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In solving large scale problems, the quasi-Newton method is known as the most efficient method in solving unconstrained
optimization problems. Hence, a new hybrid method, known as the BFGS-CGmethod, has been created based on these properties,
combining the search direction between conjugate gradient methods and quasi-Newtonmethods. In comparison to standard BFGS
methods and conjugate gradient methods, the BFGS-CG method shows significant improvement in the total number of iterations
and CPU time required to solve large scale unconstrained optimization problems. We also prove that the hybrid method is globally
convergent.

1. Introduction

The unconstrained optimization problem only requires the
objective function as

min
𝑥∈𝑅
𝑛

𝑓 (𝑥) , (1)

where 𝑅𝑛 is an 𝑛-dimensional Euclidean space and 𝑓 : 𝑅𝑛 →
𝑅 is continuously differentiable. The iterative methods are
used to solve (1). On the 𝑖th iteration, an approximation point
𝑥
𝑖
and the (𝑖 + 1)th iteration are given by

𝑥
𝑖+1

= 𝑥
𝑖
+ 𝛼
𝑖
𝑑
𝑖
, (2)

where 𝑑
𝑖
denotes the search direction and 𝛼

𝑖
denotes the step

size. The search direction must satisfy the relation 𝑔𝑇
𝑖
𝑑
𝑖
<

0, which guarantees that 𝑑
𝑖
is a descent direction of 𝑓(𝑥)

at 𝑥
𝑖
. The different choices of 𝑑

𝑖
and 𝛼

𝑖
yield the different

convergence properties. Generally the first order condition
∇𝑓(𝑥
∗
) = 0 is used to check for local convergence to

stationary point 𝑥
∗
. There are many ways to calculate the

search direction depending on the method used, such as the
steepest descent method, conjugate gradient (CG) method,
Newton-Raphson method, and quasi-Newton method.

The different choices of the step size ensure that the
sequence of iterates 𝑥

𝑖
defined by (2) is globally convergent

with some rates of convergence. There are two ways to
determine the values of the step size, the exact line search,
and the inexact line search. For the exact line search, 𝛼

𝑖
is

calculated by using the formula 𝛼
𝑖
= argmin

𝑎>0
(𝑓(𝑥
𝑖
+𝛼
𝑖
𝑑
𝑖
)).

However, it is difficult and often impossible to find the value
of step size in practical computation using the exact line
search. Hence, the inexact line search is proposed by previous
researchers like Armijo [1], Wolfe [2, 3], and Goldstein [4]
to overcome the problem. Recently Shi proposed a new
inexact line search rule similar to the Armijo line search
and analysed the global converge [5]. Shi also claimed that
among several well-known inexact line search procedures
published by previous researchers, theArmijo line search rule
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is one of the most useful and the easiest to be implemented in
computational calculations. The Armijo line search rule can
be described as follows:

Given 𝑠 > 0, 𝛽 ∈ (0, 1) , 𝜎 ∈ (0, 1) ,

𝛼
𝑖
= max {𝑠, 𝑠𝛽, 𝑠𝛽2, . . .} such that

𝑓 (𝑥
𝑖
) − 𝑓 (𝑥

𝑖
+ 𝛼
𝑖
𝑑
𝑖
) ≥ −𝜎𝛼

𝑖
𝑔𝑇
𝑖
𝑑
𝑖
,

(3)

𝑖 = 0, 1, 2, . . .. Then, the sequence of {𝑥
𝑖
}∞
𝑖=0

is converged to
the optimal point, 𝑥∗, which minimises 𝑓 [6]. Hence, we will
use the Armijo line search in this research associated with the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and the
new hybrid method.

This paper is organised as follows. In Section 2, we elab-
orate the step size and search direction that are used in this
research. Here, the BFGS method and CG method also will
be presented.Then, the new hybrid method and convergence
analysis will be discussed in Section 3. An explanation about
the numerical results is provided in Section 4 and the paper
ends with a short conclusion in Section 5.

2. The Search Direction

Thedifferent methods in solving unconstrained optimization
problems depend on the calculation of search direction, 𝑑

𝑖
in

(2). In this paper, we will focus on the CGmethod and quasi-
Newton methods. The CG method is useful for finding the
minimum value of functions or unconstrained optimization
problems, which are introduced by [7]. The search direction
of the CG method is

𝑑
𝑖
= {

−𝑔
𝑖
, 𝑖 = 0,

−𝑔
𝑖
+ 𝛽
𝑖
𝑑
𝑖−1

, 𝑖 ≥ 2,
(4)

where 𝑔
𝑖
= ∇𝑓(𝑥

𝑖
) and 𝛽

𝑖
is known as the CG coefficient.

