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We study the following semilinear biharmonic equation Δ
2
𝑢 = 𝜆/1 − 𝑢 , in B, and 𝑢 = 𝜕𝑢/𝜕𝑛 = 0, on 𝜕B, where B is the unit ball

in R𝑛 and 𝑛 is the exterior unit normal vector. We prove the existence of 𝜆∗ > 0 such that for 𝜆 ∈ (0, 𝜆
∗
) there exists a minimal

(classical) solution 𝑢
𝜆
, which satisfies 0 < 𝑢

𝜆
< 1. In the extremal case 𝜆 = 𝜆

∗, we prove the existence of a weak solution which is
the unique solution even in a very weak sense. Besides, several new difficulties arise and many problems still remain to be solved.
We list those of particular interest in the final section.

1. Introduction and Results

In the last forty years, a great deal has been written about
existence and multiplicity of solutions to nonlinear second
order elliptic problems in bounded and unbounded domains
of R𝑛

(𝑛 ≥ 2). Important achievements on this topic have
been made by applying various combinations of analytical
techniques, which include the variational and topological
methods. For the latter, the fundamental tool which has
been widely used is the maximum principle. However, for
higher order problems, a possible failure of the maximum
principle causes several technical difficulties, which attracted
the interest of many researchers. In particular, recently,
fourth order equations with a singular nonlinearity have been
studied extensively. The motivation for considering these
equations stems from a model for the steady states of a
simple microelectromechanical system (MEMS) which has
the general form (see, e.g., [1])

𝛼Δ
2
𝑢 = (𝛽∫

Ω

|∇𝑢|
2
𝑑𝑥 + 𝛾)Δ𝑢

+
𝜆𝑓 (𝑥)

(1 − 𝑢)
2
(1 + 𝜒∫

Ω
(𝑑𝑥/(1 − 𝑢)

2
))

in Ω,

0 < 𝑢 < 1 in Ω,

𝑢 = 𝛼
𝜕𝑢

𝜕𝑛
= 0 on 𝜕Ω,

(𝑀
𝜆
)

where Δ2(⋅) := −Δ(−Δ) denotes the biharmonic operator,
Ω ⊂ R𝑛 is a smooth bounded domain, 𝑛 denotes the outward
pointing unit normal to 𝜕Ω and 𝛼, 𝛽, 𝛾, 𝜒 ≥ 0 are physically
relevant constants, 𝑓 ≥ 0 represents the permittivity profile,
and 𝜆 > 0 is a constant which is increasing with respect to the
applied voltage.

Let 𝛾 = 𝛽 = 𝜒 = 0 and 𝛼 = 1, 𝑓(𝑥) ≡ 1 in the above
model, we obtain, replacing (1 − 𝑢)−2 with (1 − 𝑢)−𝑝.

Δ
2
𝑢 =

𝜆

(1 − 𝑢)
𝑝

in Ω,

0 < 𝑢 < 1 in Ω,

𝑢 =
𝜕𝑢

𝜕𝑛
= 0 on 𝜕Ω.

(𝑃
𝜆
)

Because of the lack of a “maximum principle,” which plays
such a crucial role in developing the theory for the Laplacian,
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for Δ2 with Dirichlet boundary condition in general domains
(i.e., Ω ̸=B), very little is known about (𝑃

𝜆
). As far as we are

aware, only the paper [2] studies this problem for general
domains. However, if 𝑝 > 1 and Ω is a ball, (𝑃

𝜆
) has recently

been studied extensively; see, for example, [3–9] and their
references. One of the reasons to study (𝑃

𝜆
) in a ball is that

a maximum principle holds in this situation; see [10], and so
some tools that are well suited for the corresponding second
equation can work for (𝑃

𝜆
). The second reason is that one

can easily find an explicit singular radial solution, denoted
by 1 − |𝑥|

4/(𝑝+1)
(𝑝 > 1), of (𝑃

𝜆
) for Ω = B and a suitable

parameter 𝜆 which satisfy the first boundary condition but
not the second. The singular radial solution, called “ghost”
singular solution, plays a fundamental role to characterize the
“true” singular solution; see, in particular, [4].

In this paper, wewill focus essentially our attention on the
case where 𝑝 = 1 and theΩ is a ball; namely,

Δ
2
𝑢 =

𝜆

1 − 𝑢
in B,

0 < 𝑢 ≤ 1 in B,

𝑢 =
𝜕𝑢

𝜕𝑛
= 0 on 𝜕B.

(1)
𝜆

The corresponding second order problem, which is related to
the general study of singularities of minimal hypersurfaces
of Euclidean space, has been studied by Meadows; see [11].
In that case, however, the start point was an explicit singular
solution (i.e., 𝑢

𝑠
(𝑟) = 1 − 𝑟

2) with parameter 𝜆 = 𝑛 − 1. When
turning to the biharmonic problem (1)

𝜆
, one cannot find

any explicit singular solution even “ghost” singular solution,
which causes several technical difficulties.Thefirst purpose of
the present paper is to extend (1)

𝜆
some well-known results

relative to (𝑃
𝜆
).The second (and perhaps themost important)

purpose of the present paper is to emphasize some striking
differences between (1)

𝜆
and (𝑃

𝜆
).

1.1. Preliminaries. Besides classical solution that is 𝑢 ∈

𝐶
4
(B) which satisfies (1)

𝜆
, let us introduce the class of weak

solutions we will be dealing with. We denote by 𝐻2

0
(B) the

usual Sobolev space which can be defined by completion as
follows:

𝐻
2

0
(B) := cl {𝑢 ∈ 𝐶∞

0
(B) : ‖Δ𝑢‖2 < ∞} (1)

which is a Hilbert space endowed with the scalar product:

(𝑢, V)H2
0
(B) := ∫

B

Δ𝑢ΔV 𝑑𝑥. (2)

Definition 1. One says that 𝑢 ∈ 𝐿
1
(B) is a weak solution of

(1)
𝜆
provided 0 ≤ 𝑢 ≤ 1 almost everywhere, 1/(1 − 𝑢) ∈

𝐿
1
(B), and

∫
B

𝑢Δ
2
𝜑𝑑𝑥 = 𝜆∫

B

𝜑

(1 − 𝑢)
𝑑𝑥, ∀𝜑 ∈ 𝐶

4
(B) ∩ 𝐻

2

0
(B) .

(3)

When in (3) the equality is replaced by the inequality ≥
(resp. ≤) and 𝜑 ≥ 0, we say that 𝑢 is a weak supersolution
(resp., weak subsolution) of (3) provided the following
boundary conditions are satisfied: 𝑢 = 0 (resp. =) and
𝜕𝑢/𝜕𝑛 ≤ 0 (resp. ≥) on 𝜕B.

Definition 2. One calls a solution 𝑢 of (1)
𝜆
minimal if 𝑢 ≤ V

almost everywhere in B for any further solution V of (1)
𝜆
.

If 𝑢 is a classical solution of (1)
𝜆
, then the linearized

operator at 𝑢 turns out to be well defined:

𝐿
𝑢
:= Δ

2
−

𝜆

(1 − 𝑢)
2
. (4)

which yields the following notion of stability.

Definition 3. A classical solution 𝑢 of (1)
𝜆
is semistable

provided

𝜇
1
(𝑢) = inf {∫

B

(Δ𝜑)
2

−
𝜆𝜑

2

(1 − 𝑢)
2
: 𝜙 ∈ 𝐻

2

0
(B) ,

𝜙
𝐿2

= 1} .

≥ 0

(5)

If 𝜇
1
(𝑢) > 0, we say that 𝑢 is stable.

As far as we are concerned with weak solutions, the
linearized operator is no longer well defined; however, we
introduce the following weaker notion of stability.

Definition 4. A weak solution 𝑢 to (1)
𝜆
is said to be weakly

stable if 1/(1 − 𝑢)2 ∈ 𝐿1(B) and the following holds:

∫
B

Δ𝜑


2

𝑑𝑥 ≥ ∫
B

𝜆𝜑
2

(1 − 𝑢)
2
𝑑𝑥, 𝜑 ∈ 𝐻

2

0
(B) , 𝜑 ≥ 0. (6)

According to the class of solutions which we consider, let
us introduce the following values:

𝜆
∗
:= sup {𝜆 ≥ 0 : (1)

𝜆
possesses a weak solution} ;

𝜆
∗
:= sup {𝜆 ≥ 0 : (1)

𝜆
possesses a classical solution} .

