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By using the extension of Mawhin’s continuation theorem due to Ge, we consider boundary value problems for fractional 𝑝-
Laplacian equation. A new result on the existence of solutions for the fractional boundary value problem is obtained, which
generalizes and enriches some known results to some extent from the literature.

1. Introduction and Preliminaries

Recently, fractional differential equations have played an
important role in many fields such as physics, electrical cir-
cuits, and control theory (see [1–9]). Many scholars have paid
more attention to boundary value problems for fractional
differential equations (see [10–25]).

By using a fixed point theorem on a cone, Agarwal et al.
(see [10]) considered a two-point boundary value problem at
nonresonance given by

𝐷
𝛼

0
+𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡) , 𝐷

𝜇

0
+
𝑥 (𝑡)) = 0,

𝑥 (0) = 𝑥 (1) = 0,

(1)

where 1 < 𝛼 < 2, 𝜇 > 0 are real numbers, 𝛼 − 𝜇 ≥ 1, and 𝐷𝛼
0
+

is the Riemann-Liouville fractional derivative.
By using the coincidence degree theory, Bai (see [20])

considered the following 𝑚-point fractional boundary value
problems:

𝐷
𝛼

0
+𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , 𝐷

𝛼−1

0
+ 𝑢 (𝑡)) + 𝑒 (𝑡) , 0 < 𝑡 < 1,

𝐼
2−𝛼

0
+ 𝑢 (𝑡)|

𝑡=0
= 0, 𝑢 (1) =

𝑚−2

∑

𝑖=1

𝛽
𝑖
𝑢 (𝜂
𝑖
) ,

(2)

where 1 < 𝛼 ≤ 2 is a real number, 𝛽
𝑖
∈ R, 𝜂

𝑖
∈ (0, 1) are

given constants such that ∑𝑚−2
𝑖=1

𝛽
𝑖
𝜂
𝑚−1

𝑖
= 1, and 𝐷𝛼

0
+ , 𝐼
𝛼

0
+ are

the Riemann-Liouville differentiation and integration.

The turbulent flow in a porous medium is a fundamental
mechanics problem. For studying this type of problems,
Leibenson (see [26]) introduced the 𝑝-Laplacian equation as
follows:

(𝜙
𝑝
(𝑥
󸀠

(𝑡)))
󸀠

= 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥
󸀠

(𝑡)) , (3)

where 𝜙
𝑝
(𝑠) = |𝑠|

𝑝−2

𝑠, 𝑝 > 1. Obviously, 𝜙
𝑝
is invertible and

its inverse operator is 𝜙
𝑞
, where 𝑞 > 1 is a constant such that

1/𝑝 + 1/𝑞 = 1.
In the past few decades, many important results relative

to (3) with certain boundary value conditions have been
obtained. We refer the reader to [27–31] and the references
cited therein. However, to the best of our knowledge, there
are relatively few results on boundary value problems for
fractional 𝑝-Laplacian equations.

Motivated by the work above, in this paper, we investigate
the existence of solutions for boundary value problem (BVP
for short) of fractional 𝑝-Laplacian equation with the follow-
ing form:

𝐷
𝛽

0
+
𝜙
𝑝
(𝐷
𝛼

0
+𝑥 (𝑡)) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝐷

𝛼

0
+𝑥 (𝑡)) , 𝑡 ∈ [0, 1] ,

𝐷
𝛼

0
+𝑥 (0) = 𝐷

𝛼

0
+𝑥 (1) = 𝑥

󸀠

(0) = 0,

(4)

where 0 < 𝛽 ≤ 1, 1 < 𝛼 ≤ 2, 𝐷𝛼
0
+ is Caputo fractional

derivative, and 𝑓 : [0, 1] ×R2 → R is continuous.
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BVP (4) happens to be at resonance in the sense that its
associated linear homogeneous boundary value problem

𝐷
𝛽

0
+
𝜙
𝑝
(𝐷
𝛼

0
+𝑥 (𝑡)) = 0, 𝑡 ∈ [0, 1] ,

𝐷
𝛼

0
+𝑥 (0) = 𝐷

𝛼

0
+𝑥 (1) = 𝑥

󸀠

(0) = 0

(5)

has a nontrivial solution 𝑥(𝑡) = 𝑐, where 𝑐 ∈ R.
For the convenience of the reader, we present here some

necessary basic knowledge and definitions about fractional
calculus theory, which can be found, for instance, in [32–35].

Definition 1. TheRiemann-Liouville fractional integral oper-
ator of order 𝛼 > 0 of a function 𝑥 : (0, +∞) → R is given
by

𝐼
𝛼

0
+𝑥 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑥 (𝑠) 𝑑𝑠, (6)

provided that the right side integral is pointwise defined on
(0, +∞).

