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A numerical method is presented for solving the singularly perturbed multipantograph delay equations with a boundary layer at
one end point. The original problem is reduced to boundary layer and regular domain problems. The regular domain problem is
solved by combining the asymptotic expansion and the reproducing kernel method (RKM).The boundary layer problem is treated
by the method of scaling and the RKM. Two numerical examples are provided to illustrate the effectiveness of the present method.
The results from the numerical example show that the present method can provide very accurate analytical approximate solutions.

1. Introduction

In this paper, we consider the following singularly perturbed
multipantograph delay equation:

𝜀𝑢
󸀠󸀠

(𝑥) + 𝑎 (𝑥) 𝑢
󸀠

(𝑥) +

𝑚

∑

𝑖=1

𝑏
𝑖
(𝑥) 𝑢 (𝑞

𝑖
𝑥) = 𝑓 (𝑥) ,

0 < 𝑥 < 1,

𝑢 (0) = 𝛼, 𝑢 (1) = 𝛾,

(1)

where 0 < 𝜀 ≪ 1, 0 < 𝑞
𝑖
≤ 1, 𝑚 is a positive integer and

𝑎(𝑥), 𝑏
𝑖
(𝑥) and 𝑓(𝑥) are assumed to be sufficiently smooth,

such that (1) has a unique solution with a boundary layer at
𝑥 = 0.

Singularly perturbed problems arise frequently in appli-
cations including geophysical fluid dynamics, oceanic and
atmospheric circulation, chemical reactions, and optimal
control.These problems are characterized by the presence of a
small parameter that multiplies the highest order derivative,
and they are stiff and there exist boundary layers where the
solutions change rapidly.

Functional differential equations with proportional
delays are usually referred to as pantograph equations. These
equations arise in a variety of applications, such as number

theory, electrodynamics, astrophysics, nonlinear dynamical
systems, probability theory on algebraic structure, quantum
mechanics, and cell growth.

Recently, singularly perturbed delayed differential equa-
tions have attracted significant attention.Thenumerical treat-
ment of such problems presents some major computational
difficulties, and therefore discussion on numerical solutions
of singularly perturbed delayed differential equation is rare.
Amiraliyev et al. [1, 2] proposed a uniformnumericalmethod
for dealing with singularly perturbed delay initial value prob-
lems. Kadalbajoo et al. [3–6] presented some effective meth-
ods for solving singularly perturbed delay boundary value
problems. In [7], Amiraliyev and Cimen also introduced a
numerical method for singularly perturbed delay boundary
value problems. In [8], Rai and Sharma described a numerical
method based on fitted operator finite difference scheme for
the boundary value problems for singularly perturbed delay
differential equations with turning point and mixed shifts.

Reproducing kernel theory has important applications
in numerical analysis, differential equations, probability,
and statistics, amongst other fields [9–20]. Recently, using
the reproducing kernel method (RKM), the authors have
discussed various differential equations [11–20]. However, it
is very difficult to expand the application of the RKM to
singularly perturbed delayed differential equations. Geng [13]
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developed amethod for solving a class of singularly perturbed
boundary value problems based on the RKM and a proper
transformation. Nevertheless, this method fails to solve sin-
gularly perturbed delayed differential equations.

In this paper, based on the RKM presented in [9, 11],
an effective numerical method will be presented for solving
singularly perturbed delayed boundary value problem (1).

The rest of the paper is organized as follows. In the next
section, the numerical technique for (1) is introduced. Error
analysis is introduced in Section 2. The numerical example
is given in Section 3. Section 4 ends this paper with a brief
conclusion.

2. Numerical Method

We divide the domain [0, 1] into two subdomains, namely,
[0, 𝐾𝜀] and [𝐾𝜀, 1], where 𝐾 is a positive real number.
The asymptotic approximation technique and the RKM are
combined to solve (1) in the regular domain [𝐾𝜀, 1]. And
then the value of asymptotic approximation in the regular
domain is used as the boundary condition at the so-called
transition point 𝑥 = 𝐾𝜀. In the boundary layer domain
[0, 𝐾𝜀], (1) is solved by combining the method of scaling and
the RKM. After solving both the regular and boundary layer
domain problems their solutions are combined to obtain an
approximate solution to the original problem over the entire
domain [0, 1].

2.1. Solution of the Regular Domain. We seek the regular
region solution as an asymptotic expansion of the form

𝑢
𝑟
(𝑥) =

𝑀

∑

𝑘=0

𝜀
𝑘
𝑢
𝑘
(𝑥) , (2)

where 𝑢
𝑘
(𝑥) are unknown functions to be determined.