(7)

Remark 5. Clearly, a classical solution is also a weak solution,
so that one has 𝜆

∗
≤ 𝜆

∗. Moreover, by standard elliptic
regularity theory for the biharmonic operator [12], any weak
solution of (1)

𝜆
which satisfies ‖𝑢

𝜆
‖
𝐿
∞ < 1 turns out to be

smooth.

Besides, we give a notion of𝐻2

0
(B)-weak solutions, which

is an intermediate class between classical and weak solutions.

Definition 6. One says that 𝑢 is a𝐻2

0
(B)-weak solution of (3)

if (1 − 𝑢)−1 ∈ 𝐿1(B) and if

∫
B

Δ𝑢Δ𝜙 = 𝜆∫
B

𝜙(1 − 𝑢)
−1
, ∀𝜙 ∈ 𝐶

4
(B) ∩ 𝐻

2

0
(B) . (8)
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One says that 𝑢 is a𝐻2

0
(B)-weak supersolution (resp.𝐻2

0
(B)-

weak subsolution) of (1)
𝜆
if for 𝜙 ≥ 0 the equality is replaced

with ≥ (resp. ≤) and 𝑢 ≥ 0 (resp. ≤), 𝜕𝑢/𝜕𝑛 ≤ 0 (resp. ≥) on
𝜕B.

1.2. Main Results. In order to state our results, we denote
by ]

1
the first eigenvalue of the biharmonic operator on B

with Dirichlet boundary conditions, which is characterized
variationally as follows:

]
1
:= inf {∫

B
|Δ𝑢|

2
𝑑𝑥 : 𝑢 ∈ 𝐻

2

0
(B) , ‖𝑢‖𝐿2 = 1} . (9)

It is well known that ]
1
> 0 is simple, isolated and that the

corresponding eigenfunctions 𝜓 > 0, spherically symmetric,
radially decreasing and do not change sign.

We may now state the following theorem.

Theorem7. There exists𝜆
∗
> 0 such that, for 0 < 𝜆 < 𝜆

∗
, (1)

𝜆

possesses a minimal classical solution, denoted by 𝑢
𝜆
, which is

positive and stable. Moreover, 𝜆
∗
satisfies the following bounds:

max {4𝑛 (𝑛 − 2) , 2𝑛 (𝑛 + 2)} ≤ 𝜆
∗
≤
]
1

4
. (10)

It is remarkable that at 𝜆
∗
there is an immediate switch

from existence of regular minimal solutions to nonexistence
of any (even singular) solution. The only possibly singular
minimal solution corresponds to 𝜆 = 𝜆

∗
.This result is known

from [13] for the corresponding second order problems, but
themethodused theremaynot be carried over to fourth order
problems.Nevertheless, the result extends to biharmonic case
in the following theorem.

Theorem 8. The following holds:

𝜆
∗
= 𝜆

∗
. (11)

In particular, for 𝜆 > 𝜆
∗ there are no solutions, even in the

weak sense. Furthermore, for almost every 𝑥 ∈ B, there exists

𝑢
∗
(𝑥) := lim

𝜆→𝜆
∗

𝑢
𝜆
(𝑥) (12)

and 𝑢
∗
(𝑥) is a weakly stable 𝐻2

0
(B)-weak solution of (1)

𝜆
∗ ,

which is called the extremal solution.
If 𝑛 ≤ 4, then the extremal solution 𝑢∗ of (1)

𝜆
is smooth;

that is, 𝑢∗ = lim
𝜆→𝜆

∗𝑢
𝜆
(𝑥) exists in the topology of 𝐶4

(B). It
is the unique regular solution to (1)

𝜆
∗ .

From the above theorem, we note that the function 𝑢
∗

exists in any dimension and does solve (1)
𝜆
∗ in the 𝐻2

0
(B)

weak sense and it is a classical solution in dimensions 1 ≤ 𝑛 ≤
4. This will allow us to start another branch of nonminimal
(unstable) solutions. Besides, inspired by [3, 14, 15], we get the
following uniqueness of the extremal solution of (1)

𝜆
∗ , which

gives Theorem 9.

Theorem 9. Let V be a weak supersolution of (1)
𝜆
with

parameter 𝜆∗. Then, V = 𝑢
∗; in particular, (1)

𝜆
∗ has a unique

weak solution.

From this theorem, we know that there are no strict
supersolutions to (1)

𝜆
∗ .

Corollary 10. Let 𝑢
𝜆
∈ 𝐻

2

0
(B) be a weak solution of (1)

𝜆
such

that ‖𝑢
𝜆
‖
𝐿
∞ = 1. Then, 𝑢

𝜆
is weakly stable if and only if 𝜆 = 𝜆∗

and 𝑢
𝜆
= 𝑢

∗.

We may also characterize the uniform convergence to 0
of 𝑢

𝜆
as 𝜆 → 0 by giving the precise rate of its extinction.

Theorem 11. For all 𝜆 ∈ (0, 𝜆∗), let 𝑢
𝜆
be the minimal solution

of (1)
𝜆
and let

𝑉
𝜆
(𝑥) =

𝜆

8𝑛 (𝑛 + 2)
[1 − |𝑥|

2
]
2

. (13)

Then, 𝑢
𝜆
> 𝑉

𝜆
(𝑥) for all 𝜆 < 𝜆∗ and all |𝑥| < 1, and

lim
𝜆→0

𝑢
𝜆

𝑉
𝜆
(𝑥)

= 1 uniformly with respect to 𝑥 ∈ B. (14)

1.3. Key Ingredients. Now, we give some comparison princi-
ples which will be used throughout the paper.

Lemma 12 (Boggio’s principle, [10]). If 𝑢 ∈ 𝐶4
(B

𝑅
) satisfies

Δ
2
𝑢 ≥ 0 in B

𝑅
,

𝑢 =
𝜕𝑢

𝜕𝑛
= 0 on 𝜕B

𝑅
,

(15)

then 𝑢 ≥ 0 in B
𝑅
.

Lemma 13. Let 𝑢 ∈ 𝐿1(B
𝑅
) and suppose that

∫
B
𝑅

𝑢Δ
2
𝜑 ≥ 0 (16)

for all 𝜑 ∈ 𝐶
4
(B

𝑅
) such that 𝜑 ≥ 0 in B

𝑅
, 𝜑|

𝜕B
𝑅

=

(𝜕𝜑/𝜕𝑛)|
𝜕B
𝑅

= 0. Then, 𝑢 ≥ 0 in B
𝑅
. Moreover, 𝑢 ≡ 0 or 𝑢 > 0

almost everywhere, in B
𝑅
.

For a proof, see Lemma 17 in [16]. From this lemma, we
know that any solution of (1)

𝜆
is necessarily positive almost

everywhere inside the ball.

Lemma 14. If 𝑢 ∈ 𝐻2
(B

𝑅
) is radial,Δ2𝑢 ≥ 0 inB

𝑅
in the weak

sense, that is,

∫
B
𝑅

Δ𝑢Δ𝜑 ≥ 0 ∀𝜑 ∈ 𝐶
∞

0
(B

𝑅
) , 𝜑 ≥ 0, (17)

and 𝑢|
𝜕B
𝑅

≥ 0, (𝜕𝑢/𝜕𝑛)|
𝜕B
𝑅

≤ 0, then 𝑢 ≥ 0 in B
𝑅
.

Proof. The proof is standard; see [15]; we give a proof here for
the sake of completeness. We only deal with the case 𝑅 = 1

for simplicity. Solve

Δ
2
𝑢
1
= Δ

2
𝑢 in B,

𝑢
1
=
𝜕𝑢

1

𝜕𝑛
= 0 on 𝜕B

(18)
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in the sense that 𝑢
1
∈ 𝐻

2

0
(B) and ∫

B
Δ𝑢

1
Δ𝜑 = ∫

B
Δ𝑢Δ𝜑 for all

𝜑 ∈ 𝐶
∞

0
(B). Then, 𝑢

1
≥ 0 in B by Lemma 24.

Let 𝑢
2
= 𝑢 − 𝑢

1
so that Δ2𝑢

2
= 0 in B. Define 𝑓 = Δ𝑢

2
.

Then, Δ𝑓 = 0 in B and since 𝑓 is radial we find that 𝑓 is a
constant. It follows that 𝑢

2
= 𝑎𝑟

2
+ 𝑏. Using the boundary

conditions, we deduce 𝑎 + 𝑏 ≥ 0 and 𝑎 ≤ 0, which imply
𝑢
2
≥ 0.

