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A kind of the well-known matrix Riccati equations which arise in certain stochastic optimal problems is investigated. With the
aid of the operator spectrum and the generalized Lyapunov equation approach, we give a sufficient condition for existence and
uniqueness of the strong solution related to the critical mean square stabilization of stochastic linear controlled systems, which
proves Conjecture 10 in (Zhang et al. (2008)) to a large extent. In addition, we get some properties of the strong solution. At last,
we give a kind of stochastic system which has only a strong solution by an example.

1. Introduction

As is well known, a great deal of attention has recently been
given to systems with stochastic multiplicative noise, due
to the fact that the modelling of uncertainties using this
kind of formulation has been found of many applications in
engineering, finance, and so on. With the appearing of two
classic books [1, 2], stochastic stability and stabilization of
Itô differential systems were investigated bymany researchers
for several decades; we refer the readers to [3–5] and the
references therein.More specifically, for linear time-invariant
stochastic (LTIS) systems, most works are concentrated on
the investigation of mean square stabilization, which has
important applications in system analysis and design. Some
necessary and sufficient conditions for the mean square
stabilization of LTIS systems were obtained in terms of the
generalized algebraic Riccati equation (GARE) in [6], the
linear matrix inequality (LMI) in [7], or the spectra of some
operators in [4, 8]. In addition, as well known in the linear
system theory, complete observability and detectability play
important roles in system analysis and design. Complete
observability was extended to define exact observability” of
stochastic Itô systems in [4]. Some of the other works on this
subject can be found, for instance, [8–11].

In this paper, we concentrate our attention on the strong
solution of GARE related to thecritical mean square stabiliza-

tion of stochastic systems. The main novelty is to analyze the
systems with stochastic multiplicative noise in both state and
control and to give the condition of uniqueness of the strong
solution of GARE. In Section 2, we give some preliminaries
including some definitions and theorems we will use. In
Section 3, we mainly study the condition of uniqueness of
the strong solution of a kind of stochastic systems and give
a positive proof of Conjecture 10 in [9]. In Section 4, we give
an example where the stochastic system has only a strong
solution.

For convenience, we adopt the following traditional nota-
tions: 𝑆𝑛: the set of all symmetric matrices, their components
may be complex; 𝑅𝑘: the 𝑘-dimensional real vector space
with the usual inner product ⟨⋅, ⋅⟩ and the corresponding
2-norm ‖ ⋅ ‖; 𝑅𝑚×𝑛: the space of all 𝑚 × 𝑛 matrices with
entries in 𝑅; 𝐴(Ker(𝐴)): the transpose (kernel space) of a
matrix 𝐴; 𝐴 ≥ 0(𝐴 > 0): the positive semidefinite (positive
definite) symmetric matrix𝐴; 𝐼: the identity matrix; 𝜎(𝐿): the
spectral set of the operator ormatrix 𝐿;𝐶−(𝐶−0): the open left
(closed left) hand side complex plane; 𝐿2

𝐹
𝑡

(𝑅
+

, 𝑅
𝑛

): the space
of nonanticipative stochastic processes 𝑥(𝑡) ∈ 𝑅

𝑛 with respect
to an increasing 𝜎-algebra {𝐹

𝑡
}
𝑡≥0

satisfying 𝐸∫
∞

0

|𝑥(𝑡)|
2

𝑑𝑡 <

∞; 𝑅+: the set of all positive real numbers. Finally, we make
the assumption throughout this paper that all systems have
real coefficients.
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2. Preliminaries

In order to illustrate our main results in the next Section 3,
first of all, we give some definitions and theorems we will use.
Consider the following stochastic Itô differential system:

𝑑𝑥 = 𝐴𝑥𝑑𝑡 + 𝐶𝑥𝑑𝑤,

𝑥 (0) = 𝑥
0
∈ 𝑅
𝑛

,

(1)

where 𝐴 ∈ 𝑅
𝑛×𝑛 and 𝐶 ∈ 𝑅

𝑛×𝑛 are real constant matrices and
𝑤(⋅) is a standard one-dimensional Wiener process defined
on the filtered probability space (Ω, 𝐹, 𝑃, 𝐹

