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We establish exact solutions for the Schrödinger-Boussinesq System iut + uxx − auv = 0, vtt − vxx +
vxxxx − b(|u|2)xx = 0, where a and b are real constants. The (G′/G)-expansion method is used to
construct exact periodic and soliton solutions of this equation. Our work is motivated by the fact
that the (G′/G)-expansion method provides not only more general forms of solutions but also
periodic and solitary waves. As a result, hyperbolic function solutions and trigonometric function
solutions with parameters are obtained. These solutions may be important and of significance for
the explanation of some practical physical problems.

1. Introduction

It is well known that the nonlinear Schrödinger (NLS) equation models a wide range
of physical phenomena including self-focusing of optical beams in nonlinear media, the
modulation of monochromatic waves, propagation of Langmuir waves in plasmas, and so
forth. The nonlinear Schrödinger equations play an important role in many areas of applied
physics, such as nonrelativistic quantum mechanics, laser beam propagation, Bose-Einstein
condensates, and so on (see [1]). Some properties of solutions for the nonlinear Schrödinger
equations on R

n have been extensively studied in the last two decades (e.g., see [2]).
The Boussinesq-type equations are essentially a class of models appearing in physics

and fluidmechanics. The so-called Boussinesq equationwas originally derived by Boussinesq
[3] to describe two-dimensional irrotational flows of an inviscid liquid in a uniform
rectangular channel. It also arises in a large range of physical phenomena including the
propagation of ion-sound waves in a plasma and nonlinear lattice waves. The study on the
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soliton solutions for various generalizations of the Boussinesq equation has recently attracted
considerable attention frommanymathematicians and physicists (see [4]). We should remark
that it was the first equation proposed in the literature to describe this kind of physical
phenomena. This equation was also used by Zakharov [5] as a model of nonlinear string
and by Falk et al. [6] in their study of shape-memory alloys.

In the laser and plasma physics, the Schrödinger-Boussinesq system (hereafter referred
to as the SB-system) has been raised. Consider the SB-system

iut + uxx − auv = 0,

vtt − vxx + vxxxx − b
(
|u|2

)
xx

= 0,
(1.1)

where t > 0, x ∈ [0, L], for some L > 0, and a, b are real constants. Here u and v are,
respectively, a complex-valued and a real-valued function defined in space-time [0, L] × R.
The SB-system is considered as a model of interactions between short and intermediate
long waves, which is derived in describing the dynamics of Langmuir soliton formation
and interaction in a plasma [7] and diatomic lattice system [8]. The short wave term
u(x, t) : [0, L] × R → C is described by a Schrödinger type equation with a potential
v(x, t) : [0, L] × R → R satisfying some sort of Boussinesq equation and representing the
intermediate long wave. The SB-system also appears in the study of interaction of solitons
in optics. The solitary wave solutions and integrability of nonlinear SB-system has been
considered by several authors (see [7, 8]) and the references therein.

In the literature, there is a wide variety of approaches to nonlinear problems for
constructing travelling wave solutions, such as the inverse scattering method [9], Bcklund
transformation [10], Hirota bilinear method [11], Painlevé expansion methods [12], and the
Wronskian determinant technique [13].

With the help of the computer software, most of mentionedmethods are improved and
many other algebraic method, proposed, such as the tanh/cothmethod [14], the Exp-function
method [15], and first integral method [16]. But, most of the methods may sometimes fail or
can only lead to a kind of special solution and the solution procedures become very complex
as the degree of nonlinearity increases.

Recently, the (G′/G)-expansion method, firstly introduced by Wang et al. [17], has
become widely used to search for various exact solutions of NLEEs [17–19].

The main idea of this method is that the traveling wave solutions of nonlinear
equations can be expressed by a polynomial in (G′/G), where G = G(ξ) satisfies the second
order linear ordinary differential equation G′′(ξ) + λG′(ξ) + μG(ξ) = 0, where ξ = kx +ωt and
k, ω are arbitrary constants. The degree of this polynomial can be determined by considering
the homogeneous balance between the highest order derivatives and the non-linear terms
appearing in the given non-linear equations.

