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We study the following nonhomogeneous Kirchhoff equation: −(𝑎 + 𝑏 ∫
𝑅
3
|∇𝑢|
2
𝑑𝑥)Δ𝑢 + 𝑢 = 𝑘(𝑥)𝑓(𝑢) + ℎ(𝑥), 𝑥 ∈ 𝑅

3
, 𝑢 ∈

𝐻
1
(𝑅
3
), 𝑢 > 0, 𝑥 ∈ 𝑅

3, where 𝑓 is asymptotically linear with respect to 𝑡 at infinity. Under appropriate assumptions on 𝑘, 𝑓,
and ℎ, existence of two positive solutions is proved by using the Ekeland’s variational principle and the Mountain Pass Theorem in
critical point theory.

1. Introduction and Main Results

In this paper, we consider the following nonhomogeneous
Kirchhoff equation:

−(𝑎 + 𝑏∫

𝑅
3

|∇𝑢|
2
𝑑𝑥)Δ𝑢 + 𝑢 = 𝑘 (𝑥) 𝑓 (𝑢) + ℎ (𝑥) ,

𝑥 ∈ 𝑅
3
,

𝑢 ∈ 𝐻
1
(𝑅
3
) , 𝑢 > 0, 𝑥 ∈ 𝑅

3
,

(1)

where constants 𝑎, 𝑏 > 0, and functions 𝑘,𝑓 and ℎ satisfy the
following conditions: 𝑘 is a positive bounded condition, 𝑓 ∈

𝐶(𝑅, 𝑅
+
), 𝑓(𝑡) ≡ 0 if 𝑡 < 0 and ℎ ∈ 𝐿2(𝑅3), ℎ ≥ 0. Note that,

with 𝑎 = 1, 𝑏 = 0, and𝑅3 replaced by𝑅𝑁, problem (1) reduces
to

−Δ𝑢 + 𝑢 = 𝑘 (𝑥) 𝑓 (𝑢) + ℎ (𝑥) in 𝑅𝑁, (2)

which can be looked at as a generalization of the well known
Schrödinger equation.

WhenΩ is a smooth bounded domain in𝑅𝑁, the problem

−(𝑎 + 𝑏∫

Ω

|∇𝑢|
2
𝑑𝑥)Δ𝑢 = 𝑔 (𝑥, 𝑢) , 𝑥 ∈ Ω,

𝑢 = 0, 𝑥 ∈ 𝜕Ω,

(3)

is related to the stationary analogue of the Kirchhoff equation
which was proposed by Kirchhoff in 1883 (see [1]) as a
generalization of the well known d’Alembert’s wave equation

𝜌
𝜕
2
𝑢

𝜕𝑡2
− (

𝑃
0

ℎ
+
𝐸

2𝐿
∫

𝐿

0



𝜕𝑢

𝜕𝑥



2

𝑑𝑥)
𝜕
2
𝑢

𝜕𝑥2
= 𝑔 (𝑥, 𝑢) (4)

for free vibrations of elastic strings. Kirchhoff ’s model takes
into account the changes in length of the string produced
by transverse vibrations. Here, 𝐿 is the length of the string,
ℎ is the area of the cross section, 𝐸 is the Young modulus
of the material, 𝜌 is the mass density, and 𝑃

0
is the initial

tension. Moreover, Kirchhoff ’s type problems also model
several physical systems and biological systems and there are
many interesting results for problem (3) which can be found
in [2–8] and the references therein.

Some interesting studies for Kirchhoff-type problem (3)
in a bounded domain Ω of 𝑅𝑁 by variational methods
can be found in [2, 9–22]. Very recently, some authors
had studied the Kirchhoff equation on the whole space
𝑅
𝑁 and obtained the existence of multiple solutions (see

[23–31]). In the same spirit of [24–26, 28–31], we study a
nonhomogeneous Kirchhoff equation (1) on the whole space
𝑅
3. Especially, inspired by the paper [32, 33], we consider the

asymptotically linear nonlinearity at infinity of problem (1).
For the nonhomogeneous Kirchhoff problem, Chen and Li in
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[23] study it under the condition of superlinear nonlinearity
at infinity. In [33], Wang and Zhou study the existence of two
positive solutions for a nonhomogeneous elliptic equation
((1) with 𝑎 = 1 and 𝑏 = 0). In [32], Sun et al. study the
existence of a ground state solution for some nonautonomous
Schrödinger-Poisson systems involving the asymptotically
linear nonlinearity at infinity without the nonhomogeneous
term. But we will study the existence of two positive solutions
for Kirchhoff-type problem (1) with 𝑎, 𝑏 > 0, the asymptoti-
cally linear nonlinearity at infinity and the nonhomogeneous
term. So, we can not obtain the existence of a ground state
solution for Kirchhoff-type problem (1) and the compactness
result as in [32] because of the nonhomogeneous term, and
we cannot easily obtain the compactness result as in [33] due
to the nonlocal term (or 𝑏 ̸= 0). To our best knowledge, little
has been done for nonhomogeneousKirchhoff problemswith
respect to the asymptotically linear nonlinearity at infinity.

Before stating our main results, we give some notations.
For any 1 ≤ 𝑞 ≤ +∞, we denote by ‖ ⋅ ‖

𝑞
the usual norm of

the Lebesgue space 𝐿𝑞(𝑅3). Define the function space

𝐻
1
(𝑅
3
) := {𝑢 ∈ 𝐿

2
(𝑅
3
) : ∇𝑢 ∈ 𝐿

2
(𝑅
3
)} (5)

with the product and equivalent norm

(𝑢, V) = ∫
𝑅
3

(𝑎∇𝑢 ⋅ ∇V + 𝑢V) 𝑑𝑥,

‖𝑢‖ := (∫

𝑅
3

(𝑎|∇𝑢|
2
+ |𝑢|
2
) 𝑑𝑥)

1/2

.

(6)

Define the function space

𝐷
1,2
(𝑅
3
) := {𝑢 ∈ 𝐿

6
(𝑅
3
) : ∇𝑢 ∈ 𝐿

2
(𝑅
3
)} (7)

with the standard product and norm

(𝑢, V) = ∫
𝑅
3

∇𝑢 ⋅ ∇V𝑑𝑥, ‖𝑢‖𝐷 := (∫

𝑅
3

|∇𝑢|
2
𝑑𝑥)

1/2

. (8)

Recall that the Sobolev’s inequality with the best constant is

‖V‖6 ≤ 𝑆 ‖V‖ . (9)

Moreover, problem (1) has a variational structure. Indeed the
corresponding action functional 𝐼 : 𝐻1(𝑅3) → 𝑅 of (1) is
defined by

𝐼 (𝑢) =
𝑎

2
∫

𝑅
3

|∇𝑢|
2
𝑑𝑥 +

𝑏

4
(∫

𝑅
3

|∇𝑢|
2
𝑑𝑥)

2

+
1

2
∫

𝑅
3

|𝑢|
2
𝑑𝑥

− ∫

𝑅
3

𝑘 (𝑥) 𝐹 (𝑢) 𝑑𝑥 − ∫

𝑅
3

ℎ (𝑥) 𝑢 𝑑𝑥.