𝑡
) with 𝐹

𝑡
=

𝜎{𝑤(𝑠) | 0 ≤ 𝑠 ≤ 𝑡}. System (1) or (𝐴, 𝐶) is called mean square
stable, if lim

𝑡→+∞
𝐸‖𝑥(𝑡)‖

2

= 0 for any deterministic initial
state 𝑥(0) ∈ 𝑅

𝑛. If we set 𝑋(𝑡) = 𝐸𝑥(𝑡)𝑥


(𝑡), by Itô’s formula,
𝑋(𝑡) satisfies the following generalized Lyapunov differential
equation:

�̇� = 𝐴𝑋 + 𝑋𝐴


+ 𝐶𝑋𝐶


,

𝑋 (0) = 𝑥 (0) 𝑥


(0) .

(2)

Here �̇� denotes the time-derivative of 𝑋. Motivated by (2),
we introduce the following linear Lyapunov operator:

L
𝐴,𝐶

: 𝑋 ∈ 𝑆
𝑛

→ 𝐴𝑋 + 𝑋𝐴


+ 𝐶𝑋𝐶


∈ 𝑆
𝑛

. (3)

In [10], the following theorem gives a necessary and
sufficient condition for themean square stability of system (1)
via the spectrum ofL

𝐴,𝐶
, which is called “spectral criterion.”

Other spectral criteria were found in [6, 12].

Theorem 1. System (1) is asymptotical mean square stable if
and only if 𝜎(L

𝐴,𝐶
) ⊂ 𝐶
−.

For a state feedback control law 𝑢 = 𝐾𝑥, one introduces a
linear operatorL

𝐾
associated with the closed-loop system:

𝑑𝑥 = (𝐴 + 𝐵𝐾) 𝑥𝑑𝑡 + (𝐶 + 𝐷𝐾) 𝑥𝑑𝑤,

𝑥 (0) = 𝑥
0
∈ 𝑅
𝑛

,

(4)

which is defined as L
𝐾

: 𝑋 ∈ 𝑆
𝑛

→ (𝐴 + 𝐵𝐾)𝑋 +

𝑋(𝐴 + 𝐵𝐾)


+ (𝐶 + 𝐷𝐾)𝑋(𝐶 + 𝐷𝐾)
. Where 𝐴 ∈ 𝑅

𝑛×𝑛, 𝐵 ∈

𝑅
𝑛×𝑚, 𝐶 ∈ 𝑅

𝑛×𝑛, 𝐷 ∈ 𝑅
𝑛×𝑚, and 𝐾 ∈ 𝑅

𝑚×𝑛 are all real
constant matrices.

Definition 2. System (4) (or (𝐴, 𝐵, 𝐶,𝐷)) is mean square
stabilizable if and only if 𝜎(L

𝐾
) ⊂ 𝐶
− for some 𝐾 ∈ 𝑅

𝑚×𝑛.

Definition 3. System (𝐴, 𝐵, 𝐶,𝐷) is critical mean square
stabilizable if and only ifL

𝐾
⊂ 𝐶
−0 for some 𝐾 ∈ 𝑅

𝑚×𝑛.

The following theorems give the relations between the
Lyapunov operator spectrum of deterministic system and the
Lyapunov operator spectrum of stochastic system (see [9]),
which will be used in the proof of the main results.

Theorem 4. For system (1), if 𝜎(L
𝐴,𝐶

) ⊂ 𝐶
−0, then 𝜎(𝐴) ⊂

𝐶
−0.

Theorem 5. For system (1), if 𝜎(L
𝐴,𝐶

) ⊂ 𝐶
−, then 𝜎(𝐴) ⊂ 𝐶

−.
In infinite horizon linear quadratic optimal control, sto-

chastic stability and filtering (see, e.g. [3, 13, 14]), the following
general algebra Ricatti equation

𝑃𝐴 + 𝐴


𝑃 + 𝐶


𝑃𝐶 + 𝑄 − (𝑃𝐵 + 𝐶


𝑃𝐷)

×(𝑅 + 𝐷


𝑃𝐷)
−1

(𝐵


𝑃 + 𝐷


𝑃𝐶) = 0,

𝑅 + 𝐷


𝑃𝐷 > 0, 𝑄 ≥ 0, 𝑅 > 0

(5)

has many applications. In fact, GARE (5) is a generalized
version of the following deterministic algebraic Riccati equation
(DARE):

𝑃𝐴 + 𝐴


𝑃 + 𝑄 − 𝑃𝐵𝑅
−1

𝐵


𝑃 = 0,

𝑅 > 0, 𝑄 ≥ 0.

