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We introduce and study the concept of invariant convergence for sequences of sets with respect to modulus function 𝑓 and give
some inclusion relations.

1. Introduction

The concept of statistical convergence for sequences of real
numbers was introduced by Fast [1] and studied by Šalát [2]
and others. Let 𝐾 ⊆ N and 𝐾

𝑛
= {𝑘 ≤ 𝑛 : 𝑘 ∈ 𝐾}. Then the

natural density of 𝐾 is defined by 𝛿(𝐾) = lim
𝑛
𝑛−1|𝐾

𝑛
|, if the

limit exists, where |𝐾
𝑛
| denotes the cardinality of𝐾

𝑛
.

A sequence 𝑥 = (𝑥
𝑘
) complex numbers is said to be

statistically convergent to 𝐿 if, for each 𝜀 > 0,

lim
𝑛

1

𝑛

󵄨󵄨󵄨󵄨{𝑘 ≤ 𝑛 :
󵄨󵄨󵄨󵄨𝑥𝑘 − 𝐿

󵄨󵄨󵄨󵄨 ≥ 𝜀}
󵄨󵄨󵄨󵄨 = 0. (1)

Convergence concept for sequences of set had been
studied by Beer [3], Aubin and Frankowska [4], and Baronti
and Papini [5]. The concept of statistical convergence of
sequences of set was introduced by Nuray and Rhoades [6] in
2012.Ulusu andNuray [7] introduced the concept ofWijsman
lacunary statistical convergence of sequences of set. Similarly,
the concepts of Wijsman invariant statistical and Wijsman
lacunary invariant statistical convergence were introduced by
Pancaroglu and Nuray [8] in 2013.

A function 𝑓 : [0,∞) → [0,∞) is called a modulus, if

(1) 𝑓(𝑥) = 0 if and if only if 𝑥 = 0;

(2) 𝑓(𝑥 + 𝑦) ≤ 𝑓(𝑥) + 𝑓(𝑦);

(3) 𝑓 is increasing;

(4) 𝑓 is continuous from the right at 0.

A modulus may be unbounded (e.g., 𝑓(𝑥) = 𝑥𝑝, 0 < 𝑝 <
1) or bounded (e.g., 𝑓(𝑥) = 𝑥/(𝑥 + 1)).

Modulus function was introduced by Nakano [9] in 1953.
Ruckle [10] used in idea of modulus function 𝑓 to construct
a class of FK spaces. Consider

𝐿 (𝑓) = {𝑥 = (𝑥
𝑘
) :
∞

∑
𝑘=1

𝑓 (
󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨) < ∞} . (2)

The space 𝐿(𝑓) is closely related to the space ℓ
1
which is a

𝐿(𝑓) space with 𝑓(𝑥) = 𝑥, for all real 𝑥 ≥ 0.
Maddox [11] defined the following spaces by using a

modulus function 𝑓:

𝑤
0
(𝑓) = {𝑥 ∈ 𝑠 : lim

𝑛→∞

1

𝑛

𝑛

∑
𝑘=1

𝑓 (
󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨) = 0} ,

𝑤 (𝑓) = {𝑥 ∈ 𝑠 : lim
𝑛→∞

1

𝑛

𝑛

∑
𝑘=1

𝑓 (
󵄨󵄨󵄨󵄨𝑥𝑘 − 𝐿

󵄨󵄨󵄨󵄨) = 0 for some 𝐿} ,
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𝑤
∞
(𝑓) = {𝑥 ∈ 𝑠 : sup

𝑛

1

𝑛

𝑛

∑
𝑘=1

𝑓 (
󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨) < ∞} ,

(3)

where 𝑠 is space of all complex sequences.
Later, Connor [12] extended his definition by replacing

the Cesaro matrix with an arbitrary nonnegative matrix
summability method 𝐵 = (𝑏

𝑛𝑘
) as follow:

𝑤 (𝐵, 𝑓)

= {𝑥 ∈ 𝑠 : lim
𝑛→∞

∞

∑
𝑘=1

𝑏
𝑛,𝑘
𝑓 (
󵄨󵄨󵄨󵄨𝑥𝑘 − 𝐿

󵄨󵄨󵄨󵄨) = 0 for some 𝐿} .