Lemma 15. Let 𝑓 ∈ 𝐿
1
(B

𝑅
), 𝑓 ≥ 0 almost everywhere. Then,

there exists a unique 𝑢 ∈ 𝐿1(B
𝑅
) such that 𝑢 ≥ 0 and

∫
B
𝑅

𝑢Δ
2
𝜑 = ∫

B
𝑅

𝑓𝜑, 𝜑 ∈ 𝐶
4
(B

𝑅
) ∩ 𝐻

2

0
(B

𝑅
) . (19)

Moreover, there exists 𝐶 > 0 which does not depend on 𝑓 such
that ‖𝑢‖

1
≤ C‖𝑓‖

1
.

Proof. The proof is standard; see [16]; we give a proof here for
the sake of completeness. The uniqueness is clear. Indeed, let
V
1
and V

2
be two solutions of (19). Then, V = V

1
− V

2
satisfies

∫
B

VΔ2𝜑 = 0 𝜑 ∈ 𝐶
4
(B

𝑅
) ∩ 𝐻

2

0
(B

𝑅
) . (20)

Given any 𝜁 ∈ 𝐶∞

0
(B), let 𝜑 be the solution of

Δ
2
𝜑 = 𝜁 in B,

𝜑 =
𝜕𝜑

𝜕𝑛
= 0 on 𝜕B.

(21)

It follows that

∫
B

V𝜁 = 0. (22)

Since 𝜁 is arbitrary, we deduce that V = 0.
For the existence, given an integer 𝑘 ≥ 0, we set 𝑓

𝑘
=

min{𝑓(𝑥), 𝑘}, so that 𝑓
𝑘
→ 𝑓 as 𝑘 → ∞ in 𝐿1(B). Let V

𝑘
be

the solution of

Δ
2V

𝑘
= 𝑓

𝑘
in B,

V
𝑘
=
𝜕V

𝑘

𝜕𝑛
= 0 on 𝜕B.

(23)

The sequence (V
𝑘
)
𝑘≥0

is clearly monotone nondecreasing. It is
also a Cauchy sequence in 𝐿1(B) since

∫
B

(V
𝑘
− V

𝑙
) = ∫

B

(𝑓
𝑘
− 𝑓

𝑙
) 𝜁

0
, (24)

where 𝜁
0
is defined by

Δ
2
𝜁
0
= 1 in B,

𝜁
0
=
𝜕𝜁

0

𝜕𝑛
= 0 on 𝜕B.

(25)

Hence,

∫
B

V𝑘 − V
𝑙

 ≤ 𝐶∫
B

𝑓𝑘 − 𝑓𝑙
 𝑑𝑥. (26)

Passing to the limit in (23) (after multiplication by 𝜑), we
obtain (19) and 𝑢 ≥ 0 according to Lemma 13. Finally, taking
𝜑 = 𝜁

0
in (19), we obtain

‖V‖𝐿1 = ∫
B

V = ∫
B

𝑓𝜁
0
≤ 𝐶

𝑓
𝐿1
, (27)

and the proof is completed.

Proposition 16. Assume the existence of a weak supersolution
𝑈 of (1)

𝜆
. Then, there exists a weak solution 𝑢 of (1)

𝜆
so that

0 ≤ 𝑢 ≤ 𝑈 almost everywhere in B.

Proof. By means of a standard monotone iteration argument,
set 𝑢

0
:= 𝑈 and define recursively 𝑢

𝑛+1
∈ 𝐿

1
(B) as the unique

solution of

∫
B

𝑢
𝑛+1
Δ
2
𝜑𝑑𝑥 = 𝜆∫

B

𝜑

(1 − 𝑢
𝑛
)
2
𝑑𝑥, 𝜑 ∈ 𝐶

4
(B) ∩ 𝐻

2

0
(B) ;

(28)

then we have

∫
B

(𝑢
𝑛
− 𝑢

𝑛+1
) Δ

2
𝜑𝑑𝑥 ≥ 0, 𝜑 ∈ 𝐶

4
(B) ∩ 𝐻

2

0
(B) , (29)

and Lemma 24 yields 0 ≤ 𝑢
𝑛+1

≤ 𝑢
𝑛

< 𝑈(𝑥) almost
everywhere for all 𝑛 ∈ N. Since

(1 − 𝑢
𝑛
)
−1

≤ (1 − 𝑈)
−1
∈ 𝐿

1
(B) , (30)

the claim follows from the Lebesgue convergence theorem.
We complete these preliminary results by proving a key

lemma which provides a comparison principle.

Lemma 17. Assume𝑢
1
is a weakly stable𝐻2

0
(B)-weak subsolu-

tion of (1)
𝜆
and 𝑢

2
is𝐻2

0
(B)-weak supersolution of (1)

𝜆
. Then,

(1) 𝑢
1
≤ 𝑢

2
almost everywhere in B;

(2) if 𝑢 is a classical solution such that 𝜇
1
(𝑢) = 0 and 𝑈 is

any classical supersolution of (1)
𝜆
, then 𝑢 ≡ 𝑈.

Proof. (1) Define 𝜔 := 𝑢
1
− 𝑢

2
. Then, by the Moreau

decomposition [9] for the biharmonic operator, there exists
𝜔
1
, 𝜔

2
∈ 𝐻

2

0
(B), with𝜔 = 𝜔

1
+𝜔

2
, 𝜔

1
≥ 0 almost everywhere,

Δ
2
𝜔
2
≤ 0 in the𝐻2

0
(B)-weak sense, and

∫
B

Δ𝜔
1
Δ𝜔

2
= 0. (31)

By Lemma 12, we have that 𝜔
2
≤ 0 almost everywhere in B.

Given now 0 ≤ 𝜑 ∈ 𝐶
∞

0
(B), we have that

∫
B

Δ𝜔Δ𝜑 ≤ 𝜆∫
B

(𝑓 (𝑢
1
) − 𝑓 (𝑢

2
)) 𝜑, (32)

where 𝑓(𝑢) = (1 − 𝑢)−1. Since 𝑢
1
is stable, one has

𝜆∫
B

𝑓

(𝑢

1
) 𝜔

2

1
≤ 𝜆∫

B

(Δ𝜔
1
)
2

= 𝜆∫
B
Δ𝜔Δ𝜔

1
≤ 𝜆∫

B
(𝑓 (𝑢

1
) − 𝑓 (𝑢

2
)) 𝜔

1
.

(33)
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Since 𝜔
1
≥ 𝜔, one also has

∫
B

𝑓

(𝑢

1
) 𝜔𝜔

1
≤ ∫

B

(𝑓 (𝑢
1
) − 𝑓 (𝑢

2
)) 𝜔

1
, (34)

which once rearranged gives

∫
B

𝑓𝜔
1
≥ 0, (35)

where 𝑓(𝑢
1
) = 𝑓(𝑢

1
) − 𝑓(𝑢

2
) − 𝑓


(𝑢

1
)(𝑢

1
− 𝑢

2
). The strict

convexity of 𝑓 gives 𝑓 ≤ 0 and 𝑓 < 0whenever 𝑢
1
̸= 𝑢
2
. Since

𝜔
1
≥ 0 almost everywhere in B, one sees that 𝜔 ≤ 0 almost

everywhere in B. The inequality 𝑢
1
≤ 𝑢

2
almost everywhere

in B is then established.
(2) Let 𝜑 > 0 be the first eigenfunction of Δ2 − 𝜆𝑓(𝑢) in

𝐻
2

0
(B); we, now, for 0 ≤ 𝑡 ≤ 1, define

𝑔 (𝑡) = ∫
B

Δ (𝑡𝑈 + (1 − 𝑡) 𝑢) Δ𝜙 − 𝜆∫
B

𝑓 (𝑡𝑈 + (1 − 𝑡) 𝑢) 𝜙,

(36)

where 𝜙 is the above first eigenfunction. Since 𝑓 is convex,
one sees that

𝑔 (𝑡) ≥ 𝜆∫
B

[𝑡𝑓 (𝑈) + (1 − 𝑡) 𝑓 (𝑢) − 𝑓 (𝑡𝑈 + (1 − 𝑡) 𝑢)] 𝜙

≥ 0

(37)

for every 𝑡 ≥ 0. Since 𝑔(0) = 0 and

𝑔

(0) = ∫

B

Δ (𝑈 − 𝑢) Δ𝜙 − 𝜆𝑓

(𝑢) (𝑈 − 𝑢) 𝜙 = 0, (38)

we get that

𝑔

(0) = −𝜆∫

B

𝑓

(𝑢) (𝑈 − 𝑢)

2
𝜙 ≥ 0. (39)

Since 𝑓(𝑢)𝜙 > 0 in B, we finally get that 𝑈 = 𝑢 almost
everywhere in B.

