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We study surfaces of revolution with a nonlightlike axis in 3-dimensional Minkowski space and classify such surfaces in terms of
the Gauss map 𝐺 that satisfies the condition Δ

ℎ
𝐺 = Λ𝐺, with Λ being a 3 × 3 real matrix. Furthermore, this paper completes the

classification problem of surfaces of revolution in Minkowski 3-space given by Jin et al. (2013).

1. Introduction

The notion of finite type immersions introduced by Chen
in [1] has been widely used in studying submanifolds of
Euclidean and pseudo-Euclidean spaces. Also, such a notion
can be extended to smooth maps on submanifolds. Among
them the Gauss map is a very useful and extensively used to
deal with submanifolds [2].

Let 𝑀 be a connected surface in Euclidean 3-space R3,
and let 𝐺 : 𝑀 → S2 ⊂ R3 be its Gauss map. It is
well known [3] that 𝑀 has constant mean curvature if and
only if Δ𝐺 = ‖Λ‖

2
𝐺, with Δ being the Laplace operator on

𝑀 corresponding to the induced metric on 𝑀 from R3. As
a special case, one can consider Euclidean surfaces whose
Gauss map is an eigenfuction of the Laplacian; that is,

Δ𝐺 = 𝜆𝐺, 𝜆 ∈ R. (1)

On the other hand, Chen and Piccinni [2] proved that the
only compact surface in a Euclidean 3-space satisfying (1) is a
sphere. Jang [4] studied that an orientable, connected surface
in a Euclidean 3-space satisfying (1) is a sphere or a circular
cylinder. On the generalization of (1), Dillen et al. [5] studied
surfaces of revolution in a Euclidean 3-space R3 such that
their Gauss map 𝐺 satisfies the condition

Δ𝐺 = Λ𝐺, Λ ∈ Mat (3,R) (2)

and proved that such surfaces are part of the planes, the
spheres, and the circular cylinders.

As a Lorentz version of Dillen et al.’s result, the author
proves the following [6].

Theorem 1. The only spacelike or timelike surfaces of revolu-
tion inR3

1
whose Gauss map 𝐺 : 𝑀 → 𝑀

2
(𝜀) satisfies (2) are

locally the following spaces:

(1) R2
1
, 𝑆
1

1
× 𝑅
1 and R1

1
× 𝑆
1 if 𝜀 = 1,

(2) R2, 𝐻2 and𝐻1 ×R1 if 𝜀 = −1.

Recently, we studied [7] such surface and its Gauss map
satisfy the following condition in Minkowski space:

Δ
ℎ
𝐺 = Λ𝐺, Λ ∈ Mat (3,R) , (3)

where Δℎ is the Laplace operator with respect to the second
fundamental form ℎ of the surface. This operator is formally
defined by

Δ
ℎ
= −

1

√|H|

2

∑

𝑖,𝑗=1

𝜕

𝜕𝑥𝑖
(√|H|ℎ

𝑖𝑗 𝜕

𝜕𝑥𝑗
) (4)

for the components ℎ𝑖𝑗 (𝑖, 𝑗 = 1, 2) of the second fundamental
form ℎ on 𝑀, and we denote by (ℎ𝑖𝑗) (resp., H) the inverse
matrix (resp., the determinant) of the matrix (ℎ𝑖𝑗).
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Themain purpose of this note is to complete classification
of surfaces of revolution inR3

1
whose Gauss map satisfies the

condition Δ
ℎ
𝐺 = Λ𝐺. Actually, we will show the de Sitter

pseudosphere, the hyperbolic pseudosphere, and five kinds
of catenoid satisfying the above condition.

2. Preliminaries

Let R3
1
be a 3-dimensional Minkowski space with the scalar

product and Lorentz cross product defined as

⟨x, y⟩ = −𝑥0𝑦0 + 𝑥1𝑦1 + 𝑥2𝑦2,

x × y = (𝑥2𝑦1 − 𝑥1𝑦2, 𝑥2𝑦0 − 𝑥0𝑦2, 𝑥0𝑦1 − 𝑥1𝑦0)

(5)

for any vectors x = (𝑥0, 𝑥1, 𝑥2) and y = (𝑦0, 𝑦1, 𝑦2) in R3
1
.

A vector x of R3
1
is said to be spacelike if ⟨x, x⟩ > 0 or

x = 0, timelike if ⟨x, x⟩ < 0, and lightlike or null if ⟨x, x⟩ = 0

and x ̸= 0. A timelike or lightlike vector in R3
1
is said to be

causal. Let 𝛾 : 𝐼 → R3
1
be a smooth curve inR3

1
, where 𝐼 is an

interval in R. We call 𝛾 spacelike, timelike, or lightlike curve
if the tangent vector 𝛾󸀠 at any point is spacelike, timelike, or
lightlike, respectively.

Let 𝐼 be an open interval and 𝛾 : 𝐼 → Π a plane curve
lying in a plane Π of R3

1
and 𝑙 a straight line in Π which

does not intersect with the curve 𝛾. A surface of revolution
𝑀with axis 𝑙 inR3

1
is defined to be invariant under the group

of motions in R3
1
, which fixes each point of the line 𝑙 [8].

From this we obtain four kinds of surfaces of revolution in
R3
1
. If the axis 𝑙 is timelike (resp., spacelike), then there is a

Lorentz transformation by which the axis 𝑙 is transformed to
the 𝑥0-axis (resp., 𝑥1-axis or 𝑥2-axis). Hence, without loss of
generality, we may consider as the axis of revolution with the
𝑥0-axis or𝑥2-axis if 𝑙 is not null. If the axis is null, thenwemay
assume that this axis is the line spanned by vector (1, 1, 0) on
the plane 𝑂𝑥0𝑥1.