(4)

2. Definitions and Notations

Let 𝜎 be a mapping of the positive integers into itself. A
continuous linear functional 𝜑 on ℓ

∞
, the space of real

bounded sequences, is said to be an invariant mean or a 𝜎
mean, if and only if,

(1) 𝜙(𝑥) ≥ 0, for all sequences 𝑥 = (𝑥
𝑛
) with 𝑥

𝑛
≥ 0 for

all 𝑛;

(2) 𝜙(𝑒) = 1, where 𝑒 = (1, 1, 1, . . .);

(3) 𝜙(𝑥
𝜎(𝑛)
) = 𝜙(𝑥) for all 𝑥 ∈ ℓ

∞
.

The mappings 𝜙 are assumed to be one-to-one such that
𝜎𝑚(𝑛) ̸= 𝑛 for all positive integers 𝑛 and 𝑚, where 𝜎𝑚(𝑛)
denotes the𝑚th iterate of themapping 𝜎 at 𝑛.Thus, 𝜙 extends
the limit functional on 𝑐, the space of convergent sequences,
in the sense that 𝜙(𝑥) = lim𝑥, for all 𝑥 ∈ 𝑐. In case 𝜎
is translation mapping 𝜎(𝑛) = 𝑛 + 1, the 𝜎 mean is often
called a Banach limit and 𝑉

𝜎
, the set of bounded sequences

all of whose invariant means are equal, is the set of almost
convergent sequences.

It can be shown that

𝑉
𝜎
= {𝑥 = (𝑥

𝑛
) : lim
𝑛

𝑡
𝑚𝑛
(𝑥) = 𝐿

uniformly in 𝑚, 𝐿 = 𝜎 − lim𝑥} ,
(5)

where,

𝑡
𝑚𝑛
(𝑥) =

𝑥
𝑚
+ 𝑥
𝜎(𝑚)

+ 𝑥
𝜎
2
(𝑚)
+ ⋅ ⋅ ⋅ + 𝑥

𝜎
𝑛
(𝑚)

𝑛 + 1
. (6)

Nuray and Savaş [13] defined the following sequence
spaces by using a modulus function 𝑓 and a nonnegative
regular matrix 𝐵 = (𝑏

𝑛𝑘
):

𝑤
0
(𝐵
𝜎
, 𝑓) = {𝑥 ∈ 𝑠 : lim

𝑛→∞

∞

∑
𝑘=1

𝑏
𝑛𝑘
𝑓 (
󵄨󵄨󵄨󵄨󵄨𝑥𝜎𝑘(𝑚)

󵄨󵄨󵄨󵄨󵄨) = 0

uniformly in 𝑚} ,

𝑤 (𝐵
𝜎
, 𝑓)

= {𝑥 ∈ 𝑠 : lim
𝑛→∞

∞

∑
𝑘=1

𝑏
𝑛𝑘
𝑓 (
󵄨󵄨󵄨󵄨󵄨𝑥𝜎𝑘(𝑚) − 𝐿

󵄨󵄨󵄨󵄨󵄨) = 0

for some 𝐿, uniformly in 𝑚} ,

𝑤
∞
(𝐵
𝜎
, 𝑓) = {𝑥 ∈ 𝑠 : sup

𝑛,𝑚

∞

∑
𝑘=1

𝑏
𝑛𝑘
𝑓 (
󵄨󵄨󵄨󵄨󵄨𝑥𝜎𝑘(𝑚)

󵄨󵄨󵄨󵄨󵄨) < ∞} .

(7)

Definition 1 (see [14]). A set 𝐸 of positive integers is said to
have uniform invariant density of zero if

lim
𝑛→∞

1

𝑛

󵄨󵄨󵄨󵄨󵄨{𝑘 ≤ 𝑛 : 𝐸 ∩ {𝜎 (𝑚) , 𝜎
2

(𝑚) , . . . , 𝜎
𝑘

(𝑚)}}
󵄨󵄨󵄨󵄨󵄨 = 0 (8)

uniformly in𝑚.

