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This paper gives a version of Hartman-Grobman theorem for the impulsive differential equations. We assume that the linear
impulsive system has a nonuniform exponential dichotomy. Under some suitable conditions, we proved that the nonlinear
impulsive system is topologically conjugated to its linear system. Indeed, we do construct the topologically equivalent function
(the transformation). Moreover, the method to prove the topological conjugacy is quite different from those in previous works

(e.g., see Barreira and Valls, 2006).

1. Introduction

A basic contribution to the linearization problem for autono-
mous differential equations is the famous Hartman-Grobman
theorem (see [1, 2]). Then Palmer successfully generalized the
standard Hartman-Grobman theorem to nonautonomous
differential equations (see [3]). Then Fenner and Pinto [4]
generalized Hartman-Grobman theorem to impulsive differ-
ential equations. However, they did not discuss the Holder
regularity of the topologically equivalent function H(t, x).
Then Xia et al. [5] gave a rigorous proof of the Holder regular-
ity. Xia et al. [6, 7] gave a version of the generalized Hartman-
Grobman theorem for dynamic systems on measure chains.
It should be noted that the above mentioned works are based
on the linear differential equations with uniform exponential
dichotomy. Recently, Barreira and Valls have introduced the
notion of nonuniform exponential dichotomies and have
developed the corresponding theory in a systematic way [8-
11]. So, a version of the Hartman-Grobman theorem is also
given for differential equations with nonuniform hyperbol-
icity (see [12]). However, they did not discuss the impulsive
systems with nonuniform hyperbolicity. For this reason, in
this paper, we considered the linearization of impulsive differ-
ential equations with nonuniform hyperbolicity. Moreover,

our method to prove the topological conjugacy used in this
paper is completely different from that in [12]. We divided
the proof into several lemmas and constructed a concrete
topologically equivalent function.

2. Definitions

Consider the linear nonautonomous system with impulses at
times {t; };.cz as follows:

() =AM)x, t#h,

Ax (ty) = A(t) x (tx)

where Ax(t,) = x(t;) — x(t;), x(t;) = x(t;), represents the
jump of the solution x(t) att = ;.

A perturbed nonautonomous system with impulsive is
therefore described by

(1
keZ,

i) =AM x+ ftx), t#h,

Ax (1) = A(t) x (t) + f (to x (1)),

where, in systems (1) and (2), x € R", A(t) and A(t) arenxn
matrixes.

(2)
keZ,
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Definition I (see [11, 12]). The impulsive system (1) is said to
be a nonuniform exponential dichotomy in R, if there exist
a projection P(t) and positive constants «, k, and € > 0, such
that

IT (t,s) P(s)|| < kexp{-a(t—s)+els|]}, t=s,

3)
IT(t,s) Q(s)|| < kexp{-a(s—t)+¢ls|]}, t<s,
where Q(t) = Id — P(t) is the complementary projection and
T(t,s) is the evolution operator of the impulsive system (1),
which satisfies T(t, s)P(s) = P(t)T(t,s), t,s € R.

Definition 2 (see [5, 7]). Suppose that there exists a function
H:R xR" — R"such that

(i) for each fixed t, H(t,-) is @ homeomorphism of R”
into R";
(ii) |H (¢, x) — x|l uniformly bounded with respect to t;
(iii) G(t,-) = H™(¢,-) has property (ii) also;

(iv) if x(¢) is a solution of system (2), then H(t, x(t)) is a
solution of system (1).

If such a map H, exists, then system (2) is topologically
conjugated to (1). H is an equivalent function.

3. Main Results and Proof

Theorem 3. Suppose that the linear impulsive system (1) has
a nonuniform exponential dichotomy (i.e., system (1) has an
evolution operator T (t, s) satisfying (3)) and, for any x, x,, x, €
R" andt € R, one assumes that

(Hy) £t x)] < pexp(—elt]),
(H) [ f(t, x)ll < pexp(—elt]),
(Hy) 1 f(t,x1) — f(t, x)] < rexp(—elt))lx; — x, ],
(Hy) It x)) = f(t, )]l < rexp(=elt)llx; — x,,
(Hs) 2kra™" + 2krN[1 + (1/(1 - exp(-)))] < 1,

where pu,r > 0, k, o, and ¢ are the same constants in (3), and
N is a positive integer such that the intervals [n, n + 1) contain
no more than N terms of the sequences {t;.}; 5, for alln € Z.
Then system (2) is topologically conjugated to system (1).

We divide the proof of Theorem 3 into several lemmas.

