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The stochastic time-delayed system of credit risk contagion driven by correlated Gaussian white noises is investigated. Novikov’s
theorem, the time-delay approximation, the path-integral approach, and first-order perturbation theory are used to derive time-
delayed Fokker-Planck model and the stationary probability distribution function of the dynamical system of credit risk contagion
in the financial market. Using the method of numerical simulation, the Hopf bifurcation and chaotic behaviors of credit risk
contagion are analyzed when time-delay and nonlinear resistance coefficient are varied and the effects of time-delay, nonlinear
resistance and the intensity and the correlated degree of correlated Gaussian white noises on the stationary probability distribution
of credit risk contagion are investigated. It is found that, as the infectious scale of credit risk and the wavy frequency of credit risk
contagion are increased, the stability of the system of credit risk contagion is reduced, the dynamical system of credit risk contagion
gives rise to chaotic phenomena, and the chaotic area increases gradually with the increase in time-delay. The nonlinear resistance
only influences the infectious scale and range of credit risk, which is reduced when the nonlinear resistance coefficient increases.
In addition, the curve of the stationary probability distribution is monotone decreasing with the increase in parameters value of
time-delay, nonlinear resistance, and the intensity and the correlated degree of correlated Gaussian white noises.

1. Introduction

In the last few years, complex nonlinear dynamics analysis
approach has provided an alternative scientific methodology
to understand the highly complex nonlinear dynamics of
the modern economic and financial systems [1–9]. Complex
nonlinear dynamical phenomena have been investigated in
the real financial and economic system, including irregular
growth [10], exchange rate fluctuation [11], chaotic stock
market behaviors [12], business cycle [13], bullwhip effect
[14], and risk contagion [8, 9]. The aforementioned phe-
nomenapresent complex dynamical behavior, involvingHopf
bifurcation, inverse bifurcation, chaos, and fractals. Among
these behavior types, chaos and bifurcation are complex
phenomena that exist in the nonlinear financial system and
are important issues in economic and financial dynamics
research [4]. In the field of finance, given the interaction

among nonlinear factors, along with the increasing complex-
ity of all kinds of financial problems and the evolution process
from low dimensions to high dimensions, diversity and
complexity have become explicit in the internal structure of
the financial system, which consequently exhibits extremely
complicated phenomena and external characteristics [1, 2],
such as chaos phenomena and Hopf bifurcations of the
economic and financial system [3, 5, 8, 9, 15, 16]. For a
credit risk contagion system, structural instability is inherent.
Moreover, any appropriate disturbance can induce a sudden
“qualitative” or topological change in the dynamic properties
of such a system. Therefore, a study of complex nonlinear
dynamics of credit risk contagion can describe the effect of
the internal complexity of credit risk contagion system as well
as providing theoretical and practical guidance to credit risk
management.

Recently, stochastic systems with time-delay have
attracted much attention in many fields, such as biological
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systems [17] and economic and financial phenomena
[8, 9, 18–20]. It is well known that time-delay is an important
factor of mathematical financial models; recent research on
financial complex dynamics seems to be generating renewed
interest in stochastic differential equations with time-delay
terms. In fact, the financial dynamical system described by
stochastic delay differential equations occupies a place of
central importance in economic and financial area. This is
because some economic and financial phenomena cannot be
exhaustively described purely using differential equations. In
the real financial market, time-delay usually arises because
the speed of the transmission of information and noise and
that of the transport of matter and energy are finite [21].
It is frequently encountered in real financial systems and
very often is the main cause for instability of the financial
system. The system of credit risk contagion is known to be
a very complicated nonlinear system that is concerned with
people and numerous complex factors, in which time-delay
is also inherent [9]. In view of these, the issue of time-delay
stochastic financial system is a topic of great theoretical and
practical importance, and studies of credit risk contagion
show that time-delays create a wide variety of dynamic
behaviors including Hopf bifurcation and chaotic behaviors.
Thus stochastic model of credit risk contagion with the
time-delay needs to be investigated, and studying the effect
of time-delay on credit risk contagion is necessary.