2. Existence Results: Proofs of
Theorems 7 and 8

2.1. The Branch of Minimal Solutions. Let us define

Λ := {𝜆 ≥ 0 : (1)
𝜆

has a classical solution with parameter 𝜆} .
(40)

Proposition 18. For all 0 ≤ 𝜆 < 𝜆
∗
, there exists a minimal

classical solution 𝑢
𝜆
of (1)

𝜆
which is smooth and stable.

Moreover,

(i) the map 𝜆 → 𝑢
𝜆
, for 𝜆 ∈ (0, 𝜆

∗
), is differentiable and

strictly increasing;
(ii) the map 𝜆 → 𝜇

1
(𝑢

𝜆
) is decreasing on (0, 𝜆

∗
);

(iii) let �̃�
𝜆
be a regular solution of (1)

𝜆
for 𝜆 ∈ (0, 𝜆

∗
),; if �̃�

𝜆

is not the minimal solution, then 𝜇
1
(�̃�

𝜆
) < 0.

Proof. First, we show thatΛ does not consist of just 𝜆 = 0. To
this end, let 𝜓

𝑅
be the first eigenfunction of the biharmonic

operator subject to Dirichlet boundary conditions onB
𝑅
⊃ B

which we normalize by supB
𝑅

Ψ
𝑅
= 1 and let ]

𝑅
> 0 be the

corresponding eigenvalue. Next, we are going to prove that
for 𝜃 ∈ (0, 1) the function 𝜓 = 𝜃𝜓

𝑅
is a supersolution of (1)

𝜆

as long as 𝜆 is sufficiently small. We have

0 < 1 − 𝜃𝜓
𝑅
< 1, in B; (41)

moreover,

Δ
2
𝜓 = ]

𝑅
𝜃𝜓

𝑅
≥

𝜆

1 − 𝜃𝜓
𝑅

=
𝜆

1 − 𝜓
(42)

provided that

]
𝑅
𝜃𝜓

𝑅
(1 − 𝜃𝜓

𝑅
) ≥ 𝜆. (43)

Notice that

0 < 𝑠
1
:= inf

𝑥∈B
𝜓 < 𝑠

2
:= sup

𝑥∈B

𝜓 < 1 (44)

and that 𝜕𝜓/𝜕𝑛 < 0 on 𝜕B. Thus, looking at the function
𝑔(𝑠) = 𝑠(1 − 𝑠), for 𝑠 ∈ [𝑠

1
, 𝑠
2
], it is easily seen that we can

choose 𝜆 > 0 sufficiently small such that

]
𝑅
inf
𝑥∈B

𝑔 (𝜃𝜓 (𝑥)) > 𝜆. (45)

Since 𝑢 ≡ 0 is a subsolution of (1)
𝜆
, the classical subsuper

solution theoremprovides a classical solution𝑢
𝜆
to (1)

𝜆
.With

such function 𝑢
𝜆
, we can use the Boggio principle to show

straightforwardly that the iterative scheme

Δ
2
𝑢
𝑛,𝜆

=
𝜆

(1 − 𝑢
𝑛−1,𝜆

)
in B,

𝑢
𝑛,𝜆

=
𝜕𝑢

𝑛,𝜆

𝜕𝑛
= 0 in 𝜕B,

𝑢
0,𝜆

= 0 in B

(46)

gives rise to a monotone sequence {𝑢
𝑛,𝜆
} satisfying

0 = 𝑢
0,𝜆

≤ 𝑢
1,𝜆

≤ ⋅ ⋅ ⋅ ≤ 𝑢
𝑛−1,𝜆

≤ ⋅ ⋅ ⋅ ≤ 𝑢
𝜆
< 1 (47)

for all 𝑛 ∈ N. Therefore, the minimal solution 𝑢
𝜆
is obtained

as the increasing limit

𝑢
𝜆
(𝑥) := lim

𝑛→∞
𝑢
𝑛,𝜆
. (48)

Again from the Boggio positivity preserving property
(Lemma 12), we obtain 0 < 𝑢

𝜆
< 1; in particular,

from standard elliptic regularity theory for the biharmonic
operator, it follows that 𝑢

𝜆
(𝑥) is smooth. In order to prove

stability, let us argue as follows: set

𝜆
∗∗
:= sup {𝜆 ∈ (0, 𝜆

∗
) : 𝜇

1
(𝑢

𝜆
) > 0} ; (49)

clearly 𝜆
∗∗

≤ 𝜆
∗
. Now, suppose by contradiction that 𝜆

∗∗
<

𝜆
∗
and let 𝜀 > 0 sufficiently small such that 𝜆

∗∗
+ 𝜀 < 𝜆

∗
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and V
𝜆
∗∗
+𝜀

is the corresponding minimal solution. By the
definition and left continuity of the map 𝜆 → 𝜇

1
(𝑢

𝜆
), we

have necessarily 𝜇
1
(𝑢

𝜆
∗∗

) = 0. Since V
𝜆
∗∗
+𝜀

is a supersolution
of (1)

𝜆
∗∗

, by Lemma 17, we get V
𝜆
∗∗
+𝜀
= 𝑢

𝜆
∗∗

and thus 𝜀 = 0, a
contradiction.

Since each 𝑢
𝜆
is stable, then by setting 𝐹(𝑢

𝜆
, 𝜆) := Δ

2
−

𝜆/(1 − 𝑢
𝜆
), we get that 𝐹

𝑢
𝜆

(𝑢
𝜆
, 𝜆) is invertible for 0 < 𝜆 < 𝜆

∗
.

It then follows from Implicit FunctionTheorem that 𝑢
𝜆
(𝑥) is

differentiable with respect to 𝜆.
Now, we prove that the map 𝜆 → 𝑢

𝜆
is strictly increasing

on (0, 𝜆
∗
). Consider 𝜆

1
< 𝜆

2
< 𝜆

∗
and their corresponding

minimal positive solutions 𝑢
𝜆
1

and 𝑢
𝜆
2

, and let 𝑢∗ be a
solution for (1)

𝜆
2

. The same as the above iterative scheme, we
have

𝑢
𝜆
1

= lim
𝑛→∞

𝑢
𝑛
(𝜆

1
; 𝑥) ≤ 𝑢

∗ in B, (50)

and in particular 𝑢
𝜆
1

≤ 𝑢
𝜆
2

in B. Therefore, 𝑑𝑢
𝜆
/𝑑𝜆 ≥ 0 for

all 𝑥 ∈ B.
Finally, by differentiating (1)

𝜆
with respect to 𝜆 and since

𝜆 → 𝑢
𝜆
is nondecreasing, we get

− Δ
2
𝑑𝑢

𝜆

𝑑𝜆
−

𝜆

(1 − 𝑢
𝜆
)
2

𝑑𝑢
𝜆

𝑑𝜆
=

𝜆

1 − 𝑢
𝜆

≥ 0,

𝑥 ∈ B;
𝑑𝑢

𝜆

𝑑𝜆
= 0, 𝑥 ∈ 𝜕B.

(51)

Applying the strong maximum principle, we conclude that
𝑑𝑢

𝜆
/𝑑𝜆 > 0 on B for all 0 < 𝜆 < 𝜆

∗
.

That 𝜆 → 𝜇
1,𝜆

is decreasing follows easily from the
variational characterization of 𝜇

1,𝜆
, the monotonicity of 𝜆 →

𝑢
𝜆
, and the monotonicity of (1−𝑢

𝜆
)
−2 with respect to 𝑢

𝜆
, and

the proof of (ii) is completed.

Now, we give the proof of (iii). Let 𝑢
𝜆
be the minimal

solution for (1)
𝜆
so that �̃�

𝜆
≥ 𝑢

𝜆
. If the linearization around

�̃�
𝜆
had nonnegative first eigenvalue, then Lemma 17 would

also yield �̃�
𝜆
≤ 𝑢

𝜆
so that �̃�

𝜆
and 𝑢

𝜆
necessarily coincide, a

contradiction.

2.2. Weak Solutions versus Classical Solutions

Lemma 19. Let 𝑢
𝜇
be a weak solution of (1)

𝜇
with 𝜇 < 𝜆

∗.
Then, for 𝜀 > 0 sufficiently small, the problem (1)

(1−𝜀)𝜇
possesses

a classical solution.