In what follows, we always suppose that the conditions of
Theorem 3 are satisfied. Denote that X (¢, t,, x,) is a solution
of the system (2) satisfying the initial condition X(t,) = x,,
and that Y (¢, £y, y,) is a solution of the system (1) satisfying
the initial condition Y (¢) = y,.

Lemma 4. If system (1) has a nonuniform exponential
dichotomy, then x(t) = 0 is the unique bounded solution of
system (1).

Proof. Let T(t,s) be the evolution operator satistying x(¢) =
T(t,s)x(s) for every t,s € R. Then there exists o,k > 0,
€ > 0, and a projection P(t) satisfying (3). We suppose that
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x(t) is any bounded solution of the system (1), and it satisfies
the initial condition (s, x(s)). Therefore, x(t) can be written as
x(t) = T(t,s)P(s)x(s) + T(¢t, s)[Id — P(s)]x(s). Now we prove
P(s)x(s) = 0 and [Id — P(s)]x(s) = 0.

If P(s)x(s) # 0, considering ¢ < 0,

lx (O = IT (¢, 5) P (s) x () + T (£, ) [Id = P(s)] x (s)|

2 |IT (£,5) P (s) x (s) = 1T (¢, 5) [Id = P ()] x ()]l -
(4)

It follows from the first expression of (3) that
1P (s)x ()]l = |P* (5) x (5)
=|POTT GIT 1P (s)x ()]
<[POT@I|IT &) P xG)]
=IPG T (DT (1,5) P () x(9)]
= IT (s POIIT (t,5) P(s) x ()]

<kexp{-a(s—t)+elt|}|T (t,s) P(s) x(s)] -
(5)

Namely,

IT (8,) P(s) x ()]l = k" exp {a (s — ) — [t} [P (s) x (5)]].
(6)

On the other hand, it follows from the second expression of
(3) that

IT (¢, 5) [Id = P (s)] x ()l = [T (£,5) [Id = P (s)]
X [Id = P ()] x (5)I
< |T (¢ 5) [1d = P ()]l

7)
X [I[1d = P (s)] x ()l
<kexp{-a(s—t)+els|}
X |I[1d = P(s)] x ().
From the above analysis, which implies that
lx (Ol = k™" exp {ac(s = £) + e [t} IP () x (5)] ®)

—kexp{-a(s—t)+e|s|}[[Id—P(s)] x (s)| .

Then we obtain ||x(t)|] — +ocoast — —oo. Similarly, if
[Id — P(s)]x(s) # 0, we obtain ||x(t)|] — +coast — +oo.
Consequently, P(s)x(s) = 0 and [Id — P(s)]x(s) = 0. Hence,
x(t) = 0. O

Lemma 5. For each (t,£&), system
Z=At)z- f(t,X(tT,E),

Az (t) = A(ty) z () - f (86 X (14 7.8))

has a unique bounded solution h(t, (z,§)) with |h(t, (,§))| <
2k,uof1 + 2kuN[1 + (1/(1 - exp(-a)))].

t#t;,
9)
keZ,
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Proof. For each (,§), let
t
20 (1) = -j T(6s)P(s) f (s, X (5,7, ) ds

+ J; T(s)Q(s) f (s, X (s,7,8))ds

_ (10)
- Y TP F (te X (o 1.8))
t€(—0o,t)
Y TH)QE) Fte X (6o 1.8)).

t€[t,+00)

Differentiating it, then z,(¢) is a solution of system (9) It
follows from (3), (H,), and (H,) that we can easily deduce

t
|ZO (t)| < J_ kexp{-a(t—s)+els|}
x pexp (—els|) ds
+ roo kexp{-a(s—t)+els|}
t

x pexp (—¢ls|) ds

Y kexp{-a(t-t,)+e|tl} (11)

tre(—00,t)
x pexp (—¢|t])
S kesploalt, 1) +eli}

t€[t,+00)
x pexp (-¢ |tk|)

_ 1
2k Yy2kuN (14—
< 2kpoc T+ 2Kp [ + I —exp (-a)

It is easy to show that z,(¢) is a bounded solution of (9). On
the other hand, for each (z,£), the linear part of system (9)
has a nonuniform exponential dichotomy, by Lemma 4, then
system (9) has a unique bounded solution z,(t), we denote
h(t, (1,&)) and |h(t, (1,8))| < Zk;wfl + 2kuN[1 + (1/(1 -
exp(-«)))]. O

Lemma 6. For each (t,£&), the system

Z'=AWZ+ f(t,Y T, +2), t#t,
AZ () = A(t) Z (t) + f (4 Y (4,1, 8) + Z (1)), (12)
keZ,

has a unique bounded solution g(t, (t,§)) and |g(t, (7,§))| <
2kpo ™ + 2kuN[1 + (1/(1 - exp(—a)))].