There are many ways to calculate 𝛽
𝑖
and some well-known

formulas are

𝛽FR
𝑖

=
𝑔𝑇
𝑖
𝑔
𝑖

󵄩󵄩󵄩󵄩𝑔𝑖−1
󵄩󵄩󵄩󵄩
2
,

𝛽PR
𝑖

=
𝑔𝑇
𝑖
(𝑔
𝑖
− 𝑔
𝑖−1

)
󵄩󵄩󵄩󵄩𝑔𝑖−1

󵄩󵄩󵄩󵄩
2

,

𝛽HS
𝑖

=
𝑔𝑇
𝑖
(𝑔
𝑖
− 𝑔
𝑖−1

)

(𝑔
𝑖
− 𝑔
𝑖−1

)
𝑇

𝑑
𝑖−1

,

(5)

where 𝑔
𝑖
and 𝑔

𝑖−1
are gradients of 𝑓(𝑥) at points 𝑥

𝑖
and

𝑥
𝑖−1

, respectively, while ‖ ⋅ ‖ is a norm of vectors and 𝑑
𝑖−1

is a search direction for the previous iteration. The above
corresponding coefficients are known as Fletcher-Reeves
(CG-FR) [7], Polak-Ribière (CG-PR) [8–11], and Hestenes-
Stiefel (CG-HS) [12].

In quasi-Newton methods, the search direction is the
solution of linear system

𝑑
𝑖
= −𝐻
𝑖
𝑔
𝑖
, (6)

where𝐻
𝑖
is an approximation of Hessian. Initial matrix𝐻

0
is

chosen by the identitymatrix, which subsequently updates by
an update formula. There are a few update formulas that are
widely used like Davidon-Fletcher-Powell (DFP), BFGS, and
Broyden family formula. This research uses a BFGS formula
in a classical algorithm and the new hybrid method. The
update formula for BFGS is

𝐻
𝑖+1

= 𝐻
𝑖
−
𝐻
𝑖
𝑠
𝑖
𝑠𝑇
𝑖
𝐻
𝑖

𝑠𝑇
𝑖
𝐻
𝑖
𝑠
𝑖

+
𝑦
𝑖
𝑦𝑇
𝑖

𝑠𝑇
𝑖
𝑦
𝑖

, (7)

with 𝑠
𝑖
= 𝑥
𝑖
− 𝑥
𝑖−1

and 𝑦
𝑖
= 𝑔
𝑖
− 𝑔
𝑖−1

. The approximation that
the Hessian must fulfil is

𝐻
𝑖+1

𝑠
𝑖
= 𝑦
𝑖
. (8)

This condition is required to hold for the updated matrix
𝐻
𝑖+1

. Note that it is only possible to fulfil the secant equation
if

𝑠𝑇
𝑖
𝑦
𝑖
> 0, (9)

which is known as the curvature condition.

3. The New Hybrid Method

The modification of the quasi-Newton method based on
a hybrid method has already been introduced by previous
researchers. One of the studies is a hybridization of the quasi-
Newton and Gauss-Seidel methods, aimed at solving the
system of linear equations in [13]. Luo et al. [14] suggest
the new hybrid method, which can solve the system of
nonlinear equations by combining the quasi-Newtonmethod
with chaos optimization. Han and Neumann [6] combine the
quasi-Newton methods and Cauchy descent method to solve
unconstrained optimization problems, which is recognised as
the quasi-Newton-SD method.

Hence, the modification of the quasi-Newton method by
previous researchers spawned the new idea of hybridizing the
classical method to yield the new hybrid method. Hence, this
study proposes a new hybrid search direction that combines
the concept of search direction of the quasi-Newton and
CG methods. It yields a new search direction of the hybrid
methodwhich is known as the BFGS-CGmethod.The search
direction for the BFGS-CG method is

𝑑
𝑖
= {

−𝐻
𝑖
𝑔
𝑖
, 𝑖 = 0,

−𝐻
𝑖
𝑔
𝑖
+ 𝜂 (−𝑔

𝑖
+ 𝛽
𝑖
𝑑
𝑖−1

) , 𝑖 ≥ 1,
(10)

where 𝜂 > 0 and 𝛽
𝑖
= (𝑔𝑇
𝑖
𝑔
𝑖−1

/𝑔𝑇
𝑖
𝑑
𝑖−1

).
Hence, the complete algorithms for the BFGS method,

CG-HS, CG-PR, and CG-FR methods, and the BFGS-CG
method will be arranged in Algorithms 1, 2, and 3, respec-
tively.
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Algorithm 1 (BFGS method). States the following.