Definition 2. The Caputo fractional derivative of order 𝛼 > 0

of a continuous function 𝑥 : (0, +∞) → R is given by

𝐷
𝛼

0
+𝑥 (𝑡) = 𝐼

𝑛−𝛼

0
+

𝑑
𝑛

𝑥 (𝑡)

𝑑𝑡𝑛
=

1

Γ (𝑛 − 𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝛼−1

𝑥
(𝑛)

(𝑠) 𝑑𝑠,

(7)

where 𝑛 is the smallest integer greater than or equal to 𝛼,
provided that the right side integral is pointwise defined on
(0, +∞).

Lemma 3. Assume that𝐷𝛼
0
+𝑥 ∈ 𝐶[0, 1], 𝛼 > 0. Then

𝐼
𝛼

0
+𝐷
𝛼

0
+𝑥 (𝑡) = 𝑥 (𝑡) + 𝑐

0
+ 𝑐
1
𝑡 + 𝑐
2
𝑡
2

+ ⋅ ⋅ ⋅ + 𝑐
𝑛−1

𝑡
𝑛−1

, (8)

where 𝑐
𝑖
= −𝑥
(𝑖)

(0)/𝑖!, 𝑖 = 0, 1, 2, . . . , 𝑛 − 1, and here 𝑛 is the
smallest integer greater than or equal to 𝛼.

Now, one briefly recalls some notations and an abstract
existence result, which can be found in [36].

Definition 4. Let 𝑋 and 𝑌 be two Banach spaces with norms
‖ ⋅ ‖
𝑋
and ‖ ⋅ ‖

𝑌
, respectively. A continuous operator

𝑀 : 𝑋 ∩ dom 𝑀 󳨀→ 𝑌 (9)

is said to be quasilinear if

(i) Im𝑀 := 𝑀(𝑋 ∩ dom 𝑀) is a closed subset of 𝑌,

(ii) Ker𝑀 := {𝑋 ∩ dom 𝑀 : 𝑀𝑢 = 0} is linearly home-
omorphic to R𝑛, 𝑛 < ∞.

Definition 5. Let𝑋 be a real Banach space and let𝑋 ⊂ 𝑋.The
operator 𝑃 : 𝑋 → 𝑋 is said to be a projector provided that
𝑃
2

= 𝑃, 𝑃(𝜆
1
𝑥
1
+ 𝜆
2
𝑥
2
) = 𝜆
1
𝑃(𝑥
1
) + 𝜆
2
𝑃(𝑥
2
) for 𝑥

1
, 𝑥
2
∈ 𝑋

and 𝜆
1
, 𝜆
2
∈ R. The operator 𝑄 : 𝑋 → 𝑋 is said to be a

semiprojector provided 𝑄2 = 𝑄.

Definition 6 (see [36]). Let 𝑋 = Ker𝑀 and let 𝑋 be the
complement space of 𝑋 in 𝑋, and then 𝑋 = 𝑋 ⊕ 𝑋. On
the other hand, suppose that 𝑌̂ is a subspace of 𝑌 and 𝑌̃ is
the complement space of 𝑌̂ in 𝑌 so that 𝑌 = 𝑌̂ ⊕ 𝑌̃. Let
𝑃 : 𝑋 → 𝑋 be a projector, let𝑄 : 𝑌 → 𝑌̂ be a semiprojector,
and letΩ ⊂ 𝑋 be an open and bounded set with origin 𝜃 ∈ Ω,
where 𝜃 is the origin of a linear space.

Suppose that 𝑁
𝜆
: Ω → 𝑌, 𝜆 ∈ [0, 1], is a continuous

operator. Denote 𝑁
1
by 𝑁. Let Σ

𝜆
= {𝑥 ∈ Ω : 𝑀𝑥 = 𝑁

𝜆
𝑥}.

𝑁
𝜆
is said to be𝑀-compact inΩ if there is 𝑌̂ ⊂ 𝑌with dim 𝑌̂

= dim𝑋 and an operator 𝑅 : Ω× [0, 1] → 𝑋 continuous and
compact such that, for 𝜆 ∈ [0, 1],

(𝐼 − 𝑄)𝑁
𝜆
(Ω) ⊂ Im 𝑀 ⊂ (𝐼 − 𝑄)𝑌, (10)

𝑄𝑁
𝜆
𝑥 = 𝜃, 𝜆 ∈ (0, 1) ⇐⇒ 𝑄𝑁𝑥 = 𝜃, (11)

𝑅 (⋅, 0) is the zero operator and 𝑅(⋅, 𝜆)|
Σ
𝜆

= (𝐼 − 𝑃)|
Σ
𝜆

,

(12)

𝑀[𝑃 + 𝑅 (⋅, 𝜆)] = (𝐼 − 𝑄)𝑁
𝜆
. (13)

Lemma 7 (see [36] Ge-Mawhin’s continuation theorem). Let
𝑋 and 𝑌 be two Banach spaces with norms ‖ ⋅ ‖