(10)

By Lemma 2.1 in [24] or Lemma 1 in [25], the functional 𝐼 is
𝐶
1
(𝐻
1
(𝑅
3
), 𝑅) with the derivative given by

⟨𝐼

(𝑢) , 𝑢⟩ = (𝑎 + 𝑏∫

𝑅
3

|∇𝑢|
2
𝑑𝑥)∫

𝑅
3

∇𝑢 ⋅ ∇V 𝑑𝑥 + ∫
𝑅
3

𝑢V 𝑑𝑥

− ∫

𝑅
3

𝑘 (𝑥) 𝑓(𝑢) 𝑢 𝑑𝑥 − ∫

𝑅
3

ℎ (𝑥) V 𝑑𝑥.

(11)

Hence, if 𝑢 ∈ 𝐻1(𝑅3) is a nonzero critical point of 𝐼, then it is
also a nonnegative solution of (1). In fact, by 𝑓(𝑡) ≡ 0 if 𝑡 < 0
and ℎ ≥ 0, we have ⟨𝐼(𝑢), 𝑢−⟩ = −(𝑎 + 𝑏‖𝑢‖2) ∫

𝑅
3
|∇𝑢
−
|
2
𝑑𝑥 −

∫
𝑅
3
(𝑢
−
)
2
𝑑𝑥 − ∫

𝑅
3
𝑘(𝑥)𝑓(𝑢)𝑢

−
𝑑𝑥 − ∫

𝑅
3
ℎ(𝑥)𝑢

−
𝑑𝑥 = 0, where

𝑢
−
= max{−𝑢, 0}. This yields that 𝑢− = 0; then 𝑢 = 𝑢+ − 𝑢− =

𝑢
+
≥ 0, where𝑢+ = max{𝑢, 0}. By themaximumprinciple, the

nonzero critical point of 𝐼 is the positive solution for problem
(1).

Here is the main result of this paper.

Theorem 1. Suppose that ℎ ∈ 𝐿2(𝑅3), ℎ ≥ 0, and the following
conditions hold.

(f1) 𝑓 ∈ 𝐶(𝑅, 𝑅+), 𝑓(0) = 0, and 𝑓(𝑡) ≡ 0 for 𝑡 < 0.
(f2) lim

𝑡→0
(𝑓(𝑡)/𝑡) = 0.

(f3) lim
𝑡→+∞

(𝑓(𝑡)/𝑡) = 𝑙 < +∞.
(k1) 𝑘(𝑥) is a positive continuous function and there exists

𝑅
0
> 0 such that

sup{
𝑓(𝑡)

𝑡
: 𝑡 > 0} < inf { 1

𝑘 (𝑥)
: |𝑥| ≥ 𝑅0} . (12)

(k2) Let

𝑙
0
> 𝜇
∗
:= inf {∫

𝑅
3

(𝑎|∇𝑢|
2
+ 𝑢
2
) 𝑑𝑥 : 𝑢 ∈ 𝐻

1
(𝑅
3
) ,

∫

𝑅
3

𝑘 (𝑥) 𝐹 (𝑢) 𝑑𝑥 ≥
𝑏

2
𝑙
2
}

(13)

hold, where 𝑙
0
= min{𝑙, (𝑏/2)𝑙2}, 𝐹(𝑡) = ∫𝑡

0
𝑓(𝑠)𝑑𝑠.

Then problem (1) has at least two positive solutions 𝑢
0
, 𝑢 ∈

𝐻
1
(𝑅
3
) satisfying 𝐼(𝑢

0
) < 0 and 𝐼(𝑢) > 0 if ‖ℎ‖

2
< 𝑚 for some

small𝑚 > 0.

Remark 2. It is not difficult to find some functions 𝑘, 𝑓
satisfying conditions ofTheorem 1. For example, for any 𝑅

0
>

0, let

𝑓(𝑡) =

{

{

{

𝑅
0
𝑡
2

1 + 𝑡
, if 𝑡 ≥ 0,

0, if 𝑡 < 0.
(14)

Clearly, 𝑓 satisfies (f1)–(f3) with 𝑙 = 𝑅
0
. Moreover, 𝐹(𝑡) =

𝑅
0
((1/2)𝑡

2
−𝑡+ ln(1+𝑡)) and sup{𝑓(𝑡)/𝑡 : 𝑡 > 0} = 𝑅

0
. Taking

a positive continuous function 𝑘(𝑥),

𝑘 (𝑥) =

{{{

{{{

{

𝐶
0

1 + |𝑥|
, if |𝑥| ≤

𝑅
0

2
,

1

1 +
𝑅0



, if |𝑥| ≥ 𝑅0,
(15)

where 𝐶
0
= 3𝑀

3
(1 + 𝑅

0
/2)/4𝜋(ln 2 − 1/2) for some𝑀 > 0.

Note that

inf { 1

𝑘 (𝑥)
: |𝑥| ≥ 𝑅0} = 1 + 𝑅0 > 𝑅0

= sup{
𝑓(𝑡)

𝑡
: 𝑡 > 0} ;

(16)
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then (k1) holds. To verify the condition (k2), we have to
choose some special 𝑅

0
> 0. For any 𝑅 > 0, taking 𝜓 ∈

𝐶
∞

0
(𝑅
3
, [0, 1]) such that 𝜓(𝑥) = 1 if |𝑥| ≤ 𝑅, 𝜓(𝑥) = 0

if |𝑥| ≥ 2𝑅 and |∇𝜓(𝑥)| ≤ 𝐶/√𝑎𝑅 for all 𝑥 ∈ 𝑅
3, where

𝐶 > 0 is an arbitrary constant independent of 𝑥. Then, for
any 𝑅

0
> 2𝑅, we have

∫

𝑅
3

𝑘 (𝑥) 𝐹 (𝜓) 𝑑𝑥 ≥ ∫

|𝑥|≤𝑅

𝑘 (𝑥) 𝐹 (𝜓) 𝑑𝑥

≥
𝑅
0
𝐶
0

1 + 𝑅
(ln 2 − 1

2
)
𝐵𝑅 (0)



≥
3𝑀
3
(1 + 𝑅

0
/2)

4𝜋 (ln 2 − 1/2)
4𝜋𝑅
3
𝑅
0

3 (1 + 𝑅
0
/2)

× (ln 2 − 1

2
)

= 𝑀
3
𝑅
0
𝑅
3
,

(17)

∫

𝑅
3

(𝑎
∇𝜓



2
+
𝜓


2
) 𝑑𝑥 ≤ ∫

|𝑥|≤2𝑅

𝐶
2

𝑅2
𝑑𝑥 + ∫

|𝑥|≤2𝑅

𝑑𝑥

≤ (1 +
𝐶
2

𝑅2
)
32𝜋

3
𝑅
3

≤
32𝜋

3
𝑅 (𝐶
2
+ 𝑅
2
) .

(18)

Taking 𝑅
0
= 𝑙 = 1, 𝑅 = (1/𝑀)𝑅

0

3
√𝑏/2 = (1/𝑀)

3
√𝑏/2, where

𝑀 is large enough such that 2𝑅 < 𝑅
0
/4, 40𝜋/3𝑀3 < 1, and

(40𝜋/3𝑀
3
)(𝑏/2) < 1. Let 𝐶 = (1/4𝑀)

3
√𝑏/2. Then, we obtain

that ∫
𝑅
3
𝑘(𝑥)𝐹(𝜓)𝑑𝑥 ≥ 𝑏𝑅

0
/2 = 𝑏𝑙

2
/2. Moreover, in view of

the definition of 𝜇∗ and (18), one has

𝜇
∗
≤ ∫

𝑅
3

(𝑎
∇𝜓



2
+
𝜓


2
) 𝑑𝑥

≤
32𝜋

3
𝑅 (𝐶
2
+ 𝑅
2
) <

40𝜋

3𝑀3

𝑏

2
< 𝑙
0
.