We now introduce three different types of surfaces of
revolution in R3

1
.

Type 1. The surface of revolution with timelike axis.

Without loss of generality, we choose 𝑥0𝑂 as the axis.
Meanwhile suppose that 𝛾 has a parameter as follows:

𝛾 (𝑢) = (𝑔 (𝑢) , 𝑓 (𝑢) , 0) , (6)

where 𝑓(𝑢) and 𝑔(𝑢) are smooth functions and 𝑓(𝑢) > 0.
Then the surface of revolution 𝑀 with 𝑥0-axis may be given
by

𝑥 (𝑢, V) = (𝑔 (𝑢) , 𝑓 (𝑢) cos V, 𝑓 (𝑢) sin V) . (7)

Type 2. The surface of revolution with spacelike axis.

Without loss of generality, we choose 𝑥2𝑂 as the axis, and
suppose that curve 𝛾 has a parameter as follows:

𝛾 (𝑢) = (0, 𝑓 (𝑢) , 𝑔 (𝑢)) or 𝛾 (𝑢) = (𝑓 (𝑢) , 0, 𝑔 (𝑢)) ,

(8)

where 𝑓(𝑢) and 𝑔(𝑢) are smooth functions and 𝑓(𝑢) > 0.
Then the surface of revolution 𝑀 with 𝑥2-axis may be given
by

𝑥 (𝑢, V) = (𝑓 (𝑢) sinh V, 𝑓 (𝑢) cosh V, 𝑔 (𝑢)) (9)

or

𝑥 (𝑢, V) = (𝑓 (𝑢) cosh V, 𝑓 (𝑢) sinh V, 𝑔 (𝑢)) . (10)

Type 3. The surface of revolution with lightlike axis.

Without loss of generality, we choose a line spanned by
the vector (1, 1, 0) as axis, and suppose that curve 𝛾 has a
parameter as follows:

𝛾 (𝑢) = (𝑓 (𝑢) , 𝑔 (𝑢) , 0) , (11)

where 𝑓(𝑢) is smooth positive function and 𝑔(𝑢) is smooth
function such that ℎ(𝑢) = 𝑓(𝑢) − 𝑔(𝑢) ̸= 0. Then the surface
of revolution 𝑀 with the line spanned by vector (1, 1, 0) as
axis may be given by

𝑥 (𝑢, V) = (𝑓 (𝑢) +
V2

2
ℎ (𝑢) , 𝑔 (𝑢) +

V2

2
ℎ (𝑢) , ℎ (𝑢) V) .

(12)

Here we only consider type 1 and type 2, as for type 3 we
have already discussed in [7].

Now, let us consider the Gauss map 𝐺 on a surface 𝑀 in
R3
1
. The map 𝐺 : 𝑀 → 𝑄

2
(𝜀) ⊂ R3

1
which sends each point

of 𝑀 to the unit normal vector to 𝑀 at that point is called
the Gauss map of surface 𝑀. Here 𝜀(= ±1) denotes the sign
of the vector field 𝐺 and 𝑄2(𝜀) is a 2-dimensional space form
as follows:

𝑄
2
(𝜀) = {

𝑆
2

1
(1) in R3

1
if 𝜀 = 1,

𝐻
2
(−1) in R3

1
if 𝜀 = −1.

(13)

A surface 𝑀 ⊂ R3
1
is called minimal if and only if

mean curvature 𝐻 = 0. Now we consider some examples of
minimal surfaces which will be mentioned in theorems.

Example 2 (the catenoid of the 1st kind is shown in Figure 1).
A surface of catenoid of the 1st kind is parameterized by

𝑥 (𝑢, V) = (𝑢, sinh 𝑢 cos V, sinh 𝑢 sin V) (14)

for sinh 𝑢 > 0. Then the components of the first and the
second fundamental forms are given by

𝑔11 = sinh2𝑢, 𝑔12 = 𝑔21 = 0, 𝑔22 = sinh2𝑢,

ℎ11 = −1, ℎ12 = ℎ21 = 0, ℎ22 = 1.

(15)

So the mean curvature𝐻 on the surface is

𝐻 =
(−1) sinh2𝑢 + 1sinh2𝑢

2sinh2𝑢 sinh2𝑢
= 0. (16)

Therefore, the surface of catenoid of the 1st kind is minimal.
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Figure 1: The catenoid of the 1st kind.

Figure 2: The catenoid of the 2nd kind.

Example 3 (the catenoid of the 2nd kind is shown in Figure 2).
A surface of catenoid of the 2nd kind is parameterized by

𝑥 (𝑢, V) = (cos 𝑢 cosh V, cos 𝑢 sinh V, 𝑢) (17)

for cos 𝑢 > 0.Then the components of the first and the second
fundamental forms are given by

𝑔11 = cos2𝑢, 𝑔12 = 𝑔21 = 0, 𝑔22 = cos2𝑢,

ℎ11 = −1, ℎ12 = ℎ21 = 0, ℎ22 = 1.

(18)

So the mean curvature𝐻 on the surface is

𝐻 =
(−1) cos2𝑢 + 1cos2𝑢

2cos2𝑢 cos2𝑢
= 0. (19)

Therefore, the surface of catenoid of the 2nd kind is minimal.