Step 0. Given a starting point 𝑥
0
and 𝐻

0
= 𝐼
𝑛
, choose values

for 𝑠, 𝛽, and, 𝜎 and set 𝑖 = 1.

Step 1. Terminate if ‖𝑔(𝑥
𝑖+1

)‖ < 10−6 or 𝑖 ≥ 10000.

Step 2. Calculate the search direction by (6).

Step 3. Calculate the step size 𝛼
𝑖
by (3).

Step 4. Compute the difference between 𝑠
𝑖
= 𝑥
𝑖
− 𝑥
𝑖−1

and
𝑦
𝑖
= 𝑔
𝑖
− 𝑔
𝑖−1

.
Step 5. Update𝐻

𝑖−1
by (7) to obtain𝐻

𝑖
.

Step 6. Set 𝑖 = 𝑖 + 1 and go to Step 1.

Algorithm 2 (CG-HS, CG-PR, and CG-FR). States the follow-
ing.

Step 0. Given a starting point 𝑥
0
, choose values for 𝑠, 𝛽, and

𝜎 and set 𝑖 = 1.
Step 1. Terminate if ‖𝑔(𝑥

𝑘+1
)‖ < 10−6 or 𝑖 ≥ 10000.

Step 2. Calculate the search direction by (4) with respect to
the coefficient of CG.
Step 3. Calculate the step size 𝛼

𝑖
by (3).

Step 4. Compute the difference between 𝑠
𝑖
= 𝑥
𝑖
− 𝑥
𝑖−1

and
𝑦
𝑖
= 𝑔
𝑖
− 𝑔
𝑖−1

.
Step 5. Set 𝑖 = 𝑖 + 1 and go to Step 1.

Algorithm 3 (BFGS-CG method). States the following.

Step 0. Given a starting point 𝑥
0
and 𝐻

0
= 𝐼
𝑛
, choose values

for 𝑠, 𝛽, and 𝜎 and set 𝑖 = 1.

Step 1. Terminate if ‖𝑔(𝑥
𝑖+1

)‖ < 10−6 or 𝑖 ≥ 10000.

Step 2. Calculate the search direction by (10).

Step 3. Calculate the step size 𝛼
𝑖
by (3).

Step 4. Compute the difference between 𝑠
𝑖
= 𝑥
𝑖
− 𝑥
𝑖−1

and
𝑦
𝑖
= 𝑔
𝑖
− 𝑔
𝑖−1

.

Step 5. Update𝐻
𝑖−1

by (7) to obtain𝐻
𝑖
.

Step 6. Set 𝑖 = 𝑖 + 1 and go to Step 1.

Based on Algorithms 1, 2, and 3 we assume that every
search direction 𝑑

𝑖
satisfied the descent condition

𝑔𝑇
𝑖
𝑑
𝑖
< 0, (11)

for all 𝑖 ≥ 0. If there exists a constant 𝑐
1
> 0 such that

𝑔𝑇
𝑖
𝑑
𝑖
≤ 𝑐
1

󵄩󵄩󵄩󵄩𝑔𝑖
󵄩󵄩󵄩󵄩
2 (12)

for all 𝑖 ≥ 0, then the search directions satisfy the sufficient
descent condition which can be proved inTheorem 6. Hence,

we need to make a few assumptions based on the objective
function.

Assumption 4. Consider the following.

H1: the objective function 𝑓 is twice continuously differ-
entiable.

H2: the level set 𝐿 is convex. Moreover, positive constants
𝑐
1
and 𝑐
2
exist, satisfying

𝑐
1
‖𝑧‖
2 ≤ 𝑧𝑇𝐹 (𝑥) 𝑧 ≤ 𝑐

2
‖𝑧‖
2, (13)

for all 𝑧 ∈ 𝑅𝑛 and 𝑥 ∈ 𝐿, where 𝐹(𝑥) is the Hessian
matrix for 𝑓.

H3: the Hessian matrix is Lipschitz continuous at the
point 𝑥∗; that is, there exists the positive constant 𝑐

3

satisfying
󵄩󵄩󵄩󵄩𝑔 (𝑥) − 𝑔 (𝑥∗)

󵄩󵄩󵄩󵄩 ≤ 𝑐
3

󵄩󵄩󵄩󵄩𝑥 − 𝑥∗
󵄩󵄩󵄩󵄩 (14)

for all 𝑥 in a neighbourhood of 𝑥∗.