Proof. Let B be the set of all the continuous bounded
functions z(t) with |z(t)| < 2k,uof1 + 2kuN[1 + (1/(1 -

exp(—«)))]. For each (7,§) and any z(t) € B, define the
mapping T as follows:

Tz (t) = Jt T,s)P(s)f(sY(s1,8)+2(s)ds

- J':OO T(t,s)Q(s) f(s,Y(s,1,8) +2z(s))ds

£ Y T PE) F(teY (4ar.8) +2(8))

tre(—0o,t)

Y TEH)QU) f(teY (tat.8) + 2 (t)).
t€[t,+00)

(13)

It follows from (3), (H,), and (H,) that

T2 (1) < f Kk exp {—r (£ — 5) + & |s[}
x pexp (—¢|s|) ds
+ J+OO kexp{-a(s—1t)+els|}
t

x pexp (—¢e|s|) ds

Z kexp{-a(t—t;) + et}
t€(—00,t) (14)

x pexp (—eltel)

Z kexp {—a (t;,

t€[t,+00)

—1) + et}

x pexp (-e|t])
< 2kpa”! + 2kuN [1 _
e Sk " 1 —exp (—«)
£ B,
which implies that T'is a self-map of a sphere with radius B.

For any z,(t),z,(t) € B, and it follows from (3), (H,), and
(Hs), then we have

Tz, (t) - Tz, (t)] < Jt kexp {-a(t—s) +e|s|}
x rexp (—¢€|s|) |z1 (s) -z, (s)| ds
+ J+OO kexp{-a(s—t)+e]s|}

x rexp (—¢|s|) |z, (s) — 2, (s)| ds

Z kexp{-a (t —t;) + et |}

ti€(—00,t)

elte]) |21 () = 2, (5)

x rexp (-



+ z kexp {—a(t, —t) + fltk”

t€[t,+00)
x rexp (—e|te]) |2, (s) — 2, (5)]

< <2krof1 + 2krN [1 + ;]>
1 —exp ()

x|z = 2] -
(15)

And together with (Hg), T has a unique fixed point, namely,
zo(t), and

zy (t) = J_ T(t,s)P(s) f(sY(s,7,8) +2,(s))ds

- L T(ts)Q(s) f(sY(s,1,8) +2,(s))ds

+ Z T ()P () f (5o Y (e, 8) + 24 (t)

t€(—00,t)

Y T)QUE) FteY (ha1.8) + 2o (1)
ti€[t,+00)

(16)

It is easy to show that z,(t) is a bounded solution of (12). Now
we are going to show that the bounded solution is unique.
For this purpose, we assume that there is another bounded
solution z; (t) of (12). Thus z,(¢) can be written as follows:

z, (t) =T (t,0) x, + Lt T(ts) f(sY (51,8 +z,(s)ds

+ Y T(t) f Y (4e1.8) + 2, (1))

t,.€[0,t)
=T (t,0)x, + JtT (t,s) [P (s) + (Id = P (s))]
0

X f(sY(s7,8) +2(s))ds
+ ) T [P () +(1d-P(t))]

t,.€[0,t)
X f(teY (t1.8) + 2, (1)
=T(t0)x, + Jt T (t,s) P(s)

X f(s,Y (s,7,8) + 2, (s))ds

0
- J T(t,s)P(s) f(s,Y (s,7,8) +2,(s))ds

+ L T(ts)QG) f(sY(s,1,8) +2,(s))ds

- J-t T(ts)Q(s) f(sY(s,1,8) +2,(s))ds
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+ Y T P(H) F (Y (ta1.8) + 2, (1))

tyei—cou)
- e(ZOOO)T(t, t) P(t7) f (b6 Y (t67.8) + 2 (1)
+t E[OZ+OO)T(t, tQE) f (to Y (b1, 8) + 2, ()
- Y TLE)QME) f(teY (teE) + 2, (1)).
tyeitioo) .
Note that

JO T(ts)P(s) f(sY(s,1,8)+2,(s))ds

0
=T (t,0) J. T(0,s)P(s) f(s,Y (5,7,8) +2,(s))ds

2T (t,0) x,.
(18)

And together with (3) and (H,), we have

0
x| = U_OOT(O, S)P(s) f(sY(s,1,8) +2,(s)ds

<

0
| Ire9P@Ilf Y 6+ @)]ds

0
< J kexp{-a(0—s)+¢|s|} pexp (—¢ls]) ds

= kua™".
(19)