Proof. Let �̃� ∈ 𝐿1(B) be the unique solution of

∫
B

�̃�Δ
2
𝜑 = 𝜇∫

B

(1 − 𝜀)

1 − 𝑢
𝜇

𝜑𝑑𝑥, 𝜑 ∈ 𝐶
4
(B) ∩ 𝐻

2

0
(B) , (52)

provided by Lemma 15. By hypothesis, we have

∫
B

𝑢
𝜇
Δ
2
𝜑𝑑𝑥 = 𝜇∫

B

1

1 − 𝑢
𝜇

𝜑𝑑𝑥, 𝜑 ∈ 𝐶
4
(B) ∩ 𝐻

2

0
(B) .

(53)

By uniqueness, we get

(1 − 𝜀) 𝑢
𝜇
= �̃�, (54)

whereas Lemma 13 yields �̃� > 0 almost everywhere in B and
hence we may assume

𝑢
𝜇
> �̃�, 𝑥 ∈ B \ {𝑥 ∈ B : �̃� = 0} . (55)

Therefore,

∫
B

�̃�Δ
2
𝜑 = ∫

B

(1 − 𝜀) 𝜇

(1 − (1/ (1 − 𝜀)) �̃�)
𝑑𝑥

≥ (1 − 𝜀) 𝜇 ∫
B

1

1 − �̃�
𝑑𝑥, 𝜑 ∈ 𝐶

4
(B) ∩ 𝐻2

0
(B) ;

(56)

thus �̃� is a weak supersolution of (1)
(1−𝜀)𝜇

and Proposition 16
yields a weak solution V of (1)

(1−𝜀)𝜇
which satisfies

0 ≤ V ≤ �̃� < 𝑢
𝜇
≤ 1 (57)

and then classical by Remark 5.

Remark 20. From this lemma, we know that 𝜆∗ = 𝜆
∗
; in what

follows, we always denote by 𝜆
∗
the largest possible value of

𝜆 such that (1)
𝜆
has a solution, unless otherwise stated.

Proposition 21. Up to a subsequence, the convergence

𝑢
∗
:= lim

𝜆↗𝜆
∗

𝑢
𝜆
(𝑥) (58)

holds in𝐻2

0
(B) and the extremal solution 𝑢

𝜆
∗ satisfies

∫
B

Δ𝑢
∗
Δ𝜑 = 𝜆

∗
∫
B

𝜑

(1 − 𝑢
∗
)
, 𝜑 ∈ 𝐶

∞

0
(B) . (59)

In particular, the extremal solution is weakly stable, and if
‖𝑢

∗
‖
∞
< 1, then 𝜇

1
(𝑢

∗
) = 0.

Proof. Since 𝑢
𝜆
is stable, we have

𝜆∫
B

𝑢
2

𝜆

(1 − 𝑢
𝜆
)
2
𝑑𝑥 ≤ ∫

B

Δ𝑢𝜆


2

𝑑𝑥

= ∫
B
𝑢
𝜆
Δ
2
𝑢
𝜆
= 𝜆∫

B

𝑢
𝜆

1 − 𝑢
𝜆

𝑑𝑥.

(60)

Next, it is easy to check that the following elementary
inequality holds: there exists a constant 𝐶 > 0 such that

(1 + 𝐶)
𝑠

(1 − 𝑠)
≤

𝑠
2

(1 − 𝑠)
2
+ (1 + 𝐶) , 𝑠 ∈ (0, 1) , (61)

which, used in (60), yields

𝜆∫
B

𝑢
𝜆

1 − 𝑢
𝜆

≥ 𝜆∫
B

𝑢
2

𝜆

(1 − 𝑢
𝜆
)
2
𝑑𝑥 ≥ 𝜆 (1 + 𝐶)∫

B

𝑢
𝜆

1 − 𝑢
𝜆

− 𝐶
1
,

(62)

where 𝐶
1
is independent of 𝜆. From the above inequality, we

get

Δ𝑢𝜆


2

2
= 𝜆∫

B

𝑢
𝜆

1 − 𝑢
𝜆

𝑑𝑥 ≤ 𝐶. (63)
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Therefore, we may assume 𝑢
𝜆

⇀ 𝑢
∗ in 𝐻

2

0
(B) and, by

monotone convergence theorem (59), holds after integration
by parts. Since 𝜇

1
(𝑢

𝜆
) > 0 for all 𝜆 ∈ (0, 𝜆

∗
), in particular we

have

∫
B

Δ𝜑


2

𝑑𝑥 ≥ ∫
B

𝜆𝜑
2

(1 − 𝑢
𝜆
)
2
, 𝜑 ∈ 𝐶

∞

0
(B) , (64)

and passing to the limit as 𝜆 ↗ 𝜆
∗
, we obtain that 𝑢

𝜆
∗

is
weakly stable. Finally, if ‖𝑢

𝜆
∗

‖
∞

< 1 and hence 𝑢
𝜆
∗

is a
classical solution of (1)

𝜆
∗

, the linearized operator at 𝑢
𝜆
∗

𝐿 (𝜆
∗
, 𝑢

𝜆
∗

) := Δ
2
−

𝜆
∗

(1 − 𝑢
𝜆
∗

)
2 (65)

is well defined on the spaceR+
×𝐶

4,𝛼
(B). If 𝜇

1
(𝑢

𝜆
∗

) > 0, then
the Implicit FunctionTheorem applied to the function

𝐹 (𝜆, 𝑢
𝜆
) := Δ

2
𝑢
𝜆
−

𝜆

1 − 𝑢
𝜆

(66)

would yield a solution for 𝜆 > 𝜆
∗
contradicting the definition

of 𝜆
∗
; thus 𝜇

1
(𝑢

∗
) = 0.

Corollary 22. There exists a constant𝐶 independent of 𝜆 such
that, for each 𝜆 ∈ (0, 𝜆

∗
), the minimal solution 𝑢

𝜆
satisfies

‖(1 − 𝑢
𝜆
)
−1
‖
𝐿
2 ≤ 𝐶.

Proof. From Proposition 21, we have

∫
B

𝑢
2

𝜆

(1 − 𝑢
𝜆
)
2
𝑑𝑥 = ∫

𝑢
𝜆
≥1/2

𝑢
2

𝜆

(1 − 𝑢
𝜆
)
2
𝑑𝑥

+∫
𝑢
𝜆
<1/2

𝑢
2

𝜆

(1 − 𝑢
𝜆
)
2
𝑑𝑥 ≤ 𝐶.

(67)

So

∫
𝑢
𝜆
≥1/2

1

(1 − 𝑢
𝜆
)
2
𝑑𝑥 ≤ 4∫

𝑢
𝜆
≥1/2

𝑢
2

𝜆

(1 − 𝑢
𝜆
)
2
𝑑𝑥 ≤ 𝐶. (68)

From this, we easily obtain ‖(1 − 𝑢
𝜆
)
−1
‖
𝐿
2 ≤ 𝐶, and the proof

is completed.

Corollary 23. For dimensions 𝑛 ≤ 4, the extremal solution
𝑢
∗ is regular; that is, 𝑢∗ = lim

𝜆↗𝜆
∗

𝑢
𝜆
exists in the topology of

𝐶
4
(B).

Proof. Since 𝑢∗ is radial and radially decreasing, we need
just to show that 𝑢∗(0) < 1 to get the regularity of 𝑢∗.
Since (1 − 𝑢

∗
(𝑥)) ∈ 𝐿

2
(B) according to Corollary 22, we

have that 𝑢∗(𝑥) ∈ 𝑊4,2
(B) by the standard elliptic regularity

theory. And then by the Sobolev imbedding theorem,we have
𝑢
∗
(𝑥) ∈ 𝐶

4−[𝑛/8]−1,[𝑛/8]+1−(𝑛/8)
(B). So if 𝑛 ≤ 4, one can easily

see that 𝑢∗(𝑥) ∈ 𝐶2
(B). As ∇𝑢∗(0) = 0, we get

1 − 𝑢
∗
(𝑥) = 𝑢

∗
(0) − 𝑢

∗
(𝑥) ≤ 𝐶|𝑥|

2
; (69)

hence

∞ > ∫
B

𝑑𝑥

(1 − 𝑢
∗
(𝑥))

2
≥ 𝐶∫

B

𝑑𝑥

|𝑥|
4
= ∞. (70)

A contradiction arises, so 𝑢∗ is regular for 𝑛 ≤ 4.