Our first interest in the present work is in implementing the (G′/G)-expansionmethod
to stress its power in handling nonlinear equations, so that one can apply it to models of
various types of nonlinearity. The next interest is in the determination of exact traveling wave
solutions for the SB-system (1.1).
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2. Description of the (G′/G)-Expansion Method

The objective of this section is to outline the use of the (G′/G)-expansion method for solving
certain nonlinear partial differential equations (PDEs). Suppose that a nonlinear equation,
say in two independent variables x and t, is given by

P(u, ux, ut, uxx, ux,t, utt, . . .) = 0, (2.1)

where u(x, t) is an unknown function, P is a polynomial in u(x, t) and its various partial
derivatives, in which the highest order derivatives and nonlinear terms are involved. The
main steps of the (G′/G)-expansion method are the following:

Step 1. Combining the independent variables x and t into one variable ξ = kx+ωt, we suppose
that

u(x, t) = U(ξ), ξ = kx +ωt. (2.2)

The travelling wave variable (2.2) permits us to reduce (2.1) to an ODE for u(x, t) = U(ξ),
namely,

P
(
U, kU′, ωU′, k2U′′, kωU′′, ω2U′′, . . .

)
= 0, (2.3)

where prime denotes derivative with respect to ξ.

Step 2. We assume that the solution of (2.3) can be expressed by a polynomial in (G′/G) as
follows:

U(ξ) =
m∑
i=1

αi

(
G′

G

)i

+ α0, αm /= 0, (2.4)

where m is called the balance number, α0, and αi, are constants to be determined later, G(ξ)
satisfies a second order linear ordinary differential equation (LODE):

d2G(ξ)
dξ2

+ λ
dG(ξ)
dξ

+ μG(ξ) = 0, (2.5)

where λ and μ are arbitrary constants. The positive integer m can be determined by
considering the homogeneous balance between the highest order derivatives and nonlinear
terms appearing in ODE (2.3).

Step 3. By substituting (2.4) into (2.3) and using the second order linear ODE (2.5), collecting
all terms with the same order of (G′/G) together, the left-hand side of (2.3) is converted into
another polynomial in (G′/G). Equating each coefficient of this polynomial to zero yields a
set of algebraic equations for k,ω, λ, μ, α0, α1, . . . , αm.
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Step 4. Assuming that the constants k,ω, λ, μ, α0, α1, ..., αm can be obtained by solving the
algebraic equations in Step 3, since the general solutions of the second order linear ODE (2.5)
is well known for us, then substituting k,ω, λ, μ, α0, ..., αm and the general solutions of (2.5)
into (2.4)we have more travelling wave solutions of the nonlinear evolution (2.1).

In the subsequent section, we will illustrate the validity and reliability of this method
in detail with complex model of Schrödinger-Boussinesq System (1.1).

3. Application

To look for the traveling wave solution of the Schrödinger-Boussinesq System (1.1), we use
the gauge transformation:

u(x, t) = U(ξ)eiη,

v(x, t) = V (ξ),
(3.1)

where ξ = kx +ωt, η = px + qt, and p, q, ω are constants and i =
√
−1. We substitute (3.1) into

(1.1) to obtain nonlinear ordinary differential equation

k2U′′ − i
(
2kp +ω

)
U′ − aUV −

(
p2 + q

)
U = 0, (3.2)

(
ω2 − k2

)
V ′′ + k4V (4) − bk2

(
U2

)′′
= 0. (3.3)

In order to simplify, integrating (3.3) twice and taking integration constant to zero, the system
(3.2)-(3.3) reduces to the following system:

k2U′′ − i
(
2kp +ω

)
U′ − aUV −

(
p2 + q

)
U = 0,

(
ω2 − k2

)
V + k4V ′′ − bk2U2 = 0.

(3.4)

Suppose that the solution of the nonlinear ordinary differential system (3.4) can be expressed
by a polynomial in (G′/G) as follows:

U(ξ) =
m∑
i=1

αi

(
G′

G

)i

+ α0, αm /= 0,

V (ξ) =
n∑
i=1

βi

(
G′

G

)i

+ β0, βn /= 0,

(3.5)

where m, n are called the balance number, αi, (i = 0, 1, . . . , m) and βj , (j = 0, 1, . . . , n) are
constants to be determined later, G(ξ) satisfies a second order linear ordinary differential
equation (2.5). The integersm, n can be determined by considering the homogeneous balance
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between the highest order derivatives and nonlinear terms appearing in nonlinear ordinary
differential system (3.4) as follow:

m + n = m + 2,

2m = n + 2,
(3.6)

so that m = n = 2. We then suppose that (3.4) has the following formal solutions:

U(ξ) = α2

(
G′

G

)2

+ α1

(
G′

G

)
+ α0, α2 /= 0,

V (ξ) = β2

(
G′

G

)2

+ β1

(
G′

G

)
+ β0, β2 /= 0.