Similarly,

J(:OO T(ts)QG) f(sY(s,1,8) +2,(s)ds =T (£,0) x,,

1

|, | < kpa™.
(20)
On the other hand,
Y T PE) b (tard) + 2, (1)
t;.€(—00,0)
=T(t,0) T(0,t7)P(tf
tke(_zoo’o) (0,£0) P(t;) o
X f(teY (4o1,8) + 2, (1))
2T (t,0) x5.
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And together with (3) and (H,), we have

Y )P

t;.€(-00,0)

|x5] =

X fteY (4o1,8) + 2, (1)

<

Y )Pl

t.€(—00,0)

v ungra | @

< Z kexp{-a(0-1,)+elt|}
t.€(—00,0)

x pexp (~e [ti])
= ku Z exp (aty)

t;.€(-00,0)

gkyN[l + —l—exp(—oc)]'

Similarly,

Y TH)QE) f(teY (tor.8) +2 (1)

t.€[0,+00)

2T (t,0) xy, (23)

|x4| < kuN [1 + PEp———— penygng b

Therefore, it follows from the expression of z, (t) and it can be
written as follows:

zy (t) = T (£,0) (xg — X%, +x, — X3 + X4)
+ Jt T(ts)P(s) f(sY(s5,7,8)+2,(s))ds

- Jt T(ts)Q() f(sY(s,1,8) +2,(s))ds

n Z T(tt)P () f (b Y (te1.8) + 2, (t)

t€(—00,t)

_ Z T(65)Q () f (e Y (b 1.8) + 2, () -

t,€[t,+00)

(24)

Noticing that z, () is bounded, hence, T'(£, 0) (xy—x; +x,—x5+
x,) isbounded. And itis a solution of system (1). By Lemma 4,

we can obtain that T'(t, 0)(x, — x; +x, — x5 +x,) = 0. It follows
that

z, (t) = J_ T(t,s)P(s) f(sY(s,7,8) +2,(s))ds

- L T(ts)Q(s) f(s,Y (5,7,8) + 2, (s))ds

+ Y T P() F (Y (tat.8) + 2, (1))

t;€(—00,t)

- ) Te)QW) F Y (et &) + 2 (1))

t€[t,+00)

(25)

Simple calculation shows

t
|Z1 ) -z (t)| < L kexp{—a(t—s)+els|}
x rexp (—¢|s]) |z1 (s) -z (s)| ds
+ jm kexp{-a(s—t)+els|}

x rexp (—¢|s|) |z (s) — 2, (s)| ds

+ Z kexp{-a(t—t;) +e|t;|}

tr€(—00,t)
x rexp (= |ty) |z; (t) — 2o (o))

+ Z kexp {-a (t;, —t) + €|t |}

ti€lt,+00)
xrexp (¢ |tk|) |Z1 (te) = 2o (tk)l

< <2kr(x_1 + 2krN [1 + ;]>
1 —exp (—«)
x |z = 2 -
(26)

It follows from (Hj;) that we can obtain z,(t) = z,(t). This
implies that the bounded solution of (12) is unique. We
denote it as g(¢(t, £)). From the above proof, it is easy to see
that|g(t, (7,8))| < Zkyoc_l+2kyN[1+(l/(1—exp(—oc)))]. O

Lemma 7. Let x(t) be any solution of the system (2); then
z(t) = 0 is the unique bounded solution of system

Z=AWZ+ ftx(t)+2Z) - f(tx(t), t#t,
AZ () = A(t) Z(t) + f (e x () + Z (1)) (27)

- ftox(t), kez

Proof. Obviously, z = 0 is a bounded solution of system (27).
We show that the bounded solution is unique; if not, there



is another bounded solution z,(t), which can be written as
follows:

z, (t) =T (t0)z, (0)
+ L T(ts)[f(s,x(s)+2,(5) = f(s,x(s)]ds
+ Y TEE) [ ftox(t)+2 (1))

t€[0,t)

~f (tex (tk))] .
(28)

By Lemma 6, we can get
z, (t) = [OO T(t,s)P(s)[f (5% (s) + 2 (5))
~ fs.x(o)]ds
[Treeolra©ra©)

- f(s,x(s)]ds
+ ) T() P [f (o x (t) + 2 (1)

tr€(—00,t)
= [ (tox ()]
= Y T(e) Q) [F (o (t) + 2 (1))

t€[t,+00)

- ftex (fk))] .
(29)