(6)

In [9], the following definitions and theorem are given.

Definition 6. A solution 𝑃 ∈ 𝑆
𝑛 of GARE (5) is called a

feedback stabilizing solution if 𝜎(L
𝐾
) ⊂ 𝐶

−; 𝑃 is called
a strong solution if 𝜎(L

𝐾
) ⊂ 𝐶

−0, where 𝐾 = −(𝑅 +

𝐷


𝑃𝐷)
−1

(𝐵


𝑃 + 𝐷


𝑃𝐶).

Definition 7. A solution �̂� ∈ 𝑆
𝑛 of GARE (5) is called the

maximal solution if �̂� − 𝑃 ≥ 0 for any solution 𝑃 ∈ 𝑆
𝑛 of

GARE (5).

Theorem 8. Suppose system (𝐴, 𝐵, 𝐶,𝐷) is mean square
stabilizable, the weighting real matrices 𝑄 ≥ 0, 𝑅 > 0. Let
�̂� be any real symmetric solution of the GARE

𝑃𝐴 + 𝐴


𝑃 + 𝐶


𝑃𝐶 + 𝑄 − (𝑃𝐵 + 𝐶


𝑃𝐷)

×(�̂� + 𝐷


𝑃𝐷)
−1

(𝐵


𝑃 + 𝐷


𝑃𝐶) = 0,

�̂� + 𝐷


𝑃𝐷 > 0.

(7)

If 𝑅 ≥ �̂� and 𝑄 ≥ 𝑄, then GARE (5) has maximal solution
𝑃 ≥ 0 and 𝑃 ≥ �̂�. Moreover, 𝑃 is a strong solution.

Remark 9. Weknow that if system (𝐴, 𝐵, 𝐶,𝐷) ismean square
stabilizable, then the maximal solution of (5) is a feedback
stabilizing solution, but a strong solution of (5) may not be a
feedback stabilizing solution.

In the following section, we will study the uniqueness of
the strong solution of a kind of stochastic system; namely,
the strong solution of (5) must be the maximal solution.
Accordingly, we give a positive proof of Conjecture 10 in [9].
To end this section, we give this conjecture.

Conjecture 10. Assume system (𝐴, 𝐵, 𝐶,𝐷) is mean square
stabilizable, if GARE (5) admits a strong solution 𝑃 ∈ 𝑆

𝑛, then
𝑃 is also the maximal solution.

3. Main Results

In this section, we will give the condition of uniqueness of
the strong solution of GARE (5). Here we only investigate the
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strong solution of GARE (5) related to a class of stochastic
systems.

Consider the following stochastic system:

𝑑𝑥 = (𝐴𝑥 + 𝐵𝑢) 𝑑𝑡 + 𝐶𝑥𝑑𝑤,

𝑥 (0) = 𝑥
0
∈ 𝑅
𝑛

.

(8)

GARE (5) may become

𝑃𝐴 + 𝐴


𝑃 + 𝐶


𝑃𝐶 + 𝑄 − 𝑃𝐵𝑅
−1

𝐵


𝑃 = 0,

𝑄 ≥ 0, 𝑅 > 0.

(9)

Now we present a very useful lemma which helps us give
the condition of uniqueness of the strong solution.

Lemma 11. Let 𝑃
1
∈ 𝑆
𝑛 be a solution of GARE (9). Then 𝑃

2
∈

𝑆
𝑛 satisfies GARE (9) if and only if𝐷

0
= 𝑃
1
−𝑃
2
satisfies𝐴

0
𝐷
0
+

𝐷
0
𝐴
0
+𝐶


𝐷
0
𝐶+𝐷
0
𝐵𝑅
−1

𝐵


𝐷
0
= 0, where𝐴

0
= 𝐴−𝐵𝑅

−1

𝐵


𝑃
1
.

