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Focusing on the amplifier performance evaluation demand, a novel evaluation strategy based on 𝛿-support vector regression (𝛿-
SVR) is proposed in this paper. Lower computer calculation demand is considered firstly. And this is dealt with by the superiority
of 𝛿-SVR which can be significantly improved on the number of support vectors. Moreover, the function of 𝛿-SVR employs the
modified RBF kernel function which is constructed from an original kernel by removing the last coordinate and adding the linear
term with the last coordinate. Experiment adopted the typical circuit Sallen-Key low pass filter to prove the proposed evaluation
strategy via the eight performance indexes. Simulation results reveal that the need of the number of 𝛿-SVR support vectors is the
lowest among the other twomethods LSSVR and 𝜀-SVR under obtaining nearly the same evaluation result. And this is also suitable
for promotion computational speed.

1. Introduction

With the popularization and complication of electronic
equipment, many analog electronic functions have been
replaced with digital equivalents; however, there still exists
a need to use amplifiers [1]. Actually, all of the electronic
circuits, such as voice signals conversion, conversion, and
sensor signals microprocession and conversion, are not out
of the amplifiers [2]. At the same time, the existence of
circuit nonlinearities and component tolerances, noise, and
the lack of training data make the performance detection
or diagnosis of amplifier very complex [3–5]. At the same
time, it looks that the performance evaluation or the detec-
tion of amplifiers has become increasingly important in
the age full of electronic products world. Lots of reasons
such as physical damage, manufacturing technique, aging,
radiation, temperature changes, and power surges can all
make the performance change. Via this performance or
detection system, the further electronic products status can
be forecasted, and some disaster faults can be avoided. Then
the electronic systems can be in good condition on the right
time. To this issue, some researchers have paid attention
to the fault diagnosis, performance evaluation, and so on

about amplifiers [6]. And they are not in the early stage of
development, but the technique still developed slowly for
complication development of electronic equipment complex.
Some researchers focus on the data-driven method and lots
of literatures [7–10] had attempted to use it. The same things
happened to the robust control [11–17].

With the technique development of the control strat-
egy, much control theory such as neural network, fuzzy
logic, genetic algorithm, and so forth, which offer enough
develop space for amplifiers performance evaluation [18–20].
And support vector machine (SVM) has been extensively
applied and researched. Zhang and Yu [21] focused on the
requirements for amplifier performance evaluation method’s
portability and low cost.The support vector regression (SVR)
evaluation strategy was firstly proposed, and this evaluation
scheme has also inherited the evaluation precision simultane-
ously.However, the need of large number of support vectors is
the largest defect and this has been the major cause of its own
being promoted and applied. Focusing on this issue, some
literatures also discussed deeply [22, 23], and especially, the
issue about the number of the support vectors required in
the evaluation system concerned. 𝛿-SVR is concerned by a lot
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of researchers regarding its ability to generalize, realize SRM,
and generate sparse solutions [24].

This work, researched on the literature [24–26], proposed
an amplifier evaluation strategy based on 𝛿-SVR, presenting
the superiority of 𝛿-SVR about reducing support vector
number. Moreover the modified RBF kernel function is also
adopted which is constructed from an original kernel by
removing the last coordinate and adding the linear term with
the last coordinate. To demonstrate the effect, a typical circuit
Sallen-Key low pass filter is employed. Considering the eight
performance indexes of amplifiers, the testing is on.

2. Least Square Support Vector Regression

2.1. Normal LSSVR. Support vector machine (SVM) is orig-
inally developed by Vapnik [27] for solving nonlinear clas-
sification problems, and it has also been widely used in the
regression problems [28]. Here suppose the training data
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where 𝛼 is the Lagrangian multiplier vector. The conditions
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Eliminating the vectors w and 𝜉, the following linear
equation set is defined:
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After obtaining the solution 𝛼 via (4), for any new testing
sample, then we have the predicted value
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2.2. 𝛿-SVR. Aiming the same set of {(𝑥
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training data is similarly mapped to 𝑦
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∈ 𝑅. And in this paper

we employ the 𝛿-SVR scheme proposed in [24] as follows.
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𝑖
is duplicated; an output
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(ii) Every training example 𝑥
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sification example by incorporating the output as
an additional feature and setting class 1 for original
training examples and class -1 for duplicated training
examples.

