑛
𝑏
𝑛
𝛿)]

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛

󵄩󵄩󵄩󵄩𝜓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 + 2𝛼
𝑛
𝛿) {𝜇
𝑛
𝜙 (𝑀) [(1 + 𝑏

𝑛
) 𝛾 + 𝛽]

+𝜉
𝑛
[(1 + 𝑏

𝑛
) 𝛾 + 𝛽]} ;

(33)

set

𝑡
𝑛
= 𝑎
𝑛
+ (1 + 𝑎

𝑛
) (𝑏
𝑛
+ 2𝑎
𝑛
𝛿 + 2𝑎

𝑛
𝑏
𝑛
𝛿) ,

𝑠
𝑛
= 2𝛼
𝑛

󵄩󵄩󵄩󵄩𝜓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 + 2𝛼
𝑛
𝛿)

× {𝜇
𝑛
𝜙 (𝑀) [(1 + 𝑏

𝑛
) 𝛾 + 𝛽] + 𝜉

𝑛
[(1 + 𝑏

𝑛
) 𝛾 + 𝛽]} ;

(34)

(33) can be rewritten as

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 + 𝑡
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝑠
𝑛
; (35)

by condition (𝐶
2
), (27), and (31), we know that ∑∞

𝑛=1
𝑡
𝑛
< ∞

and ∑
∞

𝑛=1
𝑠
𝑛
< ∞. Thus it follows from Lemma 8 that the

following limit exists:

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 . (36)

Therefore, we obtain that {𝑥
𝑛
} is bounded, so is {𝑢

𝑛
}. Set 𝑧

𝑛
=

𝑈
𝑛
(𝑢
𝑛
). Then {𝑧

𝑛
} is also bounded.

(2) Next we prove lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0,

lim
𝑛→∞

‖𝑢
𝑛+1

− 𝑢
𝑛
‖=0.

For each 𝑛 ≥ 1, ∀𝑢
𝑛
∈ 𝐻
1
, assume there exists V(𝑛)

𝑖
∈

𝐶 (𝑖 = 1, 2) such that 𝑢
𝑛
= 𝑤V(𝑛)
1

+ (1 − 𝑤)V(𝑛)
2

for 𝑤 ∈ (0, 1).
Then for all 𝑞 ∈ 𝐶, and by virtue of (16), we have

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑈
𝑛
(𝑢
𝑛
)
󵄩󵄩󵄩󵄩

2

= ⟨𝑢
𝑛
− 𝑈
𝑛
(𝑢
𝑛
) , 𝑢
𝑛
− 𝑈
𝑛
(𝑢
𝑛
)⟩

=
1

𝛽
⟨𝑢
𝑛
− 𝑦
𝑛
, 𝑢
𝑛
− 𝑈
𝑛
(𝑢
𝑛
)⟩

=
1

𝛽
⟨𝑢
𝑛
−𝑈
𝑛
(𝑢
𝑛
) − (𝑦

𝑛
−𝑈
𝑛
(𝑦
𝑛
)) , 𝑢
𝑛
−𝑦
𝑛
⟩

+
1

𝛽
⟨𝑦
𝑛
− 𝑈
𝑛
(𝑦
𝑛
) , 𝑢
𝑛
− 𝑦
𝑛
⟩

≤
1

𝛽
(
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑈
𝑛
(𝑢
𝑛
) − 𝑈
𝑛
(𝑦
𝑛
)
󵄩󵄩󵄩󵄩)

×
󵄩󵄩󵄩󵄩𝑢𝑛−𝑦𝑛

󵄩󵄩󵄩󵄩 +
1

𝛽
⟨𝑢
𝑛
−𝑞, 𝑦
𝑛
−𝑈
𝑛
(𝑦
𝑛
)⟩
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+
1

𝛽
⟨𝑞 − 𝑦

𝑛
, 𝑦
𝑛
− 𝑈
𝑛
(𝑦
𝑛
)⟩

≤
1+𝑘
1

𝛽

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩

2

+
1

𝛽
⟨𝑢
𝑛
−𝑞, 𝑦
𝑛
−𝑈
𝑛
(𝑦
𝑛
)⟩

+
1

𝛽
[
𝜇
𝑛

2
𝜙 (
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞

󵄩󵄩󵄩󵄩) +
𝜉
𝑛

2
]