Substituting 𝑢
𝑟
(𝑥) into (1) and equating the coefficients of

like powers of 𝜀, we obtain

𝑎 (𝑥) 𝑢
󸀠

0
(𝑥) +

𝑚

∑

𝑖=1

𝑏
𝑖
(𝑥) 𝑢
0
(𝑞
𝑖
𝑥) = 𝑓 (𝑥) , 𝑢

0
(1) = 𝛾,

𝑎 (𝑥) 𝑢
󸀠

1
(𝑥) +

𝑚

∑

𝑖=1

𝑏
𝑖
(𝑥) 𝑢
1
(𝑞
𝑖
𝑥) = −𝑢

󸀠󸀠

0
(𝑥) , 𝑢

1
(1) = 0,

𝑎 (𝑥) 𝑢
󸀠

2
(𝑥) +

𝑚

∑

𝑖=1

𝑏
𝑖
(𝑥) 𝑢
2
(𝑞
𝑖
𝑥) = −𝑢

󸀠󸀠

1
(𝑥) , 𝑢

2
(1) = 0,

...

𝑎 (𝑥) 𝑢
󸀠

𝑀
(𝑥) +

𝑚

∑

𝑖=1

𝑏
𝑖
(𝑥) 𝑢
𝑀
(𝑞
𝑖
𝑥) = −𝑢

󸀠󸀠

𝑀−1
(𝑥) , 𝑢

𝑀
(1) = 0.

(3)

By the RKM, the solutions of the above equations
𝑢
0
, 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑀
(𝑥) can be approximated by

𝑢
0,𝑁
(𝑥) = 𝛾 +

𝑁

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑓
0
(𝑥
𝑘
) 𝜓
𝑖
(𝑥) ,

𝑢
1,𝑁
(𝑥) =

𝑁

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑓
1
(𝑥
𝑘
) 𝜓
𝑖
(𝑥) ,

𝑢
2,𝑁
(𝑥) =

𝑁

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑓
2
(𝑥
𝑘
) 𝜓
𝑖
(𝑥) ,

...

𝑢
𝑀,𝑁

(𝑥) =

𝑁

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑓
𝑀
(𝑥
𝑘
) 𝜓
𝑖
(𝑥) ,

(4)

where 𝑓
0
(𝑥) = 𝑓(𝑥) − 𝛾∑

𝑚

𝑖=1
𝑏
𝑖
(𝑥), 𝑓
1
(𝑥) = −𝑢

󸀠󸀠

0,𝑁
(𝑥), 𝑓
2
(𝑥) =

−𝑢
󸀠󸀠

1,𝑁
(𝑥), . . . , 𝑓

𝑀
(𝑥) = −𝑢

󸀠󸀠

𝑀−1,𝑁
(𝑥).

Therefore, the solution of regular region 𝑢
𝑟
(𝑥) can be

approximated by

𝑢
𝑟,𝑁
=

𝑀

∑

𝑘=0

𝜀
𝑘
𝑢
𝑘,𝑁
(𝑥) . (5)

In the following, we will show how to solve (3) using the
RKM in detail.

Consider the following operator equation:

𝐿V (𝑥) ≡ 𝑎 (𝑥) V󸀠 (𝑥) +
𝑚

∑

𝑖=1

𝑏
𝑖
(𝑥) V (𝑞

𝑖
𝑥) = ℎ (𝑥) , 0 < 𝑥 < 1,

V (1) = 0.
(6)

Under the assumption that (3) has a unique solution, we will
give the approximate solution of (3) in the reproducing kernel
space𝑊2

2
[0, 1].

The reproducing kernel space 𝑊2
2
[0, 1] is defined as

𝑊
2

2
[0, 1] = {𝑢(𝑥) | 𝑢(𝑥), 𝑢

󸀠
(𝑥) are absolutely continuous

real valued functions, 𝑢󸀠󸀠(𝑥) ∈ 𝐿2[0, 1], 𝑢(1) = 0}. The inner
product and norm in𝑊2

2
[0, 1] are given, respectively, by

(𝑢 (𝑦) , V (𝑦))
𝑊
2

2

= 𝑢 (0) V (0) + 𝑢 (1) V (1) + ∫
1

0

𝑢
󸀠󸀠V󸀠󸀠𝑑𝑦,

‖𝑢‖
𝑊
2

2

= √(𝑢, 𝑢)
𝑊
2

2

, 𝑢, V ∈ 𝑊2
2
[0, 1] .