(iii) Support vector classification (SVC) is run with the
classification mappings.

(iv) The solution of SVC is converted to a regression form.

Note 1. The definition of SVC, which can be found in [24], is
omitted here.

Generally speaking, simple linear kernel function should
not solve the problem about a longer time of testing new
examples. To overcome this issue, many literatures have dis-
cussed much. One of them presented a novel scheme which
employed a new kernel type in which the last coordinate is
placed only inside a linear term [29]. Based on this idea, [24]
proposed a new kernel is constructed from an original kernel
by removing the last coordinate and adding the linear term
with the last coordinate. And here the most popular kernel
RBF is employed and defined by

exp−

𝑥 − 𝑦

2

2𝜎2
→ exp−

∑
𝑚

𝑖=1
(𝑥
𝑖
− 𝑦
𝑖
)
2

2𝜎2
+ 𝑥
𝑚+1

𝑦
𝑚+1

, (7)

where 𝑥 and 𝑦 are here 𝑚 + 1 dimensional vectors. The pro-
posed method of constructing new kernels always generates
a function fulfillingMercer’s condition. And the explicit form
for 𝛿-SVR is defined by

𝑥
𝑚+1

= −
∑
2𝑙

𝑖=1
𝑦
𝑖

𝑐
𝛼
𝑖
𝑘
𝑜
(𝑏
𝑖
, 𝑥
𝑟
) − 𝑏
𝑐

∑
2𝑙

𝑖=1
𝑦𝑖
𝑐
𝛼
𝑖
𝑐
𝑚+1

𝑖

, (8)

where 𝑥
𝑟
= (𝑥
1
, . . . , 𝑥

𝑚
) and 𝑘

𝑜
(⋅) is the original kernel from

which the new one was constructed (8).



Abstract and Applied Analysis 3

Table 1: Result of comparative experiment.

TRSN TESN FN Method Parameter
(𝜎, 𝜉, 𝐶) SVN TRMSE TEMSE

259 × 100 59 × 100 8 𝛿-SVR (0.1, 0.01, 6) 1095 2.4291𝑒 − 026 2.0009𝑒 − 031

259 × 100 59 × 100 8 LSSVR (0.1, 0.01, 6) 1689 3.3619𝑒 − 019 3.9276𝑒 − 023

259 × 100 59 × 100 8 𝜀-SVR (0.1, 0.01, 6) 1407 2.4967𝑒 − 018 2.0138𝑒 − 015

Note 2. SVNdenotes the number of support vectors, TESNdenotes the number of testing support vectors, TRSNdenotes the number of training support vectors,
FN denotes the number of the data features, TEMSE denotes the testing data mean square error and TDMSE denotes the training data mean square error.

3. Simulation

3.1. Data Processing. Before the evaluation system, the data
should be processed firstly. In this experiment, experi-
ment data obtained based on the college analog electronics
technique and the experiment data, eight indexes, such as
gain, transmission band, cut-off frequency, lower cut-off fre-
quency, maximum undistorted output amplitude, maximum
undistorted power output, input sensitivity, and noise voltage
are obtained by precise instrument evaluation in two years.
For the following experiments, a lot of preprocessing should
be done.

We set the number of data sample to be 259 × 100, and
this is recorded data set 𝑅. And a normalization data scheme,
denoted by (9), is employed to settle the strangeness value in
the data set:
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before and after normalization, respectively, and 𝑥
max
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and
𝑥
min
𝑖

are the maximum and minimum values of all the
components of the input vector before the normalization,
respectively. Completing data preprocessing via 0-1 normal-
ization method, the noise has been reduced obviously.

After the above data selection and data normalization,
there are 200× 100 samples selected randomly to be the train-
ing samples, and the rest parts are to be a test sample. During
this testing, in order to achieve performance comparison
and analysis, another two evaluation schemes LSSVR and 𝜀-
SVR are also carried out while the amplifier performance
evaluation is on with the modified 𝛿-SVR method. At the
same time, several parameters need to be introduced firstly.
First of all, it is necessary to denote three parameters, namely,
error insensitive zone (𝜀), penalty factor𝐶, and kernel specific
parameters 𝜎. Then the parameters selection is another
key issue. Several researchers had discussed the problem
regarding the choice of 𝜉,𝐶, and 𝜎 [30, 31].The penalty factor
𝐶 controls the smoothness or flatness of the approximation
function. Whatever the penalty factor 𝐶 is to be set big or
small, the result would not be satisfied. If we set the value 𝐶