(19)

So, condition (k2) holds. In particular, the condition (k1)
and above examples can also be found in [34] in which the
asymptotically linear term 𝑘(𝑥)𝑓(𝑢) satisfying (k1) appeared
first.

Remark 3. If ℎ ≡ 0, we know that problem (1) has a positive
ground state solution by using the method in [32] and a
trivial solution (𝑢(𝑥) ≡ 0). If ℎ ̸≡ 0, a trivial solution
(𝑢(𝑥) ≡ 0) is replaced by the local minimum solution by
Theorem 1. Note that the local minimal solution exists due
to the homogeneous term which is looked at as a small
perturbation because ‖ℎ‖

2
< 𝑚 for small𝑚.

In order to obtain our results, we have to overcome vari-
ous difficulties. Since the embedding of 𝐻1(𝑅3) into 𝐿𝑝(𝑅3),
𝑝 ∈ [2, 6], is not compact, condition (k1) and (k2) are crucial
to obtain the boundedness of Cerami sequence. Furthermore,
in order to recover the compactness, we establish a compact-
ness result ∫

|𝑥|≥𝑅
(|∇𝑢
𝑛
|
2
+ |𝑢
𝑛
|
2
)𝑑𝑥 ≤ 𝜀 which is similar to

[32] but different from the one in [24–26, 28–31]. In fact,

this difficulty can be avoided, when problems are considered,
restricting 𝐼 to the subspace of 𝐻1(𝑅3) consisting of radially
symmetric functions [23, 24, 29] and constraint potential
functions [25, 30], or when one is looking for semiclassical
states [28], by using perturbation methods or a reduction to
a finite dimension by the projections method. Third, it is not
difficult to find that every (PS) sequence is bounded because
a variant of Ambrosetti-Rabinowitz condition is satisfied (see
[23, 25, 31]). However, for the asymptotically linear case, we
have to find another method to verify the boundedness of
(PS) sequence.

This paper is organized as follows. In Section 2, we
manage to give proofs of Theorem 1. In the following discus-
sion, we denote various positive constants as 𝐶 or 𝐶

𝑖
(𝑖 =

1, 2, 3, . . .) for convenience.

2. Proof of Main Result

In this section, we prove that problem (1) has amountain pass
type solution and a local minimum solution with ℎ ̸≡ 0.
For this purpose, we use a variant version of Mountain Pass
Theorem [35], which allows us to find a so-called Cerami type
(PS) sequence (Cerami sequence, in short). The properties
of this kind of Cerami sequence sequences are very helpful
in showing its boundedness in the asymptotical cases. The
following lemmas will show that 𝐼 has the so-calledmountain
pass geometry.

Lemma 4. Suppose that ℎ ∈ 𝐿2(𝑅3), ℎ ≥ 0, ( f1)–(f3), and (k1)
hold. Then there exist 𝜌, 𝛼,𝑚 > 0 such that 𝐼(𝑢)|

‖𝑢‖=𝜌
≥ 𝛼 > 0

for ‖ℎ‖
2
< 𝑚.

Proof. For any 𝜀 > 0, it follows from (f1)–(f3) that there exists
𝐶
𝜀
> 0 such that

𝑓 (𝑡)
 ≤ 𝜀 |𝑡| + 𝐶𝜀|𝑡|

5
∀𝑡 ∈ 𝑅. (20)

Therefore, we have

|𝐹 (𝑡)| ≤
1

2
𝜀|𝑡|
2
+
𝐶
𝜀

6
|𝑡|
6

∀𝑡 ∈ 𝑅. (21)

Furthermore, by (f1)–(f3) and (k1), there exists 𝐶
1
> 0 such

that

𝑘 (𝑥) ≤ 𝐶1 ∀𝑥 ∈ 𝑅
3
. (22)

According to (21), (22), and the Sobolev inequality, we deduce
that



∫

𝑅
3

𝑘 (𝑥) 𝐹 (𝑢) 𝑑𝑥



≤
𝜀𝐶
1

2
∫

𝑅
3

|𝑢|
2
𝑑𝑥 +

𝐶
1
𝐶
𝜀

6
∫

𝑅
3

|𝑢|
6
𝑑𝑥

≤
𝜀𝐶
1

2
‖𝑢‖
2
+ 𝐶
2‖𝑢‖
6
,

(23)
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where 𝐶
2
= 𝐶
1
𝐶
𝜀
𝑆
6
/6. By 𝑏 > 0, ℎ ∈ 𝐿2(𝑅3), and the Hölder

inequality, one has

𝐼 (𝑢) =
𝑎

2
∫

𝑅
3

|∇𝑢|
2
𝑑𝑥 +

𝑏

4
(∫

𝑅
3

|∇𝑢|
2
𝑑𝑥)

2

+
1

2
∫

𝑅
3

|𝑢|
2
𝑑𝑥

− ∫

𝑅
3

𝑘 (𝑥) 𝐹 (𝑢) 𝑑𝑥 − ∫

𝑅
3

ℎ (𝑥) 𝑢 𝑑𝑥

≥
𝑎

2
∫

𝑅
3

|∇𝑢|
2
𝑑𝑥 +

1

2
∫

𝑅
3

|𝑢|
2
𝑑𝑥 −

𝜀𝐶
1

2
‖𝑢‖
2

− 𝐶
2‖𝑢‖
6
− ‖ℎ‖2‖𝑢‖2

≥
1

2
‖𝑢‖
2
−
𝜀𝐶
1

2
‖𝑢‖
2
− 𝐶
2‖𝑢‖
6
− ‖ℎ‖2 ‖𝑢‖

≥ ‖𝑢‖ (
1 − 𝜀𝐶

1

2
‖𝑢‖ − 𝐶2‖𝑢‖

5
− ‖ℎ‖2) .

(24)

Taking 𝜀 = 1/2𝐶
1
and setting 𝑔(𝑡) = (1/4)𝑡 − 𝐶

2
𝑡
5 for 𝑡 ≥ 0,

we see there exists 𝜌 = (1/20𝐶
2
)
1/4 such that max

𝑡≥0
𝑔(𝑡) =

𝑔(𝜌) := 𝑚 > 0. Then it follows from (24) that there exists
𝛼 > 0 such that 𝐼(𝑢)|

‖𝑢‖=𝜌
≥ 𝛼 > 0 for ‖ℎ‖

2
< 𝑚. Of course,

𝜌, 𝑚 can be chosen small enough; we can obtain the same
result: there exists 𝛼 > 0 such that 𝐼(𝑢)|

‖𝑢‖=𝜌
≥ 𝛼 > 0 for

‖ℎ‖
2
< 𝑚.

Lemma 5. Suppose that ℎ ∈ 𝐿2(𝑅3), ℎ ≥ 0, ( f1)–(f3), and (k1)-
(k2) hold.Then there exists V ∈ 𝐻1(𝑅3)with ‖V‖ > 𝜌, 𝜌 is given
by Lemma 4, such that 𝐼(V) < 0.