Proof. We know that the solutions 𝑃
1
and 𝑃

2
of GARE (9)

satisfy the following two equations:

𝑃
1
𝐴 + 𝐴



𝑃
1
+ 𝐶


𝑃
1
𝐶 + 𝑄 − 𝑃

1
𝐵𝑅
−1

𝐵


𝑃
1
= 0,

𝑄 ≥ 0, 𝑅 > 0,

𝑃
2
𝐴 + 𝐴



𝑃
2
+ 𝐶


𝑃
2
𝐶 + 𝑄 − 𝑃

2
𝐵𝑅
−1

𝐵


𝑃
2
= 0,

𝑄 ≥ 0, 𝑅 > 0.

(10)

Two above equations are subtracted, by a series of computa-
tions, and we have

𝐴


0
𝐷
0
+ 𝐷
0
𝐴
0
+ 𝐶


𝐷
0
𝐶 + 𝐷

0
𝐵𝑅
−1

𝐵


𝐷
0
= 0. (11)

The proof of Lemma 11 is complete.

Lemma 12. Suppose system (8) (𝑜𝑟 (𝐴, 𝐵, 𝐶)) is mean square
stabilizable, and theweighting realmatrices𝑄 ≥ 0, 𝑅 > 0.Then
GARE (9) has the maximal solution which is only a feedback
stabilizing solution of system (8).

Proof. The proof is easy, and we omit it.

Theorem 13. Assume that system (𝐴, 𝐵, 𝐶) is mean square
stabilizable and �̃� denotes the maximal solution of GARE (9).
There does not exist the other strong solution of GARE (9)
when |Re(𝜆

𝑖
)| > |Re(𝜇

𝑖
𝜇
𝑗
)| for 𝜆

𝑖
∈ 𝜎(𝐴 − 𝐵𝑅

−1

𝐵


�̃�) and
𝜇
𝑖
, 𝜇
𝑗
∈ 𝜎(𝐶); that is, there is only a strong solution of GARE

(9).

Proof. By Theorems 10 and 12 in [3], if system (𝐴, 𝐵, 𝐶) is
mean square stabilizable, then GARE (9) has the maximal
solution �̃�. By Theorem 8, it is also a strong solution.

By contradiction, now assume that �̂� is the other strong
solution of GARE (9). Then

�̃�𝐴 + 𝐴


�̃� + 𝐶


�̃�𝐶 + 𝑄 − �̃�𝐵𝑅
−1

𝐵


�̃� = 0,

𝑄 ≥ 0, 𝑅 > 0,

(12)

�̂�𝐴 + 𝐴


�̂� + 𝐶


�̂�𝐶 + 𝑄 − �̂�𝐵𝑅
−1

𝐵


�̂� = 0,

𝑄 ≥ 0, 𝑅 > 0.

(13)

In what follows, we will prove that �̃� = �̂�. Let𝐻 = �̃�−�̂�(≥ 0).
If𝐻 > 0, from Lemma 11, subtracting (13) from (12), we have

𝐴


0
𝐻 +𝐻𝐴

0
+ 𝐶


𝐻𝐶 +𝐻𝐵𝑅
−1

𝐵


𝐻 = 0; (14)

here 𝐴
0
= 𝐴 − 𝐵𝑅

−1

𝐵


�̃�. From (14), we have

𝐴
0
+ 𝐵𝑅
−1

𝐵


𝐻 = −𝐻
−1

𝐴


0
𝐻 −𝐻

−1

𝐶


𝐻𝐶. (15)