By using uniform invariant density, the following defini-
tion was given.

Definition 2 (see [10]). A complex number sequence 𝑥 = (𝑥
𝑘
)

is said to be 𝜎-statistically convergent to 𝐿 if, for every 𝜀 > 0,

lim
𝑛

1

𝑛

󵄨󵄨󵄨󵄨󵄨{0 ≤ 𝑘 ≤ 𝑛 :
󵄨󵄨󵄨󵄨󵄨𝑥𝜎𝑘(𝑚) − 𝐿

󵄨󵄨󵄨󵄨󵄨 ≥ 𝜀}
󵄨󵄨󵄨󵄨󵄨 = 0

uniformly in 𝑚 = 1, 2, . . . .
(9)

This will be denoted by 𝑆
𝜎
− lim𝑥 = 𝐿 or 𝑥

𝑘
→ 𝐿(𝑆

𝜎
).

Let (𝑋, 𝜌) be a metric space. For any point 𝑥 ∈ 𝑋 and
nonempty subset 𝐴 of 𝑋, we define the distance from 𝑥 to 𝐴
by

𝑑 (𝑥, 𝐴) = inf
𝑎∈𝐴

𝜌 (𝑥, 𝐴) . (10)

The concept of Wijsman convergence was introduced by
Wijsman [7] as follows.

Let (𝑋, 𝜌) be a metric space. For any nonempty closed
subsets𝐴,𝐴

𝑘
⊆ 𝑋, we say that the sequence {𝐴

𝑘
} is Wijsman

convergent to 𝐴 if

lim
𝑘→∞

𝑑 (𝑥, 𝐴
𝑘
) = 𝑑 (𝑥, 𝐴) , (11)

for each 𝑥 ∈ 𝑋. This will be denoted by𝑊− lim𝐴
𝑘
= 𝐴.

Convergence concept for sequences of set had been stud-
ied by Beer [3], Aubin and Frankowska [4], and Baronti and
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Papini [5]. The concepts of Wijsman statistical convergence
andWijsman strong Cesaro summability were introduced by
Nuray and Rhoades [6] as follows.

Let (𝑋, 𝜌) be a metric space. For any nonempty closed
subsets 𝐴, 𝐴

𝑘
⊆ 𝑋, the sequence {𝐴

𝑘
} is said to be Wijsman

strongly Cesaro summable to 𝐴 if, for each 𝑥 ∈ 𝑋,

lim
𝑛→∞

1

𝑛

𝑛

∑
𝑘=1

󵄨󵄨󵄨󵄨𝑑 (𝑥, 𝐴𝑘) − 𝑑 (𝑥, 𝐴)
󵄨󵄨󵄨󵄨 = 0. (12)

Let (𝑋, 𝜌) be a metric space. For any nonempty closed
subsets 𝐴, 𝐴

𝑘
⊆ 𝑋, the sequence {𝐴

𝑘
} is said to be Wijsman

statistically convergent to 𝐴 if, for 𝜀 > 0 and each 𝑥 ∈ 𝑋,

lim
𝑛→∞

1

𝑛

󵄨󵄨󵄨󵄨{𝑘 ≤ 𝑛 :
󵄨󵄨󵄨󵄨𝑑 (𝑥, 𝐴𝑘) − 𝑑 (𝑥, 𝐴)

󵄨󵄨󵄨󵄨 ≥ 𝜀}
󵄨󵄨󵄨󵄨 = 0. (13)

In this case we write 𝑠𝑡 − lim
𝑊
𝐴
𝑘
= 𝐴 or 𝐴

𝑘
→ 𝐴(𝑊𝑆).

3. Main Result

The purpose of this paper is, by using a modulus function,
to introduce and study new sequence spaces of sequences of
sets. The following three definitions were given in [8].