Example 4 (the catenoid of the 3rd kind is shown in Figure 3).
A surface of catenoid of the 3rd kind is parameterized by

𝑥 (𝑢, V) = (𝑢, cos 𝑢 cos V, cos 𝑢 sin V) (20)

for cos 𝑢 > 0.Then the components of the first and the second
fundamental forms are given by

𝑔11 = −cos2𝑢, 𝑔12 = 𝑔21 = 0, 𝑔22 = cos2𝑢,

ℎ11 = cos2𝑢, ℎ12 = ℎ21 = 0, ℎ22 = cos2𝑢.
(21)

Figure 3: The catenoid of the 3rd kind.

Figure 4: The catenoid of the 4th kind.

So the mean curvature𝐻 on the surface is

𝐻 =

cos2𝑢cos2𝑢 + cos2𝑢 (−cos2𝑢)
2 (−cos2𝑢) cos2𝑢

= 0. (22)

Therefore, the surface of catenoid of the 3rd kind is minimal.

Example 5 (the catenoid of the 4th kind is shown in Figure 4).
A surface of catenoid of the 4th kind is parameterized by

𝑥 (𝑢, V) = (sinh 𝑢 cosh V, sinh 𝑢 sinh V, 𝑢) (23)

for sinh 𝑢 > 0. Then the components of the first and the
second fundamental forms are given by

𝑔11 = −sinh2𝑢, 𝑔12 = 𝑔21 = 0, 𝑔22 = sinh2𝑢,

ℎ11 = −1, ℎ12 = ℎ21 = 0, ℎ22 = −1.

(24)

So the mean curvature𝐻 on the surface is

𝐻 =

(−1) sinh2𝑢 + (−1) (−sinh2𝑢)

2 (−sinh2𝑢) sinh2𝑢
= 0. (25)

Therefore, the surface of catenoid of the 4th kind is minimal.
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Figure 5: The catenoid of the 5th kind.

Figure 6: The de Sitter pseudosphere.

Example 6 (the catenoid of the 5th kind is shown in Figure 5).
A surface of catenoid of the 5th kind is parameterized by

𝑥 (𝑢, V) = (cosh 𝑢 sinh V, cosh 𝑢 cosh V, 𝑢) (26)

for cosh 𝑢 > 0. Then the components of the first and the
second fundamental forms are given by

𝑔11 = cosh2𝑢, 𝑔12 = 𝑔21 = 0, 𝑔22 = −cosh2𝑢,

ℎ11 = 1, ℎ12 = ℎ21 = 0, ℎ22 = 1.

(27)

So the mean curvature𝐻 on the surface is

𝐻 =

1 (−cosh2𝑢) + 1cosh2𝑢

2cosh2𝑢 (−cosh2𝑢)
= 0. (28)

Therefore, the surface of catenoid of the 5th kind is minimal.

Example 7 (the de Sitter pseudosphere is shown in Figure 6).
The de Sitter pseudosphere centered at (0, 0, 0) with radius 1
is parameterized by

𝑥 (𝑢, V) = (sinh 𝑢, cosh 𝑢 cos V, cosh 𝑢 sin V) . (29)

Then its Gauss map 𝐺 and Laplacian are given by

𝐺 = (− sinh 𝑢, − cosh 𝑢 cos V, − cosh 𝑢 sin V) ,

Δ
ℎ
=

𝜕
2

𝜕𝑢2
−

1

cosh2𝑢
𝜕
2

𝜕V2
+
sinh 𝑢
cosh 𝑢

𝜕

𝜕𝑢
.

(30)

By a straight computation, we get

Δ
ℎ
𝐺 = (−2 sinh 𝑢, −2 cosh 𝑢 cos V, −2 cosh 𝑢 sin V) . (31)

So we have

Δ
ℎ
𝐺 = (

2 0 0

0 2 0

0 0 2

)𝐺; (32)

that is, the de Sitter pseudosphere satisfies condition (3).

3. The Surface of Revolution with
Timelike Axis

In this section, we will classify the surfaces of revolution with
timelike axis in R3

1
that satisfy condition (3).

Theorem 8. The only surfaces of revolution with timelike axis
in R3
1
whose Gauss map 𝐺 satisfies

Δ
ℎ
𝐺 = Λ𝐺, Λ ∈ Mat(3,R) (33)

are locally the catenoid of the 1st kind, the catenoid of
the 3rd kind, the de Sitter pseudosphere, or the hyperbolic
pseudosphere.

Proof. Let 𝑀 be a surface of revolution with timelike axis as
(7). We may assume that the profile curve 𝛾 is of unit speed;
thus

⟨𝛾
󸀠
, 𝛾
󸀠
⟩ = −𝑔

󸀠2
(𝑢) + 𝑓

󸀠2
(𝑢) = 𝜀 (±1) . (34)

We will give detailed proof just for the case 𝜀 = 1. Then𝑀 is
a spacelike surface and we may put

𝑓
󸀠
(𝑢) = cosh 𝑡, 𝑔

󸀠
(𝑢) = sinh 𝑡 (35)

for the smooth function 𝑡 = 𝑡(𝑢). Using the natural frame
{𝑥𝑢, 𝑥V} of𝑀 defined by