Since |Re(𝜆
𝑖
)| > |Re(𝜇

𝑖
𝜇
𝑗
)| for 𝜆

𝑖
∈ 𝜎(𝐴

0
) and 𝜇

𝑖
, 𝜇
𝑗
∈

𝜎(𝐶), there exists a 𝜃
𝑖
∈ 𝜎(−𝐻

−1

𝐴


0
𝐻 −𝐻

−1

𝐶


𝐻𝐶) such that
Re(𝜃
𝑖
) > 0. 𝜎(−𝐻−1𝐴

0
𝐻−𝐻

−1

𝐶


𝐻𝐶) ⊂ 𝜎(𝐴
0
+𝐵𝑅
−1

𝐵


𝐻) =

𝜎(𝐴
0
+𝐵𝑅
−1

𝐵


(�̃� − �̂�)) = 𝜎(𝐴−𝐵𝑅
−1

𝐵


�̃� +𝐵𝑅
−1

𝐵


(�̃� − �̂�)) =

𝜎(𝐴 − 𝐵𝑅
−1

𝐵


�̂�) ⊂ 𝐶
−0, which is a contradiction. So 𝐻 > 0

does not hold. Hence 𝐻 ≥ 0. If 𝐻 ≥ 0 and 𝐻 ̸= 0; there
exists 𝑥 ∈ 𝑅

𝑛 such that 𝐻𝑥 = 0. Premultiplying by 𝑥
 and

postmultiplying by 𝑥 in (14) yield

𝑥


𝐴


0
𝐻𝑥 + 𝑥



𝐻𝐴
0
𝑥 + 𝑥


𝐶


𝐻𝐶𝑥 + 𝑥


𝐻𝐵𝑅
−1

𝐵


𝐻𝑥 = 0;

(16)

we see that𝐻𝐶𝑥 = 0. Postmultiplying by 𝑥 in (14) yields

𝐴


0
𝐻𝑥 +𝐻𝐴

0
𝑥 + 𝐶



𝐻𝐶𝑥 + 𝐻𝐵𝑅
−1

𝐵


𝐻𝑥 = 0, (17)

we see that𝐻𝐴
0
𝑥 = 0. Hence Ker(𝐻) is an invariant subspace

with respect to both 𝐴
0
and 𝐶. By matrix theory, there exists

an orthogonal matrix 𝑆 such that

𝑆


𝐴
0
𝑆 = (

𝐴
1

∗

0 𝐴
2

) , 𝑆


𝐶𝑆 = (
𝐶
1

∗

0 𝐶
2

) ,

𝑆


𝐻𝑆 = (
0 0

0 𝑊
) , 𝑆



𝐵𝑆 = (
𝐵
1

𝐵
2

) .

(18)

And premultiplying by 𝑆
 and postmultiplying by 𝑆 in (14)

yield

𝑆


𝐴


0
𝑆𝑆


𝐻𝑆 + 𝑆


𝐻𝑆𝑆


𝐴
0
𝑆 + 𝑆


𝐶


𝐻𝑆𝑆


𝐶𝑆

+ 𝑆


𝐻𝑆𝑆


𝐵𝑆𝑆


𝑅
−1

𝑆𝑆


𝐵


𝑆𝑆


𝐻𝑆 = 0.

(19)

So

𝐴


2
𝑊+𝑊𝐴

2
+ 𝐶


2
𝑊𝐶
2
+𝑀 = 0, 𝑀 ≥ 0. (20)

Here,

𝑆


𝐻𝐵𝑅
−1

𝐵


𝐻𝑆 = (
0 ∗

0 𝑀
) . (21)
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In turn,𝑊 > 0 in (20) satisfies

𝐴


2
𝑊+𝑊𝐴

2
+ 𝐶


2
𝑊𝐶
2
≤ 0. (22)

Hence 𝜎(L
𝐴
2
,𝐶
2

) ⊂ 𝐶
−0 follows from Lyapunov theory and

whenever Re(𝜆
𝑖
) = 0, 𝜆

𝑖
∈ 𝜎(L

𝐴
2
,𝐶
2

) and all associated
Jordan blocks of 𝜆

𝑖
are 1 × 1. In fact, by Lemma 12, we know

that 𝜎(L
𝐴
0
,𝐶
) ⊂ 𝐶
−. By Theorem 5, 𝜎(𝐴

0
) ⊂ 𝐶
−, so 𝜎(𝐴

2
) ⊂

𝐶
−. Finally,

𝑆


(𝐴
0
+ 𝐵𝑅
−1

𝐵


𝐻)𝑆

= (
𝐴
1

∗

0 −𝑊
−1

𝐴


2
𝑊−𝑊

−1

𝐶


2
𝑊𝐶
2

) .