Proof. By (k2) and ℎ ≥ 0, in view of the definition of 𝜇∗
and 𝑙
0
> 𝜇
∗ with 𝑙

0
= min{𝑙, (𝑏/2)𝑙2}, there is a nonnegative

function V ∈ 𝐻1(𝑅3) such that

∫

𝑅
3

𝑘 (𝑥) 𝐹 (V) 𝑑𝑥 ≥
𝑏

2
𝑙
2
, ∫

𝑅
3

ℎ (𝑥) V 𝑑𝑥 ≥ 0, (25)

and 𝜇∗ ≤ ‖V‖2 < 𝑙
0
. Then, we have

𝐼 (V) =
𝑎

2
∫

𝑅
3

|∇V|2𝑑𝑥 +
𝑏

4
(∫

𝑅
3

|∇V|2𝑑𝑥)
2

+
1

2
∫

𝑅
3

|V|2𝑑𝑥

− ∫

𝑅
3

𝑘 (𝑥) 𝐹 (V) 𝑑𝑥 − ∫
𝑅
3

ℎ (𝑥) V𝑑𝑥

≤
1

2
‖V‖2 +

𝑏

4
‖V‖4 −

𝑏

2
𝑙
2

≤
1

2
‖V‖2 −

𝑏

4
𝑙
2

< 0.

(26)
Choosing 𝜌 > 0 small enough in Lemma 4 such that ‖V‖ > 𝜌,
then this Lemma is proved.

FromLemmas 4 and 5 andMountain Pass Lemma in [35],
there is a Cerami sequence {𝑢

𝑛
} ⊂ 𝐻

1
(𝑅
3
) such that


𝐼

(𝑢
𝑛
)
𝐻−1

(1 +
𝑢𝑛

) → 0,

𝐼 (𝑢
𝑛
) → 𝑐 as 𝑛 → ∞,

(27)

where𝐻−1 denotes the dual space of𝐻1(𝑅3). In the following
Lemmas 6 and 7, we shall prove that 𝐼 satisfies the Cerami
condition, that is; the Cerami sequence {𝑢

𝑛
} has a conver-

gence subsequence.

Lemma 6. Suppose that ℎ ∈ 𝐿2(𝑅3), ℎ ≥ 0, ( f1)–(f3), and (k1)
hold. Then {𝑢

𝑛
} defined in (27) is bounded in𝐻1(𝑅3).

Proof. By contradiction, let ‖𝑢
𝑛
‖ → ∞. Define 𝑤

𝑛
=

𝑢
𝑛
‖𝑢
𝑛
‖
−1. Clearly, {𝑤

𝑛
} is bounded in 𝐻1(𝑅3) and there is a

𝑤 ∈ 𝐻
1
(𝑅
3
) such that, up to a sequence,

𝑤
𝑛
→ 𝑤 weakly in 𝐻1 (𝑅3) ,

𝑤
𝑛
→ 𝑤 a.e. in 𝑅3,

𝑤
𝑛
→ 𝑤 strongly in 𝐿2

𝑙𝑜𝑐
(𝑅
3
)

(28)

as 𝑛 → ∞.
Firstly, we claim that 𝑤 is nontrivial; that is, 𝑤 ̸≡ 0.

Otherwise, if 𝑤 ≡ 0, the Sobolev embedding implies that
𝑤
𝑛
→ 0 strongly in 𝐿2(𝐵

𝑅0
); 𝑅
0
is given by (k1). By (f1)–(f3),

there exists 𝐶
3
> 0 such that

𝑓(𝑡)

𝑡
≤ 𝐶
3

∀𝑡 ∈ 𝑅. (29)

Then, for all 𝑛 ∈ 𝑁, we have

0 ≤ ∫

|𝑥|<𝑅0

𝑘 (𝑥)
𝑓(𝑢
𝑛
)

𝑢
𝑛

𝑤
2

𝑛
𝑑𝑥 ≤ 𝐶

3‖𝑘‖∞ ∫

|𝑥|<𝑅0

𝑤
2

𝑛
𝑑𝑥 → 0.

(30)

This yields

lim
𝑛→∞

∫

|𝑥|<𝑅0

𝑘 (𝑥)
𝑓(𝑢
𝑛
)

𝑢
𝑛

𝑤
2

𝑛
𝑑𝑥 = 0. (31)

Furthermore, by (k1), there exists a constant 𝜃 ∈ (0, 1) such
that

sup{
𝑓(𝑡)

𝑡
: 𝑡 > 0} ≤ 𝜃 inf { 1

𝑘 (𝑥)
: |𝑥| ≥ 𝑅0} . (32)

Then, for all 𝑛 ∈ 𝑁, we have

∫

|𝑥|≥𝑅0

𝑘 (𝑥)
𝑓(𝑢
𝑛
)

𝑢
𝑛

𝑤
2

𝑛
𝑑𝑥 ≤ 𝜃∫

|𝑥|≥𝑅0

𝑤
2

𝑛
𝑑𝑥 ≤ 𝜃‖𝑤‖

2
= 𝜃 < 1.

(33)

Combining (31) and (33), we obtain

lim sup
𝑛→∞

∫

𝑅
3

𝑘 (𝑥)
𝑓(𝑢
𝑛
)

𝑢
𝑛

𝑤
2

𝑛
𝑑𝑥 < 1. (34)

By (27), we get

0 ≤

⟨𝐼

(𝑢
𝑛
) , 𝑢
𝑛
⟩

≤

𝐼

(𝑢
𝑛
)
𝐻−1

𝑢𝑛


≤

𝐼

(𝑢
𝑛
)
𝐻−1

(1 +
𝑢𝑛

) → 0

(35)



Abstract and Applied Analysis 5

as 𝑛 → ∞. Together with ‖𝑢
𝑛
‖ → ∞ as 𝑛 → ∞, it follows

that

⟨𝐼

(𝑢
𝑛
) , 𝑢
𝑛
⟩

𝑢𝑛


2
= 𝑜 (1) . (36)

Together with 𝑏 > 0, we have

𝑜 (1) =
1

𝑢𝑛


2
(𝑎∫

𝑅
3

∇𝑢𝑛


2
𝑑𝑥 + ∫

𝑅
3

𝑢𝑛


2
𝑑𝑥

+ 𝑏(∫

𝑅
3

∇𝑢𝑛


2
𝑑𝑥)

2

− ∫

𝑅
3

𝑘 (𝑥) 𝑓(𝑢𝑛) 𝑢𝑛𝑑𝑥 − ∫

𝑅
3

ℎ (𝑥) 𝑢𝑛𝑑𝑥)

≥
𝑤𝑛



2
− ∫

𝑅
3

𝑘 (𝑥)
𝑓(𝑢
𝑛
)

𝑢
𝑛

𝑤
2

𝑛
𝑑𝑥

≥ 1 − ∫

𝑅
3

𝑘 (𝑥)
𝑓(𝑢
𝑛
)

𝑢
𝑛

𝑤
2

𝑛
𝑑𝑥,

(37)

where, and in what follows, 𝑜(1) denotes a quantity which
goes to zero as 𝑛 → ∞. Therefore, we deduce that

∫

𝑅
3

𝑘 (𝑥)
𝑓(𝑢
𝑛
)

𝑢
𝑛

𝑤
2

𝑛
𝑑𝑥 + 𝑜 (1) ≥ 1, (38)

which contradicts (34). So, 𝑤 ̸≡ 0.
Furthermore, because ‖𝑢

𝑛
‖ → ∞ as 𝑛 → ∞, it follows

from (35) that

⟨𝐼

(𝑢
𝑛
) , 𝑢
𝑛
⟩

𝑢𝑛


4
= 𝑜 (1) ; (39)

that is,

𝑜 (1) =

𝑏(∫
𝑅
3

∇𝑢𝑛


2
𝑑𝑥)
2

𝑢𝑛


4
−

1

𝑢𝑛


2
∫

𝑅
3

𝑘 (𝑥)
𝑓 (𝑢
𝑛
)

𝑢
𝑛

𝑤
2

𝑛
𝑑𝑥.