≤ (1 + 𝑘
1
) 𝛽
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑈

𝑛
(𝑢
𝑛
)
󵄩󵄩󵄩󵄩

2

+
1

𝛽
⟨𝑢
𝑛
− 𝑞, 𝑦
𝑛
− 𝑈
𝑛
(𝑦
𝑛
)⟩

+
1

𝛽
[
𝜇
𝑛

2
[𝑀
∗󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2

+ 𝜙 (𝑀)] +
𝜉
𝑛

2
] ,

(37)

which implies that

𝛽 [1 − (1 + 𝑘
1
) 𝛽]

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑈
𝑛
(𝑢
𝑛
)
󵄩󵄩󵄩󵄩

2

≤ ⟨𝑢
𝑛
− 𝑧, 𝑦
𝑛
− 𝑈
𝑛
(𝑦
𝑛
)⟩

+ [
𝜇
𝑛

2
[𝑀
∗󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+ 𝜙 (𝑀)] +
𝜉
𝑛

2
] .

(38)

Now we take 𝑞 = V(𝑛)
𝑖

(𝑖 = 1, 2) in (38); multiplying 𝑤 and
(1 − 𝑤) on the two side of (38), respectively, and then adding
up, we can obtain

𝛽 [1 − (1 + 𝑘
1
) 𝛽]

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑈
𝑛
(𝑢
𝑛
)
󵄩󵄩󵄩󵄩

2

≤ [
𝜇
𝑛

2
[𝑀
∗󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+ 𝜙 (𝑀)] +
𝜉
𝑛

2
] .

(39)

Letting 𝑛 → ∞ in (39), we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑈
𝑛
(𝑢
𝑛
)
󵄩󵄩󵄩󵄩 = 0. (40)

From (7), we know that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝 + 𝛼𝑛 (𝜓(𝑦𝑛) − 𝑦𝑛)

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑦
𝑛
− 𝑝, 𝜓 (𝑦

𝑛
) − 𝑦
𝑛
⟩

+ 𝛼
2

𝑛

󵄩󵄩󵄩󵄩𝜓 (𝑦𝑛) − 𝑦𝑛
󵄩󵄩󵄩󵄩

2

.

(41)

Letting 𝑛 → ∞ in (41) and by condition (i) in Theorem 10,
we know

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩 . (42)

Similarly,

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝 + 𝛽 (𝑢𝑛 − 𝑈

𝑛
(𝑢
𝑛
))
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝛽 ⟨𝑢
𝑛
− 𝑝, 𝑢

𝑛
− 𝑈
𝑛
(𝑢
𝑛
)⟩

+ 𝛽
2󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑈

𝑛
(𝑢
𝑛
)
󵄩󵄩󵄩󵄩

2

;

(43)

from (40) the limit of ‖𝑦
𝑛
− 𝑝‖ exists and

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩 . (44)

Therefore, when we take limit on both sides of (22), we
can deduce that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝑇
𝑛
𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (45)

Then,
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩𝜓 (𝑦𝑛) − 𝑦𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 + 𝛽
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑈

𝑛
(𝑢
𝑛
)
󵄩󵄩󵄩󵄩

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝜓 (𝑦𝑛) − 𝑦𝑛
󵄩󵄩󵄩󵄩

≤ 𝛾 ‖𝐴‖
󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝑇

𝑛
𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩 + 𝛽
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑈

𝑛
(𝑢
𝑛
)
󵄩󵄩󵄩󵄩

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝜓 (𝑦𝑛) − 𝑦𝑛
󵄩󵄩󵄩󵄩 .

(46)

In view of (40) and (45) we have that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (47)

Similarly, it follows from (7), (45), and (47) that

󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢𝑛
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛+1

−𝑥
𝑛
−𝛾𝐴
∗
(𝐼−𝑇
𝑛+1

)𝐴𝑥
𝑛+1

−𝛾𝐴
∗
(𝐼−𝑇
𝑛
) 𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩 + 𝛾
󵄩󵄩󵄩󵄩𝐴
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴𝑥
𝑛+1

𝑇
𝑛+1

− 𝐴𝑥
𝑛+1

󵄩󵄩󵄩󵄩󵄩

+ 𝑟
󵄩󵄩󵄩󵄩𝐴
∗󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝐴𝑥𝑛𝑇

𝑛
− 𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0 (𝑛 󳨀→ ∞) .

(48)

(3) Next we prove that ‖𝑥
𝑛
− 𝑈(𝑢

𝑛
)‖ → 0, as 𝑛 → ∞.