(3.7)

Substituting (3.7) along with (2.5) into (3.4) and collecting all the terms with the same power
of (G′/G) together, equating each coefficient to zero, yields a set of simultaneous algebraic
equations for k, ω, λ, μ, αj , and βj , (j = 0, 1, 2), as follows:

2k2α2μ
2 + iωα1μ + k2α1λμ − aα0β0 − p2α0 − qα0 + 2ikpα1μ = 0,

ω2β0 + 2k4β2μ
2 − k2

(
−μλβ1k2 + bα0

2 + β0
)
= 0,

k2α1λ
2 − p2α1 +

(
4ikα2μ + 2ikα1λ

)
p +

(
2iα2μ + iα1λ

)
ω − qα1

− aα0β1 + 2k2α1μ − aα1β0 + 6k2α2λμ = 0,

ω2β1 + 6k4β2λμ − k2
(
−k2λ2β1 − 2k2μβ1 + β1 + 2bα1α0

)
= 0,

(4ikα2λ + 2ikα1)p + (2iα2λ + iα1)ω − p2α2 +
(
4λ2k2 − q − aβ0 + 8μk2

)
α2

+ 3k2α1λ − aα1β1 − aα0β2 = 0,

ω2β2 + k2
(
4λ2k2 + 8μk2 − 1

)
β2 − k2

(
2bα2α0 + bα1

2 − 3λβ1k2
)
= 0,

4ikpα2 + 2iωα2 +
(
10λk2 − aβ1

)
α2 − α1

(
−2k2 + aβ2

)
= 0,

10k4β2λ − 2k2
(
−k2β1 + bα2α1

)
= 0,

(
6k2 − aβ2

)
α2 = 0,

6k4β2 − bk2α2
2 = 0.

(3.8)

Then, explicit and exact wave solutions can be constructed through our ansatz (3.7) via the
associated solutions of (2.5).

In the process of constructing exact solutions to the Schrödinger-Boussinesq system
(1.1), (2.5) is often viewed as a key auxiliary equation, and the types of its solutions determine
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the solutions for the original system (1.1) indirectly. In order to seek more new solutions to
(1.1), we here combine the solutions to (2.5) which were listed in [18, 19]. Our computation
results show that this combination is an efficient way to obtain more diverse families of
explicit exact solutions.

Solving (3.8) by use of Maple, we get the following reliable results:

{
λ = ±1

3

√
3ω2 − 3k2

k2
, μ =

1
6
k2 −ω2

k4
, p = −1

2
ω

k
,

q =
1
24

24k4 + 30ω4 − 54k2ω2

k2(k2 −ω2)
, α0 = 0,

α1 = ±2

√
1
ab

√
3ω2 − 3k2, α2 = 6k2

√
1
ab

,

β0 = 0, β1 = ±2
√
3ω2 − 3k2

a
, β2 =

6k2

a

}
,

(3.9)

where k and ω are free constant parameters and k /= ±ω. Therefore, substitute the above case
in (3.7), we get

U(ξ) = 6k2

√
1
ab

(
G′

G

)2

± 2

√
1
ab

√
3ω2 − 3k2

(
G′

G

)
,

V (ξ) =
6k2

a

(
G′

G

)2

± 2

√
3ω2 − 3k2

a

(
G′

G

)
.

(3.10)

Substituting the general solutions of ordinary differential equation (2.5) into (3.10), we obtain
two types of traveling wave solutions of (1.1) in view of the positive and negative of λ2 − 4μ.