(40)

Together with (22), (29), and 𝑏 > 0, one has

(∫
𝑅
3

∇𝑢𝑛


2
𝑑𝑥)
2

𝑢𝑛


4

=

(∫
𝑅
3
(
∇𝑢𝑛



2
+
𝑢𝑛


2
) 𝑑𝑥 − ∫

𝑅
3

𝑢𝑛


2
𝑑𝑥)
2

𝑢𝑛


4
= 𝑜 (1) .

(41)

This yields

(∫
𝑅
3
(
∇𝑢𝑛



2
+
𝑢𝑛


2
) 𝑑𝑥)
2

𝑢𝑛


4

−

2 ∫
𝑅
3
(
∇𝑢𝑛



2
+
𝑢𝑛


2
) 𝑑𝑥 ∫

𝑅
3

𝑢𝑛


2
𝑑𝑥

𝑢𝑛


4

+

(∫
𝑅
3

𝑢𝑛


2
𝑑𝑥)
2

𝑢𝑛


4
= 𝑜 (1) .

(42)

This means

1 − 2∫

𝑅
3

𝑤𝑛


2
𝑑𝑥 + (∫

𝑅
3

𝑤𝑛


2
𝑑𝑥)

2

= (1 − ∫

𝑅
3

𝑤𝑛


2
𝑑𝑥)

2

= 𝑜 (1) .

(43)

Therefore, we have

∫

𝑅
3

𝑤𝑛


2
𝑑𝑥 → 1 as 𝑛 → ∞. (44)

By ‖𝑤
𝑛
‖ = 1, we get ∫

𝑅
3
|∇𝑤
𝑛
|
2
𝑑𝑥 → 0 as 𝑛 → ∞; thus

𝑤
𝑛
→ 0 strongly in 𝐷1,2(𝑅3); therefore, 𝑤

𝑛
⇀ 0 weakly in

𝐷
1,2
(𝑅
3
). Since 𝑤

𝑛
⇀ 𝑤 weakly in𝐻1(𝑅3); we have 𝑤

𝑛
⇀ 𝑤

weakly in𝐷1,2(𝑅3). By the uniqueness of the weak limitation,
we have𝑤 = 0which contradicts𝑤 ̸= 0.Therefore, theCerami
sequence {𝑢

𝑛
} is bounded in𝐻1(𝑅3).

Lemma 7. Suppose that ℎ ∈ 𝐿2(𝑅3), ℎ ≥ 0, ( f1)–(f3), and (k1)
hold. Then for any 𝜀 > 0, there exist 𝑅(𝜀) > 𝑅

0
and 𝑛(𝜀) > 0

such that {𝑢
𝑛
} defined in (27) satisfies∫

|𝑥|≥𝑅
(|∇𝑢
𝑛
|
2
+|𝑢
𝑛
|
2
)𝑑𝑥 ≤

𝜀 for 𝑛 > 𝑛(𝜀) and 𝑅 ≥ 𝑅(𝜀).

Proof. Let 𝜉
𝑅
: 𝑅
3
→ [0, 1] be a smooth function such that

𝜉
𝑅 (𝑥) =

{

{

{

0, 0 ≤ |𝑥| ≤
𝑅

2
,

1, |𝑥| ≥ 𝑅.

(45)

Moreover, there exists a constant 𝐶
4
independent of 𝑅 such

that

∇𝜉𝑅 (𝑥)
 ≤

𝐶
4

𝑅
∀𝑥 ∈ 𝑅

3
. (46)
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Then, for all 𝑛 ∈ 𝑁 and 𝑅 ≥ 𝑅
0
, by (45), (46), and the Hölder

inequality, we have

∫

𝑅
3

∇ (𝑢𝑛𝜉𝑅)


2
𝑑𝑥 ≤ ∫

𝑅
3

𝑢𝑛


2∇𝜉𝑅


2
𝑑𝑥 + ∫

𝑅
3

∇𝑢𝑛


2𝜉𝑅


2
𝑑𝑥

+ 2∫

𝑅
3

𝑢𝑛


𝜉𝑅


∇𝑢𝑛


∇𝜉𝑅
 𝑑𝑥

≤ ∫

𝑅/2<|𝑥|<𝑅

∇𝑢𝑛


2
𝑑𝑥 + ∫

|𝑥|>𝑅

∇𝑢𝑛


2
𝑑𝑥

+
𝐶
2

4

𝑅2
∫

𝑅
3

𝑢𝑛


2
𝑑𝑥

+ 2(∫

𝑅
3

∇𝑢𝑛


2 
𝜉
2

𝑅


𝑑𝑥)

1/2

× (∫

𝑅
3

𝑢𝑛


2∇𝜉𝑅


2
𝑑𝑥)

1/2

≤ ∫

𝑅/2<|𝑥|<𝑅

∇𝑢𝑛


2
𝑑𝑥 + ∫

|𝑥|>𝑅

∇𝑢𝑛


2
𝑑𝑥

+
𝐶
2

4

𝑅2
∫

𝑅
3

𝑢𝑛


2
𝑑𝑥

+ 2(∫

𝑅/2<|𝑥|<𝑅

∇𝑢𝑛


2
𝑑𝑥

+∫

|𝑥|>𝑅

∇𝑢𝑛


2
𝑑𝑥)

1/2

× (
𝐶
2

4

𝑅2
∫

𝑅
3

𝑢𝑛


2
𝑑𝑥)

1/2

≤ (2 +
𝐶
2

4

𝑅2
+
2√2𝐶

4

𝑅
)
𝑢𝑛



2

≤ (2 +
𝐶
2

4

𝑅
2

0

+
2√2𝐶

4

𝑅
0

)
𝑢𝑛



2
.

(47)

This implies that

𝑢𝑛𝜉𝑅
 ≤ 𝐶5

𝑢𝑛
 (48)

for all 𝑛 ∈ 𝑁 and 𝑅 ≥ 𝑅
0
, where 𝐶

5
=

max{(3 + (𝐶2
4
/𝑅
2

0
) + 2√2𝐶

4
/𝑅
0
)
1/2

, 1}. From Lemma 6,
we know that {𝑢

𝑛
} is bounded in𝐻1(𝑅3). Together with (27),

we obtain that 𝐼(𝑢
𝑛
) → 0 in 𝐻−1(𝑅3). Moreover, by (48),

for 𝜀 > 0, there exists 𝑛(𝜀) > 0 such that

⟨𝐼

(𝑢
𝑛
) , 𝜉
𝑅
𝑢
𝑛
⟩ ≤ 𝐶

5


𝐼

(𝑢
𝑛
)
𝐻−1(𝑅3)

𝑢𝑛
 ≤

𝜀

4
(49)

for 𝑛 > 𝑛(𝜀) and 𝑅 > 𝑅
0
. Note that

⟨𝐼

(𝑢
𝑛
) , 𝜉
𝑅
𝑢
𝑛
⟩ = (𝑎 + 𝑏∫

𝑅
3

∇𝑢𝑛


2
𝑑𝑥)

× ∫

𝑅
3

∇𝑢𝑛


2
𝜉
𝑅
𝑑𝑥 + ∫

𝑅
3

𝑢𝑛


2
𝜉
𝑅
𝑑𝑥

+ (𝑎 + 𝑏∫

𝑅
3

∇𝑢𝑛


2
𝑑𝑥)

× ∫

𝑅
3

𝑢
𝑛
∇𝑢
𝑛
⋅ ∇𝜉
𝑅
𝑑𝑥

− ∫

𝑅
3

𝑘 (𝑥) 𝑓 (𝑢𝑛) 𝑢𝑛𝜉𝑅𝑑𝑥

− ∫

𝑅
3

ℎ (𝑥) 𝑢𝑛𝜉𝑅𝑑𝑥 ≤
𝜀

4
.