From (40) and (48), we have
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑈 (𝑢

𝑛
)
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑈

𝑛
(𝑢
𝑛
)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑈
𝑛
(𝑢
𝑛
) − 𝑈 (𝑢

𝑛
)
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑈

𝑛
(𝑢
𝑛
)
󵄩󵄩󵄩󵄩 + 𝑘1

󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛−1

(𝑢
𝑛
) − 𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑈

𝑛
(𝑢
𝑛
)
󵄩󵄩󵄩󵄩 + 𝑘1 [

󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛−1

(𝑢
𝑛
) − 𝑈
𝑛−1

(𝑢
𝑛−1

)
󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛−1

(𝑢
𝑛−1

) −𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
]

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑈

𝑛
(𝑢
𝑛
)
󵄩󵄩󵄩󵄩 + 𝑘
2

1

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢𝑛−1
󵄩󵄩󵄩󵄩

+ 𝑘
1
[
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛−1

(𝑢
𝑛−1

) − 𝑢
𝑛−1

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩𝑢𝑛−1 − 𝑢𝑛

󵄩󵄩󵄩󵄩]

󳨀→ ∞ (𝑛 → ∞) .

(49)

By the same way, from (45) and (47) we can also prove
that

󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝑇𝐴𝑥𝑛
󵄩󵄩󵄩󵄩 󳨀→ 0, 𝑛 󳨀→ ∞. (50)
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Therefore, from (44) and (49), we know

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑈 (𝑢
𝑛
)
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑈 (𝑢
𝑛
)
󵄩󵄩󵄩󵄩

󳨀→ 0 (𝑛 󳨀→ ∞) .

(51)

Since {𝑥
𝑛
} is bounded, there exists a subsequence {𝑥

𝑛𝑖
} of

{𝑥
𝑛
} which converges weakly to a point 𝑥∗. Without loss

of generality, we may assume that {𝑥
𝑛
} converges weakly to

𝑥
∗. Therefore, from (49)–(51) and Lemma 7, we have 𝑥∗ ∈

Fix(𝑈).
(4) Finally, we prove that 𝑥

𝑛
→ 𝑥
∗ in norm. To do this,

we calculate

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

= ⟨𝛼
𝑛
𝜓 (𝑦
𝑛
) + (1 − 𝛼

𝑛
) 𝑦
𝑛
− 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

= ⟨𝛼
𝑛
𝜓 (𝑦
𝑛
) + (1 − 𝛼

𝑛
) 𝑦
𝑛
− 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

= 𝛼
𝑛
⟨𝜓 (𝑦
𝑛
) − 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

+ (1 − 𝛼
𝑛
) ⟨𝑦
𝑛
− 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

≤ 𝛼
𝑛
⟨𝜓 (𝑦
𝑛
) − 𝜓 (𝑥

∗
) , 𝑥
𝑛+1

− 𝑥
∗
⟩

+ 𝛼
𝑛
⟨𝜓 (𝑥
∗
) − 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

+
1 − 𝛼
𝑛

2

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+
1 − 𝛼
𝑛

2

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤
𝛼
𝑛
𝛿

2

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+
𝛼
𝑛

2

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
⟨𝜓 (𝑥
∗
) − 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

+
1 − 𝛼
𝑛

2

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+
1 − 𝛼
𝑛

2

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

=
1 − (1 − 𝛿) 𝛼

𝑛

2

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+
1

2

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
⟨𝜓 (𝑥
∗
) − 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩ .

(52)

Therefore, we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤ (1 − (1 − 𝛿) 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝜓 (𝑥
∗
) − 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩ .

(53)

Substituting (23) into (28), we have

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛾
2
𝐿
2󵄩󵄩󵄩󵄩(𝐼 − 𝑇

𝑛
) 𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩

2

+ 𝛽
2󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑈

𝑛
(𝑢
𝑛
)
󵄩󵄩󵄩󵄩

2

+ 𝜇
𝑛
[𝛾𝜙 (

󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝐴𝑝
󵄩󵄩󵄩󵄩) + 𝛽𝜙 (

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩)]

+ 𝜉
𝑛
(𝛾 + 𝛽) .

(54)

Since (1 − 𝛿)𝛼
𝑛
∈ (0, 1) and substituting (53) into (51), we get

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤ (1 − (1 − 𝛿) 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ (1 − (1 − 𝛿) 𝛼
𝑛
)

× {𝛾
2
𝐿
2󵄩󵄩󵄩󵄩(𝐼 − 𝑇

𝑛
)𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩

2

+ 𝛽
2󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑈

𝑛
(𝑢
𝑛
)
󵄩󵄩󵄩󵄩

2

+𝜇
𝑛
[𝛾𝜙 (

󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝐴𝑝
󵄩󵄩󵄩󵄩) + 𝛽𝜙 (

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩)] + 𝜉𝑛 (𝛾 + 𝛽)} .