𝑋
and ‖ ⋅ ‖

𝑌
,

respectively. Ω ⊂ 𝑋 is an open and bounded nonempty set.
Suppose that

𝑀 : 𝑋 ∩ dom 𝑀 󳨀→ 𝑌 (14)

is a quasilinear operator and

𝑁
𝜆
: Ω 󳨀→ 𝑌, 𝜆 ∈ [0, 1] (15)

is𝑀-compact in Ω. In addition, if

(C
1
) 𝑀𝑥 ̸=𝑁

𝜆
𝑥, ∀(𝑥, 𝜆) ∈ (dom 𝑀∩ 𝜕Ω) × (0, 1),

(C
2
) 𝑄𝑁𝑥 ̸= 0, for 𝑥 ∈ dom 𝑀∩ 𝜕Ω,

(C
3
) deg(𝐽𝑄𝑁,Ker 𝑀∩Ω, 0) ̸= 0,

where 𝑁 = 𝑁
1
, then the equation 𝑀𝑥 = 𝑁𝑥 has at least one

solution in Ω.

In this paper, we take 𝑌 = 𝐶[0, 1] with the norm ‖𝑥‖
∞
=

max
𝑡∈[0,1]

|𝑥(𝑡)| and 𝑋 = {𝑥 | 𝑥,𝐷
𝛼

0
+𝑥 ∈ 𝑌} with the norm

‖𝑥‖
𝑋
= max{‖𝑥‖

∞
, ‖𝐷
𝛼

0
+𝑥‖
∞
}. By means of the linear func-

tional analysis theory, we can prove that𝑋 is a Banach space.
Define the operator𝑀 : dom 𝑀 ⊂ 𝑋 → 𝑌 by

𝑀𝑥 = 𝐷
𝛽

0
+
𝜙
𝑝
(𝐷
𝛼

0
+𝑥) , (16)

where

dom 𝑀 = {𝑥 ∈ 𝑋 | 𝐷
𝛽

0
+
𝜙
𝑝
(𝐷
𝛼

0
+𝑥) ∈ 𝑌,

𝐷
𝛼

0
+𝑥 (0) = 𝐷

𝛼

0
+𝑥 (1) = 𝑥

󸀠

(0) = 0} .

(17)

Define the operator𝑁 : 𝑋 → 𝑌 by

𝑁𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝐷
𝛼

0
+𝑥 (𝑡)) , ∀𝑡 ∈ [0, 1] . (18)

ThenBVP (4) is equivalent to the operator equation.Consider

𝑀𝑥 = 𝑁𝑥, 𝑥 ∈ dom 𝑀. (19)



Abstract and Applied Analysis 3

2. Main Result

We will always assume that the nonlinearity 𝑓(𝑡, 𝑢, V) will be
retained:

(H
1
) there exist nonnegative functions 𝑎, 𝑏, 𝑐 ∈ 𝑌 such that

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑢, V)
󵄨󵄨󵄨󵄨 ≤ 𝑎 (𝑡) + 𝑏 (𝑡) |𝑢|

𝑝−1

+ 𝑐 (𝑡) |V|𝑝−1, ∀𝑡 ∈ [0, 1] ,

(𝑢, V) ∈ R
2

;

(20)

(H
2
) there exists a constant 𝐵 > 0 such that

either

𝑢𝑓 (𝑡, 𝑢, V) > 0, ∀𝑡 ∈ [0, 1] , V ∈ R, |𝑢| > 𝐵, (21)

or

𝑢𝑓 (𝑡, 𝑢, V) < 0, ∀𝑡 ∈ [0, 1] ,V ∈ R, |𝑢| > 𝐵. (22)

Moreover, we will always assume that 𝑓 : [0, 1] ×R2 → R is
continuous and

1

Γ (𝛽 + 1)
(

2‖𝑏‖
∞

(Γ(𝛼 + 1))
𝑝−1

+ ‖𝑐‖
∞
) < 1. (23)

Now, we begin with some lemmas below.

Lemma 8. Let𝑀 be defined by (16), and then

Ker 𝑀 = {𝑥 ∈ 𝑋 | 𝑥 (𝑡) = 𝑐 ∈ R, ∀𝑡 ∈ [0, 1]} , (24)

Im 𝑀 = {𝑦 ∈ 𝑌 | ∫

1

0

(1 − 𝑠)
𝛽−1

𝑦 (𝑠) 𝑑𝑠 = 0} , (25)

and𝑀 is a quasilinear operator

Proof. By Lemma 3,𝐷𝛽
0
+
𝜙
𝑝
(𝐷
𝛼

0
+𝑥(𝑡)) = 0 has solution:

𝑥 (𝑡) = 𝑐
0
+ 𝑐
1
𝑡 + 𝐼
𝛼

0
+𝜙
𝑞
(𝑐
2
)

= 𝑐
0
+ 𝑐
1
𝑡 +

𝜙
𝑞
(𝑐
2
)