to be large, the objective is only to minimize the empirical
risk, which makes the learning machine more complex. On
the contrary, if we set the value 𝐶 to be small, the objective
is to cause the errors to be excessively tolerated yielding
a learning machine with poor approximation [32]. In this
experiment, LSSVR models have been constructed with 𝐶

and 𝑒 varied starting from 𝐶 = 6 and 𝜉 = 0.01 which

are the empirical values given by [32]. Via some testing,
the parameters 𝐶 and 𝑒 have been varied over a specific
corresponding range in order to obtain better coefficient of
correlation value, and the correlation value, denoted by 𝑅𝑒,
is determined by (10). The kernel specific parameter 𝜎 is
restricted since the value shown in Table 1 gives the better
prediction for these models. The other necessary parameters
of these three evaluation schemes are shown in Table 1. Only
the proposed evaluation scheme adopts themodifiedRBF (7),
and another two evaluationmethods employ the popular RBF
kernel function. The adopted 𝐶, 𝜉, and 𝜎 values for the four
models are shown in Table 1. Consider
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error is denoted as follows:
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where 𝑋
𝑖
is the real value, 𝑋

𝑖
is the predicted value, and 𝐾 is

a testing sample number.

3.2. Preparing before Simulation. For proving this proposed
amplifiers performance evaluation, a typical circuit Sallen-
Key low pass filter is employed, which is shown in Figure 1
[33], to be the testing object. Aiming at eight indexes of
the amplifiers, the training data set is confirmed. Thus, the
sample point (𝑥, 𝑦) and the correspondingly training set 𝑆 =

{(𝑥
1
, 𝑦
1
), (𝑥
2
, 𝑦
2
), . . . , (𝑥

𝑖
, 𝑦
𝑖
)} can be defined.

3.3. Simulation Experiment. After the above data preprocess-
ing, simulation experiments are to be done. For validating,
the superiority of the 𝛿-SVR has significantly improved on
the number of support vectors and has the best evaluation
performance at the same time; the other two evaluation
schemes, LSSVR and 𝜀-SVR, are also employed here.

The sharp contrast of the well performance evaluation
and improving on the number of support vectors with the
three methods are presented in Figures 2, 3, 4, and 5. We
take 6.2-second testing time as a period to be in comparison.
Via this testing comparing, we can see clearly that the three
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Figure 1: Sallen-Key low pass filter.

Table 2: Result of comparative assessment.

Method 𝐹

20lg|𝐴
𝑢
| 𝑓BW (KHz) 𝑓

𝐿
(KHz) 𝑓

𝐻
(KHz) 𝑈om (V) 𝑃om (W) 𝑈

𝑆
(mV) 𝑈

𝑁
(mV)

𝛿-SVR 40.022 10.000 0.004 10.003 61.541 473.412 0.031 0.052
LSSVR 40.029 9.998 0.004 10.005 61.540 473.413 0.031 0.055
𝜀-SVR 40.021 10.000 0.004 10.003 61.540 473.412 0.032 0.051
Instrument 40.020 10.001 0.004 10.005 61.541 473.412 0.030 0.050
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Figure 2: Local regression curve of gain 20 lg|Au| with the three
methods.

methods all have well performance evaluation ability, but the
proposed 𝛿-SVR scheme has more ability to improve the
number of support vectors. For further explanation of the
issue, Tables 1 and 2 have all given out the same things to prove
the evaluation precision and the ability to improve on the
number of support vectors. Moreover, the precise instrument
method is utilized in this experiment for proving the well
performance of the evaluation.

4. Conclusion

Considering the demand of lower computer calculation
and complexity, a novel amplifiers performance evaluation
strategy is presented based on 𝛿-SVR. The modified kernel
function RBF is employed. The modified RBF is constructed
from an original kernel by removing the last coordinate and
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Figure 3: Local regression curve of output amplitude (𝑈
𝑜
) with the

three methods.

adding the linear term with the last coordinate. Experiments
reveal the superiority of the 𝛿-SVR, which needs a small
amount of support vectors, compared with the other two
methods LSSVR and 𝜀-SVR. The performance evaluation
precision by the three schemes is also verified via this
experiment.
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