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We obtain some new estimates for the error of Simpson integration rule, which develop available
results in the literature. Indeed, we introduce three main estimates for the residue of Simpson
integration rule in L1[a, b] and L∞[a, b] spaces where the compactness of the interval [a, b] plays
a crucial role.

1. Introduction

A general (n + 1)-point-weighted quadrature formula is denoted by

∫b

a

w(x)f(x)dx =
n∑

k=0

wkf(xk) + Rn+1
[
f
]
, (1.1)

where w(x) is a positive weight function on [a, b], {xk}nk=0 and {wk}nk=0 are, respectively,
nodes and weight coefficients, and Rn+1[f] is the corresponding error [1].

LetΠd be the set of algebraic polynomials of degree at most d. The quadrature formula
(1.1) has degree of exactness d if for every p ∈ Πd we have Rn+1[p] = 0. In addition, if
Rn+1[p]/= 0 for some Πd+1, formula (1.1) has precise degree of exactness d.

The convergence order of quadrature rule (1.1) depends on the smoothness of the
function f as well as on its degree of exactness. It is well known that for given n + 1 mutually
different nodes {xk}nk=0 we can always achieve a degree of exactness d = n by interpolating
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at these nodes and integrating the interpolated polynomial instead of f . Namely, taking the
node polynomia

Ψn+1(x) =
n∏

k=0

(x − xk), (1.2)

by integrating the Lagrange interpolation formula

f(x) =
n∑

k=0

f(xk)L(x;xk) + rn+1
(
f ;x
)
, (1.3)

where

L(x;xk) =
Ψn+1(x)

Ψ′
n+1(xk)(x − xk)

(k = 0, 1, . . . , n), (1.4)

we obtain (1.1), with

wk =
1

Ψ′
n+1(xk)

∫b

a

Ψn+1(x)w(x)
x − xk

dx (k = 0, 1, . . . , n),

Rn+1
[
f
]
=
∫b

a

rn+1
(
f ;x
)
w(x)dx.

(1.5)

Note that for each f ∈ Πn we have rn+1(f ;x) = 0, and therefore Rn+1[f] = 0.
Quadrature formulae obtained in this way are known as interpolatory. Usually the

simplest interpolatory quadrature formula of type (1.1)with predetermined nodes {xk}nk=0 ∈
[a, b] is called a weighted Newton-Cotes formula. For w(x) = 1 and the equidistant nodes
{xk}nk=0 = {a + kh}nk=0 with h = (b − a)/n, the classical Newton-Cotes formulas are derived.
One of the important cases of the classical Newton-Cotes formulas is the well-known
Simpson’s rule:

∫b

a

f(t)dt =
b − a

6

(
f(a) + 4f

(
a + b

2

)
+ f(b)

)
+ E
(
f
)
. (1.6)

In this direction, Simpson inequality [2–7] gives an error bound for the above quadrature
rule. There are few known ways to estimate the residue value in (1.6). The main aim of this
paper is to give three new estimations for E(f) in L1[a, b] and L∞[a, b] spaces.

Let Lp[a, b] (1 ≤ p < ∞) denote the space of p-power integrable functions on the inter-
val [a, b]with the standard norm

∥∥f∥∥p =

(∫b

a

∣∣f(t)∣∣pdt
)1/p

, (1.7)

and L∞[a, b] the space of all essentially bounded functions on [a, b]with the norm
∥∥f∥∥∞ = ess sup

x∈[a,b]

∣∣f(x)∣∣. (1.8)
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If f ∈ L1[a, b] and g ∈ L∞[a, b], then the following inequality is well known:

∣∣∣∣∣
∫b

a

f(x)g(x)dx

∣∣∣∣∣ ≤
∥∥f∥∥1

∥∥g∥∥∞. (1.9)

Recently in [8], a main inequality has been introduced, which can estimate the error of
Simpson quadrature rule too.

Theorem A. Let f : I → R, where I is an interval, be a differentiable function in the interior I0of I,
and let [a, b] ⊂ I0. If α0, β0 are two real constants such that α0 ≤ f ′(t) ≤ β0 for all t ∈ [a, b], then for
any λ ∈ [1/2, 1] and all x ∈ [(a + (2λ − 1)b)/2λ, (b + (2λ − 1)a)/2λ] ⊆ [a, b] we have

∣∣∣∣∣f(x) −
1

λ(b − a)

∫b

a

f(t)dt − f(b) − f(a)
b − a

x +
(2λ − 1)a + b

2λ(b − a)
f(b) − a + (2λ − 1)b

2λ(b − a)
f(a)

∣∣∣∣∣

≤ β0 − α0

4(b − a)
λ2 + (1 − λ)2

λ

(
(x − a)2 + (b − x)2

)
.