𝑥𝑢 = (𝑔
󸀠
, 𝑓
󸀠 cos V, 𝑓󸀠 sin V) ,

𝑥V = (0, −𝑓 sin V, 𝑓 cos V) ,

𝑥𝑢𝑢 = (𝑔
󸀠󸀠
, 𝑓
󸀠󸀠 cos V, 𝑓󸀠󸀠 sin V) ,

𝑥𝑢V = (0, −𝑓
󸀠 sin V, 𝑓󸀠 cos V) ,

𝑥VV = (0, −𝑓 cos V, −𝑓 sin V) ,

(36)

we obtain the components of the first and the second
fundamental forms of the surface𝑀 as follows:

𝑔11 = ⟨𝑥𝑢, 𝑥𝑢⟩ = 1,

𝑔12 = 𝑔21 = ⟨𝑥𝑢, 𝑥V⟩ = 0,

𝑔22 = ⟨𝑥V, 𝑥V⟩ = 𝑓
2
,

ℎ11 = ⟨𝑥𝑢𝑢, 𝐺⟩ = 𝑓
󸀠
𝑔
󸀠󸀠
− 𝑓
󸀠󸀠
𝑔
󸀠
= 𝑡
󸀠
,

ℎ12 = ℎ21 = ⟨𝑥𝑢V, 𝐺⟩ = 0,

ℎ22 = ⟨𝑥VV, 𝐺⟩ = 𝑓𝑔
󸀠
= 𝑓 sinh 𝑡,

(37)
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where Gauss map 𝐺 is defined by (𝑥𝑢 × 𝑥V)/|𝑥𝑢 × 𝑥V| =

(−𝑓
󸀠
, −𝑔
󸀠 cos V, −𝑔󸀠 sin V).

So the matrix (ℎ𝑖𝑗) composed by the second fundamental
form ℎ can be expressed as

(
ℎ11 ℎ12

ℎ21 ℎ22
) = (

𝑡
󸀠

0

0 𝑓 sinh 𝑡) . (38)

Since the surface has no parabolic points, so H = ℎ11ℎ22 −

ℎ
2

12
= 𝑡
󸀠
𝑓 sinh 𝑡 ̸= 0 for every 𝑡. Then the mean curvature 𝐻

on𝑀 is given by

𝐻 =

(𝑓
󸀠
𝑔
󸀠󸀠
− 𝑓
󸀠󸀠
𝑔
󸀠
) 𝑓
2
+ 𝑓𝑔
󸀠

2𝑓2
=
1

2
(𝑡
󸀠
+
sinh 𝑡
𝑓

) . (39)

By a straightforward computation, the Laplacian Δ
ℎ of the

second fundamental form ℎ on 𝑀 with the help of (4), (35),
and (37) turns out to be

Δ
ℎ
= −

1

𝑡󸀠

𝜕
2

𝜕𝑢2
−

1

𝑓 sinh 𝑡
𝜕
2

𝜕V2

+ (
𝑡
󸀠󸀠

2𝑡󸀠2
−
cosh 𝑡
2𝑓𝑡󸀠

−
cosh 𝑡
2 sinh 𝑡

)
𝜕

𝜕𝑢
.

(40)

Accordingly, we get

Δ
ℎ
𝐺 =

(
(

(

3

2
𝑡
󸀠 cosh 𝑡 + (

cosh 𝑡
2𝑓

+
𝑡
󸀠󸀠

2𝑡󸀠
) sinh 𝑡

(𝑡
󸀠 sinh 𝑡 + 𝑡

󸀠󸀠

2𝑡󸀠
cosh 𝑡 − 1

2𝑓
+
sinh2𝑡
2𝑓

+ 𝑡
󸀠 cosh2𝑡
2 sinh 𝑡

) cos V

(𝑡
󸀠 sinh 𝑡 + 𝑡

󸀠󸀠

2𝑡󸀠
cosh 𝑡 − 1

2𝑓
+
sinh2𝑡
2𝑓

+ 𝑡
󸀠 cosh2𝑡
2 sinh 𝑡

) sin V

)
)

)

. (41)

By the assumption (33) and the above equation, we get the
following system of differential equations:

3

2
𝑡
󸀠 cosh 𝑡 + (

cosh 𝑡
2𝑓

+
𝑡
󸀠󸀠

2𝑡󸀠
) sinh 𝑡 + 𝑎11 cosh 𝑡

+ 𝑎12 sinh 𝑡 cos V + 𝑎13 sinh 𝑡 sin V = 0,

(𝑡
󸀠 sinh 𝑡 + 𝑡

󸀠󸀠

2𝑡󸀠
cosh 𝑡 − 1

2𝑓
+
sinh2𝑡
2𝑓

+ 𝑡
󸀠 cosh2𝑡
2 sinh 𝑡

+𝑎22 sinh 𝑡) cos V + 𝑎21 cosh 𝑡 + 𝑎23 sinh 𝑡 sin V = 0

(𝑡
󸀠 sinh 𝑡 + 𝑡

󸀠󸀠

2𝑡󸀠
cosh 𝑡 − 1

2𝑓
+
sinh2𝑡
2𝑓

+ 𝑡
󸀠 cosh2𝑡
2 sinh 𝑡

+𝑎33 sinh 𝑡) sin V + 𝑎31 cosh 𝑡 + 𝑎32 sinh 𝑡 cos V = 0,

(42)

where 𝑎𝑖𝑗 (𝑖, 𝑗 = 1, 2, 3) denote the components of the matrix
Λ given by (33). In order to prove the theorem, we have
to solve the above system of ordinary differential equations.
From (42) we easily deduce that 𝑎12 = 𝑎21 = 𝑎13 = 𝑎23 = 𝑎31 =

𝑎32 = 0 and 𝑎22 = 𝑎33; that is, the matrixΛ is diagonal.We put
𝑎22 = 𝑎33 = 𝜆 and 𝑎11 = 𝜇. Then, the system (42) is reduced
to the following equations:

3

2
𝑡
󸀠 cosh 𝑡 + (

cosh 𝑡
2𝑓

+
𝑡
󸀠󸀠

2𝑡󸀠
) sinh 𝑡 = −𝜇 cosh 𝑡, (43)

𝑡
󸀠 sinh 𝑡 + 𝑡

󸀠󸀠

2𝑡󸀠
cosh 𝑡 − 1

2𝑓
+
sinh2𝑡
2𝑓

+ 𝑡
󸀠 cosh2𝑡
2 sinh 𝑡

= −𝜆 sinh 𝑡.