In addition, noise is prevalent in the financial system
[22–27]. Noise makes financial markets possible, but it also
makes such markets imperfect [22]. Moreover, the existence
of noise is systematic [27].Therefore, noise cannot be ignored
in financial research. In the last few years, the effects of
correlations between additive and multiplicative noise on
stochastic systems have attracted the attention of many
researchers [28–34]. In the real credit risk contagion, the
existence of correlated noises and their interactive driving is
also prevalent and very often is the main cause for stochastic
default of credit activity participants. However, few works are
devoted to the financial system driven by correlated noises.
In view of this, the studying of credit risk contagion with
driving of correlated noises is necessary. Studying the effects
of correlations between additive and multiplicative noise
on credit risk contagion has great theoretical and practical
importance.

In this paper, the complex stochastic dynamics phenom-
ena of credit risk contagion with time-delay and correlated
noises are investigated. We extend the method presented
in [35–38] to stochastic time-delayed model of credit risk
contagion driven by correlated Gaussian white noises. The
time-delayed Fokker-Planck model of credit risk contagion
is obtained by using Novikov’s theorem in Section 2. Then,
in Section 3, the deterministic Hopf bifurcation and chaotic
behaviors of credit risk contagion are investigated by numer-
ical simulations. In Section 4, methods of the time-delay
approximation, the path-integral approach, and first-order
perturbation theory are applied to obtain the approximate
stationary probability distribution of credit risk contagion
in the financial market, and numerical simulations are per-
formed to check the validity of analytic results. Finally, we
conclude the paper in Section 5.

2. The Fokker-Planck Model of Credit Risk
Contagion in the Financial Market

In this paper we will report a microscopic model of credit
risk contagion in the financial market with time-delay and
correlated noises, which aims at modelling the complex
economic and social phenomena and investigating the com-
plex nonlinear dynamics behavior in the process of credit
risk contagion by considering the effect of time-delay and
correlated noises.

The time-delay in the process of information gather-
ing, recognizing, and transmission will be inevitable in
the financial system. Particularly, in the process of remote
transmission, the time-delay will be more evident [8, 9].
Moreover, the synergistic effect of noise and time-delay is
universal in the financial market, which facilitates complex
nonlinear dynamics behavior [8, 9, 39]. We thus assume
that the complex network connections among credit activity
participants are Newman-Watts length scale connections
and long-distance connections, which represent, respectively,
direct business relation and other indirect relations. Ear-
lier we investigated nonlinear stochastic system with time-
delay properties in [8] but ignored the study of noise
disturbance. Thus we will represent the model of credit
risk contagion with time-delay and correlated noises as
follows:

𝑑𝑁 (𝑡)

𝑑𝑡
= 𝜆
1
𝑁(𝑡) + 𝜆

2
𝑁(𝑡 − 𝜏) − 𝜇𝜉[𝜆

2
𝑁(𝑡 − 𝜏)]

2

+ 𝑁 (𝑡) 𝜓 (𝑡) + 𝜂 (𝑡) ,

(1)

where𝑁(𝑡) describes a state variable of credit risk contagion,
which denotes the number of credit activity participants that
are infected by credit risk in the financial market; 𝜆

1
and 𝜆

2

are the effective contagion rate of credit risk among different
credit activity participants that correspond, respectively, to
direct business relation and other indirect relations in the
financial market; 𝜏 is the time-delay of credit risk contagion
among different credit activity participants corresponding to
other indirect relations in the financial market; 𝜉 refers to
the Nelength scale; 𝜇 is the nonlinear resistance coefficient
of the relationship network comprising credit activity par-
ticipants in the financial market, which mainly reflect the
heterogeneity among credit activity participants, including
products and psychological behavior; 𝜓(𝑡) and 𝜂(𝑡) are noise
terms. We assume 𝜆

1
> 𝜆
2
in (1). In fact, 𝑑𝑁(𝑡)/𝑑𝑡 =

𝜆
1
𝑁(𝑡) + 𝜆

2
𝑁(𝑡 − 𝜏) − 𝜇𝜉[𝜆

2
𝑁(𝑡 − 𝜏)]

2 is the drift function
of credit risk contagion and is also the deterministic part
of (1). Obviously, (1) is a Stratonovich stochastic differential
equation.