(50)

This yields

(𝑎 + 𝑏∫

𝑅
3

∇𝑢𝑛


2
𝑑𝑥)∫

𝑅
3

∇𝑢𝑛


2
𝜉
𝑅
𝑑𝑥 + ∫

𝑅
3

𝑢𝑛


2
𝜉
𝑅
𝑑𝑥

+ (𝑎 + 𝑏∫

𝑅
3

∇𝑢𝑛


2
𝑑𝑥)∫

𝑅
3

𝑢
𝑛
∇𝑢
𝑛
⋅ ∇𝜉
𝑅
𝑑𝑥

≤ ∫

𝑅
3

𝑘 (𝑥) 𝑓 (𝑢𝑛) 𝑢𝑛𝜉𝑅𝑑𝑥 + ∫

𝑅
3

ℎ (𝑥) 𝑢𝑛𝜉𝑅𝑑𝑥 +
𝜀

4
.

(51)

By (32), we have

𝑘 (𝑥) 𝑓 (𝑢𝑛) 𝑢𝑛 ≤ 𝜃𝑢
2

𝑛
for 𝜃 ∈ (0,min {1, 𝑎}) , |𝑥| ≥ 𝑅0.

(52)

This yields

∫

𝑅
3

𝑘 (𝑥) 𝑓 (𝑢𝑛) 𝑢𝑛𝜉𝑅𝑑𝑥 ≤ 𝜃∫

𝑅
3

𝑢
2

𝑛
𝜉
𝑅
𝑑𝑥 (53)

for all 𝑛 ∈ 𝑁 and |𝑥| ≥ 𝑅
0
. For any 𝜀 > 0, there exists 𝑅(𝜀) ≥

𝑅
0
such that

1

𝑅2
≤
4𝜀
2

𝐶
2

4

∀𝑅 > 𝑅 (𝜀) . (54)

Because ℎ ∈ 𝐿2(𝑅3), ℎ ≥ ( ̸≡ )0, there exists 𝜌 = 𝜌(𝜀) such that

‖ℎ‖2,𝑅3\𝐵𝜌(0)
< 𝜀, ∀𝜌 ≥ 𝜌. (55)

By the Hölder inequality, (45), (55), and the boundedness of
{𝑢
𝑛
} in𝐻1(𝑅3), we have

∫

𝑅
3

ℎ (𝑥) 𝑢𝑛𝜉𝑅𝑑𝑥 ≤
ℎ(𝑥)𝜉𝑅

2

𝑢𝑛
2

≤ ‖ℎ (𝑥)‖2,|𝑥|>𝑅/2
𝑢𝑛

2
≤
𝜀

4

∀𝑅 > 𝑅 (𝜀) .

(56)
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By the Young inequality, (46), and (54), for all 𝑛 ∈ 𝑁 and
𝑅 > 𝑅(𝜀), we obtain

∫

𝑅
3

𝑢𝑛∇𝑢𝑛 ⋅ ∇𝜉𝑅
 𝑑𝑥 ≤ ∫

𝑅
3

√2𝜀
∇𝑢𝑛



1

√2𝜀

𝑢𝑛


∇𝜉𝑅
 𝑑𝑥

≤ 𝜀∫

𝑅
3

∇𝑢𝑛


2
𝑑𝑥

+
1

4𝜀
∫

|𝑥|≤𝑅

𝑢𝑛


2𝐶
2

4

𝑅2
𝑑𝑥

≤ 𝜀∫

𝑅
3

∇𝑢𝑛


2
𝑑𝑥

+ 𝜀∫

|𝑥|≤𝑅

𝑢𝑛


2
𝑑𝑥 ≤ 𝜀max {𝑎, 1} 𝑢𝑛



2
.

(57)

Combining 𝑏 > 0, (51), (53), (56), (57), and the boundedness
of {𝑢
𝑛
} in𝐻1(𝑅3), there exists 𝐶

6
> 0 such that

min {1 − 𝜃, 1} ∫
𝑅
3

(𝑎
∇𝑢𝑛



2
+
𝑢𝑛


2
) 𝜉
𝑅
𝑑𝑥

≤
𝜀

2
+ 𝜀max {𝑎, 1} 𝑢𝑛



2
(𝑎 + 𝑏∫

𝑅
3

∇𝑢𝑛


2
𝑑𝑥)

≤ 𝐶
6
𝜀 ∀𝑅 > 𝑅 (𝜀) .

(58)

Note that 𝐶
6
is independent of 𝜀. So, for any 𝜀 > 0, we can

choose 𝑅(𝜀) > 𝑅
0
and 𝑛(𝜀) > 0 such that ∫

|𝑥|≥𝑅
(|∇𝑢
𝑛
|
2
+

|𝑢
𝑛
|
2
)𝑑𝑥 ≤ 𝜀 holds.

Lemma 8. Suppose that ℎ ∈ 𝐿
2
(𝑅
3
), ℎ ≥ 0, ( f1)–(f3), and

(k1)-(k2) hold. Then the sequence {𝑢
𝑛
} in (27) has a convergent

subsequence. Moreover, 𝐼 possesses a nonzero critical point 𝑢 in
𝐻
1
(𝑅
3
) and 𝐼(𝑢) > 0.

Proof. By Lemma 6, the sequence {𝑢
𝑛
} in (27) is bounded in

𝐻
1
(𝑅
3
). We may assume that up to a subsequence 𝑢

𝑛
⇀ 𝑢

weakly in 𝐻1(𝑅3) for some 𝑢 ∈ 𝐻1(𝑅3). Now, we shall show
that ‖ 𝑢

𝑛
‖→ ‖ 𝑢 ‖ as 𝑛 → ∞.

By (11), we have

⟨𝐼

(𝑢
𝑛
) , 𝑢
𝑛
⟩ = (𝑎 + 𝑏∫

𝑅
3

∇𝑢𝑛


2
𝑑𝑥)∫

𝑅
3

∇𝑢𝑛


2
𝑑𝑥

+ ∫

𝑅
3

𝑢
2

𝑛
𝑑𝑥 − ∫

𝑅
3

𝑘 (𝑥) 𝑓 (𝑢𝑛) 𝑢𝑛

− ∫

𝑅
3

ℎ (𝑥) 𝑢𝑛𝑑𝑥,

⟨𝐼

(𝑢
𝑛
) , 𝑢⟩ = (𝑎 + 𝑏∫

𝑅
3

∇𝑢𝑛


2
𝑑𝑥)∫

𝑅
3

∇𝑢
𝑛
⋅ ∇𝑢 𝑑𝑥

+ ∫

𝑅
3

𝑢
𝑛
𝑢𝑑𝑥 − ∫

𝑅
3

𝑘 (𝑥) 𝑓 (𝑢𝑛) 𝑢

− ∫

𝑅
3

ℎ (𝑥) 𝑢𝑑𝑥.