(23)

Since |Re(𝜆
𝑖
)| > |Re(𝜇

𝑖
𝜇
𝑗
)| for 𝜆

𝑖
∈ 𝜎(𝐴

2
) and 𝜇

𝑖
, 𝜇
𝑗
∈

𝜎(𝐶
2
), there exists a 𝜃

𝑖
∈ 𝜎(−𝑊

−1

𝐴
2
𝑊 − 𝑊

−1

𝐶


2
𝑊𝐶
2
) such

that Re(𝜃
𝑖
) > 0. 𝜎(−𝑊−1𝐴

2
𝑊 − 𝑊

−1

𝐶


2
𝑊𝐶
2
) ⊂ 𝜎(𝐴

0
+

𝐵𝑅
−1

𝐵


𝐻) = 𝜎(𝐴
0
+ 𝐵𝑅
−1

𝐵


(�̃� − �̂�)) = 𝜎(𝐴 − 𝐵𝑅
−1

𝐵


�̃� +

𝐵𝑅
−1

𝐵


(�̃�−�̂�)) = 𝜎(𝐴−𝐵𝑅
−1

𝐵


�̂�). It directly provides 𝜎(L
𝐾
)

of system (8) must have unstable modes byTheorem 4 where
𝐾 = −𝑅

−1

𝐵


�̂�; namely, there is a 𝜆 ∈ 𝜎(L
𝐾
) such that 𝜆 > 0.

It contradicts with 𝜎(L
𝐾
) of system (8) which is contained in

𝐶
−0. Hence𝐻 = 0. That is, �̃� = �̂�. The proof ofTheorem 13 is

complete.

Remark 14. In fact, the condition |Re(𝜆
𝑖
)| > |Re(𝜇

𝑖
𝜇
𝑗
)|

for 𝜆
𝑖

∈ 𝜎(𝐴 − 𝐵𝑅
−1

𝐵


�̃�) and 𝜇
𝑖
, 𝜇
𝑗

∈ 𝜎(𝐶) is a little
stronger. From the proof of Theorem 13, if there exists a 𝜃

𝑖
∈

𝜎(−𝑊
−1

𝐴
2
𝑊−𝑊

−1

𝐶


2
𝑊𝐶
2
) such that Re(𝜃

𝑖
) > 0, the result

still holds.

Remark 15. In fact, Theorem 13 gives a positive proof of
Conjecture 10 when𝐷 = 0 in a large extent.That is, the result
of Conjecture 10 holds for a big class of stochastic systems.

Corollary 16. Assume system (𝐴, 𝐵, 𝐶) is mean square sta-
bilizable; if GARE (9) admits a strong solution �̂� such that
𝜎(L
𝐴−𝐵𝑅

−1
𝐵

𝑃,𝐶

) ⊂ 𝐶
−, then it is also the maximal solution.

Proof. If GARE (9) admits a strong solution �̂� such that
𝜎(𝐿
𝐴
0
,𝐶
) ⊂ 𝐶

−; that is, 𝜆
𝑖
∈ 𝜎(L

𝐴−𝐵𝑅
−1
𝐵

�̂�,𝐶

) ̸= 0, then �̂� is
a feedback stabilizing solution. Hence it is also the maximal
solution by the uniqueness of stabilizing solution.

Remark 17. Under the conditions of Theorem 13, either
𝜎(L
𝐴−𝐵𝑅

−1
𝐵

𝑃,𝐶

) ⊂ 𝐶 − 𝐶
−0 or 𝜎(L

𝐴−𝐵𝑅
−1
𝐵

𝑃,𝐶

) ⊂ 𝐶
− holds,

where 𝑃 is the solution of GARE (9).
Now we consider the positive semidefiniteness of the

strong solution 𝑃 of GARE (9); first of all, we give the
following condition.

The condition 𝐻
1
: for each 𝜀 > 0, there exists a 𝛿 > 0,

such that 𝐸‖𝑥(𝑡, 𝑥
0
)‖
2

< 𝜀 whenever 𝑡 ≥ 0 and ‖𝑥
0
‖ < 𝛿.

Theorem 18. Assume system (𝐴, 𝐵, 𝐶) is mean square stabiliz-
able. If the strong solution 𝑃 of GARE (9) has the property that
any eigenvalue 𝜆 ∈ 𝜎(L

𝐴−𝐵𝑅
−1
𝐵

𝑃,𝐶

) satisfying Re(𝜆) = 0 is a
simple characteristic root, then 𝑃 ≥ 0.