In the extant literature on finance, a number of studies
adopt Gaussian white noise to analyze its effect on the
economic and financial system, such as [39, 40].Therefore, in
this paper, we also adopt Gaussian white noise to investigate
its effect on credit risk contagion. We assume the noise terms
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𝜓(𝑡) and 𝜂(𝑡) to be correlated Gaussian white noises with zero
mean and

⟨𝜓 (𝑡) 𝜓 (𝑡

)⟩ = 2𝜎𝛿 (𝑡 − 𝑡


) ,

⟨𝜂 (𝑡) 𝜂 (𝑡

)⟩ = 2𝜌𝛿 (𝑡 − 𝑡


) ,

⟨𝜓 (𝑡) 𝜂 (𝑡

)⟩ = ⟨𝜂 (𝑡) 𝜓 (𝑡


)⟩ = 2𝛼√𝜎𝜌𝛿 (𝑡 − 𝑡


) ,

(2)

where 𝛼 is the correlated degree between the noise terms
𝜓(𝑡) and 𝜂(𝑡). 𝜎 and 𝜌 are the strength of the noise terms
𝜓(𝑡) and 𝜂(𝑡), respectively. 𝛿 is an autocorrelation function.
Therefore, the stochastic fluctuation of credit risk contagion
can be depicted by 𝛼 correlated Gaussian white noises 𝜓(𝑡)

and 𝜂(𝑡), 𝛿 autocorrelative Gaussian white noise 𝜓(𝑡), and 𝛿

autocorrelative Gaussian white noise 𝜂(𝑡).
We let 𝑝(𝑁, 𝑡) = ⟨𝛿(𝑁(𝑡) −𝑁


(𝑡))⟩ denote the probability

density of credit risk contagion defined by (1). Therefore, a
general delayed contagion effect of credit risk can describe
the differentiating 𝑝(𝑁, 𝑡) as follows:

𝜕𝑝 (𝑁, 𝑡)

𝜕𝑡

= −⟨
𝜕

𝜕𝑁
𝛿 (𝑁 (𝑡) − 𝑁


(𝑡))

𝑑𝑁 (𝑡)

𝑑𝑡
⟩

= −
𝜕

𝜕𝑁
⟨[𝜆
1
𝑁(𝑡) + 𝜆

2
𝑁(𝑡 − 𝜏) − 𝜇𝜉[𝜆

2
𝑁(𝑡 − 𝜏)]

2
]

× 𝛿 (𝑁 (𝑡) − 𝑁

(𝑡)) ⟩

−
𝜕

𝜕𝑁
⟨𝑁 (𝑡) 𝜓 (𝑡) 𝛿 (𝑁 (𝑡) − 𝑁


(𝑡))⟩

−
𝜕

𝜕𝑁
⟨𝜂 (𝑡) 𝛿 (𝑁 (𝑡) − 𝑁


(𝑡))⟩ .

(3)

We assume that 𝑃(𝑁, 𝑡;𝑁
𝜏
, 𝑡 − 𝜏) is a joint probability

density. For convenience, 𝑡 is dropped since it is the same for
all variables𝑁(𝑡) and𝑁


(𝑡), and𝑁

𝜏
denotes the time-delayed

state variable 𝑁(𝑡 − 𝜏). Thus, (3) can be rewritten as

𝜕𝑝 (𝑁, 𝑡)

𝜕𝑡

=
𝜕

𝜕𝑁
∫

∞

0

[𝜆
1
𝑁 + 𝜆

2
𝑁
𝜏
− 𝜇𝜉[𝜆

2
𝑁
𝜏
]
2

]

× 𝑃 (𝑁, 𝑡;𝑁
𝜏
, 𝑡 − 𝜏) 𝑑𝑁

𝜏

−
𝜕

𝜕𝑁
∫

∞

0

𝑁⟨𝜓 (𝑡) 𝛿 (𝑁 − 𝑁

) 𝛿 (𝑁

𝜏
− 𝑁


𝜏
)⟩ 𝑑𝑁

𝜏

−
𝜕

𝜕𝑁
∫

∞

0

⟨𝜂 (𝑡) 𝛿 (𝑁 − 𝑁

) 𝛿 (𝑁

𝜏
− 𝑁


𝜏
)⟩ 𝑑𝑁

𝜏
.

