
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 863483, 20 pages
doi:10.1155/2012/863483

Review Article
Infinite System of Differential Equations in
Some BK Spaces

M. Mursaleen1 and Abdullah Alotaibi2

1 Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India
2 Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Correspondence should be addressed to Abdullah Alotaibi, mathker11@hotmail.com

Received 26 July 2012; Accepted 1 October 2012

Academic Editor: Beata Rzepka

Copyright q 2012 M. Mursaleen and A. Alotaibi. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

The first measure of noncompactness was defined by Kuratowski in 1930 and later the Hausdorff
measure of noncompactness was introduced in 1957 by Goldenštein et al. These measures of
noncompactness have various applications in several areas of analysis, for example, in operator
theory, fixed point theory, and in differential and integral equations. In particular, the Hausdorff
measure of noncompactness has been extensively used in the characterizations of compact
operators between the infinite-dimensional Banach spaces. In this paper, we present a brief survey
on the applications of measures of noncompactness to the theory of infinite system of differential
equations in some BK spaces c0, c, �p(1 ≤ p ≤ ∞) and n(φ).

1. FK and BK Spaces

In this section, we give some basic definitions and notations about FK and BK spaces for
which we refer to [1–3].

We will write w for the set of all complex sequences x = (xk)
∞
k=0. Let ϕ, �∞, c and c0

denote the sets of all finite, bounded, convergent, and null sequences, respectively, and cs be
the set of all convergent series. We write �p := {x ∈ w :

∑∞
k=0 |xk|p < ∞} for 1 ≤ p < ∞. By e

and e(n) (n ∈ N), we denote the sequences such that ek = 1 for k = 0, 1, . . ., and e
(n)
n = 1 and

e
(n)
k = 0 (k /=n). For any sequence x = (xk)

∞
k=0, let x

[n] =
∑n

k=0 xke
(k) be its n-section.

Note that �∞, c and c0 are Banach spaces with the norm ‖x‖∞ = supk≥0|xk|, and �p(1 ≤
p < ∞) are Banach spaces with the norm ‖x‖p = (

∑∞
k=0 |xk|p)1/p.

A sequence (b(n))∞n=0 in a linear metric spaceX is called Schauder basis if for every x ∈ X,
there is a unique sequence (λn)

∞
n=0 of scalars such that x =

∑∞
n=0 λnb

(n). A sequence space X
with a linear topology is called aKspace if each of the maps pi : X → C defined by pi(x) = xi
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is continuous for all i ∈ N. A K space is called an FK space if X is complete linear metric
space; a BK space is a normed FK space. An FK space X ⊃ ϕ is said to have AK if every
sequence x = (xk)

∞
k=0 ∈ X has a unique representation x =

∑∞
k=0 xke

(k), that is, x = limn→∞x[n].
A linear space X equipped with a translation invariant metric d is called a linear metric

space if the algebraic operations on X are continuous functions with respect to d. A complete
linear metric space is called a Fréchet space. If X and Y are linear metric spaces over the same
field, then we write B(X,Y ) for the class of all continuous linear operators from X to Y .
Further, ifX and Y are normed spaces thenB(X,Y ) consists of all bounded linear operators L :
X → Y , which is a normed space with the operator norm given by ‖L‖ = supx∈SX

‖L(x)‖Y for
all L ∈ B(X,Y ), where SX denotes the unit sphere in X, that is, SX := {x ∈ X : ‖x‖ = 1}. Also,
we write BX := {x ∈ X : ‖x‖ ≤ 1} for the closed unit ball in a normed space X. In particular,
if Y = C then we write X∗ for the set of all continuous linear functionals on X with the norm
‖f‖ = supx∈SX

|f(x)|.
The theory of FK spaces is the most powerful and widely used tool in the

characterization of matrix mappings between sequence spaces, and the most important result
was that matrix mappings between FK spaces are continuous.

A sequence space X is called an FK space if it is a locally convex Fréchet space with
continuous coordinates pn : X → C(n ∈ N), where C denotes the complex field and pn(x) =
xn for all x = (xk) ∈ X and every n ∈ N. A normed FK space is called a BK space, that is, a
BK space is a Banach sequence space with continuous coordinates.

The famous example of an FK space which is not a BK space is the space (w,dw),
where

dw

(
x, y

)
=

∞∑

k=0

1
2k

( ∣
∣xk − yk

∣
∣

1 +
∣
∣xk − yk

∣
∣

)

;
(
x, y ∈ w

)
. (1.1)

On the other hand, the classical sequence spaces are BK spaces with their natural
norms. More precisely, the spaces �∞, c, and c0 are BK spaces with the sup-norm given by
‖x‖�∞ = supk|xk|. Also, the space �p (1 ≤ p < ∞) is a BK space with the usual �p-norm defined
by ‖x‖�p = (

∑
k |xk|p)1/p. Further, the spaces bs, cs, and cs0 are BK spaces with the same norm

given by ‖x‖bs = supn

∑n
k=0 |xk|, and bv is a BK space with ‖x‖bv =

∑
k |xk − xk−1|.