(7)

Its reproducing kernel is

𝑅
𝑥
(𝑦) =

{
{
{

{
{
{

{

1

6

(𝑥 − 1) (𝑦
3
+ (𝑥
2
− 2𝑥 + 6) 𝑦 − 6) , 𝑦 ≤ 𝑥,

1

6

(𝑦 − 1) (𝑥
3
+ (𝑦
2
− 2𝑦 + 6) 𝑥 − 6) , 𝑦 > 𝑥.

(8)



Abstract and Applied Analysis 3

0.2 0.4 0.6 0.8 1

x

2

×10
−6

4

6

8

10

Ab
so

lu
te

 er
ro

rs

(a)

0.002 0.004 0.006 0.008 0.01

x

2

×10
−6

4

6

8

10

Ab
so

lu
te

 er
ro

rs

(b)

Figure 1: Absolute errors |𝑢(𝑥) − 𝑢
200
(𝑥)| of Example 1 for 𝜀 = 10−3 ((a): regular domain; (b): boundary later domain).
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Figure 2: Absolute errors |𝑢(𝑥) − 𝑢
200
(𝑥)| of Example 1 for 𝜀 = 10−5 ((a): regular domain; (b): boundary later domain).

For detailed method of obtaining reproducing kernel 𝑅
𝑥
(𝑦),

please refer to [9, 15].
In (6), it is clear that 𝐿 : 𝑊2

2
[0, 1] → 𝑊

1

2
[0, 1] is a

bounded linear operator (please see [9] for the definition of
𝑊
1

2
[0, 1]). Put 𝜑

𝑖
(𝑥) = 𝑅

𝑥
𝑖

(𝑥) and 𝜓
𝑖
(𝑥) = 𝐿

∗
𝜑
𝑖
(𝑥), where

𝑅
𝑥
(𝑦) is the reproducing kernel of𝑊1

2
[0, 1], 𝐿∗ is the adjoint

operator of 𝐿. The orthonormal system {𝜓
𝑖
(𝑥)}
∞

𝑖=1
of𝑊2
2
[0, 1]

can be derived from the Gram-Schmidt orthogonalization
process applied to {𝜓

𝑖
(𝑥)}
∞

𝑖=1
,

𝜓
𝑖
(𝑥) =

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝜓
𝑘
(𝑥) , (𝛽

𝑖𝑖
> 0, 𝑖 = 1, 2, . . .) . (9)

Theorem 1. For (6), if {𝑥
𝑖
}
∞

𝑖=1
is dense on [0, 1], then {𝜓

𝑖
(𝑥)}
∞

𝑖=1

is the complete system of𝑊2
2
[0, 1] and 𝜓

𝑖
(𝑥) = 𝐿

𝑦
𝑅
𝑥
(𝑦)|
𝑦=𝑥
𝑖

.

Proof. Note here that

𝜓
𝑖
(𝑥) = (𝐿

∗
𝜑
𝑖
) (𝑥) = ((𝐿

∗
𝜑
𝑖
) (𝑦) , 𝑅

𝑥
(𝑦))

= (𝜑
𝑖
(𝑦) , 𝐿

𝑦
𝑅
𝑥
(𝑦)) = 𝐿

𝑦
𝑅
𝑥
(𝑦)

󵄨
󵄨
󵄨
󵄨
󵄨𝑦=𝑥
𝑖

.

(10)

Clearly, 𝜓
𝑖
(𝑥) ∈ 𝑊

2

2
[0, 1].

For each fixed 𝑢(𝑥) ∈ 𝑊2
2
[0, 1], let (𝑢(𝑥), 𝜓

𝑖
(𝑥)) = 0, (𝑖 =

1, 2, . . .), which means that

(𝑢 (𝑥) , (𝐿
∗
𝜑
𝑖
) (𝑥)) = (𝐿𝑢 (⋅) , 𝜑

𝑖
(⋅)) = (𝐿𝑢) (𝑥

𝑖
) = 0. (11)

Since {𝑥
𝑖
}
∞

𝑖=1
is dense on [0, 1], (𝐿𝑢)(𝑥) = 0. It follows that

𝑢 ≡ 0 from the existence of 𝐿−1. So the proof of theTheorem 1
is complete.

Theorem 2. If {𝑥
𝑖
}
∞

𝑖=1
is dense on [0, 1] and the solution of (6)

is unique, then the solution of (6) is

V (𝑥) =
∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
ℎ (𝑥
𝑘
) 𝜓
𝑖
(𝑥) . (12)

Proof. Applying Theorem 1, it is easy to see that {𝜓
𝑖
(𝑠)}
∞

𝑖=1
is

the complete orthonormal basis of𝑊2
2
[0, 1].
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Figure 3: Absolute errors |𝑢(𝑥) − 𝑢
200
(𝑥)| of Example 1 for 𝜀 = 10−7 ((a): regular domain; (b): boundary later domain).