2.3. The Upper and Lower Bounds for 𝜆
∗

Lemma 24. Consider

𝜆
∗
≤
]
1

4
, (71)

where ]
1
is the first eigenvalue of Δ2 in𝐻2

0
(B).

Proof. Let 𝑢
𝜆
be a solution of (1)

𝜆
and let (𝜓, ]

1
) denote the

first eigenpair of Δ2 in𝐻2

0
(B) with 𝜓 > 0; then

]
1
∫
B

𝑢
𝜆
𝜓𝑑𝑥 = ∫

B

𝑢
𝜆
Δ
2
𝜓𝑑𝑥 = 𝜆∫

B

𝜓

1 − 𝑢
𝜆

(72)

and this implies

∫
B

(−]
1
𝑢
𝜆
+

𝜆

1 − 𝑢
𝜆

)𝜓𝑑𝑥 = 0. (73)

Since 𝜓 > 0, there must exist a point 𝑥 ∈ B where

𝜆

1 − 𝑢
𝜆

− ]
1
𝑢
𝜆
≤ 0. (74)

And one can conclude that 𝜆
∗
≤ sup

0≤𝑢
𝜆
≤1
]
1
𝑢
𝜆
(1 − 𝑢

𝜆
) =

]
1
/4.
The lower bound for 𝜆

∗
is obtained by finding a suitable

supersolution. For example, if for some parameter �̃�
1
there

exists a supersolution, then 𝜆
∗
> �̃�

1
by Proposition 18.

Lemma 25. For 𝑛 ≥ 1, one has

𝜆
∗
≥ max {4𝑛 (𝑛 − 2) , 2𝑛 (𝑛 + 2)} . (75)

Proof. For any𝛽 > 0 and𝐶
0
> 0, let 𝑔

𝛽
(𝑟) = (𝐶

0
−log 𝑟)𝛽, 𝑟 ∈

(0, 1). Then, by direct calculation, we find the following facts:

Δ𝑔
𝛽
(𝑟) = 𝛽𝑟

−2
[(2 − 𝑛) 𝑔

𝛽−1
+ (𝛽 − 1) 𝑔

𝛽−2
] ,

Δ [𝑟
2
𝑔
𝛽
] = 2𝑛𝑔

𝛽
− 𝛽 (𝑛 + 2) 𝑔

𝛽−1
+ 𝛽 (𝛽 − 1) 𝑔

𝛽−2
.

(76)

So we have

Δ
2
(𝑟

2
𝑔
𝛽
) = 2𝑛Δ𝑔

𝛽
− 𝛽 (𝑛 + 2) Δ𝑔

𝛽−1
(𝑟)

+ 𝛽 (𝛽 − 1) Δ𝑔
𝛽−2

(𝑟)

= 𝛽𝑟
−2
× {2𝑛 (2 − 𝑛) 𝑔

𝛽−1
(𝑟)

+ (𝛽 − 1) (2𝑛 + 𝑛
2
− 4) 𝑔

𝛽−2
(𝑟)}

+ 𝛽𝑟
−2
× {(𝛽 − 1) (𝛽 − 2) × (−2𝑛) 𝑔

𝛽−3
(𝑟)

+ (𝛽 − 1) (𝛽 − 2) (𝛽 − 3) 𝑔
𝛽−4

} .

(77)
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Now, let 𝛽 ∈ (0, 1) and 𝑛 > 2; we have

Δ
2
(𝑟

2
𝑔
𝛽
) ≤ 𝛽𝑟

−2
× 2𝑛 (𝑛 − 2) 𝑔

𝛽−1
. (78)

Also for any 𝐴 > 0 take 𝑢 = 1 − 𝐴𝑟
2
𝑔
𝛽
; one concludes

from (78) that

Δ
2
𝑢 ≥ 2𝑛 (𝑛 − 2)𝐴𝛽𝑟

−2
𝑔
𝛽−1

. (79)

Set 𝛽 = 1/2; one can obtain that

Δ
2
𝑢 ≥

𝑛 (𝑛 − 2)𝐴
2

1 − 𝑢
in B

1
,

𝑢 (𝑟) = 1 − 𝐶
1/2

0
𝐴 on 𝜕B

1
,

𝑢

(𝑟) = 𝐴𝐶

−1/2

0
(
1

2
− 2𝐶

0
) on 𝜕B

1
.

(80)

Choosing 𝐶
0
= 1/4, 𝐴

0
= 2, one concludes that 𝑢(𝑟) is

a supersolution of (1)
4𝑛(𝑛−2)

and 𝜆
∗
≥ 4𝑛(𝑛 − 2) according to

Proposition 18. Besides, we consider the function

𝜔
𝛼
(𝑥) := 𝛼(1 − |𝑥|

2
)
2

, 𝛼 ∈ (0, 1) , (81)

which satisfies 0 ≤ 𝜔
𝛼
(𝑥) < 1 for 𝑥 ∈ B and

𝜔
𝛼
(𝑥) = 0,

𝜕𝜔
𝛼

𝜕𝑛
= 0 for 𝑥 ∈ 𝜕B; ∀𝛼 ∈ (0, 1) . (82)

Now, the idea is to obtain from 𝜔
𝛼
(𝑥) a supersolution of (1)

𝜆
,

for a suitable choice of 𝛼 and for 𝜆 in a suitable range of the
form 0 < 𝜆 ≤ �̃�. For simple calculation, we have

Δ
2
𝜔
𝛼
(𝑟) =

𝑑
4
𝜔
𝛼

𝑑𝑟4
+
2 (𝑛 − 1)

𝑟
+
𝑑
3
𝜔
𝛼

𝑑𝑟3

+
(𝑛−) (𝑛 − 3)

𝑟2

𝑑
2
𝜔
𝛼

𝑑𝑟2
−
(𝑛 − 1) (𝑛 − 3)

𝑟3

𝑑𝜔
𝛼

𝑑𝑟

= [8𝑛
2
+ 16𝑛] 𝛼 =: 𝐶 (𝑛) 𝛼,

(83)

and thus

Δ
2
𝜔
𝛼
(𝑟) =

𝐶 (𝑛) 𝛼 (1 − 𝛼)

1 − 𝛼
≥

𝐶 (𝑛) 𝛼 (1 − 𝛼)

[1 − 𝛼 (1 − |𝑥|
4
)]

=
𝐶 (𝑛) 𝛼 (1 − 𝛼)

1 − 𝜔
𝛼

(84)

from which we deduce that

𝜆
∗
= 𝜆

∗
≥ sup

𝛼∈(0,1)

𝐶 (𝑛) 𝛼 (1 − 𝛼) =
1

4
𝐶 (𝑛) = 2𝑛 (𝑛 + 2) ,

(85)

and the proof is completed.

We complete this section by giving proofs of Theorems 7
and 8.
Proofs of Theorems 7 and 8. The proof of Theorem 7 follows
from Proposition 18 and Lemmas 24 and 25. For the proof

of Theorem 8, we only need to prove the uniqueness of the
regular extremal solution 𝑢

∗; the other parts of Theorem 8
follow from Lemma 19 and Corollary 23. Indeed, if the
extremal solution 𝑢

∗ is regular, we can easily check that
𝜇
1
(𝑢

∗
) = 0 by Implicit Function Theorem, since, otherwise,

we can continue the minimal branch beyond 𝜆
∗
. And then

the uniqueness follows from (ii) of the Lemma 17.

3. Uniqueness of the Extremal Solution:
Proof of Theorem 9

Proof of Theorem 9. Suppose that V ∈ 𝐻2
(B) satisfies

∫
B

VΔ2𝜑𝑑𝑥 ≥ ∫
B

𝜆
∗

1 − V
𝑑𝑥, ∀𝜑 ∈ 𝐶

∞

0
(B) , 𝜑 ≥ 0,

V | 𝜕B = 0,
𝜕V
𝜕𝑛

𝜕B

≤ 0,

(86)

and V ̸≡ 𝑢
∗. Notice that the construction of minimal

solutions in Proposition 18 for 𝜆 ∈ (0, 𝜆
∗
) carries over to

𝜆 = 𝜆
∗
, but just in the weak sense; precisely, we may assume

that for 𝜆 = 𝜆∗ there exists a minimal weak solution. In other
words, it is legitimate to assume

V (𝑥) ≥ 𝑢∗, almost everywhere 𝑥 ∈ B. (87)

The idea of the proof is as follows: first, we prove that the
function

𝑢
0
=
1

2
(𝑢

∗
+ V) (88)

is a supersolution to the following perturbation of problem
(1)

𝜆
:

Δ
2
𝑢 =

𝜆
∗

1 − 𝑢
+ 𝜇

𝜁 (𝑥)

1 − 𝑢
, in B;

0 ≤ 𝑢 ≤ 1, in B;

𝑢 =
𝜕𝑢

𝜕𝑛
= 0, on 𝜕B,

(89)

for a standard cut-off function 𝜁(𝑥) ∈ 𝐶
∞

0
(B) and 𝜇 > 0 to

be suitably chosen; besides, a solution is understood in weak
sense unless otherwise stated. Second, we construct, for some
𝜆 > 𝜆

∗
, a supersolution to (1)

𝜆
by using a solution of (89)

and this will enable us to build up a weak solution of (1)
𝜆
for

𝜆 > 𝜆
∗
and thus necessarily V ≡ 𝑢∗.