(4)

According to Novikov’s theorem [38, 41, 42], we can
calculate ⟨𝜓(𝑡)𝛿(𝑁 − 𝑁


)𝛿(𝑁
𝜏

− 𝑁


𝜏
)⟩ and ⟨𝜂(𝑡)𝛿(𝑁 −

𝑁

)𝛿(𝑁
𝜏
− 𝑁


𝜏
)⟩ as follows:

⟨𝜓 (𝑡) 𝛿 (𝑁 − 𝑁

) 𝛿 (𝑁

𝜏
− 𝑁


𝜏
)⟩

= 2𝜎∫

𝑡

0

𝛿 (𝑡 − 𝑡

)

× ⟨
𝜕 (𝛿 (𝑁 − 𝑁


)) 𝛿 (𝑁

𝜏
− 𝑁


𝜏
)

𝜕𝑁

𝜕𝑁

𝜕𝜓 (𝑡)
⟩𝑑𝑡


+ 2𝜎∫

𝑡

0

𝛿 (𝑡 − 𝑡

)

× ⟨
𝜕 (𝛿 (𝑁 − 𝑁


)) 𝛿 (𝑁

𝜏
− 𝑁


𝜏
)

𝜕𝑁
𝜏

𝜕𝑁
𝜏

𝜕𝜓 (𝑡)
⟩𝑑𝑡


+ 2𝛼√𝜎𝜌

× ∫

𝑡

0

𝛿 (𝑡 − 𝑡

)

× ⟨
𝜕 (𝛿 (𝑁 − 𝑁


)) 𝛿 (𝑁

𝜏
− 𝑁


𝜏
)

𝜕𝑁

𝜕𝑁

𝜕𝜂 (𝑡)
⟩𝑑𝑡


+ 2𝛼√𝜎𝜌

× ∫

𝑡

0

𝛿 (𝑡 − 𝑡

)

× ⟨
𝜕 (𝛿 (𝑁 − 𝑁


)) 𝛿 (𝑁

𝜏
− 𝑁


𝜏
)

𝜕𝑁
𝜏

𝜕𝑁
𝜏

𝜕𝜂 (𝑡)
⟩𝑑𝑡

.

(5)

According to literature [38], for all 𝛼 > 0, we can get

𝜕𝑁
𝜏

𝜕𝜓 (𝑡)
=

𝜕𝑁
𝜏

𝜕𝜂 (𝑡)
= 0,

𝜕𝑁

𝜕𝜓 (𝑡)
=

1

2
𝑁,

𝜕𝑁

𝜕𝜂 (𝑡)
=

1

2
.

(6)

Thus, (5) can be rewritten as

⟨𝜓 (𝑡) 𝛿 (𝑁 − 𝑁

) 𝛿 (𝑁

𝜏
− 𝑁


𝜏
)⟩

= −𝜎
𝜕

𝜕𝑁
𝑁⟨𝛿 (𝑁 − 𝑁


) 𝛿 (𝑁

𝜏
− 𝑁


𝜏
)⟩

− 𝛼√𝜎𝜌
𝜕

𝜕𝑁
⟨𝛿 (𝑁 − 𝑁


) 𝛿 (𝑁

𝜏
− 𝑁


𝜏
)⟩

= −𝜎
𝜕

𝜕𝑁
𝑁𝑝 (𝑁, 𝑡;𝑁

𝜏
, 𝑡 − 𝜏)

− 𝛼√𝜎𝜌
𝜕

𝜕𝑁
𝑝 (𝑁, 𝑡;𝑁

𝜏
, 𝑡 − 𝜏) .

(7)
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Similarly, we can obtain

⟨𝜂 (𝑡) 𝛿 (𝑁 − 𝑁

) 𝛿 (𝑁

𝜏
− 𝑁


𝜏
)⟩

= −𝜌
𝜕

𝜕𝑁
𝑝 (𝑁, 𝑡;𝑁

𝜏
, 𝑡 − 𝜏)

− 𝛼√𝜎𝜌
𝜕

𝜕𝑁
𝑁𝑝 (𝑁, 𝑡;𝑁

𝜏
, 𝑡 − 𝜏) .