WhenD = λ2−4μ = (ω2−k2)/k4 > 0, using the general solutions of ordinary differential
equation (2.5) and relationships (3.10), we obtain hyperbolic function solutions uH(x, t) and
vH(x, t) of the Schrödinger-Boussinesq system (1.1) as follows:

uH(x, t) = 2

√
1
ab

⎡
⎢⎣3k2

⎛
⎜⎝

√
D
2

⎛
⎜⎝

C1 sinh
((√

D/2
)
ξ
)
+ C2 cosh

((√
D/2

)
ξ
)

C1 cosh
((√

D/2
)
ξ
)
+ C2 sinh

((√
D/2

)
ξ
)

⎞
⎟⎠

∓1
6

√
3ω2 − 3k2

k2

⎞
⎟⎠

2
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±
√
3ω2 − 3k2

⎛
⎜⎝

√
D
2

⎛
⎜⎝

C1 sinh
((√

D/2
)
ξ
)
+ C2 cosh

((√
D/2

)
ξ
)

C1 cosh
((√

D/2
)
ξ
)
+ C2 sinh

((√
D/2

)
ξ
)

⎞
⎟⎠

∓1
6

√
3ω2 − 3k2

k2

⎞
⎟⎠

⎤
⎥⎦eiη,

vH(x, t) =
6k2

a

⎛
⎜⎝

√
D
2

⎛
⎜⎝

C1 sinh
((√

D/2
)
ξ
)
+ C2 cosh

((√
D/2

)
ξ
)

C1 cosh
((√

D/2
)
ξ
)
+ C2 sinh

((√
D/2

)
ξ
)

⎞
⎟⎠ ∓ 1

6

√
3ω2 − 3k2

k2

⎞
⎟⎠

2

± 2

√
3ω2 − 3k2

a

⎛
⎜⎝

√
D
2

⎛
⎜⎝

C1 sinh
((√

D/2
)
ξ
)
+ C2 cosh

((√
D/2

)
ξ
)

C1 cosh
((√

D/2
)
ξ
)
+ C2 sinh

((√
D/2

)
ξ
)

⎞
⎟⎠

∓1
6

√
3ω2 − 3k2

k2

⎞
⎟⎠,

(3.11)

where D = (ω2 − k2)/k4 > 0, ξ = kx + ωt, η = −(1/2)(ωx/k) + (1/24)((24k4 + 30ω4 −
54k2ω2)/k2(k2 −ω2))t, and k,ω,C1, and C2 are arbitrary constants and k /= ±ω.

It is easy to see that the hyperbolic solutions (3.11) can be rewritten at C2
1 > C2

2, as
follows:

uH(x, t) =
1
2

√
1
ab

ω2 − k2

k2

⎛
⎝3tanh2

⎛
⎝1

2

√
ω2 − k2

k4
ξ + ρH

⎞
⎠ − 1

⎞
⎠eiη, (3.12a)

vH(x, t) =
1
2
ω2 − k2

ak2

⎛
⎝3tanh2

⎛
⎝1

2

√
ω2 − k2

k4
ξ + ρH

⎞
⎠ − 1

⎞
⎠, (3.12b)

while at C2
1 < C2

2, one can obtain

uH(x, t) =
1
2

√
1
ab

ω2 − k2

k2

⎛
⎝3coth2

⎛
⎝1

2

√
ω2 − k2

k4
ξ + ρH

⎞
⎠ − 1

⎞
⎠eiη, (3.12c)

vH(x, t) =
1
2
ω2 − k2

ak2

⎛
⎝3coth2

⎛
⎝1

2

√
ω2 − k2

k4
ξ + ρH

⎞
⎠ − 1

⎞
⎠, (3.12d)

where ξ = kx + ωt, η = −(1/2)(ωx/k) + (1/24)((24k4 + 30ω4 − 54k2ω2)/k2(k2 − ω2))t, ρH =
tanh−1(C1/C2), and k,ω are arbitrary constants.
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Now, whenD = λ2 −4μ = (ω2 −k2)/k4 < 0, we obtain trigonometric function solutions
uT and vT of Schrödinger-Boussinesq system (1.1) as follows:

uT(x, t) = 2

√
1
ab

⎡
⎢⎣3k2

⎛
⎜⎝

√
−D
2

⎛
⎜⎝

−C1 sin
((√

−D/2
)
ξ
)
+ C2 cos

((√
−D/2

)
ξ
)

C1 cos
((√

−D/2
)
ξ
)
+ C2 sin

((√
−D/2

)
ξ
)

⎞
⎟⎠

∓1
6

√
3ω2 − 3k2

k2

⎞
⎟⎠

2

±
√
3ω2 − 3k2

⎛
⎜⎝

√
−D
2

⎛
⎜⎝

−C1 sin
((√

−D/2
)
ξ
)
+ C2 cos

((√
D/2

)
ξ
)