(1.10)

As is observed, replacing x = (a + b)/2 and λ = 2/3 in (1.10) gives an error bound for the
Simpson rule as

∣∣∣∣∣
∫b

a

f(t)dt − b − a

6

(
f(a) + 4f

(
a + b

2

)
+ f(b)

)∣∣∣∣∣ ≤
5
72

(b − a)2
(
β0 − α0

)
. (1.11)

To introduce three new error bounds for the Simpson quadrature rule in L1[a, b] and L∞[a, b]
spaces we first consider the following kernel on [a, b]:

K(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t − 5a + b

6
, t ∈

[
a,

a + b

2

]
,

t − a + 5b
6

, t ∈
(
a + b

2
, b

]
.

(1.12)

After some calculations, it can be directly concluded that

∫b

a

f ′(t)K(t)dt =
b − a

6

(
f(a) + 4f

(
a + b

2

)
+ f(b)

)
−
∫b

a

f(t)dt, (1.13)

max
t∈[a,b]

|K(t)| = 1
3
(b − a). (1.14)
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2. Main Results

Theorem 2.1. Let f : I → R, where I is an interval, be a function differentiable in the interior I0of I,
and let [a, b] ⊂ I0. If α(x) ≤ f ′(x) ≤ β(x) for any α, β ∈ C[a, b] and x ∈ [a, b], then the following
inequality holds:

m1 =
∫ (5a+b)/6

a

(
t − 5a + b

6

)
β(t)dt +

∫ (a+b)/2

(5a+b)/6

(
t − 5a + b

6

)
α(t)dt

+
∫ (a+5b)/6

(a+b)/2

(
t − a + 5b

6

)
β(t)dt +

∫b

(a+5b)/6

(
t − a + 5b

6

)
α(t)dt

≤ b − a

6

(
f(a) + 4f

(
a + b

2

)
+ f(b)

)
−
∫b

a

f(t)dt ≤

M1 =
∫ (5a+b)/6

a

(
t − 5a + b

6

)
α(t)dt +

∫ (a+b)/2

(5a+b)/6

(
t − 5a + b

6

)
β(t)dt

+
∫ (a+5b)/6

(a+b)/2

(
t − a + 5b

6

)
α(t)dt +

∫b

(a+5b)/6

(
t − a + 5b

6

)
β(t)dt.

(2.1)

Proof. By referring to the kernel (1.12) and identity (1.13)we first have

∫b

a

K(t)
(
f ′(t) − α(t) + β(t)

2

)
dt

=
b − a

6

(
f(a) + 4f

(
a + b

2

)
+ f(b)

)
−
∫b

a

f(t)dt − 1
2

(∫b

a

K(t)
(
α(t) + β(t)

)
dt

)

=
b − a

6

(
f(a) + 4f

(
a + b

2

)
+ f(b)

)
−
∫b

a

f(t)dt

− 1
2

(∫ (a+b)/2

a

(
t − 5a + b

6

)(
α(t) + β(t)

)
dt +

∫b

(a+b)/2

(
t − a + 5b

6

)(
α(t) + β(t)

)
dt

)
.

(2.2)

On the other hand, the given assumption α(t) ≤ f ′(t) ≤ β(t) results in

∣∣∣∣f ′(t) − α(t) + β(t)
2

∣∣∣∣ ≤ β(t) − α(t)
2

. (2.3)
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Therefore, one can conclude from (2.2) and (2.3) that

∣∣∣∣∣
b − a

6

(
f(a) + 4f

(
a + b

2

)
+ f(b)

)
−
∫b

a

f(t)dt

− 1
2

(∫ (a+b)/2

a

(
t − 5a + b

6

)(
α(t) + β(t)

)
dt +

∫b

(a+b)/2

(
t − a + 5b

6

)(
α(t) + β(t)

)
dt

)∣∣∣∣∣

=

∣∣∣∣∣
∫b

a

K(t)
(
f ′(t) − α(t) + β(t)

2

)
dt

∣∣∣∣∣ ≤
∫b

a

|K(t)| β(t) − α(t)
2

dt

=
1
2

(∫ (a+b)/2

a

∣∣∣∣ t − 5a + b

6

∣∣∣∣(β(t) − α(t)
)
dt +

∫b

(a+b)/2

∣∣∣∣ t − a + 5b
6

∣∣∣∣(β(t) − α(t)
)
dt

)
.