(59)

By (59), 𝑏 > 0, and the boundedness of {𝑢
𝑛
} in 𝐻1(𝑅3), we

easily get

⟨𝐼

(𝑢
𝑛
) , 𝑢
𝑛
− 𝑢⟩ = (𝑎 + 𝑏∫

𝑅
3

∇𝑢𝑛


2
𝑑𝑥)∫

𝑅
3

∇𝑢𝑛


2
𝑑𝑥

+ ∫

𝑅
3

𝑢
2

𝑛
𝑑𝑥 − ∫

𝑅
3

𝑘 (𝑥) 𝑓 (𝑢𝑛) 𝑢𝑛𝑑𝑥

− ∫

𝑅
3

ℎ (𝑥) 𝑢𝑛𝑑𝑥

− (𝑎 + 𝑏∫

𝑅
3

∇𝑢𝑛


2
𝑑𝑥)∫

𝑅
3

∇𝑢 ⋅ ∇𝑢
𝑛
𝑑𝑥

− ∫

𝑅
3

𝑢𝑢
𝑛
𝑑𝑥 + ∫

𝑅
3

𝑘 (𝑥) 𝑓 (𝑢𝑛) 𝑢 𝑑𝑥

+ ∫

𝑅
3

ℎ (𝑥) 𝑢 𝑑𝑥

= (𝑎 + 𝑏∫

𝑅
3

∇𝑢𝑛


2
𝑑𝑥)

× ∫

𝑅
3

∇ (𝑢𝑛 − 𝑢)


2
𝑑𝑥

+ ∫

𝑅
3

𝑢𝑛 − 𝑢


2
𝑑𝑥

+ (𝑎 + 𝑏∫

𝑅
3

∇𝑢𝑛


2
𝑑𝑥)

× ∫

𝑅
3

∇𝑢∇ (𝑢
𝑛
− 𝑢) 𝑑𝑥

+ ∫

𝑅
3

𝑢 (𝑢
𝑛
− 𝑢) 𝑑𝑥

− ∫

𝑅
3

𝑘 (𝑥) 𝑓 (𝑢𝑛) (𝑢𝑛 − 𝑢) 𝑑𝑥

− ∫

𝑅
3

ℎ (𝑥) (𝑢𝑛 − 𝑢) 𝑑𝑥

≥ 𝑎∫

𝑅
3

∇
(𝑢𝑛 − 𝑢)



2
𝑑𝑥 + ∫

𝑅
3

𝑢𝑛 − 𝑢


2
𝑑𝑥

+ (𝑎 + 𝑏∫

𝑅
3

∇𝑢𝑛


2
𝑑𝑥)

× ∫

𝑅
3

∇𝑢∇ (𝑢
𝑛
− 𝑢) 𝑑𝑥

+ ∫

𝑅
3

𝑢 (𝑢
𝑛
− 𝑢) 𝑑𝑥

− ∫

𝑅
3

𝑘 (𝑥) 𝑓 (𝑢𝑛) (𝑢𝑛 − 𝑢) 𝑑𝑥

− ∫

𝑅
3

ℎ (𝑥) (𝑢𝑛 − 𝑢) 𝑑𝑥
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≥
𝑢𝑛 − 𝑢



2
+ (𝑎 + 𝑏∫

𝑅
3

∇𝑢𝑛


2
𝑑𝑥)

× ∫

𝑅
3

∇𝑢∇ (𝑢
𝑛
− 𝑢) 𝑑𝑥

+ ∫

𝑅
3

𝑢 (𝑢
𝑛
− 𝑢) 𝑑𝑥

− ∫

𝑅
3

𝑘 (𝑥) 𝑓 (𝑢𝑛) (𝑢𝑛 − 𝑢) 𝑑𝑥

− ∫

𝑅
3

ℎ (𝑥) (𝑢𝑛 − 𝑢) 𝑑𝑥.

(60)

One has
𝑢𝑛 − 𝑢



2
≤ ⟨𝐼

(𝑢
𝑛
) , 𝑢
𝑛
− 𝑢⟩

− (𝑎 + 𝑏∫

𝑅
3

∇𝑢𝑛


2
𝑑𝑥)∫

𝑅
3

∇𝑢∇ (𝑢
𝑛
− 𝑢) 𝑑𝑥

− ∫

𝑅
3

𝑢 (𝑢
𝑛
− 𝑢) 𝑑𝑥

+ ∫

𝑅
3

𝑘 (𝑥) 𝑓(𝑢𝑛) (𝑢𝑛 − 𝑢) 𝑑𝑥

+ ∫

𝑅
3

ℎ (𝑥) (𝑢𝑛 − 𝑢) 𝑑𝑥.

(61)

It is clear that

⟨𝐼

(𝑢
𝑛
) , 𝑢
𝑛
− 𝑢⟩ → 0, as 𝑛 → ∞. (62)

Since 𝑢
𝑛
⇀ 𝑢 weakly in𝐻1(𝑅3), we obtain

∫

𝑅
3

(∇𝑢
𝑛
⋅ ∇𝑢 + 𝑢

𝑛
𝑢) 𝑑𝑥 = ∫

𝑅
3

(|∇𝑢|
2
+ |𝑢|
2
) 𝑑𝑥

+ 𝑜 (1) , as 𝑛 → ∞.

(63)

By the continuity of imbedding 𝐻1(𝑅3) → 𝐿
2
(𝑅
3
), we have

that 𝑢
𝑛
⇀ 𝑢 weakly in 𝐿2(𝑅3); that is,

∫

𝑅
3

𝑢
𝑛
𝑢 𝑑𝑥 = ∫

𝑅
3

𝑢
2
𝑑𝑥 + 𝑜 (1) , as 𝑛 → ∞. (64)

By (63) and (64), we deduce

∫

𝑅
3

∇𝑢
𝑛
⋅ ∇𝑢 𝑑𝑥 = ∫

𝑅
3

|∇𝑢|
2
𝑑𝑥 + 𝑜 (1) , as 𝑛 → ∞. (65)

Combining the boundedness of {𝑢
𝑛
} in 𝐻

1
(𝑅
3
), (64), and

(65), we obtain

(𝑎 + 𝑏∫

𝑅
3

∇𝑢𝑛


2
𝑑𝑥)∫

𝑅
3

∇𝑢∇ (𝑢
𝑛
− 𝑢) 𝑑𝑥

+ ∫

𝑅
3

𝑢 (𝑢
𝑛
− 𝑢) 𝑑𝑥 = 𝑜 (1) , as 𝑛 → ∞.

(66)

Moreover, by (32), Lemma 7, and 𝑢
𝑛
⇀ 𝑢 in 𝐻1(𝑅3), for

any 𝜀 > 0 and 𝑛 large enough, one has

∫

|𝑥|≥𝑅(𝜀)

𝑘 (𝑥) 𝑓 (𝑢𝑛) 𝑢𝑛𝑑𝑥 − ∫

|𝑥|≥𝑅(𝜀)

𝑘 (𝑥) 𝑓 (𝑢𝑛) 𝑢 𝑑𝑥

= ∫

|𝑥|≥𝑅(𝜀)

𝑘 (𝑥) 𝑓 (𝑢𝑛) (𝑢𝑛 − 𝑢) 𝑑𝑥

≤ ∫

|𝑥|≥𝑅(𝜀)

𝑘 (𝑥) 𝑓 (𝑢𝑛)


𝑢𝑛 − 𝑢
 𝑑𝑥

≤ (∫

|𝑥|≥𝑅(𝜀)


𝑘
2
(𝑥) 𝑓
2
(𝑢
𝑛
)

𝑑𝑥)

1/2

× (∫

|𝑥|≥𝑅(𝜀)

𝑢𝑛 − 𝑢


2
𝑑𝑥)

1/2

≤ 𝜃(∫

|𝑥|≥𝑅(𝜀)


𝑢
2

𝑛


𝑑𝑥)

1/2

(∫

|𝑥|≥𝑅(𝜀)

𝑢𝑛 − 𝑢


2
𝑑𝑥)

1/2

≤ 𝜃(∫

|𝑥|≥𝑅(𝜀)

(𝑎
∇𝑢𝑛



2
+
𝑢𝑛


2
) 𝑑𝑥)

1/2

× (∫

|𝑥|≥𝑅(𝜀)

𝑢𝑛 − 𝑢


2
𝑑𝑥)

1/2

≤ 𝜃𝜀.