Theorem 5 (see [15, 16]). Let {𝐵
𝑖
} be generated by the BFGS

formula (8), where 𝐵
1
is symmetric and positive definite, and

𝑦𝑇
𝑖
𝑠
𝑖
> 0 for all 𝑖. Furthermore, assume that {𝑠

𝑖
} and {𝑦

𝑖
} are

such that
󵄩󵄩󵄩󵄩(𝑦𝑖 − 𝐺

∗
) 𝑠
𝑖

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑠𝑖

󵄩󵄩󵄩󵄩
≤ 𝜀
𝑖

(15)

for some symmetric and positive definite matrix 𝐺(𝑥∗) and for
some sequence {𝜀

𝑖
} with the property ∑∞

𝑖=1
𝜀
𝑖
< ∞. Then

lim
𝑖→∞

󵄩󵄩󵄩󵄩(𝐵𝑖 − 𝐺
∗
) 𝑑
𝑖

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑑𝑖

󵄩󵄩󵄩󵄩
= 0 (16)

and the sequence {‖𝐵
𝑖
‖}, {‖𝐵−1

𝑖
‖} are bound.

Theorem 6. Suppose that Assumption 4 and Theorem 5 hold.
Then condition (12) holds for all 𝑖 ≥ 0.

Proof. From (12), we see that

𝑔𝑇
𝑖
𝑑
𝑖
= −𝑔𝑇
𝑖
𝐵−1
𝑖
𝑔
𝑖
+ 𝜂𝑔𝑇
𝑖
(−𝑔
𝑖
+ (

𝑔𝑇
𝑖
𝑔
𝑖−1

𝑔𝑇
𝑖
𝑑
𝑖−1

)𝑑
𝑖−1

)

= −𝑔𝑇
𝑖
𝐵−1
𝑖
𝑔
𝑖
+ 𝜂(−𝑔𝑇

𝑖
𝑔
𝑖
+ (

𝑔𝑇
𝑖
𝑔
𝑖−1

𝑔𝑇
𝑖
𝑑
𝑖−1

)𝑔𝑇
𝑖
𝑑
𝑖−1

)

= −𝑔𝑇
𝑖
𝐵−1
𝑖
𝑔
𝑖
+ 𝜂 (−𝑔𝑇

𝑖
𝑔
𝑖
+ 𝑔𝑇
𝑖
𝑔
𝑖−1

) .

(17)

Based on Powell [17], 𝑔𝑇
𝑖
𝑔
𝑖−1

≥ 𝜀‖𝑔
𝑖
‖2 with 𝜀 = (0, 1], and

𝑔𝑇
𝑖
𝑑
𝑖
= −𝑔𝑇
𝑖
𝐵−1
𝑖
𝑔
𝑖
+ 𝜂 (−

󵄩󵄩󵄩󵄩𝑔𝑖
󵄩󵄩󵄩󵄩
2

+ 𝜀
󵄩󵄩󵄩󵄩𝑔𝑖

󵄩󵄩󵄩󵄩
2

)

≤ −𝜆
𝑖

󵄩󵄩󵄩󵄩𝑔𝑖
󵄩󵄩󵄩󵄩
2

+ (−𝜂 + 𝜂𝜀)
󵄩󵄩󵄩󵄩𝑔𝑖

󵄩󵄩󵄩󵄩
2

≤ 𝑐
1

󵄩󵄩󵄩󵄩𝑔𝑖
󵄩󵄩󵄩󵄩
2

,

(18)

where 𝑐
1
= −(𝜆

𝑖
+ 𝜂 − 𝜂𝜀) which is bound away from zero.