An FK space X ⊃ φ is said to have AK if every sequence x = (xk) ∈ X has a unique
representation x =

∑∞
k=0 xke

(k), that is, limn→∞(
∑n

k=0 xke
(k)) = x. This means that (e(k))∞k=0 is

a Schauder basis for any FK space with AK such that every sequence, in an FK space with
AK, coincides with its sequence of coefficients with respect to this basis.

Although the space �∞ has no Schauder basis, the spaces w, c0, c, and �p all have
Schauder bases. Moreover, the spaces w, c0, and �p have AK, where 1 ≤ p < ∞.

There are following BK spaces which are closely related to the spaces �p (1 ≤ p ≤ ∞).
Let C denote the space whose elements are finite sets of distinct positive integers.

Given any element σ of C, we denote by c(σ) the sequence {cn(σ)} such that cn(σ) = 1 for
n ∈ σ, and cn(σ) = 0 otherwise. Further

Cs =

{

σ ∈ C :
∞∑

n=1

cn(σ) ≤ s

}

, (1.2)
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that is, Cs is the set of those σ whose support has cardinality at most s, and define

Φ =
{
φ =

(
φk

) ∈ w : 0 < φ1 ≤ φn ≤ φn+1, (n + 1)φn ≥ nφn+1
}
. (1.3)

For φ ∈ Φ, the following sequence spaces were introduced by Sargent [4] and further
studied in [5–8]:

m
(
φ
)
=

{

x = (xk) ∈ w : ‖x‖m(φ) = sup
s≥1

sup
σ∈Cs

(
1
φs

∑

k∈σ
|xk|

)

< ∞
}

,

n
(
φ
)
=

{

x = (xk) ∈ w : ‖x‖n(φ) = sup
u∈S(x)

( ∞∑

k=1

|uk|Δφk

)

< ∞
}

,

(1.4)

where S(x) denotes the set of all sequences that are rearrangements of x.

Remark 1.1. (i) The spaces m(φ) and n(φ) are BK spaces with their respective norms.
(ii) If φn = 1 for all n ∈ N, then m(φ) = l1, n(φ) = l∞, and if φn = n for all n ∈ N, then

m(φ) = l∞, n(φ) = l1.
(iii) l1 ⊆ m(φ) ⊆ l∞[l∞ ⊇ n(φ) ⊇ l1] for all φ of Φ.

2. Measures of Noncompactness

The first measure of noncompactness was defined and studied by Kuratowski [9] in 1930. The
Hausdorffmeasure of noncompactness was introduced by Goldenštein et al. [10] in 1957, and
later studied by Goldenštein and Markus [11] in 1965.

Here, we shall only consider the Hausdorffmeasure of noncompactness; it is the most
suitable one for our purposes. The basic properties of measures of noncompactness can be
found in [12–14].

Let S and M be subsets of a metric space (X, d) and let ε > 0. Then S is called an ε-net
of M in X if for every x ∈ M there exists s ∈ S such that d(x, s) < ε. Further, if the set S is
finite, then the ε-net S ofM is called a finite ε-net ofM, and we say thatM has a finite ε-net in
X. A subset M of a metric space X is said to be totally bounded if it has a finite ε-net for every
ε > 0 and is said to be relatively compact if its closure M is a compact set. Moreover, if the
metric space X is complete, thenM is totally bounded if and only ifM is relatively compact.

Throughout, we shall write MX for the collection of all bounded subsets of a metric
space (X, d). IfQ ∈ MX , then the Hausdorff measure of noncompactness of the setQ, denoted by
χ(Q), is defined to be the infimum of the set of all reals ε > 0 such that Q can be covered by
a finite number of balls of radii < ε and centers in X. This can equivalently be redefined as
follows:

χ(Q) = inf{ε > 0 : Q has a finite ε-net}. (2.1)

The function χ : MX → [0,∞) is called the Hausdorff measure of noncompactness.
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If Q, Q1, and Q2 are bounded subsets of a metric space X, then we have

χ(Q) = 0 if and only ifQ is totally bounded,

Q1 ⊂ Q2 impliesχ(Q1) ≤ χ(Q2).
(2.2)

Further, if X is a normed space, then the function χ has some additional properties
connected with the linear structure, for example,

χ(Q1 +Q2) ≤ χ(Q1) + χ(Q2),

χ(αQ) = |α| χ(Q), ∀α ∈ C.
(2.3)

Let X and Y be Banach spaces and χ1 and χ2 be the Hausdorff measures of
noncompactness on X and Y , respectively. An operator L : X → Y is said to be (χ1,χ2)-
bounded if L(Q) ∈ MY for all Q ∈ MX and there exist a constant C ≥ 0 such that
χ2(L(Q)) ≤ Cχ1(Q) for all Q ∈ MX . If an operator L is (χ1,χ2)-bounded then the number
‖L‖(χ1,χ2) := inf{C ≥ 0 : χ2(L(Q)) ≤ Cχ1(Q) for all Q ∈ MX} is called the (χ1,χ2)-measure of
noncompactness of L. If χ1 = χ2 = χ, then we write ‖L‖(χ1,χ2) = ‖L‖χ.