Indeed, we first observe that for 0 < 𝑅 < 1 and for some
𝑐
0
= 𝑐

0
(𝑅) > 0

V (𝑥) ≥ 𝑢∗ + 𝑐
0 |𝑥| ≤ 𝑅. (90)

To prove this, we recall Green’s function for Δ2 with Dirichlet
boundary conditions

Δ
2

𝑥
𝐺 (𝑥, 𝑦) = 𝛿

𝑦
, 𝑥 ∈ B;

𝐺 (𝑥, 𝑦) = 0, 𝑥 ∈ 𝜕B;

𝜕𝐺

𝜕𝑛
(𝑥, 𝑦) = 0, 𝑥 ∈ 𝜕B,

(91)
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where 𝛿
𝑦
is the Dirac mass at 𝑦 ∈ B. Boggio gave an explicit

formula for 𝐺(𝑥, 𝑦) which was used in [17] to prove that in
dimension 𝑛 ≥ 5

𝐺 (𝑥, 𝑦) ∼
𝑥 − 𝑦



4−𝑛min(1,
𝑑(𝑥)

2
𝑑(𝑦)

2

𝑥 − 𝑦


4
) , (92)

where

𝑑 (𝑥) = dist (𝑥, 𝜕B) = 1 − |𝑥| . (93)

Formula (92) yields

𝐺 (𝑥, 𝑦) ≥ 𝑐𝑑(𝑥)
2
𝑑(𝑦)

2 (94)

for some 𝑐 > 0, and this in turn implies that, for smooth
functions V and 𝑢 such that V − 𝑢 ∈ 𝐻2

0
(B) and Δ2(V − 𝑢) ≥ 0,

Ṽ − �̃� = ∫
𝜕𝐵

(
𝜕Δ

𝑥
𝐺

𝜕𝑛
𝑥

(𝑥, 𝑦) Ṽ − �̃� − Δ
𝑥
𝐺 (𝑥, 𝑦)

𝜕 (Ṽ − �̃�)
𝜕𝑛

)

+ ∫
𝐵

𝐺 (𝑥, 𝑦) Δ
2
(Ṽ − �̃�) 𝑑𝑥

≥ 𝑐𝑑(𝑦)
2

∫
𝐵

Δ
2
(Ṽ − �̃�) 𝑑(𝑥)2𝑑𝑥.

(95)

Using a standard approximation procedure, we conclude that

V (𝑦) − 𝑢∗ (𝑦) ≥ 𝑐𝑑(𝑦)2𝜆∗ ∫
B

(
1

1 − V
−

1

1 − 𝑢∗
)𝑑(𝑥)

2
𝑑𝑥.

(96)

Since V ≥ 𝑢∗, V ̸≡ 𝑢
∗, we deduce (92).

Let 𝑢
0
= (𝑢

∗
+ V)/2. Then, by Taylor’s theorem,

1

1 − V
=

1

1 − 𝑢
0

+
V − 𝑢

0

(1 − 𝑢
0
)
2
+
(V − 𝑢

0
)
2

4(1 − 𝑢
0
)
3

+
(V − 𝑢

0
)
3

18(1 − 𝑢
0
)
3
+

(V − 𝑢
0
)
4

96(1 − 𝜀
1
)
4

(97)

for some 𝑢
0
≤ 𝜀

1
≤ V and

1

1 − 𝑢∗
=

1

1 − 𝑢
0

+
𝑢
∗
− 𝑢

0

(1 − 𝑢
0
)
2
+
(𝑢

∗
− 𝑢

0
)
2

4(1 − 𝑢
0
)
3

+
(𝑢

∗
− 𝑢

0
)
3

18(1 − 𝑢
0
)
3
+
(𝑢

∗
− 𝑢

0
)
4

96(1 − 𝜀
2
)
4

(98)

for some 𝑢∗ ≤ 𝜀
2
≤ 𝑢

0
. Adding (97) and (98) yields

1

2
(

1

1 − V
+

1

1 − 𝑢∗
) ≥

1

1 − 𝑢
0

+
1

16

(𝑢
∗
− V)2

(1 − 𝑢
0
)
2

(99)

and in turn we obtain

∫
B

𝑢
0
Δ
2
𝜑𝑑𝑥 ≥ ∫

B

[
𝜆
∗

1 − 𝑢
0

+
𝜆
∗
(𝑢

∗
− V)2

16 (1 − 𝑢
0
)
] 𝑑𝑥

≥ ∫
B

[
𝜆
∗

1 − 𝑢
0

+
𝜆
∗
𝑐
2

0
𝜁 (𝑥)

16 (1 − 𝑢
0
)
] 𝑑𝑥.

(100)

Thus, 𝑢
0
is a weak supersolution of (89) with 𝜇 = 𝜆

∗
𝑐
2

0
/16

and the cut-off 𝜁(𝑥) with support in B
𝜌
. Now, reasoning as in

Lemma 19, we may assume, for 𝜀 > 0 sufficiently small, that
(89) possesses a classical solution 0 ≤ 𝑢

𝜀
< 1 with parameter

𝜆
∗
replaced by 𝜆

∗
− 𝜀. Set 𝜇

𝜀
:= [(𝜆

∗
− 𝜀)𝑐

2

0
]/16 and let 𝜓 ∈

𝐶
4
(B) be the unique classical solution of the following:

Δ
2
𝜓 = 𝜇

𝜀

𝜁 (𝑥)

1 − 𝑢
𝜀

in B,

𝜓 =
𝜕𝜓

𝜕𝑛
= on 𝜕B.

(101)

We also, by the Boggio principle, have that there exists𝑀 > 0

sufficiently large such that 𝑢
𝜀
≤ 𝑀𝜓. Next, let 𝛿 > 0 and set

𝜔 :=
(𝜆

∗
− 𝜀) + 𝛿

𝜆
∗
− 𝜀

𝑢
𝜀
− 𝜓. (102)

Choosing 𝛿 sufficiently small, we obtain 𝜔 ≤ 𝑢
𝜀
< 1;

moreover, from

Δ
2
(𝑢

𝜀
− 𝜓) = (𝜆

∗
− 𝜀)

1

1 − 𝑢
𝜀

≥ 0, in B, (103)

𝑢
𝜀
− 𝜓 =

𝜕 (𝑢
𝜀
− 𝜓)

𝜕𝑛
= 0 on 𝜕B, (104)

we have again by the Boggio principle that 𝜓 ≤ 𝑢
𝜀
and

eventually that 𝜔 ≥ 0. Finally, we have

Δ
2
𝜔 = (𝜆

∗
− 𝜀 + 𝛿)

1

1 − 𝑢
𝜀

+
(𝜆

∗
− 𝜀 + 𝛿) 𝑐

2

0

16

𝜀 (𝑥)

1 − 𝑢
𝜀

−𝜇
𝜀

𝜀 (𝑥)

1 − 𝑢
𝜀

≥ (𝜆
∗
− 𝜀 + 𝛿)

1

1 − 𝜔

(105)

since 𝜔 ≤ 𝑢
𝜀
. Thus, it is enough to choose 0 < 𝜀 < 𝛿 to

provide a classical solution to (1)
𝜆
for 𝜆 > 𝜆

∗
, which is a

contradiction; this completes the proof of Theorem 9.