(8)

We assume that ℎ(𝑁,𝑁
𝜏
) = 𝜆

1
𝑁(𝑡) + 𝜆

2
𝑁(𝑡 − 𝜏) −

𝜇𝜉[𝜆
2
𝑁(𝑡 − 𝜏)]

2, 𝑔
1
(𝑁,𝑁

𝜏
) = 𝑁(𝑡), and 𝑔

2
(𝑁,𝑁

𝜏
) =

1. Substituting (7) and (8) into (4), we can get the time-
delayed Fokker-Planck equation driven by correlated noises
as follows:

𝜕𝑝 (𝑁, 𝑡)

𝜕𝑡

= ∫

∞

0

[−
𝜕

𝜕𝑁
ℎ (𝑁,𝑁

𝜏
) + 𝜎

𝜕

𝜕𝑁
𝑔
1
(𝑁,𝑁

𝜏
)

𝜕

𝜕𝑁
𝑔
1
(𝑁,𝑁

𝜏
)

+ 𝛼√𝜎𝜌
𝜕

𝜕𝑁
𝑔
1
(𝑁,𝑁

𝜏
)

𝜕

𝜕𝑁
𝑔
2
(𝑁,𝑁

𝜏
)

+ 𝜌
𝜕

𝜕𝑁
𝑔
2
(𝑁,𝑁

𝜏
)

𝜕

𝜕𝑁
𝑔
2
(𝑁,𝑁

𝜏
)

+ 𝛼√𝜎𝜌
𝜕

𝜕𝑁
𝑔
2
(𝑁,𝑁

𝜏
)

𝜕

𝜕𝑁
𝑔
1
(𝑁,𝑁

𝜏
)]

× 𝑝 (𝑁
𝜏
, 𝑡 − 𝜏 | 𝑁, 𝑡) 𝑑𝑁

𝜏
𝑝 (𝑁, 𝑡) ,

(9)

where𝑝(𝑁
𝜏
, 𝑡−𝜏 | 𝑁, 𝑡) is the conditional probability density.

Let

𝐻(𝑁,𝑁
𝜏
) = ℎ (𝑁,𝑁

𝜏
) + 𝜎𝑔

1
(𝑁,𝑁

𝜏
)
𝜕𝑔
1
(𝑁,𝑁

𝜏
)

𝜕𝑁

+ 𝛼√𝜎𝜌𝑔
2
(𝑁,𝑁

𝜏
)
𝜕𝑔
1
(𝑁,𝑁

𝜏
)

𝜕𝑁

+ 𝜌𝑔
2
(𝑁,𝑁

𝜏
)
𝜕𝑔
2
(𝑁,𝑁

𝜏
)

𝜕𝑁

+ 𝛼√𝜎𝜌𝑔
1
(𝑁,𝑁

𝜏
)
𝜕𝑔
2
(𝑁,𝑁

𝜏
)

𝜕𝑁
,

𝐺 (𝑁,𝑁
𝜏
) = 𝜎𝑔

1

2
(𝑁,𝑁

𝜏
) + 2𝛼√𝜎𝜌𝑔

1
(𝑁,𝑁

𝜏
) 𝑔
2
(𝑁,𝑁

𝜏
)

+ 𝜌𝑔
2

2
(𝑁,𝑁

𝜏
) .

(10)

Namely,

𝐻(𝑁,𝑁
𝜏
)= 𝜆
1
𝑁(𝑡) + 𝜆

2
𝑁(𝑡 − 𝜏)−𝜇𝜉[𝜆

2
𝑁(𝑡 − 𝜏)]

2

+ 𝜎𝑁,

𝐺 (𝑁,𝑁
𝜏
) = 𝜎𝑁

2
+ 2𝛼√𝜎𝜌𝑁 + 𝜌.

(11)

So, the time-delayed Fokker-Planck equation driven by
correlated noises can be rewritten as

𝜕𝑝 (𝑁, 𝑡)

𝜕𝑡
= ∫

∞

0

[−
𝜕

𝜕𝑁
𝐻(𝑁,𝑁

𝜏
) +

𝜕
2

𝜕𝑁
𝐺 (𝑁,𝑁

𝜏
)]

× 𝑝 (𝑁
𝜏
, 𝑡 − 𝜏𝑁, 𝑡) 𝑑𝑁

𝜏
𝑝 (𝑁, 𝑡) .