Γ (𝛼 + 1)
𝑡
𝛼

, 𝑐
0
, 𝑐
1
, 𝑐
2
∈ R,

(26)

which satisfies

𝐷
𝛼

0
+𝑥 (𝑡) = 𝜙

𝑞
(𝑐
2
) . (27)

Combining with the boundary value condition 𝐷𝛼
0
+𝑥(0) = 0

and 𝑥󸀠(0) = 0, we can get that (24) holds.
If 𝑦 ∈ Im 𝑀, then there exists a function 𝑥 ∈ dom 𝑀

such that𝑦(𝑡) = 𝐷
𝛽

0
+
𝜙
𝑝
(𝐷
𝛼

0
+𝑥(𝑡)). Based onLemma 3,we have

𝐷
𝛼

0
+𝑥 (𝑡) = 𝜙

𝑞
(𝐼
𝛽

0
+
𝑦 (𝑡) + 𝑐)

= 𝜙
𝑞
(

1

Γ (𝛽)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

𝑦 (𝑠) 𝑑𝑠 + 𝑐) , 𝑐 ∈ R.

(28)

From condition𝐷𝛼
0
+𝑥(0) = 0, one has 𝑐 = 0. By the condition

𝐷
𝛼

0
+𝑥(1) = 0, we obtain that

∫

1

0

(1 − 𝑠)
𝛽−1

𝑦 (𝑠) 𝑑𝑠 = 0. (29)

Thus, we get (25).
Then we have dimKer𝑀 = 1 and𝑀(dom 𝑀 ∩ 𝑋) ⊂ 𝑌

closed. Therefore,𝑀 is a quasilinear operator.

Lemma 9. LetΩ ⊂ 𝑋 be an open and bounded set; then𝑁
𝜆
is

𝑀-compact in Ω.

Proof. Define the continuous projector 𝑃 : 𝑋 → 𝑋 and the
semiprojector 𝑄 : 𝑌 → 𝑌̂:

𝑃𝑥 (𝑡) = 𝑥 (0) , ∀𝑡 ∈ [0, 1] ,

𝑄𝑦 (𝑡) = 𝛽∫

1

0

(1 − 𝑠)
𝛽−1

𝑦 (𝑠) 𝑑𝑠, ∀𝑡 ∈ [0, 1] .

(30)

where𝑋 = Ker 𝑀 and 𝑌̂ = Im 𝑄.
Obviously, Im 𝑃 = Ker 𝑀 and 𝑃2𝑥(𝑡) = 𝑃𝑥(𝑡). It follows

from 𝑥 = (𝑥−𝑃𝑥) +𝑃𝑥 that𝑋 = Ker 𝑃+Ker 𝑀. By a simple
calculation, we can get Ker 𝑀∩ Ker 𝑃 = {0}. Then we get

𝑋 = Ker 𝑀⊕ Ker 𝑃 = 𝑋 ⊕ 𝑋. (31)

By the definition of 𝑄, we can get

𝑄
2

𝑦 = 𝑄𝑦 ⋅ 𝛽∫

1

0

(1 − 𝑠)
𝛽−1

𝑑𝑠 = 𝑄𝑦. (32)

Let 𝑦 = (𝑦 − 𝑄𝑦) + 𝑄𝑦, where 𝑦 − 𝑄𝑦 ∈ Ker 𝑄 = Im 𝑀,
𝑄𝑦 ∈ Im 𝑄. It follows from Ker 𝑄 = Im 𝑀 and 𝑄2𝑦 = 𝑄𝑦

that Im 𝑄 ∩ Im 𝑀 = {0}. Then, we have

𝑌 = Im 𝑄 ⊕ Im 𝑀 = 𝑌̂ ⊕ 𝑌̃. (33)

Thus

dim 𝑋 = dim Ker 𝑀 = dim Im 𝑄 = dim 𝑌̂. (34)

Let Ω ⊂ 𝑋 be an open and bounded set with 𝜃 ∈ Ω. For
each𝑥 ∈ Ω, we can get𝑄[(𝐼−𝑄)𝑁

𝜆
𝑥] = 0.Thus, (𝐼−𝑄)𝑁

𝜆
𝑥 ∈

Im 𝑀 = Ker 𝑄. Take any𝑦 ∈ Im 𝑀 in the type𝑦 = (𝑦−𝑄𝑦)+

𝑄𝑦. Since 𝑄𝑦 = 0, we can get (𝐼 − 𝑄)𝑦 ∈ 𝑌. So (10) holds. It
is easy to verify (11).

Furthermore, define 𝑅 : Ω × [0, 1] → 𝑋 by

𝑅 (𝑥, 𝜆) (𝑡)

=
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝜙
𝑞

× (
1

Γ (𝛽)
∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

× ((𝐼 − 𝑄)𝑁
𝜆
𝑥 (𝜏)) 𝑑𝜏)𝑑𝑠.