(2.4)

After rearranging (2.4) we obtain

m1 =
∫ (a+b)/2

a

((
t − 5a + b

6
−
∣∣∣∣ t − 5a + b

6

∣∣∣∣
)
β(t)
2

+
(
t − 5a + b

6
+
∣∣∣∣ t − 5a + b

6

∣∣∣∣
)
α(t)
2

)
dt

+
∫b

(a+b)/2

((
t − a + 5b

6
−
∣∣∣∣ t − a + 5b

6

∣∣∣∣
)
β(t)
2

+
(
t − a + 5b

6
+
∣∣∣∣ t − a + 5b

6

∣∣∣∣
)
α(t)
2

)
dt

=
∫ (5a+b)/6

a

(
x − 5a + b

6

)
β(x)dx +

∫ (a+b)/2

(5a+b)/6

(
x − 5a + b

6

)
α(x)dx

+
∫ (a+5b)/6

(a+b)/2

(
x − a + 5b

6

)
β(x)dx +

∫b

(a+5b)/6

(
x − a + 5b

6

)
α(x)dx,

M1 =
∫ (a+b)/2

a

((
t − 5a + b

6
−
∣∣∣∣t − 5a + b

6

∣∣∣∣
)
α(t)
2

+
(
t − 5a + b

6
+
∣∣∣∣t − 5a + b

6

∣∣∣∣
)
β(t)
2

)
dt

+
∫b

(a+b)/2

((
t − a + 5b

6
−
∣∣∣∣t − a + 5b

6

∣∣∣∣
)
α(t)
2

+
(
t − a + 5b

6
+
∣∣∣∣t − a + 5b

6

∣∣∣∣
)
β(t)
2

)
dt

=
∫ (5a+b)/6

a

(
x − 5a + b

6

)
α(x)dx +

∫ (a+b)/2

(5a+b)/6

(
x − 5a + b

6

)
β(x)dx

+
∫ (a+5b)/6

(a+b)/2

(
x − a + 5b

6

)
α(x)dx +

∫b

(a+5b)/6

(
x − a + 5b

6

)
β(x)dx.

(2.5)

The advantage of Theorem 2.1 is that necessary computations in bounds m1 and M1

are just in terms of the preassigned functions α(t), β(t) (not f ′).
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Special Case 1

Substituting α(x) = α1x + α0 /= 0 and β(x) = β1x + β0 /= 0 in (2.1) gives

∣∣∣∣∣
∫b

a

f(t)dt − b − a

6

(
f(a) + 4f

(
a + b

2

)
+ f(b)

)∣∣∣∣∣ ≤
5(b − a)2

144
((
β1 − α1

)
(a + b) + 2

(
β0 − α0

))
.

(2.6)

In particular, replacing α1 = β1 = 0 in above inequality leads to one of the results of [9] as

∣∣∣∣∣
∫b

a

f(t)dt − b − a

6

(
f(a) + 4f

(
a + b

2

)
+ f(b)

)∣∣∣∣∣ ≤
5
72

(b − a)2
(
β0 − α0

)
. (2.7)

Remark 2.2. Although α(x) ≤ f ′(x) ≤ β(x) is a straightforward condition in Theorem 2.1,
however, sometimes one might not be able to easily obtain both bounds of α(x) and β(x) for
f ′. In this case, we can make use of two analogue theorems. The first one would be helpful
when f ′ is unbounded from above and the second one would be helpful when f ′ is unbound-
ed from below.

Theorem 2.3. Let f : I → R, where I is an interval, be a function differentiable in the interior I0 of
I, and let [a, b] ⊂ I0. If α(x) ≤ f ′(x) for any α ∈ C[a, b] and x ∈ [a, b] then

∫ (a+b)/2

a

(
t − 5a + b

6

)
α(t)dt +

∫b

(a+b)/2

(
t − a + 5b

6

)
α(t)dt − b − a

3

(
f(b) − f(a) −

∫b

a

α(t)dt

)

≤ b − a

6

(
f(a) + 4f

(
a + b

2

)
+ f(b)

)
−
∫b

a

f(t) dt

≤
∫ (a+b)/2

a

(
t − 5a + b

6

)
α(t)dt +

∫b

(a+b)/2

(
t − a + 5b

6

)
α(t)dt

+
b − a

3

(
f(b) − f(a) −

∫b

a

α(t)dt

)
.

(2.8)

Proof. Since

∫b

a

K(t)
(
f ′(t) − α(t)

)
dt =

b − a

6

(
f(a) + 4f

(
a + b

2

)
+ f(b)

)
−
∫b

a

f(t)dt −
(∫b

a

K(t)α(t)dt

)

=
b − a

6

(
f(a) + 4f

(
a + b

2

)
+ f(b)

)
−
∫b

a

f(t)dt

−
(∫ (a+b)/2

a

(
t − 5a + b

6

)
α(t)dt +

∫b

(a+b)/2

(
t − a + 5b

6

)
α(t)dt

)
,

(2.9)
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so we have

∣∣∣∣∣
b − a

6

(
f(a) + 4f

(
a + b

2

)
+ f(b)

)
−
∫b

a

f(t)dt

−
(∫ (a+b)/2

a

(
t − 5a + b

6

)
α(t)dt +

∫b

(a+b)/2

(
t − a + 5b

6

)
α(t)dt

)∣∣∣∣∣

=

∣∣∣∣∣
∫b

a

K(t)
(
f ′(t) − α(t)

)
dt

∣∣∣∣∣ ≤
∫b

a

|K(t)|(f ′(t) − α(t)
)
dt

≤ max
t∈[a,b]

|K(t)|
∫b

a

(
f ′(t) − α(t)

)
dt =

b − a

3

(
f(b) − f(a) −

∫b

a

α(t)dt

)
.