4. Behavior of the Minimal Solutions as
𝜆 → 0: Proof of Theorem 11

Proof of Theorem 11. We first show that

𝑢
𝜆
→ 0 uniformly as 𝜆 → 0. (106)

Since this standard, we just briefly sketch its proof. By
Theorem 7, we know that

0 < 𝜆 < 𝜇 < 𝜆
∗
⇒ 𝑢

𝜆
(𝑥) < 𝑢

𝜇
(𝑥) if |𝑥| < 1. (107)

Then, by multiplying (1)
𝜆
by 𝑢

𝜆
and by integrating by parts,

we obtain that ‖𝑢
𝜆
‖
𝐻
2

0
(B)

remains bounded. Hence, up to a
subsequence, {𝑢

𝜆
} converges in the weak 𝐻2

0
(B) topology to

0, which is the unique solution of (1)
0
. By convergence of the

norms, we infer that the convergence is in the norm topology.
Next, note that 𝑈

𝜆
satisfies

Δ
2
𝑈
𝜆
= 𝜆 in B,

𝑈
𝜆
=
𝜕𝑈

𝜆

𝜕𝑛
= on 𝜕B.

(108)



10 Abstract and Applied Analysis

Therefore, Δ2𝑢
𝜆
> Δ

2
𝑈
𝜆
; one concludes that 𝑢

𝜆
> 𝑈

𝜆
by

Lemma 13.
In order to prove the last statement of Theorem 11, note

that from (106) we know that for all 𝜀 > 0 there exists 𝜆
𝜀
> 0

such that 𝜆 < 𝜆
𝜀
⇒ ‖𝑢

𝜆
‖
∞
< 𝜀.

So, fix 𝜀 > 0 and let 𝜆 < 𝜆
𝜀
. Then,

Δ
2
𝑢
𝜆
=

𝜆

1 − 𝑢
𝜆

<
𝜆

1 − 𝜀
= Δ

2 𝑈
𝜆

1 − 𝜀
. (109)

This shows that 𝑢
𝜆
(𝑥) < 𝑈

𝜆
(𝑥)/(1 − 𝜀) for all 𝑥 ∈ B, and the

proof is completed according to the arbitrariness of 𝜀.

5. Further Results and Open Problems

First, we give the following result which is the main tool to
guarantee that 𝑢∗ is singular. At the same time, it gives a
precise estimate for 𝜆

∗
. The proof of this result is based on

an upper estimate of 𝑢∗ by a stable singular subsolution.

Proposition 26. Suppose there exist 𝜆 > 0, 𝛽 > 0 and a
singular radial function 𝜔(𝑟) ∈ 𝐻

2

0
(B) with 1/(1 − 𝜔(𝑟)) ∈

𝐿
∞

𝑙𝑜𝑐
(B \ 0) such that

Δ
2
𝜔 ≤

𝜆


1 − 𝜔
for 0 < 𝑟 < 1,

𝜔 (1) = 𝜔

(1) = 0,

(110)

𝛽∫
B

𝜙
2

(1 − 𝜔)
2
≤ ∫

B

(Δ𝜙)
2

∀𝜙 ∈ 𝐻
2

0
(B) . (111)

If 𝛽 > 𝜆, then 𝜆
∗
< 𝜆

 and 𝑢∗ is singular.

Proof. First, note that (111) and 1/(1 − 𝜔(𝑟)) ∈ 𝐿
∞

loc(B \ 0)

yield 1/(1 − 𝜔) ∈ 𝐿
1
(B). Equation (110) implies that 𝜔(𝑟)

is a 𝐻2

0
(B)-weak subsolution of (1)

𝜆
 . If now 𝜆


< 𝜆

∗, then
by Lemma 17𝜔(𝑟) would necessarily be below the minimal
solution 𝑢

𝜆
 , which is a contradiction since 𝜔(𝑟) is singular

while 𝑢
𝜆
 is regular. In the following, we will prove that 𝑢∗ is

singular.
Now, let 𝜆/𝛽 < 𝛾 < 1 in such a way that

𝛼 := (
𝛾𝜆

∗

𝜆
)

1/2

< 1. (112)

Setting 𝜔 := 1 − 𝛼(1 − 𝜔), we claim that

𝑢
∗
≤ 𝜔 in B. (113)

Note that by the choice of 𝛼we have 𝛼2𝜆 < 𝜆
∗
, and therefore

to prove (113) it suffices to show that, for 𝛼2𝜆 ≤ 𝜆 < 𝜆
∗
, we

have 𝑢
𝜆
≤ 𝜔 in B. Indeed, fix such 𝜆 and note that

Δ
2
𝜔 = 𝛼Δ

2
𝜔 ≤

𝛼𝜆


(1 − 𝜔)
=

𝛼
2
𝜆


(1 − 𝜔)
≤

𝜆

(1 − 𝜔)
. (114)

Assume that 𝑢
𝜆
≤ 𝜔 does not hold in B, and consider

𝑅
1
:= sup {0 ≤ 𝑅 ≤ 1 | 𝑢

𝜆
(𝑅) > 𝜔 (𝑅)} > 0. (115)

Since 𝜔(1) = 1 − 𝛼 > 0 = 𝑢
𝜆
(1), we then have

𝑅
1
< 1, 𝑢

𝜆
(𝑅

1
) = 𝜔 (𝑅

1
) , 𝑢



𝜆
(𝑅

1
) ≤ 𝜔


(𝑅

1
) . (116)

Now, consider the following problem:

Δ
2
𝑢 =

𝜆

1 − 𝑢
in B

𝑅
1

,

𝑢 = 𝑢
𝜆
(𝑅

1
) on 𝜕B

𝑅
1

,

𝜕𝑢

𝜕𝑛
= 𝑢



𝜆
(𝑅

1
) on 𝜕B

𝑅
1

.

(117)

Then, 𝑢
𝜆
is a solution to the above problem while 𝜔 is a

subsolution to the same problem. Moreover, 𝜔 is stable since
𝜆 < 𝜆

∗
and

𝜆

(1 − 𝜔)
2
≤

𝜆
∗

𝛼2(1 − 𝜔)
2
<

𝛽

(1 − 𝜔)
2
. (118)

By Lemma 19, we deduce that 𝑢
𝜆

≥ 𝜔 in B
𝑅
1

which is
impossible, since 𝜔 is singular while 𝑢

𝜆
is regular. This

establishes claim (113) which, combined with the above
inequality, yields

𝜆
∗

(1 − 𝑢
∗
)
2
≤

𝜆
∗

𝛼2(1 − 𝜔)
2
<

𝛽

(1 − 𝜔)
, (119)

and thus

inf
𝜑∈𝐶
∞

0
(B)

∫
B
[(Δ𝜑)

2

− (𝜆
∗
𝜑
2
/(1 − 𝑢

∗
)
2

)] 𝑑𝑥

∫
B
𝜑2𝑑𝑥

> 0. (120)

This is not possible if 𝑢∗ is a smooth function since otherwise
one could use the Implicit FunctionTheorem to continue the
minimal branch beyond 𝜆

∗
. The proof is over.

(𝑖) 𝑂𝑝𝑒𝑛 𝑃𝑟𝑜𝑏𝑙𝑒𝑚 1. Does (1)
𝜆
possess a stable singular

subsolution? We know that Cowan et al., with the help
of Maple, construct such solution of (𝑃

𝜆
) with 𝑝 = 2

by improved Hardy-Rellich Inequalities; see [4, 9]. But the
method used there seems invalid when 𝑝 = 1.

We now turn to the extremal solution 𝑢∗. We suggest the
following open problems.
(𝑖𝑖) 𝑂𝑝𝑒𝑛 𝑃𝑟𝑜𝑏𝑙𝑒𝑚 2. Does one find the precise estimate for
𝑢
∗ as in [4, 9, 15], which plays a crucial role for investigating

the regularity of 𝑢∗? In [4], the precise bound for 𝑢∗ is
obtained by finding a stable singular subsolution which
relies on the “ghost” singular solution, as mentioned in the
Introduction section. However, in the present paper, we
cannot find any “ghost” singular solution, so a new trick is
needed.
(𝑖𝑖𝑖) 𝑂𝑝𝑒𝑛 𝑃𝑟𝑜𝑏𝑙𝑒𝑚 3. For the corresponding second equa-
tion, the extremal solution 𝑢∗ is regular for dimensions 𝑛 ≤ 6
and singular for dimension 𝑛 ≥ 7; for details, see [11]. The
threshold 𝑛

∗
= 7 between regular and singular solutions

is called the critical dimension. There is a natural question:
whether there exists a critical dimension 𝑁

∗ for (1)
𝜆
. We

conjecture that𝑁∗
= 8.
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