(44)

By the computation (43)× cosh 𝑡 - (44) × sinh 𝑡, we easily get

sinh 𝑡
𝑓

+ 𝑡
󸀠
= −𝜇cosh2𝑡 + 𝜆sinh2𝑡. (45)

We discuss five cases according to the constants 𝜆 and 𝜇.

Case 1 (𝜆 = 𝜇 = 0). In this case, we easily get 𝑡
󸀠
+

(sinh 𝑡/𝑓) = 0, which implies that the mean curvature 𝐻

vanishes identically because of (39). Therefore, the surface is
minimal; from theorem 1 in [9], it is the 1st kind of catenoid.
Furthermore, the 1st kind of catenoid satisfies condition (33).

Case 2 (𝜆 = 𝜇 ̸= 0). By (45), we get

𝑡
󸀠
= −

sinh 𝑡
𝑓

− 𝜆. (46)

Differentiating (46) with respect to 𝑢, we have

𝑡
󸀠󸀠
= −

𝑡
󸀠 cosh 𝑡
𝑓

+
sinh 𝑡 cosh 𝑡

𝑓2
. (47)

Combining (46), (47), and (43), we get

𝜆
2
𝑓
2
+ 4𝜆𝑓 sinh 𝑡 + 4sinh2𝑡 = 0, (48)

from which

𝑓 = −
2 sinh 𝑡

𝜆
. (49)

Furthermore, (49) together with (46) becomes 𝑡󸀠 = −𝜆/2; that
is,

𝑡 (𝑢) = −
𝜆

2
𝑢 + 𝑘, 𝑘 ∈ R. (50)
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On the other hand, by (35) and (50), we get

𝑓 (𝑢) = −
2

𝜆
sinh(−𝜆

2
𝑢 + 𝑘) ,

𝑔 (𝑢) = −
2

𝜆
cosh(−𝜆

2
𝑢 + 𝑘) + 𝑐, 𝑐 ∈ R.

(51)

Then, the surface𝑀 has the following expression:

𝑥 (𝑢, V) = (−
2

𝜆
cosh(−𝜆

2
𝑢 + 𝑘) + 𝑐,

[−
2

𝜆
sinh(−𝜆

2
𝑢 + 𝑘)] cos V,

[−
2

𝜆
sinh(−𝜆

2
𝑢 + 𝑘)] sin V) , 𝑐, 𝑘 ∈ R.

(52)

Consequently, we have

⟨𝑥 (𝑢, V) − C, 𝑥 (𝑢, V) − C⟩ = − (
2

𝜆
)

2

, C = (𝑐, 0, 0) , (53)

which means that the surface 𝑀 is contained in the hyper-
bolic pseudosphere 𝐻

2
(−2/|𝜆|) centered at C with radius

2/|𝜆|. Also, the hyperbolic pseudosphere satisfies condition
(33).

Case 3 (𝜆 ̸= 0, 𝜇 = 0). In this case, (45) becomes (sinh 𝑡/𝑓) +
𝑡
󸀠
= 𝜆sinh2𝑡; that is,

𝑡
󸀠
= −

sinh 𝑡
𝑓

+ 𝜆sinh2𝑡, (54)

and thus

𝑡
󸀠󸀠
= −

𝑡
󸀠 cosh 𝑡
𝑓

+
sinh 𝑡 cosh 𝑡

𝑓2
+ 2𝜆𝑡
󸀠 sinh 𝑡 cosh 𝑡. (55)

Substituting (54) and (55) into (43), we get

5𝜆
2
𝑓
2sinh2𝑡 − 8𝜆𝑓 sinh 𝑡 + 4 = 0. (56)

Differentiating the above equation, we have

5𝜆𝑓 sinh 𝑡 − 4 = 0. (57)

If we take the differentiation of the equation once again, we
get

𝜆
2
𝑓sinh2𝑡 cosh 𝑡 = 0. (58)

Since 𝑓 is a positive function and 𝜆 ̸= 0, cosh 𝑡 sinh2𝑡 = 0 for
every 𝑡. Therefore, 𝑡 = 𝑡(𝑢) is vanishing identically for every
𝑢. Hence, we have

𝑓 (𝑢) = 𝑢 + 𝑐,

𝑔 (𝑢) = 𝑎, 𝑎, 𝑐 ∈ R.
(59)

It implies that 𝑀 is a part of a Euclidean plane R2 whose
points are parabolic. Thus, there is no surface of revolution
with timelike axis satisfying this case.