Hence, 𝑔𝑇
𝑖
𝑑
𝑖
≤ 𝑐
1
‖𝑔
𝑖
‖2 holds. The proof is completed.
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Lemma 7. Under Assumption 4, positive constants 𝜛
1
and 𝜛

2

exist, such that for any 𝑥
𝑖
and any 𝑑

𝑖
with 𝑔𝑇

𝑖
𝑑
𝑖
< 0, the step

size 𝑎
𝑖
produced by Algorithm 2 will satisfy either

𝑓 (𝑥
𝑖
+ 𝛼
𝑖
𝑑
𝑖
) − 𝑓
𝑖
≤ −𝜛
1

(𝑔𝑇
𝑖
𝑑
𝑖
)
2

󵄩󵄩󵄩󵄩𝑑𝑖
󵄩󵄩󵄩󵄩
2

(19)

or

𝑓 (𝑥
𝑖
+ 𝛼
𝑖
𝑑
𝑖
) − 𝑓
𝑖
≤ 𝜛
1
𝑔𝑇
𝑖
𝑑
𝑖
. (20)

Proof. Suppose that 𝑎
𝑖
< 1, which means that (3) failed for a

step size 𝑎󸀠 ≤ 𝑎
𝑖
/𝜏:

𝑓 (𝑥
𝑖
+ 𝛼󸀠
𝑖
𝑑
𝑖
) − 𝑓 (𝑥

𝑖
) ≤ 𝜛𝑎󸀠𝑔𝑇

𝑖
𝑑
𝑖
. (21)

Then, by using the mean value theorem, we obtain

𝑓 (𝑥
𝑖+1

) − 𝑓 (𝑥
𝑖
) = 𝑔𝑇 (𝑥

𝑖+1
− 𝑥
𝑖
) , (22)

where 𝑔 = ∇𝑓(𝑥), for some 𝑥 ∈ (𝑥
𝑖
, 𝑥
𝑖+1

). Now, by the
Cauchy-Schwartz inequality, we get

𝑔𝑇 (𝑥
𝑖+1

− 𝑥
𝑖
) = 𝑔𝑇 (𝑥

𝑖+1
− 𝑥
𝑖
) + (𝑔 − 𝑔

𝑖
)
𝑇

(𝑥
𝑖+1

− 𝑥
𝑖
)

= 𝑔𝑇 (𝑥
𝑖+1

− 𝑥
𝑖
) +

󵄩󵄩󵄩󵄩𝑔 − 𝑔
𝑖

󵄩󵄩󵄩󵄩 (𝑥𝑖+1 − 𝑥
𝑖
)

≤ 𝑔𝑇 (𝑥
𝑖+1

− 𝑥
𝑖
) + 𝜇

󵄩󵄩󵄩󵄩𝑥𝑖+1 − 𝑥
𝑖

󵄩󵄩󵄩󵄩
2

≤ 𝑔𝑇 (𝑎󸀠𝑑
𝑖
) + 𝜇

󵄩󵄩󵄩󵄩󵄩𝑎
󸀠𝑑
󵄩󵄩󵄩󵄩󵄩
2

≤ 𝑔𝑇 (𝑎󸀠𝑑
𝑖
) + 𝜇(𝑎󸀠 ‖𝑑‖)

2

.

(23)

Thus, from H3

(𝜛 − 1) 𝑎
󸀠𝑔𝑇
𝑖
𝑑
𝑖
< 𝑎󸀠(𝑔 − 𝑔

𝑖
)
𝑇

𝑑
𝑖
≤ 𝑀(𝑎󸀠

󵄩󵄩󵄩󵄩𝑑𝑖
󵄩󵄩󵄩󵄩)
2

, (24)

which implies that

𝑎
𝑖
≥ 𝜏𝑎󸀠 > 𝜏 (1 − 𝜛)

−𝑔𝑇
𝑖
𝑑
𝑖

𝑀(𝑎󸀠
󵄩󵄩󵄩󵄩𝑑𝑖

󵄩󵄩󵄩󵄩)
2
. (25)

Substituting this into (21), we have

𝑓 (𝑥
𝑖
+ 𝛼󸀠
𝑖
𝑑
𝑖
) − 𝑓 (𝑥

𝑖
) ≤ 𝑐
2

−𝑔𝑇
𝑖
𝑑
𝑖

(𝑎󸀠
󵄩󵄩󵄩󵄩𝑑𝑖

󵄩󵄩󵄩󵄩)
2
, (26)

where 𝑐
2
= 𝜏(1 − 𝜛)/𝑀, which gives (19).

Theorem 8 (global convergence). Suppose that Assumption 4
andTheorem 5 hold. Then

lim
𝑖→∞

󵄩󵄩󵄩󵄩𝑔𝑖
󵄩󵄩󵄩󵄩
2

= 0. (27)

Proof. Combining descent property (12) and Lemma 7 gives
∞

∑
𝑖=0

󵄩󵄩󵄩󵄩𝑔𝑖
󵄩󵄩󵄩󵄩
4

󵄩󵄩󵄩󵄩𝑑𝑖
󵄩󵄩󵄩󵄩
2
< ∞. (28)

Hence, from Theorem 6, we can define that ‖𝑑
𝑖
‖ ≤ −𝑐‖𝑔

𝑖
‖.