(67)

This and the compactness of embedding𝐻1(𝑅3) → 𝐿
2

loc(𝑅
3
)

imply that

∫

𝑅
3

𝑘 (𝑥) 𝑓 (𝑢𝑛) 𝑢𝑛𝑑𝑥 = ∫

𝑅
3

𝑘 (𝑥) 𝑓 (𝑢𝑛) 𝑢 𝑑𝑥 + 𝑜 (1) . (68)

Since 𝑢
𝑛
is bounded in 𝐻1(𝑅3) and the continuity of the

Sobolev embedding of 𝐻1(𝑅3) imbedding in 𝐿2(𝑅3), for any
choice of 𝜀 > 0 and 𝜌 > 0, the relation

𝑢𝑛 − 𝑢
2,𝐵𝜌(0)

< 𝜀 (69)

holds for large 𝑛. By ℎ ∈ 𝐿
2
(𝑅
3
), for any 𝜀 > 0 there exists

𝜌 = 𝜌(𝜀) such that

‖ℎ‖2,𝑅3\𝐵𝜌(0)
< 𝜀, ∀𝜌 ≥ 𝜌. (70)

By (70) and (69), we have

∫

𝑅
3

ℎ (𝑥) 𝑢𝑛𝑑𝑥 − ∫

𝑅
3

ℎ (𝑥) 𝑢 𝑑𝑥

≤ ∫

𝑅
3
\𝐵𝜌(0)

ℎ (𝑥) (𝑢𝑛 − 𝑢)
 𝑑𝑥

+ ∫

𝐵𝜌(0)

ℎ (𝑥) (𝑢𝑛 − 𝑢)
 𝑑𝑥

≤ ‖ℎ (𝑥)‖2,𝑅3\𝐵𝜌(0)
𝑢𝑛 − 𝑢

2,𝑅3\𝐵𝜌(0)

+ ‖ℎ (𝑥)‖2,𝐵𝜌(0)
𝑢𝑛 − 𝑢

2,𝐵𝜌(0)

≤ 𝜀
𝑢𝑛 − 𝑢

2,𝑅3\𝐵𝜌(0)
+ 𝜀‖ℎ (𝑥)‖2,𝐵𝜌(0)

≤ 𝐶
7
𝜀.

(71)
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This yields

∫

𝑅
3

ℎ (𝑥) 𝑢𝑛𝑑𝑥 = ∫

𝑅
3

ℎ (𝑥) 𝑢 𝑑𝑥 + 𝑜 (1) . (72)

By (61), (62), (66), (68), and (72), we have
𝑢𝑛 − 𝑢



2
= 𝑜 (1) , as 𝑛 → ∞, (73)

by 𝑎 > 0. This yields that ‖𝑢
𝑛
‖ → ‖𝑢‖ as 𝑛 → ∞ and 𝑢

is a nonzero critical point of 𝐼 in 𝐻1(𝑅3) and 𝐼(𝑢) > 0 by
Mountain Pass Theorem in [35].

Now, we give local properties of the variational functional
𝐼, which is required by using Ekeland’s variational principle.

Lemma 9. Suppose that ℎ ∈ 𝐿2(𝑅3), ℎ ≥ ( ̸≡ )0, ( f1)–(f3), and
(k1) hold. If ‖ℎ‖

2
< 𝑚, then there exists 𝑢

0
∈ 𝐻
1
(𝑅
3
) such that

𝐼 (𝑢
0
) = inf {𝐼 (𝑢) : 𝑢 ∈ 𝐵𝜌} < 0,

where 𝐵
𝜌
= {𝑢 ∈ 𝐻

1
(𝑅
3
) : ‖𝑢‖ < 𝜌} ,

(74)

𝑚, 𝜌 are given by Lemma 4 and 𝑢
0
is a positive solution of

system (1).

Proof. Because ℎ ∈ 𝐿
2
(𝑅
3
), ℎ ≥ ( ̸≡ )0, we can choose a

function 𝜑 ∈ 𝐻1(𝑅3) such that

∫

𝑅
3

ℎ (𝑥) 𝜑 𝑑𝑥 > 0. (75)

Together with (f1), (k1), and (75), for 𝑡 > 0, we have

𝐼 (𝑡𝜑) =
𝑎𝑡
2

2
∫

𝑅
3

∇𝜑


2
𝑑𝑥 +

𝑏𝑡
4

4
(∫

𝑅
3

∇𝜑


2
𝑑𝑥)

2

+
𝑡
2

2
∫

𝑅
3

𝜑


2
𝑑𝑥

− ∫

𝑅
3

𝑘 (𝑥) 𝐹 (𝑡𝜑) 𝑑𝑥 − ∫

𝑅
3

ℎ (𝑥) 𝑡𝜑 𝑑𝑥

≤
𝑡
2

2

𝜑


2
+
𝑏𝑡
4

4

𝜑


4
− 𝑡∫

𝑅
3

ℎ (𝑥) 𝜑 𝑑𝑥

≤ 0

(76)

for 𝑡 > 0 small enough.Thus there exists 𝑢 small enough such
that 𝐼(𝑢) < 0. By Lemma 4, we deduce that

𝑐
0
:= inf
𝑢∈𝐵𝜌

𝐼 (𝑢) < 0 < inf
𝑢∈𝜕𝐵𝜌

𝐼 (𝑢) . (77)

By applying Ekeland’s variational principle [36, Theorem 4.1]
in 𝐵
𝜌
, there is a minimizing sequence {𝑢

𝑛
} ⊂ 𝐵
𝜌
such that

(i) 𝑐0 ≤ 𝐼 (𝑢𝑛) < 𝑐0 +
1

𝑛
,

(ii) 𝐼 (𝑤) ≥ 𝐼 (𝑢𝑛) −
1

𝑛

𝑤 − 𝑢
𝑛

 ∀𝑤 ∈ 𝐵
𝜌
.

(78)

Then, by a standard procedure, we can show that {𝑢
𝑛
} is a

bounded (PS) sequence of 𝐼. Lemmas 7 and 8 imply that there
exists 𝑢

0
∈ 𝐻
1
(𝑅
3
) such that 𝐼(𝑢

0
) = 0 and 𝐼(𝑢

0
) = 𝑐
0
< 0.

So this lemma is proved.

Proof of Theorem 1.2. By Lemmas 4–8, we obtain the exis-
tence of a mountain pass solution 𝑢 for problem (1) and
𝐼(𝑢) > 0. By Lemma 9, we know that problem (1) has a local
minimum solution 𝑢

0
and 𝐼(𝑢

0
) < 0. Thus, 𝑢 ̸= 𝑢

0
and 𝑢, 𝑢

0

are positive. Thus this theorem is proved.
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