(35)
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By the continuity of 𝑓, it is easy to get that 𝑅(𝑥, 𝜆) is
continuous on Ω × [0, 1]. Moreover, for all 𝑥 ∈ Ω, there
exists a constant 𝑇 > 0 such that |𝐼𝛽

0
+
(𝐼 − 𝑄)𝑁

𝜆
𝑥(𝜏))| ≤ 𝑇,

so we can easily obtain that 𝑅(Ω, 𝜆) is uniformly bounded.
By the Arzelà-Ascoli theorem, we just need to prove that
𝑅 : Ω × [0, 1] → 𝑋 is equicontinuous. Furthermore, for
0 ≤ 𝑡
1
< 𝑡
2
≤ 1, (𝑥, 𝜆) ∈ Ω × [0, 1], we have

󵄨󵄨󵄨󵄨𝑅 (𝑥, 𝜆) (𝑡2) − 𝑅 (𝑥, 𝜆) (𝑡1)
󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨
𝐼
𝛼

0
+𝜙
𝑞
(𝐼
𝛽

0
+ (𝐼 − 𝑄)𝑁𝜆𝑥 (𝑡2))

− 𝐼
𝛼

0
+𝜙
𝑞
(𝐼
𝛽

0
+ (𝐼 − 𝑄)𝑁𝜆𝑥 (𝑡1))

󵄨󵄨󵄨󵄨󵄨󵄨
.

(36)

By |𝐼𝛽
0
+
(𝐼 − 𝑄)𝑁

𝜆
𝑥| ≤ 𝑇, we have

󵄨󵄨󵄨󵄨󵄨󵄨
𝐼
𝛼

0
+𝜙
𝑞
(𝐼
𝛽

0
+ (𝐼 − 𝑄)𝑁𝜆𝑥 (𝑡2)) − 𝐼

𝛼

0
+𝜙
𝑞
(𝐼
𝛽

0
+ (𝐼 − 𝑄)𝑁𝜆𝑥 (𝑡1))

󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

Γ (𝛼)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡
2

0

(𝑡
2
− 𝑠)
𝛼−1

𝜙
𝑞
(𝐼
𝛽

0
+ (𝐼 − 𝑄)𝑁𝜆𝑥 (𝑠)) 𝑑𝑠

− ∫

𝑡
1

0

(𝑡
1
− 𝑠)
𝛼−1

𝜙
𝑞
(𝐼
𝛽

0
+ (𝐼 − 𝑄)𝑁𝜆𝑥 (𝑠)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝜙
𝑞
(𝑇)

Γ (𝛼)
[∫

𝑡
1

0

(𝑡
2
− 𝑠)
𝛼−1

− (𝑡
1
− 𝑠)
𝛼−1

𝑑𝑠

+ ∫

𝑡
2

𝑡
1

(𝑡
2
− 𝑠)
𝛼−1

𝑑𝑠]

=
𝜙
𝑞
(𝑇)

Γ (𝛼 + 1)
(𝑡
𝛼

2
− 𝑡
𝛼

1
) .

(37)

Since 𝑡
𝛼 is uniformly continuous on [0, 1], so 𝑅(Ω, 𝜆) is

equicontinuous. Similarly, we can get that 𝐼
𝛽

0
+
((𝐼 −

𝑄)𝑁
𝜆
𝑥(𝜏)) ⊂ 𝐶[0, 1] is equicontinuous, and considering

that 𝜙
𝑞
(𝑠) is uniformly continuous on [−𝑇, 𝑇], we get that

𝐷
𝛼

0
+𝑅(Ω, 𝜆) = 𝐼

𝛽

0
+
((𝐼 − 𝑄)𝑁

𝜆
(Ω)) is also equicontinuous. So

we can obtain that 𝑅(Ω, 𝜆) → 𝑋 is compact.
For each 𝑥 ∈ Σ

𝜆
= {𝑥 ∈ Ω : 𝑀𝑥 = 𝑁

𝜆
𝑥}, we have

𝐷
𝛽

0
+
𝜙
𝑝
(𝐷
𝛼

0
+𝑥(𝑡)) = 𝑁

𝜆
𝑥(𝑡) ∈ Im 𝑀. Thus,

𝑅 (𝑥, 𝜆) (𝑡)

=
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝜙
𝑞

× (
1

Γ (𝛽)
∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

× ((𝐼 − 𝑄)𝑁
𝜆
𝑥 (𝜏)) 𝑑𝜏)𝑑𝑠.

=
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝜙
𝑞

× (
1

Γ (𝛽)
∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

× 𝐷
𝛽

0
+
𝜙
𝑝
(𝐷
𝛼

0
+𝑥 (𝜏)) 𝑑𝜏)𝑑𝑠,

(38)

which together with𝐷𝛼
0
+𝑥(0) = 𝑥

󸀠

(0) = 0 yields that

𝑅 (𝑥, 𝜆) (𝑡) = 𝑥 (𝑡) − 𝑥 (0) = [(𝐼 − 𝑃) 𝑥] (𝑡) . (39)

It is easy to verify that 𝑅(𝑥, 0)(𝑡) is the zero operator. So (12)
holds.