Then it follows from (3), (H;), and (H,) that
t
|z1 (t)| < J kexp{-a(t—s)+els|}
x rexp (—¢|s]) lzl (s)l ds
+00
+ j kexp{-a(s—t)+¢els|}
t

x rexp (—¢s|) |z, (s)| ds

+ Z kexp{—tx(t—tk)”ltkl} (30)

t€(—00,t)
x rexp (—e|t]) |21 ()]

+ Z kexp{-a (t; —t) + €|t |}

ti€[t,+00)

x rexp (—¢l|te]) |21 ()]

1
v [,

< [Zkroc_1 + 2krN
1 —exp (—«)

And, together with (Hj), consequently, z,(t) = 0. This
completes the proof of Lemma 7. O
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Now we define two functions as follows:

H(t,x) = x+h(t(tx)), (31)

Gt,x)=y+g(t(ty)). (32)

Lemma 8. Forany fixed (¢, x,), H(t, X(t,t,, x,)) is a solution
of system (1).

Proof. Replace (7, &) by (¢, X(t, 7,£)) in (9); system (9) is not

changed. Due to the uniqueness of the bounded solution of
(9), we can get that h(t, (t, X(t, ty, x,))) = h(t, (ty, x,)). Thus

H(t, X (t,ty,x0)) = X (t,tg, x0) + h(t (g, %)) . (33)

Differentiating it and noticing that X(¢,¢,,x,) and
h(t, (ty, x,)) are the solutions of (2) and (9), respectively, we
can obtain

[H (£, X (t, t5,%,))] = A(t) X (.10, %) + f (£, X (£, 5, %,))
+ A h(t (ty %))
- f (6, X (t:tg, x0))
= A@t) (X (t,ty, xo) + h (2, (t5, x,)))
= A(t)H (t, X (t, 1, x,))
AH (t X (teo tor %)) = A (t) X (e to» Xo)
+ f (to X (tite, o))
+A(t) h(te (o X (to te, Xo)))
~ (te X (te te X))
A(t)(X (teo tr xo) + h(ty (tg X))

A(ty) H (t X (tg £ %)) -

(34)

It indicates that H(t, X (¢, t,, x,)) is the solution of system (1).
O

Lemma 9. For any fixed (t,, y,), G(t, Y (¢, ty, ¥,)) is a solution
of the system (2).

Proof. The proof is similar to Lemma 8. O
Lemmal0. Foranyt € R,y € R", H(t,G(t, y)) = y.

Proof. Let y(t) be any solution of system (1). By Lemma 9,
G(t, y(t)) is a solution of system (2). Then by Lemma 8, we
see that H(t, G(t, y(t))) is a solution of system (1) written as
9,(t). Denote J(t) = y,(t) — y(t). Differentiating it, we have

IO =y -y O =AWt -AR) y ()
=AM @1),
AJ(8) = Ay, (1) = Ay (1) = A(t) » (t) - A(ty) y (1)

= A(t)T (1), 65)
35
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which implies that J(¢) is a solution of system (1). On the other
hand, following the definition of H, G, and Lemmas 5 and 6,
we can obtain

O =[HEG(ty 1)) -y @)
<|H Gty 1)) -Gty ®)|
Gty ®) -y @) 36)
= |h(t, (G (&, y )] + g (& (& )]

-1
< 4kpo +4kuN |1+ e
This implies that J(¢) is a bounded solution of system (1).
However, by Lemma 4, system (1) has only one zero solution.
Hence J(t) = 0; consequently, y,(t) = y(t); that is,
H(t,G(t, y)) = y(t). Since y(t) is any solution of the system
(1), then Lemma 10 follows. O

Lemmall. Foranyt € R,x € R", G(t, H(t, x)) = x.

Proof. The proof is similar to Lemma 10. O
Now we are in a position to prove the main result.

Proof of Theorem 3. We are going to show that H(t, -) satisfies
the four conditions of Definition 2 in the following.

Proof of condition (i) for any fixed t, it follows from
Lemmas 10 and 11 that H(¢, -) is homeomorphism and
G(t,-) = H\(t,").

Proof of condition (ii) it follows from (31) and
Lemma 5 that |H(t, x) — x| is bounded uniformly with
respect to £.

Proof of condition (iii) it follows from (32) and
Lemma 6 that |G(t, y) — y| is bounded uniformly with
respect to £.

Proof of condition (iv) it follows from Lemma 8 and
Lemma 9 that we easily prove that condition (iv) is
true.

Hence, system (2) is topologically conjugated to system
(1). This completes the proof of Theorem 3.
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