Definition 3. Let (𝑋, 𝜌) be a metric space. For any nonempty
closed subsets 𝐴, 𝐴

𝑘
⊆ 𝑋, we say that the sequence {𝐴

𝑘
} is

Wijsman invariant convergent to 𝐴, if, for each 𝑥 ∈ 𝑋,

lim
𝑛→∞

1

𝑛

𝑛

∑
𝑘=1

𝑑 (𝑥, 𝐴
𝜎
𝑘
(𝑚)
) = 𝑑 (𝑥, 𝐴) (14)

uniformly in𝑚.

In this case, we write 𝐴
𝑘
→ 𝐴(𝑊𝑉

𝜎
) and the set of

all Wijsman invariant convergent sequences of sets will be
denoted𝑊𝑉

𝜎
.

Definition 4. Let (𝑋, 𝜌) be a metric space. For any nonempty
closed subsets 𝐴, 𝐴

𝑘
⊆ 𝑋, we say that the sequence {𝐴

𝑘
} is

Wijsman strongly invariant convergent to 𝐴, if for each 𝑥 ∈
𝑋,

lim
𝑛→∞

1

𝑛

𝑛

∑
𝑘=1

󵄨󵄨󵄨󵄨󵄨𝑑 (𝑥, 𝐴𝜎𝑘(𝑚)) − 𝑑 (𝑥, 𝐴)
󵄨󵄨󵄨󵄨󵄨 = 0 (15)

uniformly in𝑚.

In this case, we write 𝐴
𝑘
→ 𝐴([𝑊𝑉

𝜎
]) and the set of all

Wijsman strongly invariant convergent sequences of sets will
be denoted [𝑊𝑉

𝜎
].

Definition 5. Let (𝑋, 𝜌) be a metric space. For any nonempty
closed subsets 𝐴, 𝐴

𝑘
⊆ 𝑋, we say that the sequence {𝐴

𝑘
} is

Wijsman invariant statistically convergent to 𝐴, if, for each
𝜀 > 0 and for each 𝑥 ∈ 𝑋,

lim
𝑛→∞

1

𝑛

󵄨󵄨󵄨󵄨󵄨{0 ≤ 𝑘 ≤ 𝑛 :
󵄨󵄨󵄨󵄨󵄨𝑑 (𝑥, 𝐴𝜎𝑘(𝑚)) − 𝑑 (𝑥, 𝐴)

󵄨󵄨󵄨󵄨󵄨 ≥ 𝜀}
󵄨󵄨󵄨󵄨󵄨 = 0

(16)

uniformly in𝑚.

In this case, we write 𝐴
𝑘
→ 𝐴(𝑊𝑆

𝜎
) and the set of all

Wijsman invariant statistically convergent sequences of sets
will be denoted𝑊𝑆

𝜎
.

Let (𝑋, 𝜌) be metric space. For any nonempty closed
subsets 𝐴, 𝐴

𝑘
⊆ 𝑋 and 𝑥 ∈ 𝑋, we define the sequences of

sets space [𝑊𝑉
𝜎
]
∞

as follows:

[𝑊𝑉
𝜎
]
∞
= {{𝐴

𝑘
} sup
𝑚,𝑛

1

𝑛

𝑛

∑
𝑘=1

󵄨󵄨󵄨󵄨󵄨𝑑 (𝑥, 𝐴𝜎𝑘(𝑚))
󵄨󵄨󵄨󵄨󵄨 < ∞} . (17)

Now, by using a modulus function, we introduce the
following new sequence spaces of sequences of sets.

Definition 6. Let (𝑋, 𝜌) be a metric space and𝑓 be a modulus
function. For any nonempty closed subsets 𝐴, 𝐴

𝑘
⊆ 𝑋, we

say that the sequence {𝐴
𝑘
} is Wijsman strongly invariant

convergent to 𝐴 with respect to the modulus 𝑓, if, for each
𝑥 ∈ 𝑋,

lim
𝑛→∞

1

𝑛

𝑛

∑
𝑘=1

𝑓 (
󵄨󵄨󵄨󵄨󵄨𝑑 (𝑥, 𝐴𝜎𝑘(𝑚)) − 𝑑 (𝑥, 𝐴)

󵄨󵄨󵄨󵄨󵄨) = 0 (18)

uniformly in𝑚.