Proof. Consider the following three optimal performance
values with the constraint of system (8):

𝑉
1
(𝑥
0
) = inf

𝑢∈𝑈
∞

𝑎𝑑

{𝐸∫

+∞

0

(𝑥


𝑄𝑥 + 𝑢


𝑅𝑢) 𝑑𝑡,

lim
𝑡→+∞

𝐸 ‖𝑥‖ = 0} ,

𝑉
2
(𝑥
0
) = inf

𝑢∈𝑈
∞

𝑎𝑑

{𝐸∫

+∞

0

(𝑥


𝑄𝑥 + 𝑢


𝑅𝑢) 𝑑𝑡,

(8) satisfies 𝐻
1
} ,

𝑉
3
(𝑥
0
) = inf

𝑢∈𝑈
∞

𝑎𝑑

{𝐸∫

+∞

0

(𝑥


𝑄𝑥 + 𝑢


𝑅𝑢) 𝑑𝑡,

𝑥 (0) = 𝑥
0
} .

(24)

Here 𝑈∞
𝑎𝑑

denotes all square integrable, F
𝑡
-measurable pro-

cesses.
In fact, Let 𝑋 = 𝐸𝑥𝑥

, using Itô formula and the
knowledge of Kroneckermultiplication in theory ofmatrices,
the stochastic system (4) becomes a deterministic systems in
[10]. ByTheorem 5.2.3 in [15], the condition𝐻

1
is equivalent

to the eigenvalue, 𝜆 ∈ 𝜎(L
𝐾
) satisfying Re(𝜆) = 0, is a simple

characteristic root.
From Lemma 4.1 in [9] and Theorem 5 in [10], we can,

respectively, get

𝑉
1
(𝑥
0
) = 𝑥
0
𝑃max𝑥0, 𝑉

3
(𝑥
0
) = 𝑥
0
𝑃min𝑥0, (25)

where 𝑃min and 𝑃max are the minimal and the maximal
positive semidefinite solution of GARE (9). Similarly to proof
of Theorem 5 in [10], we get 𝑉

2
(𝑥
0
) = 𝑥
0
𝑃𝑥
0
. So

𝑥
0
𝑃min𝑥0 ≤ 𝑥

0
𝑃𝑥
0
≤ 𝑥
0
𝑃max𝑥0. (26)

Hence,

𝑃min ≤ 𝑃 ≤ 𝑃max, 𝑃 ≥ 0. (27)

Corollary 19. Assume system (𝐴, 𝐵, 𝐶,𝐷) is mean square
stabilizable. If the strong solution 𝑃 of GARE (5) has the
property that any eigenvalue

𝜆 ∈ 𝜎 (L
𝐴−𝐵(𝑅+𝐷


𝑃𝐷)
−1

𝐵

(𝐵

𝑃+𝐷

𝑃𝐶),𝐶−𝐷(𝑅+𝐷


𝑃𝐷)
−1

𝐵

(𝐵

𝑃+𝐷

𝑃𝐶)

)

(28)

satisfying Re(𝜆) = 0 is a simple characteristic root, then 𝑃 ≥ 0.
In particular, we consider the case of one dimension,

Theorem 20. Assume system (𝐴, 𝐵, 𝐶) is mean square stabi-
lizable. If GARE (9) admits a strong solution 𝑃, then 𝑃 is also
the maximal solution.

Proof. The solutions of GARE (9) are 𝑃 = (2𝐴 + 𝐶
2

±

√(2𝐴 + 𝐶2)
2

+ 4𝑄𝐵2𝑅−1)/2𝐵
2

𝑅
−1. When 2𝐴 + 𝐶

2

̸= 0,
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the strong solution or maximal solution 𝑃 = (2𝐴 + 𝐶
2

+

√(2𝐴 + 𝐶2)
2

+ 4𝑄𝐵2𝑅−1)/2𝐵
2

𝑅
−1; when 2𝐴 + 𝐶

2

= 0 and
𝑄 = 0, the strong solution or maximal solution 𝑃 = 0; when
2𝐴 + 𝐶

2

= 0 and 𝑄 ̸= 0, the strong solution or maximal
solution 𝑃 = √4𝑄𝐵2𝑅−1/2𝐵

2

𝑅
−1.