C1 cos
((√

−D/2
)
ξ
)
+ C2 sin

((√
−D/2

)
ξ
)

⎞
⎟⎠

∓1
6

√
3ω2 − 3k2

k2

⎞
⎟⎠

⎤
⎥⎦eiη,

vT(x, t) =
6k2

a

⎛
⎜⎝

√
−D
2

⎛
⎜⎝

−C1 sin
((√

−D/2
)
ξ
)
+ C2 cos

((√
−D/2

)
ξ
)

C1 cos
((√

−D/2
)
ξ
)
+ C2 sin

((√
−D/2

)
ξ
)

⎞
⎟⎠ ∓ 1

6

√
3ω2 − 3k2

k2

⎞
⎟⎠

2

± 2

√
3ω2 − 3k2

a

⎛
⎜⎝

√
−D
2

⎛
⎜⎝

−C1 sin
((√

−D/2
)
ξ
)
+ C2 cos

((√
−D/2

)
ξ
)

C1 cos
((√

−D/2
)
ξ
)
+ C2 sin

((√
−D/2

)
ξ
)

⎞
⎟⎠

∓1
6

√
3ω2 − 3k2

k2

⎞
⎟⎠,

(3.13)

where D = (ω2 − k2)/k4 < 0, ξ = kx + ωt, η = −(1/2)(ωx/k) + (1/24)((24k4 + 30ω4 −
54k2ω2)/k2(k2 − ω2))t, and k, ω, C1, and C2 are arbitrary constants and k /= ± ω. Similarity,
the trigonometric solutions (3.13) can be rewritten at C2

1 > C2
2, and C2

1 < C2
2, as follows:

uT(x, t) =
1
2

√
1
ab

k2 −ω2

k2

⎛
⎝3tan2

⎛
⎝1

2

√
k2 −ω2

k4
ξ + ρT

⎞
⎠ + 1

⎞
⎠eiη, (3.14a)

vT(x, t) =
1
2
k2 −ω2

ak2

⎛
⎝3tan2

⎛
⎝1

2

√
k2 −ω2

k4
ξ + ρT

⎞
⎠ + 1

⎞
⎠, (3.14b)
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−4 −4
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Figure 1: Soliton solution |uH(x, t)| of the Schrödinger-Boussinesq system, (3.12a), for α = 1, β = 16, k =
1, ω = −2, and ρH = tanh−1(1/4).
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Figure 2: Soliton solution |uH(x, t)|2 of the Schrödinger-Boussinesq system, (3.12a), for α = 1, β = 16, k =
1, ω = −2, and ρH = tanh−1(1/4).

uT(x, t) =
1
2

√
1
ab

k2 −ω2

k2

⎛
⎝3cot2

⎛
⎝1

2

√
k2 −ω2

k4
ξ + ρT

⎞
⎠ + 1

⎞
⎠eiη, (3.14c)

vT(x, t) =
1
2
k2 −ω2

ak2

⎛
⎝3cot2

⎛
⎝1

2

√
k2 −ω2

k4
ξ + ρT

⎞
⎠ + 1

⎞
⎠, (3.14d)

where ξ = kx + ωt, η = −(1/2)(ωx/k) + (1/24)((24k4 + 30ω4 − 54k2ω2)/k2(k2 − ω2))t, ρT =
tan−1(C1/C2), and k, ω are arbitrary constants.
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Figure 3: Soliton solution |vH(x, t)| of the Schrödinger-Boussinesq system, (3.12b), for α = 1, β = 16, k =
1, ω = −2, and ρH = tanh−1(1/4).

4. Conclusions

This study shows that the (G′/G)-expansion method is quite efficient and practically well
suited for use in finding exact solutions for the Schrödinger-Boussinesq system. With the
aid of Maple, we have assured the correctness of the obtained solutions by putting them back
into the original equation. To illustrate the obtained solutions, the hyperbolic type of obtained
solutions, (3.12a) and (3.12b), are attached as Figures 1, 2, and 3. We hope that they will be
useful for further studies in applied sciences.
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Mathematical and Computer Modelling, vol. 52, no. 9-10, pp. 1834–1845, 2010.

[19] R. Abazari, “The (G′/G )-expansion method for the coupled Boussinesq equations,” Procedia
Engineering, vol. 10, pp. 2845–2850, 2011.