In this case we write 𝐴
𝑘
→ 𝐴([𝑊𝑉

𝜎
(𝑓)]) and the set of

all Wijsman strongly invariant convergent sequences of sets
with respect to the modulus 𝑓 will be denoted [𝑊𝑉

𝜎
(𝑓)].

Let (𝑋, 𝜌) be metric space and 𝑓 be a modulus function.
For any nonempty closed subsets 𝐴, 𝐴

𝑘
⊆ 𝑋 and 𝑥 ∈ 𝑋, we

define the sequences of sets space [𝑊𝑉
𝜎
(𝑓)]
∞

as follows:

[𝑊𝑉
𝜎
(𝑓)]
∞
= {{𝐴

𝑘
} : sup
𝑚,𝑛

1

𝑛

𝑛

∑
𝑘=1

𝑓 (
󵄨󵄨󵄨󵄨󵄨𝑑 (𝑥, 𝐴𝜎𝑘(𝑚))

󵄨󵄨󵄨󵄨󵄨) < ∞} .

(19)

If 𝑓(𝑥) = 𝑥, then the spaces [𝑊𝑉
𝜎
(𝑓)] and [𝑊𝑉

𝜎
(𝑓)]
∞

reduce to [𝑊𝑉
𝜎
] and [𝑊𝑉

𝜎
]
∞
, respectively.

Now we study the relation between 𝑊𝑆
𝜎
and [𝑊𝑉

𝜎
(𝑓)]

convergence.

Theorem 7. Let (𝑋, 𝜌) be a metric space. For any nonempty
closed subsets 𝐴, 𝐴

𝑘
⊆ 𝑋. Then

(i) 𝐴
𝑘
→ 𝐴([𝑊𝑉

𝜎
(𝑓)]) implies 𝐴

𝑘
→ 𝐴(𝑊𝑆

𝜎
);

(ii) 𝑓 is bounded and 𝐴
𝑘
→ 𝐴(𝑊𝑆

𝜎
) implies 𝐴

𝑘
→

𝐴([𝑊𝑉
𝜎
(𝑓)]);

(iii) 𝑊𝑆
𝜎
= [𝑊𝑉

𝜎
(𝑓)], if 𝑓 is bounded.

Proof. (i) Let 𝜀 > 0 and 𝐴
𝑘
→ 𝐴([𝑊𝑉

𝜎
(𝑓)]). Then we can

write
𝑛

∑
𝑘=1

𝑓 (
󵄨󵄨󵄨󵄨󵄨𝑑 (𝑥, 𝐴𝜎𝑘(𝑚)) − 𝑑 (𝑥, 𝐴)

󵄨󵄨󵄨󵄨󵄨)

≥
𝑛

∑
𝑘=1

|𝑑(𝑥,𝐴
𝜎
𝑘
(𝑚)
)−𝑑(𝑥,𝐴)|≥𝜀

𝑓 (
󵄨󵄨󵄨󵄨󵄨𝑑 (𝑥, 𝐴𝜎𝑘(𝑚)) − 𝑑 (𝑥, 𝐴)

󵄨󵄨󵄨󵄨󵄨)

≥ 𝜀 ⋅
󵄨󵄨󵄨󵄨󵄨{𝑘 ≤ 𝑛 :

󵄨󵄨󵄨󵄨󵄨𝑑 (𝑥, 𝐴𝜎𝑘(𝑚)) − 𝑑 (𝑥, 𝐴)
󵄨󵄨󵄨󵄨󵄨 ≥ 𝜀}

󵄨󵄨󵄨󵄨󵄨 ,

(20)

which yields the result.
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(ii) Suppose that 𝐴
𝑘
→ 𝐴(𝑊𝑆

𝜎
) and 𝑓 is bounded, for

each𝑚 ≥ 1, set

𝐺 = sup
𝑘,𝑚

𝑓 (
󵄨󵄨󵄨󵄨󵄨𝑑 (𝑥, 𝐴𝜎𝑘(𝑚))