(12)

3. Hopf Bifurcation and Chaotic
Behavior of Credit Risk Contagion in
the Financial Market

In (1) its deterministic part can be written as

𝑑𝑁 (𝑡)

𝑑𝑡
= 𝜆
1
𝑁(𝑡) + 𝜆

2
𝑁(𝑡 − 𝜏) − 𝜇𝜉[𝜆

2
𝑁(𝑡 − 𝜏)]

2

. (13)

Equation (13) is also the drift function of credit risk
contagion in the financial market, which is a time-delayed
stochastic differential system. When the time-delay 𝜏 >

0, (13) can be numerically calculated. We can describe the
dynamics behaviors of evolution of credit risk contagion
without noise effects and analyze their influencing factors by
numerical calculating of (13). Let 𝜆

1
= 0.12, 𝜆

2
= 0.07,

𝜉 = 3, and the initial value 𝑁
0

= 1. Thus we can analyze
the effects of parameters 𝜏 and 𝜇 to the dynamics behaviors
of evolution of credit risk contagion without noise effects.
Firstly, we analyze the effects of parameters 𝜏 to the dynamics
behaviors of evolution of credit risk contagionwhen 𝜏 = 0.04.
The time process diagrams and the deterministic bifurcation
diagram of credit risk contagion are plotted in Figures 1
and 2 when 𝜏 is varied. Figure 1 depicts the time process
of credit risk contagion under the influence of time-delay 𝜏.
In Figure 1, with the increase in time-delay 𝜏, the infectious
scale and range of credit risk are increased gradually, and
the wavy frequency of credit risk contagion is also increased
acutely, which shows that, with the increase in time-delay 𝜏,
the stability of the system of credit risk contagion is reduced.
In Figure 2, the deterministic bifurcation diagram of credit
risk contagion is plotted as a function of 𝜏, which depicts
chaotic behaviors of the system of credit risk contagion
intuitively. It is seen that the infectious scale of credit risk
in the equilibrium position of 𝑁 = 323 when 𝜏 < 4.055.
For 4.055 < 𝜏 < 4.8506, the infectious scale and range of
credit risk begin to jump and fluctuate. When 𝜏 > 4.8506,
the dynamical system of credit risk contagion gives rise to
Hopf bifurcation, inverse bifurcation, and chaos phenomena
with an increase in time-delay 𝜏. Moreover, the chaotic
area increases gradually with an increase in time-delay 𝜏.
Figure 2 shows that, with the increasing of time-delay 𝜏,
the predictability of the influencing degree of credit risk
contagion reduced acutely.

In the real financial market, the effects of the nonlinear
resistance coefficient on the infectious scale and range of
credit risk have a decisive influence. Figure 3 depicts the
influence of the evolution of credit risk contagion when
𝜏 = 4. In Figure 3, with the increase in nonlinear resistance
coefficient 𝜇, the infectious scale and range of credit risk
are reduced gradually, which is consistent with the result of
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Figure 1: Time process diagrams of credit risk contagion in the financial market under the influence of time-delay 𝜏.
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Figure 2: Bifurcation and chaotic properties of the dynamical
system of credit risk contagion in the financial market when the
time-delay 𝜏 is varied.

[9]. However, the wavy frequency of credit risk contagion
is constant. Figure 4 depicts the effects of the nonlinear
resistance coefficient 𝜇 on Hopf bifurcation and chaotic
behaviors of the dynamical system of credit risk contagion. In
Figure 4, with the increase in nonlinear resistance coefficient
𝜇, the equilibrium positions of the infectious scale and range
of credit risk and the chaotic area are reduced gradually, but
the point in time is fixed that the infectious scale and range
of credit risk begin to jump and fluctuate, and the dynamical
system of credit risk contagion gives rise to Hopf bifurcation,
inverse bifurcation, and chaos phenomena.

4. Stationary Probability
Distribution of Credit Risk Contagion in
the Financial Market

In (12) we obtained the time-delayed Fokker-Planck equation
driven by correlated noises to credit risk contagion in the
financial market. This is a stochastic perturbed system with
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Figure 3: Time process diagrams of credit risk contagion in the financial market under the influence of the nonlinear resistance coefficient
𝜇.

time-delay. According to literatures [35, 36, 38], the Fokker-
Planck equation of the unperturbed system corresponding to
(1) and (12) can be approximately written as

𝜕𝑝 (𝑁, 𝑡)

𝜕𝑡
= −

𝜕

𝜕𝑁
[𝐻 (𝑁,𝑁) 𝑝 (𝑁, 𝑡)]

+
𝜕
2

𝜕𝑁
[𝐺 (𝑁,𝑁) 𝑝 (𝑁, 𝑡)] ,

(14)

where the drift and diffusion coefficients of credit risk
contagion in the financial market are

𝐻(𝑁,𝑁) = 𝜆
1
𝑁(𝑡) + 𝜆

2
𝑁(𝑡) − 𝜇𝜉[𝜆

2
𝑁(𝑡)]

2

+ 𝜎𝑁,

𝐺 (𝑁,𝑁) = 𝜎𝑁
2
+ 2𝛼√𝜎𝜌𝑁 + 𝜌.