Case 4 (𝜆 = 0, 𝜇 ̸= 0). In this case, (45) becomes (sinh 𝑡/𝑓) +
𝑡
󸀠
= −𝜇cosh2𝑡; that is,

𝑡
󸀠
= −

sinh 𝑡
𝑓

− 𝜇cosh2𝑡, (60)

and thus

𝑡
󸀠󸀠
= −

𝑡
󸀠 cosh 𝑡
𝑓

+
sinh 𝑡 cosh 𝑡

𝑓2
− 2𝜇𝑡
󸀠 sinh 𝑡 cosh 𝑡. (61)

Furthermore, by (43), (60), and (61), we get

𝛼1𝑓
2
+ 𝛼2𝑓 + 𝛼3 = 0, (62)

where we put

𝛼1 = 𝜇
2
(5sinh4𝑡 + 6sinh2𝑡 + 1) ,

𝛼2 = 𝜇 (8sinh3𝑡 + 4sinh 𝑡) ,

𝛼3 = 4sinh2𝑡.

(63)

Differentiating (62) and using (60), we find

𝛽1𝑓
2
+ 𝛽2𝑓 + 𝛽3 = 0, (64)

where

𝛽1 = 𝜇
2
(90sinh8𝑡 + 172sinh6𝑡 + 104sinh4𝑡 + 20sinh2𝑡 − 2) ,

𝛽2 = 𝜇 (120sinh7𝑡 + 120sinh5𝑡 + 24sinh3𝑡 − 8 sinh 𝑡) ,

𝛽3 = 40sinh6𝑡 − 8sinh2𝑡.
(65)

Combining (62) and (64), we can show

𝛾1𝑓 + 𝛾2 = 0, (66)

where 𝛾1 = 𝛼2𝛽1 − 𝛼1𝛽2, 𝛾2 = 𝛼3𝛽1 − 𝛼1𝛽3.
Differentiating once again this equation and using the

same algebraic techniques above, we find the following
trigonometric polynomial in sinh 𝑡 satisfying

𝜇
2
(

12

∑

𝑖=1

𝑐𝑖 sinh
8+2𝑖

𝑡) = 0, (67)

where 𝑐1 = 540672, 𝑐2 = 6397952, . . ., 𝑐12 = 3072000 are
coefficients as nonzero constant of the function sinh8+2𝑖𝑡.
Since this polynomial is equal to zero for every 𝑡, all its
coefficients must be zero. Thus, we have 𝜇 = 0. So we get a
contradiction, and therefore, in this case, there are no surfaces
of revolution with timelike axis.

Case 5 (let 𝜆 ̸= 0, 𝜇 ̸= 0, and 𝜆 ̸= 𝜇). In this case, (45) is
unchanged; that is,

𝑡
󸀠
= −

sinh 𝑡
𝑓

− 𝜇cosh2𝑡 + 𝜆sinh2𝑡, (68)
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and thus

𝑡
󸀠󸀠
= −

𝑡
󸀠 cosh 𝑡
𝑓

+
sinh 𝑡 cosh 𝑡

𝑓2
− 2𝜇𝑡
󸀠 sinh 𝑡 cosh 𝑡

+ 2𝜆𝑡
󸀠 sinh 𝑡 cosh 𝑡.

(69)

From which, (43) is written as

𝜉1𝑓
2
+ 𝜉2𝑓 + 𝜉3 = 0, (70)

where

𝜉1 = 5𝜃
2sinh4𝑡 − 6𝜇𝜃sinh2𝑡 + 𝜇

2
,

𝜉2 = −8𝜃sinh3𝑡 + 4𝜇 sinh 𝑡,

𝜉3 = 4sinh2𝑡, 𝜃 = 𝜆 − 𝜇.

(71)

Differentiating (70) and using (68), we find

𝜂1𝑓
2
+ 𝜂2𝑓 + 𝜂3 = 0, (72)

where

𝜂1 = 90𝜃
4sinh8𝑡 + 172𝜇𝜃

3sinh6𝑡 + 104𝜇
2
𝜃
2sinh4𝑡

+ 20𝜇
3
𝜃sinh2𝑡 − 2𝜇

4
,

𝜂2 = −120𝜃
3sinh7𝑡 + 120𝜇𝜃

2sinh5𝑡 − 24𝜇
2
𝜃sinh3𝑡

− 8𝜇
3 sinh 𝑡,

𝜂3 = 40𝜃
2sinh6𝑡 − 8𝜇

2sinh2𝑡.

(73)

Combining (70) and (72), we have

𝜁1𝑓 + 𝜁2 = 0, (74)

where 𝜁1 = 𝜉2𝜂1 − 𝜉1𝜂2, 𝜁2 = 𝜉3𝜂1 − 𝜉1𝜂3.
Hence, by this procedure, (74) is reduced to a linear one

with respect to the function 𝑓. Therefore, if we repeat this
method onemore time, we can find the following polynomial:

12

∑

𝑖=1

𝑐𝑖𝜃
2+𝑖

𝜇
12−𝑖sinh8+2𝑖𝑡, (75)

where 𝑐1 = 258048, 𝑐2 = 5046272, . . ., 𝑐12 = 3072000 are
nonzero constants. Since this polynomial is equal to zero for
every 𝑡, all its coefficientsmust be zero.Thereforewe conclude
that 𝜃 = 0; that is, 𝜆 = 𝜇, which is a contradiction. Conse-
quently, there are no surfaces of revolution with timelike axis
in this case.

When 𝜀 = −1,𝑀 is a timelike surface. In this case, we can
assume that 𝑓󸀠(𝑢) = sinh 𝑡 and 𝑔

󸀠
(𝑢) = cosh 𝑡, and using the

same algebraic techniques as for 𝜀 = 1 easily prove that the
3rd kind of catenoid and the de Sitter pseudosphere satisfy
condition (33). This completes the proof.