(2.10)

After rearranging (2.10), the main inequality (2.8)will be derived.

Special Case 2

If α(x) = α1x + α0 /= 0, then (2.8) becomes

∣∣∣∣∣
∫b

a

f(t)dt − b − a

6

(
f(a) + 4f

(
a + b

2

)
+ f(b)

)∣∣∣∣∣ ≤
(b − a)2

3

(
f(b) − f(a)

b − a
−
(
α0 +

a + b

2
α1

))

(2.11)

if and only if α1x + α0 ≤ f ′(x) for all x ∈ [a, b]. In particular, replacing α1 = 0 in above
inequality leads to [10, Theorem 1, relation (4)] as follows:

∣∣∣∣∣
∫b

a

f(t)dt − b − a

6

(
f(a) + 4f

(
a + b

2

)
+ f(b)

)∣∣∣∣∣ ≤
(b − a)2

3

(
f(b) − f(a)

b − a
− α0

)
. (2.12)

Theorem 2.4. Let f : I → R, where I is an interval, be a function differentiable in the interior I0 of
I, and let [a, b] ⊂ I0. If f ′(x) ≤ β(x) for any β ∈ C[a, b] and x ∈ [a, b] then

∫ (a+b)/2

a

(
t − 5a + b

6

)
β(t)dt +

∫b

(a+b)/2

(
t − a + 5b

6

)
β(t)dt − b − a

3

(∫b

a

β(t)dt − f(b) + f(a)

)

≤ b − a

6

(
f(a) + 4f

(
a + b

2

)
+ f(b)

)
−
∫b

a

f(t)dt

≤
∫ (a+b)/2

a

(
t − 5a + b

6

)
β(t)dt +

∫b

(a+b)/2

(
t − a + 5b

6

)
β(t)dt +

b − a

3

(∫b

a

β(t)dt − f(b) + f(a)

)
.

(2.13)
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Proof. Since

∫b

a

K(t)
(
f ′(t) − β(t)

)
dt

=
b − a

6

(
f(a) + 4f

(
a + b

2

)
+ f(b)

)
−
∫b

a

f(t)dt −
(∫b

a

K(t)β(t)dt

)

=
b − a

6

(
f(a) + 4f

(
a + b

2

)
+ f(b)

)
−
∫b

a

f(t)dt

−
(∫ (a+b)/2

a

(
t − 5a + b

6

)
β(t)dt +

∫b

(a+b)/2

(
t − a + 5b

6

)
β(t)dt

)
,

(2.14)

so we have

∣∣∣∣∣
b − a

6

(
f(a) + 4f

(
a + b

2

)
+ f(b)

)
−
∫b

a

f(t)dt

−
(∫ (a+b)/2

a

∫
a

(
t − 5a + b

6

)
β(t)dt +

∫b

(a+b)/2

(
t − a + 5b

6

)
β(t)dt

)∣∣∣∣∣

=

∣∣∣∣∣
∫b

a

K(t)
(
f ′(t) − β(t)

)
dt

∣∣∣∣∣ ≤
∫b

a

|K(t)|(β(t) − f ′(t)
)
dt

≤ max
t∈[a,b]

|K(t)|
∫b

a

(
β(t) − f ′(t)

)
dt =

b − a

3

(∫ b

a

β(t)dt − f(b) + f(a)

)
.

(2.15)

After rearranging (2.15), the main inequality (2.13) will be derived.

Special Case 3

If β(x) = β1x + β0 /= 0 in (2.13), then

∣∣∣∣∣
∫b

a

f(t) dt − b − a

6

(
f(a) + 4f

(
a + b

2

)
+ f(b)

) ∣∣∣∣∣ ≤
(b − a)2

3

(
β0 +

a + b

2
β1 −

f(b) − f(a)
b − a

)

(2.16)

if and only if f ′(x) ≤ β1x + β0, for all x ∈ [a, b]. In particular, replacing β1 = 0 in above
inequality leads to [10, Theorem 1, relation (5)] as follows:

∣∣∣∣∣
∫b

a

f(t)dt − b − a

6

(
f(a) + 4f

(
a + b

2

)
+ f(b)

)∣∣∣∣∣ ≤
(b − a)2

3

(
β0 −

f(b) − f(a)
b − a

)
. (2.17)
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