(55)

Let

𝑜
𝑛
= (1 − (1 − 𝛿) 𝛼

𝑛
)

× {𝛾
2
𝐿
2󵄩󵄩󵄩󵄩(𝐼 − 𝑇

𝑛
)𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩

2

+ 𝛽
2󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑈

𝑛
(𝑢
𝑛
)
󵄩󵄩󵄩󵄩

2

+𝜇
𝑛
[𝛾𝜙 (

󵄩󵄩󵄩󵄩𝐴𝑥𝑛−𝐴𝑝
󵄩󵄩󵄩󵄩) +𝛽𝜙 (

󵄩󵄩󵄩󵄩𝑢𝑛−𝑝
󵄩󵄩󵄩󵄩)] +𝜉𝑛 (𝛾+𝛽)} .

(56)

Equation (55) can be rewritten as

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤ (1 − (1 − 𝛿) 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝑜
𝑛
. (57)

Evidently, from (40), (45), and Lemma 9 (ii), we can conclude
that 𝑥

𝑛+1
− 𝑥
∗
→ 0 (𝑛 → ∞).

This completes the proof.

The following theorem can be concluded from
Theorem 10 immediately.

Theorem 11. Let 𝐶 and 𝑄 be nonempty closed convex subsets
of real Hilbert spaces 𝐻

1
and 𝐻

2
, respectively. Let 𝑈 : 𝐻

1
→

𝐻
1
be a uniformly 𝑘

1
-Lipschitz and quasi-pseudocontractive

mapping with 𝐶 := Fix(𝑈) ̸= 0. Let 𝑇 : 𝐻
2

→ 𝐻
2
be a

uniformly 𝑘
2
-Lipschitz and quasi-pseudocontractive mapping

with 𝑄 := Fix(𝑇) = 0. Let 𝜓 : 𝐻
1
→ 𝐻

1
be a 𝛿-contraction

with 𝛿 ∈ (0, 1). Let 𝐴 : 𝐻
1

→ 𝐻
2
be a bounded linear

operator. For ∀𝑥
1
∈ 𝐻
1
, sequence {𝑥

𝑛
} can be generated by the

iteration:

𝑢
𝑛
= 𝑥
𝑛
− 𝛾𝐴 (𝐼 − 𝑇)𝐴𝑥

𝑛
,

𝑦
𝑛
= (1 − 𝛽) 𝑢

𝑛
+ 𝛽𝑈 (𝑢

𝑛
) ,

𝑥
𝑛+1

= 𝛼
𝑛
𝜓 (𝑦
𝑛
) + (1 − 𝛼

𝑛
) 𝑦
𝑛
, 𝑛 ≥ 1,

(58)

where the sequence {𝛼
𝑛
} ⊂ (0, 1) satisfies (i) lim

𝑛→∞
𝛼
𝑛
= 0

and (ii) ∑∞
𝑛=0

𝛼
𝑛
= ∞, {𝛽} ⊂ [𝑎, 𝑏] with 𝑎, 𝑏 ∈ (0, 1/(1 + 𝑘

1
)),

and {𝛾} ⊂ (0, 2/𝐿) with 𝐿 being the largest eigenvalue of the
matrix 𝐴𝑇𝐴. Assume that 𝐼 − 𝑈 and 𝐼 − 𝑇 are demiclosed at
zero. If Γ ̸= 0, then {𝑥

𝑛
} generated by (58) converges strongly to

a solution of the two-set SCFPP.

Proof. For each 𝑝 ∈ Γ, if we take 𝑇 = 𝑇
𝑛, 𝑈 = 𝑈

𝑛, 𝜇
𝑛
→ 0

and 𝜉
𝑛
→ 0, and follow the proof of Theorem 10, we can

also prove that {𝑥
𝑛
} converges strongly to 𝑥∗ ∈ Γ by the same

way.
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Remark 12. Algorithm (7) and Theorems 10 and 11 improve
and extend the corresponding results of Censor and Segal [2],
Moudafi [3, 4], Mohammed [5, 6], Chang et al. [11, 13], Yang
et al. [12], and others.

4. Concluding Remarks

In this work, we develop the split common fixed point prob-
lem with more general classes of total quasi-asymptotically
pseudocontractive and quasi-pseudocontractive operators;
corresponding algorithms are improved based on the viscos-
ity iteration; thus we can obtain strong convergence without
more constraints on operators.
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