4. The Surface of Revolution with
Spacelike Axis

In this section, we will classify the surfaces of revolution with
spacelike axis in R3

1
that satisfy condition (3).

Theorem 9. The only surfaces of revolution with spacelike axis
in R3
1
whose Gauss map 𝐺 satisfies

Δ
ℎ
𝐺 = Λ𝐺, Λ ∈ Mat(3,R) (76)

are locally the 2nd kind of catenoid, the 4th kind of catenoid,
the 5th kind of catenoid, the hyperbolic pseudosphere, or the de
Sitter pseudosphere.

Proof. Let𝑀 be a surface of revolution with spacelike axis as
(9). We may assume that the profile curve 𝛾 is of unit speed;
thus

⟨𝛾
󸀠
, 𝛾
󸀠
⟩ = 𝑓
󸀠2
(𝑢) + 𝑔

󸀠2
(𝑢) = 1. (77)

Then we may put

𝑓
󸀠
(𝑢) = cos 𝑡, 𝑔

󸀠
(𝑢) = sin 𝑡 (78)

for the smooth function 𝑡 = 𝑡(𝑢). Using the natural frame
{𝑥𝑢, 𝑥V} of𝑀 defined by

𝑥𝑢 = (𝑓
󸀠 sinh V, 𝑓󸀠 cosh V, 𝑔󸀠) ,

𝑥V = (𝑓 cosh V, 𝑓 sinh V, 0) ,

𝑥𝑢𝑢 = (𝑓
󸀠󸀠 sinh V, 𝑓󸀠󸀠 cosh V, 𝑔󸀠󸀠) ,

𝑥𝑢V = (𝑓
󸀠 cosh V, 𝑓󸀠 sinh V, 0) ,

𝑥VV = (𝑓 sinh V, 𝑓 cosh V, 0) ,

(79)

we obtain the components of the first and the second
fundamental forms of the surface as follows:

𝑔11 = ⟨𝑥𝑢, 𝑥𝑢⟩ = 1, 𝑔12 = 𝑔21 = ⟨𝑥𝑢, 𝑥V⟩ = 0,

𝑔22 = ⟨𝑥V, 𝑥V⟩ = −𝑓
2
,

ℎ11 = ⟨𝑥𝑢𝑢, 𝐺⟩ = 𝑓
󸀠󸀠
𝑔
󸀠
− 𝑓
󸀠
𝑔
󸀠󸀠
= −𝑡
󸀠
,

ℎ12 = ℎ21 = ⟨𝑥𝑢V, 𝐺⟩ = 0,

ℎ22 = ⟨𝑥VV, 𝐺⟩ = 𝑓𝑔
󸀠
= 𝑓 sin 𝑡,

(80)

where Gauss map 𝐺 is (𝑥𝑢 × 𝑥V)/|𝑥𝑢 × 𝑥V| =

(𝑔
󸀠 sinh V, 𝑔󸀠 cosh V, −𝑓󸀠).
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So the matrix (ℎ𝑖𝑗) composed by the second fundamental
form ℎ can be expressed as

(
ℎ11 ℎ12

ℎ21 ℎ22
) = (

−𝑡
󸀠

0

0 𝑓 sin 𝑡) . (81)

Since the surface has no parabolic points, so H = ℎ11ℎ22 −

ℎ
2

12
= 𝑡
󸀠
𝑓 sin 𝑡 ̸= 0 for every 𝑡. Then the mean curvature𝐻 on

𝑀 is given by

𝐻 =

(𝑓
󸀠󸀠
𝑔
󸀠
− 𝑓
󸀠
𝑔
󸀠󸀠
) (−𝑓

2
) + 𝑓𝑔

󸀠

2 (−𝑓2)
= −

1

2
(𝑡
󸀠
+
sin 𝑡
𝑓

) . (82)

By a straightforward computation, the Laplacian Δ
ℎ of the

second fundamental form ℎ on𝑀 with the help of (4), (78),
and (80) turns out to be

Δ
ℎ
=

1

𝑡󸀠

𝜕
2

𝜕𝑢2
−

1

𝑓 sin 𝑡
𝜕
2

𝜕V2

+ (−
𝑡
󸀠󸀠

2𝑡󸀠2
+
cos 𝑡
2𝑓𝑡󸀠

+
cos 𝑡
2 sin 𝑡

)
𝜕

𝜕𝑢
.

(83)

Accordingly, we get

Δ
ℎ
𝐺 =

(
(

(

(−𝑡
󸀠 sin 𝑡 + 𝑡

󸀠󸀠

2𝑡󸀠
cos 𝑡 − 1

2𝑓
−
sin2𝑡
2𝑓

+ 𝑡
󸀠 cos2𝑡
2 sin 𝑡

) sinh V

(−𝑡
󸀠 sin 𝑡 + 𝑡

󸀠󸀠

2𝑡󸀠
cos 𝑡 − 1

2𝑓
−
sin2𝑡
2𝑓

+ 𝑡
󸀠 cos2𝑡
2 sin 𝑡

) cosh V

3

2
𝑡
󸀠 cos 𝑡 + (

cos 𝑡
2𝑓

+
𝑡
󸀠󸀠

2𝑡󸀠
) sin 𝑡

)
)

)

. (84)

By the assumption (76) and the above equation, we get the
following system of differential equations:

(−𝑡
󸀠 sin 𝑡 + 𝑡

󸀠󸀠

2𝑡󸀠
cos 𝑡 − 1

2𝑓
−
sin2𝑡
2𝑓

+ 𝑡
󸀠 cos2𝑡
2 sin 𝑡

−𝑎11 sin 𝑡) sinh V − 𝑎12 sin 𝑡 cosh V + 𝑎13 cos 𝑡 = 0,

(−𝑡
󸀠 sin 𝑡 + 𝑡

󸀠󸀠

2𝑡󸀠
cos 𝑡 − 1

2𝑓
−
sin2𝑡
2𝑓

+ 𝑡
󸀠 cos2𝑡
2 sin 𝑡

−𝑎22 sin 𝑡) cosh V − 𝑎21 sin 𝑡 sinh V + 𝑎23 cos 𝑡 = 0,

3

2
𝑡
󸀠 cos 𝑡 + (

cos 𝑡
2𝑓

+
𝑡
󸀠󸀠

2𝑡󸀠
) sin 𝑡 − 𝑎31 sin 𝑡 sinh V

− 𝑎32 sin 𝑡 cosh V + 𝑎33 cos 𝑡 = 0,

(85)
where 𝑎𝑖𝑗 (𝑖, 𝑗 = 1, 2, 3) denote the components of the matrix
Λ given by (76). In order to prove the theorem, we have
to solve the above system of ordinary differential equations.
From (85) we easily deduce that 𝑎12 = 𝑎21 = 𝑎13 = 𝑎23 = 𝑎31 =

𝑎32 = 0 and 𝑎11 = 𝑎22; that is, the matrixΛ is diagonal.We put
𝑎11 = 𝑎22 = 𝜆 and 𝑎33 = 𝜇. Then, the system (85) is reduced
to the following equations:

3

2
𝑡
󸀠 cos 𝑡 + (

cos 𝑡
2𝑓

+
𝑡
󸀠󸀠

2𝑡󸀠
) sin 𝑡 = −𝜇 cos 𝑡, (86)

−𝑡
󸀠 sin 𝑡 + 𝑡

󸀠󸀠

2𝑡󸀠
cos 𝑡 − 1

2𝑓
−
sin2𝑡
2𝑓

+ 𝑡
󸀠 cos2𝑡
2 sin 𝑡

= 𝜆 sin 𝑡. (87)

By the computation (87)× sin 𝑡 - (86)× cos 𝑡, we easily get

−
sin 𝑡
𝑓

− 𝑡
󸀠
= 𝜆sin2𝑡 + 𝜇cos2𝑡. (88)

We discuss five cases according to the constants 𝜆 and 𝜇.

Case 1 (𝜆 = 𝜇 = 0). In this case, we easily get −𝑡
󸀠
−

(sin 𝑡/𝑓) = 0, which implies that the mean curvature 𝐻

vanishes identically because of (82). Therefore, the surface is
minimal; from theorem 2 in [9], it is the 5th kind catenoid.
Furthermore, the 5th kind catenoid satisfies the condition
(76).

Case 2 (𝜆 = 𝜇 ̸= 0). By (88), we get

𝑡
󸀠
= −

sin 𝑡
𝑓

− 𝜆. (89)

Differentiating (89) with respect to 𝑢, we have

𝑡
󸀠󸀠
= −

𝑡
󸀠 cos 𝑡
𝑓

+
sin 𝑡 cos 𝑡

𝑓2
. (90)

Combining (89), (90), and (86), we get

𝜆
2
𝑓
2
+ 4𝜆𝑓 sin 𝑡 + 4sin2𝑡 = 0 (91)

from which

𝑓 = −
2 sin 𝑡
𝜆

. (92)

Furthermore, (92) together with (89) becomes 𝑡󸀠 = −𝜆/2; that
is,

𝑡 (𝑢) = −
𝜆

2
𝑢 + 𝑘, 𝑘 ∈ R. (93)

On the other hand, by (78) and (93), we have

𝑓 (𝑢) = −
2

𝜆
sin(−𝜆

2
𝑢 + 𝑘) ,

𝑔 (𝑢) =
2

𝜆
cos(−𝜆

2
𝑢 + 𝑘) + 𝑐, 𝑐 ∈ R.

(94)
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Then, the surface𝑀 has the following expression:

𝑥 (𝑢, V) = ([−
2

𝜆
sin(−𝜆

2
𝑢 + 𝑘)] sinh V,

[−
2

𝜆
sin(−𝜆

2
𝑢 + 𝑘)] cosh V,

2

𝜆
cos(−𝜆

2
𝑢 + 𝑘) + 𝑐) , 𝑐, 𝑘 ∈ R.

(95)

Consequently, we have

⟨𝑥 (𝑢, V) − C, 𝑥 (𝑢, V) − C⟩ = (
2

𝜆
)

2

, C = (0, 0, 𝑐) , (96)

which means that the surface𝑀 is contained in the de Sitter
pseudosphere 𝑆2

1
(2/|𝜆|) centered at C with radius 2/|𝜆|. Also,

the de Sitter pseudosphere satisfies condition (76). In the
cases of 3, 4, and 5, we will use the same method of Section 3
and easily get that there are no surfaces of revolution with
spacelike axis satisfies condition (76).

When the surface of revolution has the expression given
by (10), we can similarly prove that the 2nd kind of catenoid,
4th kind of catenoid, the de Sitter pseudosphere, and the
hyperbolic pseudosphere satisfy condition (76). This com-
pletes the proof.
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