(15)

We assume that the stationary solution is 𝑃st(𝑁, 𝑡). Thus,
the stationary solution 𝑃st(𝑁, 𝑡) of (1) can be analytically
expressed as

𝑃st (𝑁, 𝑡) =
𝑐

𝐴
𝑎
(𝑁)

𝑒
∫
𝑁

0
(𝐵𝑎(𝑁


)/𝐴𝑎
2
(𝑁

))𝑑𝑁


, (16)

where 𝐴
𝑎
(𝑁) = (√𝜎𝑁2 + 2𝛼√𝜎𝜌𝑁 + 𝜌/(1 + 𝜇𝜉𝜆

2

2
𝑁))[1 +

𝜏(2𝜇𝜉𝜆
2

2
𝑁 − 𝜆

2
)/(1 + 𝜇𝜉𝜆

2

2
𝑁)], 𝐵

𝑎
(𝑁) = ((𝜆

1
𝑁 +

𝜆
2
𝑁−𝜇𝜉𝜆

2

2
𝑁
2
)/(1 + 𝜇𝜉𝜆

2

2
𝑁))[1 + 𝜏(2𝜇𝜉𝜆

2

2
𝑁−𝜆

2
)/(1 +

𝜇𝜉𝜆
2

2
𝑁)], and 𝑐 is the normalization constant. Thus, the
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Figure 4: Bifurcation and chaotic properties of the dynamical system of credit risk contagion in the financial market when the time-delay 𝜏

is varied under the influence of the nonlinear resistance coefficient 𝜇.

stationary probability distribution of credit risk contagion
corresponding to (1) can be calculated from (14) as follows:

𝑃st (𝑁, 𝑡) =
𝑐

(√𝜎𝑁2 + 2𝛼√𝜎𝜌𝑁 + 𝜌/ (1 + 𝜇𝜉𝜆
2

2
𝑁)) [1 + 𝜏 (2𝜇𝜉𝜆

2

2
𝑁 − 𝜆

2
) / (1 + 𝜇𝜉𝜆

2

2
𝑁)]

× 𝑒
(𝜆1𝑁+𝜆2𝑁−𝜇𝜉𝜆2

2
𝑁
2
)(1+𝜇𝜉𝜆2

2
𝑁)/(𝜎𝑁

2
+2𝛼√𝜎𝜌𝑁+𝜌)[1+𝜏(2𝜇𝜉𝜆2

2
𝑁−𝜆2)/(1+𝜇𝜉𝜆2

2
𝑁)]

.

(17)

According to (17), we can analyze the effects of parameters
𝜏, 𝜇, 𝜎, 𝜌, and 𝛼 on the stationary probability distribution of
credit risk contagion through the numerical simulation.Thus
the approximate analytical result of the stationary probability
distribution 𝑃st(𝑁) as a function of the infectious scale and
range of credit risk 𝑁 is plotted in Figures 5 and 6 when
parameters 𝜏, 𝜇, 𝜎, 𝜌, and 𝛼 are varied. In Figure 5, with
the increase in the infectious scale and range of credit risk

𝑁, the stationary probability 𝑃st(𝑁) is reduced gradually
when parameters 𝜏 and 𝜇 are unvaried. From Figure 5(a), we
find that, with the increase in time-delay 𝜏, the stationary
probability 𝑃st(𝑁) is increased gradually when 𝑁 < 200.
But when 𝑁 = 200, with the increase in time-delay 𝜏, the
stationary probability 𝑃st(𝑁) is unaltered. When 𝑁 = 200,
with the increase in time-delay 𝜏, the stationary probability
𝑃st(𝑁) is reduced gradually. Thus Figure 5(a) shows that
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Figure 5:The stationary probability distribution function of credit risk contagion 𝑃st(𝑁) is plotted as a function of𝑁when 𝜏 and 𝜇 are varied.
The parameters are chosen as 𝜎 = 0.5, 𝜌 = 0.6, 𝛼 = 0.3, 𝜉 = 3, 𝜆
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Figure 6: The stationary probability distribution function of credit risk contagion 𝑃st(𝑁) is plotted as a function of 𝑁 when 𝜎, 𝜌, and 𝛼 are
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the effects of time-delay 𝜏 on the stationary probability
𝑃st(𝑁) reveal a critical point 𝑁