Then, (28) will be simplified as ∑∞
𝑖=0

‖𝑔
𝑖
‖2 < ∞. Therefore,

the proof is completed.
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Figure 1: Performance profile in a log
10
scale based on iteration.

1 2 3 4 5 6 7 8 9 10 11
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

BFGS
CG-HS
CG-PR

CG-FR
BFGS-CG

𝜏

P
(
(
lo
g
1
0
(
r
p
,s
)
)
≤
𝜏
:
1
≤
s
≤
n
s
)

Figure 2: Performance profile in a log
10
scale based on CPU time.

4. Numerical Result

In this section, we use the test problem considered by Andrei
[18], Michalewicz [19], and Moré et al. [20] in Table 1 to
analyse the improvement of the BFGS-CGmethod compared
with the BFGS method and CG method. Each of the test
problems is tested with dimensions varying from 2 to 1,000
variables. This represents a total of 159 test problems. As
suggested by [20], for each of the test problems, the initial
point 𝑥

0
will further subtract from the minimum point.

In doing so, this leads us to test the global convergence
properties and the robustness of our method. For the Armijo
line search, we use 𝑠 = 1, 𝛽 = 0.5, and 𝜎 = 0.1. The
stopping criteria we use are ‖𝑔

𝑖
‖ ≤ 10−6 and the number of

iterations exceeds its limit, which is set to be 10,000. In our
implementation, the numerical tests were performed on an
Acer Aspire with a Windows 7 operating system and using
Matlab 2012 languages.

The performance results will be shown in Figures 1 and
2, respectively, using the performance profile introduced by
Dolan and Moré [21]. The performance profile seeks to find
how well the solvers perform relative to the other solvers on
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Table 1: A list of problem functions.

Test problem 𝑛-dimensional Sources
Powell badly scaled 2 Moré et al. [20]
Beale 2 Moré et al. [20]
Biggs Exp 6 6 Moré et al. [20]
Chebyquad 4, 6 Moré et al. [20]
Colville polynomial 4 Michalewicz [19]
Variably dimensioned 4, 8 Moré et al. [20]
Freudenstein and Roth 2 Moré et al. [20]
Goldstein price polynomial 2 Michalewicz [19]
Himmelblau 2 Andrei [18]
Penalty 1 2, 4 Moré et al. [20]
Extended Powell singular 4, 8 Moré et al. [20]
Extended Rosenbrock 2, 10, 100, 200, 500, 1000 Andrei [18]
Trigonometric 6 Andrei [18]
Watson 4, 8 Moré et al. [20]
Six-hump camel back polynomial 2 Michalewicz [19]
Extended shallow 2, 4, 10, 100, 200, 500, 1000 Andrei [18]
Extended strait 2, 4, 10, 100, 200, 500, 1000 Andrei [18]
Scale 2 Michalewicz [19]
Raydan 1 2, 4 Andrei [18]
Raydan 2 2, 4 Andrei [18]
Diagonal 3 2 Andrei [18]
Cube 2, 10, 100, 200 Moré et al. [20]

a set of problems. In general, 𝑃(𝜏) is the fraction of problems
with performance ratio 𝜏; thus, a solver with high values of
𝑃(𝜏) or one that is located at the top right of the figure is
preferable.

Figures 1 and 2 show that the BFGS-CG method has the
best performance since it can solve 99% of the test problems
compared with the BFGS (84%), CG-HS (65%), CG-PR
(80%), and CG-FR (75%)methods.Moreover, we can also say
that the BFGS-CG is the fastest solver on approximately 68%
of the test problems for iteration and 52% of CPU time.

5. Conclusion

We have presented a new hybrid method for solving uncon-
strained optimization problems. The numerical results for a
broad class of test problems show that the BFGS-CGmethod
is efficient and robust in solving the unconstrained optimiza-
tion problem.We also note that, as the size and complexity of
the problem increase, greater improvements could be realised
by our BFGS-CG method. Our future research will be to try
the BFGS-CG method with coefficients of CG like Fletcher-
Reeves, Hestenes-Stiefel, and Polak-Ribiére.
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[21] E. D. Dolan and J. J. Moré, “Benchmarking optimization soft-
ware with performance profiles,” Mathematical Programming,
vol. 91, no. 2, pp. 201–213, 2002.