Corollary 21. Assume system (𝐴, 𝐵, 𝐶) is mean square stabi-
lizable. If GARE (9) only has a solution, then it is the maximal
solution; if GARE (9) has two different solutions, the maximal
solution of GARE (9) is the stabilizing solution.

Remark 22. In fact, by a series of computations, Conjecture 10
in [9] holds for one dimension.

4. An Example

In this section, we will exhibit the effectiveness ofTheorem 13
by an example.

Example 1. Consider the following stochastic Itô differential
system:

𝑑𝑥 = (𝐴𝑥 + 𝐵𝑢) 𝑑𝑡 + 𝐶𝑥𝑑𝑤,

𝑥 (0) = 𝑥
0
∈ 𝑅
𝑛

.

(29)

Choose

𝐴 = (

4 2 3

0 5 2

0 0 6

) , 𝐵 = (

1 0 0

0 1 0

0 0 1

) , 𝐶 = (

1 2 3

0 1 2

0 0 1

) ,

𝑄 = (

1 0 0

0 1 0

0 0 1

) , 𝑅 = (

3 2 1

2 3 0

1 0 1

) .

(30)

UsingMatlab, solving themaximal solution of GARE (9), that
is, solving the optimal solution of the following SDP problem:

max T𝑟 (𝑃)

subject to (
𝑃𝐴 + 𝐴



𝑃 + 𝐶


𝑃𝐶 + 𝑄 𝑃𝐵

𝐵


𝑃 𝑅
) ≥ 0, 𝑃 ≥ 0,

(31)

we can get the following optimal solution 𝑃
0
; by Theorem 10

in [3], we know that the given 𝑃
0
is the maximal solution of

GARE (9).
One has

𝑃
0
= (

7.7145 2.7249 1.8685

2.7249 12.5383 5.6915

1.8685 5.6915 21.4621

) . (32)

So

𝐴
0
= 𝐴 − 𝐵𝑅

−1

𝐵


𝑃
0

= (

−2.0441 19.9882 37.0819

3.1211 −10.5049 −23.2851

4.1756 −22.6797 −50.5440

) .

(33)

Hence,

𝜎 (𝐴
0
) = {−64.4336, 2.5783, −1.2377} , 𝜎 (𝐶) = {1, 1, 1} .

(34)

Obviously, |Re(𝜆
𝑖
)| > |Re(𝜇

𝑖
𝜇
𝑗
)| for 𝜆

𝑖
∈ 𝜎(𝐴 − 𝐵𝑅

−1

𝐵


𝑃
0
)

and 𝜇
𝑖
, 𝜇
𝑗

∈ 𝜎(𝐶). Hence, by Theorem 13, the maximal
solution of GARE (9) is only a strong solution.

5. Conclusion

In this paper, with the aid of the operator spectrum and
generalized Lyapunov equation approach, we prove that the
strong solution of GARE is also the maximal solution under
certain condition, and it positively proves Conjecture 10
in [9]. From the proof of Theorem 13, we know that the
uniqueness of strong solution ofGARE (9) has a lot to dowith
𝜎(𝐶) and the maximal solution 𝑃. The condition |Re(𝜆

𝑖
)| >

|Re(𝜇
𝑖
𝜇
𝑗
)| for 𝜆

𝑖
∈ 𝜎(𝐴

0
) and 𝜇

𝑖
, 𝜇
𝑗
∈ 𝜎(𝐶) ensures that

there exists a 𝜃
𝑖
∈ 𝜎(−𝑊

−1

𝐴
2
𝑊 − 𝑊

−1

𝐶


2
𝑊𝐶
2
),Re(𝜃

𝑖
) > 0.

However, whether there exists a weaker condition is still a
challenge. Although we don’t completely prove Conjecture 10
in [9], we find that the result holds for a big class of stochastic
systems; that is, GARE (9) has only a solution 𝑃 which
stabilized system (8) and mean square stabilized system (8);
others cannot stabilize system (8). We will look deeper into
the problem, which is perhaps related with the time invariant
version of the stochastic system and of the generalized Riccati
equations in [16].
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