󵄨󵄨󵄨󵄨󵄨 + |𝑑 (𝑥, 𝐴)|) . (21)

Let 𝜀 > 0 and select𝑁
𝜀
such that

1

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 :

󵄨󵄨󵄨󵄨󵄨𝑑 (𝑥, 𝐴𝜎𝑘(𝑚)) − 𝑑 (𝑥, 𝐴)
󵄨󵄨󵄨󵄨󵄨 ≥

𝜀

2
}
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
<
𝜀

2𝐺
, (22)

for all 𝑚 and 𝑛 > 𝑁
𝜀
, and set 𝐿(𝑛,𝑚, 𝑥) = {𝑘 ≤ 𝑛 :

|𝑑(𝑥, 𝐴
𝜎
𝑘
(𝑚)
) −𝑑(𝑥, 𝐴)| ≥ 𝜀/2}. Now, for all𝑚 and 𝑛 > 𝑁

𝜀
, we

have that

𝑛

∑
𝑘=1

𝑓 (
󵄨󵄨󵄨󵄨󵄨𝑑 (𝑥, 𝐴𝜎𝑘(𝑚)) − 𝑑 (𝑥, 𝐴)

󵄨󵄨󵄨󵄨󵄨)

= ∑
𝑘∈𝐿(𝑛,𝑚,𝑥)

𝑓 (
󵄨󵄨󵄨󵄨󵄨𝑑 (𝑥, 𝐴𝜎𝑘(𝑚)) − 𝑑 (𝑥, 𝐴)

󵄨󵄨󵄨󵄨󵄨)

+ ∑
𝑘∉𝐿(𝑛,𝑚,𝑥)

𝑓 (
󵄨󵄨󵄨󵄨󵄨𝑑 (𝑥, 𝐴𝜎𝑘(𝑚)) − 𝑑 (𝑥, 𝐴)

󵄨󵄨󵄨󵄨󵄨)

<
1

𝑛
(𝑛

𝜀

2𝐺
)𝐺 +

1

𝑛
(
𝜀

2
) 𝑛 =

𝜀

2
+
𝜀

2
= 𝜀.

(23)

Hence, {𝐴
𝑘
} is strongly invariant convergent to 𝐴 with

respect to the modulus function 𝑓.
(iii)This is an immediate consequence of (i) and (ii).
This completes the proof of the theorem.

Theorem 8. Let 𝑓 be a modulus function. Then [𝑊𝑉
𝜎
(𝑓)] ⊂

[𝑊𝑉
𝜎
(𝑓)]
∞
.

Proof. Suppose that, {𝐴
𝑘
} ∈ [𝑊𝑉

𝜎
(𝑓)]. Then we can write

1

𝑛

𝑛

∑
𝑘=1

𝑓 (
󵄨󵄨󵄨󵄨󵄨𝑑 (𝑥, 𝐴𝜎𝑘(𝑚))

󵄨󵄨󵄨󵄨󵄨)

=
1

𝑛

𝑛

∑
𝑘=1

𝑓 (
󵄨󵄨󵄨󵄨󵄨𝑑 (𝑥, 𝐴𝜎𝑘(𝑚)) − 𝑑 (𝑥, 𝐴) + 𝑑 (𝑥, 𝐴)

󵄨󵄨󵄨󵄨󵄨)

≤
1

𝑛

𝑛

∑
𝑘=1

𝑓 (
󵄨󵄨󵄨󵄨󵄨𝑑 (𝑥, 𝐴𝜎𝑘(𝑚)) − 𝑑 (𝑥, 𝐴)

󵄨󵄨󵄨󵄨󵄨) +
1

𝑛

𝑛

∑
𝑘=1

𝑓 (|𝑑 (𝑥, 𝐴)|)

≤
1

𝑛

𝑛

∑
𝑘=1

𝑓 (
󵄨󵄨󵄨󵄨󵄨𝑑 (𝑥, 𝐴𝜎𝑘(𝑚)) − 𝑑 (𝑥, 𝐴)

󵄨󵄨󵄨󵄨󵄨) + 𝑀
1

𝑛

𝑛

∑
𝑘=1

𝑓 (1) ,

(24)

where 𝑀 is an integer such that 𝑑(𝑥, 𝐴) < 𝑀. Therefore,
{𝐴
𝑘
} ∈ [𝑊𝑉

𝜎
(𝑓)]
∞
.