On the other hand, consider

𝑀[𝑃𝑥 + 𝑅 (𝑥, 𝜆)] (𝑡)

= 𝑀[
1

Γ (𝛼)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝜙
𝑞
(

1

Γ (𝛽)
∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

× ((𝐼 − 𝑄)𝑁
𝜆
𝑥 (𝜏)) 𝑑𝜏)𝑑𝑠

+ 𝑥 (0) ]

= [((𝐼 − 𝑄)𝑁
𝜆
) 𝑥] (𝑡) .

(40)

So (13) holds. Then we get that 𝑁
𝜆
is 𝑀-compact in Ω. The

proof is complete.

Lemma 10. Suppose that (𝐻
1
), (𝐻
2
) hold; then the set

Ω
1
= {𝑥 ∈ dom 𝑀 \ Ker 𝑀 | 𝑀𝑥 = 𝜆𝑁𝑥, 𝜆 ∈ (0, 1)} (41)

is bounded.

Proof. Take 𝑥 ∈ Ω
1
; then𝑀𝑥 = 𝜆𝑁𝑥, 𝐷𝛼

0
+𝑥(0) = 𝑥

󸀠

(0) = 0,
and𝑁𝑥 ∈ Im 𝑀. By (25), we have

∫

1

0

(1 − 𝑠)
𝛽−1

𝑓 (𝑠, 𝑥 (𝑠) , 𝐷
𝛼

0
+𝑥 (𝑠)) 𝑑𝑠 = 0. (42)

Then, by the integral mean value theorem, there exists a
constant 𝜉 ∈ (0, 1) such that 𝑓(𝜉, 𝑥(𝜉), 𝐷𝛼

0
+𝑥(𝜉)) = 0. So, from

(𝐻
2
), we get |𝑥(𝜉)| ≤ 𝐵. By 𝑥󸀠(0) = 0, we get

𝑥 (𝑡) = 𝑥 (0) + 𝑥
󸀠

(0) 𝑡 + 𝐼
𝛼

0
+𝐷
𝛼

0
+𝑥 (𝑡)

= 𝑥 (0) +
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐷
𝛼

0
+𝑥 (𝑠) 𝑑𝑠.

(43)

Take 𝑡 = 𝜉; we have

𝑥 (𝜉) = 𝑥 (0) +
1

Γ (𝛼)
∫

𝜉

0

(𝜉 − 𝑠)
𝛼−1

𝐷
𝛼

0
+𝑥 (𝑠) 𝑑𝑠. (44)
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Then we have

|𝑥 (0)| ≤
󵄨󵄨󵄨󵄨𝑥 (𝜉)

󵄨󵄨󵄨󵄨 +
1

Γ (𝛼)
∫

𝜉

0

(𝜉 − 𝑠)
𝛼−1 󵄨󵄨󵄨󵄨𝐷

𝛼

0
+𝑥 (𝑠)

󵄨󵄨󵄨󵄨 𝑑𝑠

≤
󵄨󵄨󵄨󵄨𝑥 (𝜉)

󵄨󵄨󵄨󵄨 +
1

Γ (𝛼)

󵄩󵄩󵄩󵄩𝐷
𝛼

0
+𝑥
󵄩󵄩󵄩󵄩∞ ⋅

1

𝛼
𝜉
𝛼

≤ 𝐵 +
1

Γ (𝛼 + 1)

󵄩󵄩󵄩󵄩𝐷
𝛼

0
+𝑥
󵄩󵄩󵄩󵄩∞.

(45)

So we get

|𝑥 (𝑡)| ≤ |𝑥 (0)| +
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1 󵄨󵄨󵄨󵄨𝐷

𝛼

0
+𝑥 (𝑠)

󵄨󵄨󵄨󵄨 𝑑𝑠

≤ |𝑥 (0)| +
1

Γ (𝛼)

󵄩󵄩󵄩󵄩𝐷
𝛼

0
+𝑥
󵄩󵄩󵄩󵄩∞ ⋅

1

𝛼
𝑡
𝛼

≤ 𝐵 +
2

Γ (𝛼 + 1)

󵄩󵄩󵄩󵄩𝐷
𝛼

0
+𝑥
󵄩󵄩󵄩󵄩∞, ∀𝑡 ∈ [0, 1] .

(46)

That is,

‖𝑥‖
∞
≤ 𝐵 +

2

Γ (𝛼 + 1)

󵄩󵄩󵄩󵄩𝐷
𝛼

0
+𝑥
󵄩󵄩󵄩󵄩∞. (47)

By𝑀𝑥 = 𝜆𝑁𝑥 and𝐷𝛼
0
+𝑥(0) = 0, we get

𝜙
𝑝
(𝐷
𝛼

0
+𝑥 (𝑡)) = 𝜆𝐼

𝛽

0
+
𝑁𝑥 (𝑡)

=
𝜆

Γ (𝛽)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

𝑓 (𝑠, 𝑥 (𝑠) , 𝐷
𝛼

0
+𝑥 (𝑠)) 𝑑𝑠.