Table 1: Comparison of maximum absolute error with other
methods for𝑁 = 64.

𝜀 [21] [22] Present method
2
−12

1.49𝑒 − 002 4.80𝑒 − 004 2.60𝑒 − 005

2
−20

1.53𝑒 − 002 1.87𝑒 − 006 2.60𝑒 − 005

Note that (𝑤(𝑠), 𝜑
𝑖
(𝑠)) = 𝑤(𝑠

𝑖
) for each 𝑤(𝑥) ∈ 𝑊1

2
[0, 1];

hence we have

V (𝑥) =
∞

∑

𝑖=1

(V (𝑥) , 𝜓
𝑖
(𝑥)) 𝜓

𝑖
(𝑥)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
(V (𝑥) , 𝐿∗𝜑

𝑘
(𝑥)) 𝜓

𝑖
(𝑥)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
(𝐿V (𝑥) , 𝜑

𝑘
(𝑥)) 𝜓

𝑖
(𝑥)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
(ℎ (𝑥) , 𝜑

𝑘
(𝑥)) 𝜓

𝑖
(𝑥)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
ℎ (𝑥
𝑘
) 𝜓
𝑖
(𝑥)

(13)

and the proof of the theorem is complete.

The approximate solution V
𝑁
(𝑥) can be obtained by

taking finitely many terms in the series representation of V(𝑥)
and

V
𝑁
(𝑥) =

𝑁

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
ℎ (𝑥
𝑘
) 𝜓
𝑖
(𝑥) . (14)

2.2. Solution of the Boundary Layer Domain. Consider

𝜀𝑢
󸀠󸀠

(𝑥) + 𝑎 (𝑥) 𝑢
󸀠

(𝑥) +

𝑚

∑

𝑖=1

𝑏
𝑖
(𝑥) 𝑢 (𝑞

𝑖
𝑥)

= 𝑓 (𝑥) , 0 < 𝑥 < 𝐾𝜀,

𝑢 (0) = 𝛼, 𝑢 (𝐾𝜀) = 𝛿 ≜ 𝑢
𝑟,𝑁
(𝐾𝜀) .

(15)

Table 2: Comparison of maximum absolute error with other
methods for𝑁 = 256.

𝜀 [21] [22] Present method
2
−12

3.40𝑒 − 003 4.86𝑒 − 004 2.98𝑒 − 008

2
−20

3.90𝑒 − 002 1.90𝑒 − 006 2.98𝑒 − 008

For the boundary layer domain, we scale 𝑥 = 𝜀𝑠 with 𝑦(𝑠) ≡
𝑢(𝑥); then (15) becomes

𝑦
󸀠󸀠

(𝑠) + 𝑎 (𝜀𝑠) 𝑦
󸀠
(𝑦) + 𝜀

𝑚

∑

𝑖=1

𝑏
𝑖
(𝜀𝑠) 𝑦 (𝑞

𝑖
𝑠)

= 𝜀𝑓 (𝜀𝑠) , 0 < 𝑠 < 𝐾,

𝑦 (0) = 𝛼, 𝑦 (𝐾) = 𝛿.

(16)

Using the similar method for solving (3), we can obtain the
approximate solution of (16) in the reproducing kernel space
𝑊
3

2
[0, 𝐾] = {𝑢(𝑥) | 𝑢

󸀠󸀠
(𝑥) is an absolutely continuous real

valued function, 𝑢󸀠󸀠󸀠(𝑥) ∈ 𝐿2[0, 𝐾], 𝑢(0) = 0, 𝑢(𝐾) = 0}, in
which the inner product and norm are given, respectively, by

(𝑢 (𝑦) , V (𝑦))
𝑊
3

2

= 𝑢 (0) V (0) + 𝑢󸀠 (0) V󸀠 (0)

+ 𝑢 (𝐾) V (𝐾) + ∫
𝐾

0

𝑢
󸀠󸀠󸀠V󸀠󸀠󸀠𝑑𝑦,

‖𝑢‖
𝑊
3

2

= √(𝑢, 𝑢)
𝑊
3

2

.