Theorem 9. If 𝑓 is a modulus function and {𝐴
𝑘
} is strongly

invariant convergent to 𝐴, then {𝐴
𝑘
} is strongly invariant

convergent to𝐴with respect to themodulus𝑓; that is, [𝑊𝑉
𝜎
] ⊂

[𝑊𝑉
𝜎
(𝑓)].

Proof. Let {𝐴
𝑘
} ∈ [𝑊𝑉

𝜎
]. Then we can write

𝑆
𝑛𝑚
=
1

𝑛

𝑛

∑
𝑘=1

󵄨󵄨󵄨󵄨󵄨𝑑 (𝑥, 𝐴𝜎𝑘(𝑚)) − 𝑑 (𝑥, 𝐴)
󵄨󵄨󵄨󵄨󵄨 󳨀→ 0 (𝑛 󳨀→ ∞)

(25)

uniformly in𝑚.
Let 𝜀 > 0 and choose 𝛿 with 0 < 𝛿 < 1 such that 𝑓(𝑡) < 𝜀

for 0 ≤ 𝑡 ≤ 𝛿. Write 𝑎
𝑘𝑚
= |𝑑(𝑥, 𝐴

𝜎
𝑘
(𝑚)
) − 𝑑(𝑥, 𝐴)|,

𝑛

∑
𝑘=1

𝑓 (𝑎
𝑘𝑚
) = Σ
1
+ Σ
2
, (26)

where the first summation is over 𝑎
𝑘𝑚
≤ 𝛿 and second over

𝑎
𝑘𝑚
> 𝛿. Then Σ

1
≤ 𝜀𝑛 and, for 𝑎

𝑘𝑚
> 𝛿,

𝑓 (𝑎
𝑘𝑚
) <

𝑎
𝑘𝑚

𝛿
< 1 + [

𝑎
𝑘𝑚

𝛿
] , (27)

where [𝑧] denotes the integer part of 𝑧. By definitionmodulus
function, we have, for 𝑎

𝑘𝑚
> 𝛿,

𝑓 (𝑎
𝑘𝑚
) ≤ (1 + [

𝑎
𝑘𝑚

𝛿
])𝑓 (1) ≤ 2𝑓 (1)

𝑎
𝑘𝑚

𝛿
. (28)

Hence, Σ
2
≤ 2𝑓(1)(𝑎

𝑘𝑚
/𝛿), which together with Σ

1
≤ 𝜀𝑛

yields [𝑊𝑉
𝜎
] ⊂ [𝑊𝑉

𝜎
(𝑓)].

Lemma 10 (see [15]). Let 𝑓 be a modulus function. Let 𝛼 > 0
be given constant. Then, there is a constant 𝑐 > 0 such that
𝑓(𝑥) > 𝑐𝑥 (0 < 𝑥 < 𝛼).

Theorem 11. Let {𝐴
𝑘
} be a bounded sequence and 𝑓 be a

modulus function. Then {𝐴
𝑘
} is Wijsman strongly invariant

convergent to 𝐴 with respect to modulus 𝑓 if and only if {𝐴
𝑘
}

is Wijsman strongly invariant convergent to 𝐴; that is,

[𝑊𝑉
𝜎
(𝑓)] ∩ 𝐿

∞
= [𝑊𝑉

𝜎
] , (29)

where 𝐿
∞

denotes the set of bounded sequences of sets.

Proof. The proof of the theorem follows fromTheorem 9 and
Lemma 10.
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[13] F. Nuray and E. Savaş, “Some new sequence spaces defined
by a modulus function,” Indian Journal of Pure and Applied
Mathematics, vol. 24, no. 11, pp. 657–663, 1993.
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