(48)

So, from (𝐻
1
), we have

󵄨󵄨󵄨󵄨󵄨
𝜙
𝑝
(𝐷
𝛼

0
+𝑥 (𝑡))

󵄨󵄨󵄨󵄨󵄨
≤

1

Γ (𝛽)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1 󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑥 (𝑠) , 𝐷

𝛼

0
+𝑥 (𝑠))

󵄨󵄨󵄨󵄨 𝑑𝑠

≤
1

Γ (𝛽)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

(𝑎 (𝑠) + 𝑏 (𝑠) |𝑥(𝑠)|
𝑝−1

+𝑐 (𝑠)
󵄨󵄨󵄨󵄨𝐷
𝛼

0
+𝑥(𝑠)

󵄨󵄨󵄨󵄨
𝑝−1

) 𝑑𝑠

≤
1

Γ (𝛽)
(‖𝑎‖
∞
+ ‖𝑏‖
∞
‖𝑥‖
𝑝−1

∞

+‖𝑐‖
∞

󵄩󵄩󵄩󵄩𝐷
𝛼

0
+𝑥
󵄩󵄩󵄩󵄩
𝑝−1

∞
) ⋅

1

𝛽
𝑡
𝛽

≤
1

Γ (𝛽 + 1)
(‖𝑎‖
∞
+ ‖𝑏‖
∞
‖𝑥‖
𝑝−1

∞

+‖𝑐‖
∞

󵄩󵄩󵄩󵄩𝐷
𝛼

0
+𝑥
󵄩󵄩󵄩󵄩
𝑝−1

∞
) , ∀𝑡 ∈ [0, 1] ,

(49)

which together with |𝜙
𝑝
(𝐷
𝛼

0
+𝑥(𝑡))| = |𝐷

𝛼

0
+𝑥(𝑡)|

𝑝−1 and (47)
yields that

󵄩󵄩󵄩󵄩𝐷
𝛼

0
+𝑥
󵄩󵄩󵄩󵄩
𝑝−1

∞
≤

1

Γ (𝛽 + 1)
[‖𝑎‖
∞
+ ‖𝑏‖
∞

× (𝐵 +
2

Γ(𝛼 + 1)

󵄩󵄩󵄩󵄩𝐷
𝛼

0
+𝑥
󵄩󵄩󵄩󵄩∞)

𝑝−1

+ ‖𝑐‖
∞

󵄩󵄩󵄩󵄩𝐷
𝛼

0
+𝑥
󵄩󵄩󵄩󵄩
𝑝−1

∞
] .

(50)

In view of (23), we can see that there exists a constant𝑀
1
> 0

such that
󵄩󵄩󵄩󵄩𝐷
𝛼

0
+𝑥
󵄩󵄩󵄩󵄩∞ ≤ 𝑀

1
. (51)

Thus, from (47), we get

‖𝑥‖
∞
≤ 𝐵 +

2𝑀
1

Γ (𝛼 + 1)
:= 𝑀
2
. (52)

Combining (51) with (52), we have

‖𝑥‖
𝑋
= max {‖𝑥‖

∞
,
󵄩󵄩󵄩󵄩𝐷
𝛼

0
+𝑥
󵄩󵄩󵄩󵄩∞} ≤ max {𝑀

1
,𝑀
2
} := 𝑀.

(53)

Therefore,Ω
1
is bounded. The proof is complete.

Lemma 11. Suppose that (𝐻
2
) holds; then the set

Ω
2
= {𝑥 ∈ Ker𝑀 | 𝑁𝑥 ∈ Im𝑀} (54)

is bounded.

Proof. For 𝑥 ∈ Ω
2
, we have 𝑥(𝑡) = 𝑐, 𝑐 ∈ R and𝑁𝑥 ∈ Im 𝑀.

Then we get

∫

1

0

(1 − 𝑠)
𝛽−1

𝑓 (𝑠, 𝑐, 0) 𝑑𝑠 = 0, (55)

which together with (H
2
) implies |𝑐| ≤ 𝐵. Thus, we have

‖𝑥‖
𝑋
≤ max {𝐵, 0} = 𝐵. (56)

Hence, Ω
2
is bounded. The proof is complete.

Lemma 12. Suppose that the first part of (𝐻
2
) holds; then the

set

Ω
3
= {𝑥 ∈ Ker 𝑀 | 𝜆𝑥 + (1 − 𝜆)𝑄𝑁𝑥 = 0, 𝜆 ∈ [0, 1]} (57)

is bounded.