∗. Moreover, time-delay will
not influence the stationary probability 𝑃st(𝑁) when the
infectious scale and range of credit risk𝑁 reach the threshold
value 𝑁

∗. In Figure 5(b), with the increase in the nonlinear
resistance coefficient 𝜇, the stationary probability 𝑃st(𝑁) is
increased gradually when 𝑁 < 15. But when 𝑁 > 15,
with the increase in the nonlinear resistance coefficient 𝜇,
the stationary probability 𝑃st(𝑁) is reduced gradually. Thus
the effects of the nonlinear resistance coefficient 𝜇 on the
stationary probability 𝑃st(𝑁) also reveal a critical point 𝑁∗.

Figure 6 depicts the effects of the noise intensities, 𝜎

and 𝜌 and the correlated degree 𝛼 between Gaussian white
noises 𝜓(𝑡) and 𝜂(𝑡) on the stationary probability of credit
risk contagion 𝑃st(𝑁). In Figure 6(a), with the increase in the
intensity 𝜎 of the noise term 𝜓(𝑡), the stationary probability
𝑃st(𝑁) is reduced gradually. In Figures 6(b) and 6(c), it is
clear that the effects of the intensity 𝜌 of the noise term 𝜂(𝑡)

and the correlated degree 𝛼 between noises 𝜓(𝑡) and 𝜂(𝑡) on
the stationary probability 𝑃st(𝑁) are very slight. The three-
dimensional diagram of 𝑃st(𝑁) as a function of the intensities
𝜎 and 𝜌 of Gaussian noises 𝜓(𝑡) and 𝜂(𝑡) is shown in Figure 7
when the infectious scale and range of credit risk 𝑁 = 450.
From Figure 7, it is seen that the cure of the stationary
probability 𝑃st(450) is changed slightly with the increase in
the intensity 𝜌 of Gaussian white noise 𝜂(𝑡) but is significantly
changedwith the increase in the intensity 𝜎 of Gaussianwhite
noise 𝜓(𝑡).

5. Conclusion

In this paper the complex stochastic dynamics phenomena
of credit risk contagion with time-delay driven by correlated
Gaussian white noises are investigated. The time-delayed
Fokker-Planck model of credit risk contagion driven by cor-
related Gaussian white noises is obtained by using Novikov’s
theorem. Moreover, the stationary probability distribution
function of the dynamical system of credit risk contagion
is derived by combining the methods of the time-delay

approximation, the path-integral approach, and first-order
perturbation theory. Using the method of numerical simu-
lation, the Hopf bifurcation and chaotic behaviors of credit
risk contagion are analyzed when time-delay and nonlinear
resistance coefficient are varied. The numerical simulations
show that, with the increase in time-delay, the infectious
scale and range of credit risk are increased gradually and the
wavy frequency of credit risk contagion is increased acutely.
Moreover, the stability of the systemof credit risk contagion is
reduced, the dynamical system of credit risk contagion gives
rise to chaotic phenomena, and the chaotic area increases
gradually with the increase in time-delay. In addition, the
effects of time-delay, nonlinear resistance, and the intensity
and the correlated degree of correlated Gaussian white
noises on the stationary probability distribution of credit risk
contagion are investigated by the numerical simulations. It is
found that the curve of the stationary probability distribution
ismonotone decreasing with the increase in parameters value
of time-delay, nonlinear resistance, and the intensity and the
correlated degree of correlated Gaussian white noises.

However, further studies could expand the present work
to cover other topics. For example, in the real world, types
of noises usually affect the process of credit risk contagion
and its dynamics behavior, such as Poissonian white noise,
combined Gaussian and Poissonian noise, and colored noise.
Therefore, our future study will focus on these issues.
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