(17)

The approximate solution of (16) can be represented by

𝑦
𝑁
(𝑠) =

𝑁

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑔 (𝑠
𝑘
) 𝜓
𝑖
(𝑠) , (18)

where𝑔(𝑠) = 𝜀𝑓(𝜀𝑠).Therefore, the approximation of solution
𝑢
𝑙
(𝑥) of boundary layer domain problem (15) can be obtained

by

𝑢
𝑙,𝑁
(𝑥) = 𝑦

𝑁
(

𝑥

𝜀

) . (19)
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Table 3: Comparison of computed solution with [22–25] for Example 4.2 with𝑁 = 100 and 𝜀 = 10−3.

𝑥 Exact solution Present method [22] [23] [24, 25]
0.01 −0.987875 −0.987921 −0.989854 −1.398575 −2.607798
0.03 −0.967160 −0.967161 −0.969099 −1.603239 −1.940047
0.05 −0.945600 −0.945602 −0.947500 −1.579587 −1.698810
0.07 −0.923240 −0.923242 −0.925100 −1.550175 −1.598463
0.09 −0.900080 −0.900082 −0.901900 −1.519601 −1.544179
0.10 −0.888200 −0.888202 −0.890000 −1.503912 −1.509999
0.30 −0.608600 −0.608603 −0.610000 −1.134145 −1.144100
0.50 −0.249000 −0.249005 −0.250000 −0.657717 −0.664829
0.70 0.190600 0.190594 0.190000 −0.074626 −0.078895
0.90 0.710200 0.710193 0.710000 0.615126 0.613702
1.00 1.000000 1.000000 1.000000 1.000000 1.000000

From (5) and (19), the approximate solution of (1) on the
entire region [0, 1] is immediately obtained as follows:

𝑢
𝑁
(𝑥) = {

𝑢
𝑙,𝑁
(𝑥) , 0 ≤ 𝑥 ≤ 𝐾𝜀,

𝑢
𝑟,𝑁
(𝑥) , 𝐾𝜀 < 𝑥 ≤ 1.

(20)

3. Numerical Examples

Example 1. Consider the following singular perturbation
problem with pantograph delay

𝜀𝑢
󸀠󸀠

(𝑥) + 𝑒
𝑥
𝑢
󸀠

(𝑥) + sin (𝑥) 𝑢 (𝑥)

+ 𝑢 (

𝑥

3

) + 𝑢 (

2𝑥

3

) = 𝑓 (𝑥) , 0 < 𝑥 < 1,

(21)

𝑢 (0) = 3, 𝑢 (1) = 3 + sinh (1) , (22)
where 𝑓(𝑥) is given such that its exact solution is 𝑢(𝑥) = 3 +
sinh(𝑥) + 2𝑥𝑒−𝑥/𝜀. Using the present method and taking𝑀 =

1, 𝐾 = 10, 𝑥
𝑖
= 𝑖/𝑁 (regular domain), 𝑠

𝑖
= 𝐾(𝑖 − 1)/(𝑁 −

1) (boundary layer domain), 𝑖 = 1, 2, . . . , 𝑁, 𝑁 = 200 and
𝜀 = 10

−3, 𝜀 = 10−5, 𝜀 = 10−7, respectively, the numerical
results are given in Figures 1, 2, and 3. All computations are
performed by using Mathematica 5.1.

Example 2. For comparison, we consider the following sin-
gular perturbation problem without delay [21–25]

𝜀𝑢
󸀠󸀠

(𝑥) + 𝑢
󸀠

(𝑥) = 2𝑥 + 1, 0 < 𝑥 < 1,

𝑢 (0) = 0, 𝑢 (1) = 1.

(23)

Its exact solution is 𝑢(𝑥) = 𝑥(𝑥 + 1 − 2𝜀) + (2𝜀 − 1)(1 −
𝑒
−𝑥/𝜀
)/(1−𝑒

−1/𝜀
). Using the presentmethod and taking𝑀 = 1,

𝐾 = 10, 𝑥
𝑖
= 𝑖/𝑁 (regular domain), 𝑠

𝑖
= 𝐾(𝑖 − 1)/(𝑁 − 1)

(boundary layer domain), 𝑖 = 1, 2, . . . , 𝑁, the numerical
results compared with other methods are given in Tables 1,
2, and 3. It is shown that the present method can yield better
results than existing methods.

4. Conclusion

In this paper, a newmethod is proposed for solving singularly
perturbed multipantograph delay equations. The present

method is based on the RKM, the asymptotic expansion
technique, and the method of scaling. The major advantage
of the method is that it can produce good globally contin-
uous approximate solutions. The results from the numerical
example show that the present method is an accurate and
reliable analytical technique for treating singularly perturbed
multipantograph delay equations.
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