Proof. For 𝑥 ∈ Ω
3
, we have 𝑥(𝑡) = 𝑐, 𝑐 ∈ R, and

𝜆𝑐 + (1 − 𝜆) 𝛽∫

1

0

(1 − 𝑠)
𝛽−1

𝑓 (𝑠, 𝑐, 0) 𝑑𝑠 = 0. (58)

If 𝜆 = 0, then |𝑐| ≤ 𝐵 because of the first part of (H
2
). If

𝜆 ∈ (0, 1], we can also obtain |𝑐| ≤ 𝐵. Otherwise, if |𝑐| > 𝐵, in
view of the first part of (H

2
), one has

𝜆𝑐
2

+ (1 − 𝜆) 𝛽∫

1

0

(1 − 𝑠)
𝛽−1

𝑐𝑓 (𝑠, 𝑐, 0) 𝑑𝑠 > 0, (59)

which contradicts (58). Therefore, Ω
3
is bounded. The proof

is complete.



6 Abstract and Applied Analysis

Remark 13. If the second part of (H
2
) holds, then the set

Ω
󸀠

3
= {𝑥 ∈ Ker 𝑀− 𝜆𝑥 + (1 − 𝜆)𝑄𝑁𝑥 = 0, 𝜆 ∈ [0, 1]}

(60)

is bounded.

Theorem 14. Let 𝑓 : [0, 1] ×R2 → R be continuous. Suppose
that (𝐻

1
), (𝐻
2
) hold. Then BVP (4) has at least one solution.

Proof. Set Ω = {𝑥 ∈ 𝑋|‖𝑥‖
𝑋
< max{𝑀, 𝐵} + 1}. It follows

from Lemmas 8 and 9 that 𝑀 is a quasilinear operator and
𝑁
𝜆
is𝑀-compact onΩ. By Lemmas 10 and 11, we get that the

following two conditions are satisfied:
(C
1
) 𝑀𝑥 ̸=𝑁

𝜆
𝑥, ∀(𝑥, 𝜆) ∈ (dom 𝑀∩ 𝜕Ω) × (0, 1),

(C
2
) 𝑄𝑁𝑥 ̸= 0, for 𝑥 ∈ dom𝑀∩ 𝜕Ω.

Take

𝐻(𝑥, 𝜆) = ±𝜆𝑥 + (1 − 𝜆)𝑄𝑁𝑥. (61)

According to Lemma 12 (or Remark 13), we know that
𝐻(𝑥, 𝜆) ̸= 0 for 𝑥 ∈ Ker𝑀∩ 𝜕Ω. Therefore

deg (𝑄𝑁|Ker𝑀, Ω ∩ Ker 𝑀, 0)

= deg (𝐻 (⋅, 0) , Ω ∩ Ker 𝑀, 0)

= deg (𝐻 (⋅, 1) , Ω ∩ Ker 𝑀, 0)

= deg (±𝐼, Ω ∩ Ker 𝑀, 0) ̸= 0.

(62)

So the condition (𝐶
3
) of Lemma 7 is satisfied. By Lemma 7,

we can get that𝑀𝑥 = 𝑁𝑥 has at least one solution in dom𝑀∩

Ω. Therefore BVP (4) has at least one solution. The proof is
complete.

3. Example

In this section, we will give an example to illustrate our main
result.

Example 1. Consider the following BVP:

𝐷
3/4

0
+ 𝜙3 (𝐷

3/2

0
+ 𝑥 (𝑡)) = −

25

3
+
1

3
𝑥
2

(𝑡)

+ 𝑡𝑒
−|𝐷
3/2

0
+
𝑥(𝑡)|

, 𝑡 ∈ [0, 1] ,

𝐷
3/2

0
+ 𝑥 (0) = 𝐷

3/2

0
+ 𝑥 (1) = 𝑥

󸀠

(0) = 0.

(63)

Corresponding to BVP (4), we get that 𝑝 = 3, 𝛼 = 3/2, 𝛽 =

3/4, and

𝑓 (𝑡, 𝑢, V) = −
25

3
+
1

3
𝑢
2

+ 𝑡𝑒
−|V|

. (64)

Choose 𝑎(𝑡) = 10, 𝑏(𝑡) = 1/3, 𝑐(𝑡) = 0, 𝐵 = 5. By a simple
calculation, we can get that ‖𝑏‖

∞
= 1/3, ‖𝑐‖

∞
= 0 and

1

Γ (3/4 + 1)
(

2/3

(Γ (3/2 + 1))
2
+ 0) < 1. (65)

Obviously, BVP (63) satisfies all conditions of Theorem 14.
Hence, it has at least one solution.

4. Conclusions

In this paper, the boundary value problem for 𝑝-Laplacian
equation at resonance is investigated. In view of the boundary
value problem (4) is equivalent to the operator equation
(19); we only need to find a fixed point of the operator
equation (19). Firstly, we established the sufficient conditions
of existence of boundary value problem for 𝑝-Laplacian
equation. Then, by using the extension of Mawhin’s contin-
uation theorem due to Ge, we got the fixed point of operator
equation (19).
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