The most effective way in the characterization of compact operators between the
Banach spaces is by applying the Hausdorff measure of noncompactness. This can be
achieved as follows: let X and Y be Banach spaces and L ∈ B(X,Y ). Then, the Hausdorff
measure of noncompactness of L, denoted by ‖L‖χ, can be determined by

‖L‖χ = χ(L(SX)), (2.4)

and we have that L is compact if and only if

‖L‖χ = 0. (2.5)

Furthermore, the function χ is more applicable whenX is a Banach space. In fact, there
are many formulae which are useful to evaluate the Hausdorff measures of noncompactness
of bounded sets in some particular Banach spaces. For example, we have the following result
of Goldenštein et al. [10, Theorem 1] which gives an estimate for the Hausdorff measure
of noncompactness in Banach spaces with Schauder bases. Before that, let us recall that if
(bk)

∞
k=0 is a Schauder basis for a Banach space X, then every element x ∈ X has a unique

representation x =
∑∞

k=0 φk(x)bk, where φk (k ∈ N) are called the basis functionals. Moreover,
the operator Pr : X → X, defined for each r ∈ N by Pr(x) =

∑r
k=0 φk(x)bk(x ∈ X), is called

the projector onto the linear span of {b0, b1, . . . , br}. Besides, all operators Pr and I − Pr are
equibounded, where I denotes the identity operator on X.
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Theorem 2.1. Let X be a Banach space with a Schauder basis (bk)
∞
k=0, E ∈ MX and Pn : X →

X(n ∈ N) be the projector onto the linear span of {b0, b1, . . . , bn}. Then, one has

1
a
· lim sup

n→∞

(

sup
x∈Q

‖(I − Pn)(x)‖
)

≤ χ(E) ≤ lim sup
n→∞

(

sup
x∈Q

‖(I − Pn)(x)‖
)

, (2.6)

where a = lim supn→∞‖I − Pn‖.

In particular, the following result shows how to compute the Hausdorff measure of
noncompactness in the spaces c0 and �p (1 ≤ p < ∞)which are BK spaces with AK.

Theorem 2.2. Let E be a bounded subset of the normed space X, where X is �p for 1 ≤ p < ∞ or
c0. If Pn : X → X(n ∈ N) is the operator defined by Pn(x) = x[n] = (x0, x1, . . . , xn, 0, 0, . . .) for all
x = (xk)

∞
k=0 ∈ X, then one has

χ(E) = lim
n→∞

(

sup
x∈Q

‖(I − Pn)(x)‖
)

. (2.7)

It is easy to see that for E ∈ M�p

χ(E) = lim
n→∞

(

sup
x∈Q

∑

k≥n
|xk|p

)

. (2.8)

Also, it is known that (e, e(0), e(1), . . .) is a Schauder basis for the space c and every
sequence z = (zn)

∞
n=0 ∈ c has a unique representation z = ze +

∑∞
n=0(zn − z)e(n), where

z = limn→∞zn. Thus, we define the projector Pr : c → c (r ∈ N), onto the linear span of
{e, e(0), e(1), . . . , e(r)}, by

Pr(z) = ze +
r∑

n=0
(zn − z)e(n); (r ∈ N), (2.9)

for all z = (zn) ∈ c with z = limn→∞zn. In this situation, we have the following.

Theorem 2.3. Let Q ∈ Mc and Pr : c → c (r ∈ N) be the projector onto the linear span of
{e, e(0), e(1), . . . , e(r)}. Then, one has

1
2
· lim
r→∞

(

sup
x∈Q

‖(I − Pr)(x)‖�∞
)

≤ χ(Q) ≤ lim
r→∞

(

sup
x∈Q

‖(I − Pr)(x)‖�∞
)

, (2.10)

where I is the identity operator on c.

Theorem 2.4. Let Q be a bounded subset of n(φ). Then

χ(Q) = lim
k→∞

sup
x∈Q

(

sup
u∈S(x)

( ∞∑

n=k

|un|Δφn

))

. (2.11)
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The idea of compact operators between Banach spaces is closely related to the Hausdorff
measure of noncompactness, and it can be given as follows.

Let X and Y be complex Banach spaces. Then, a linear operator L : X → Y is said to
be compact if the domain of L is all of X, that is, D(L) = X, and for every bounded sequence
(xn) in X, the sequence (L(xn)) has a convergent subsequence in Y . Equivalently, we say that
L is compact if its domain is all of X and L(Q) is relatively compact in Y for every Q ∈ MX .

Further, we write C(X,Y ) for the class of all compact operators from X to Y . Let us
remark that every compact operator in C(X,Y ) is bounded, that is, C(X,Y ) ⊂ B(X,Y ). More
precisely, the class C(X,Y ) is a closed subspace of the Banach space B(X,Y )with the operator
norm.

The most effective way in the characterization of compact operators between the
Banach spaces is by applying the Hausdorff measure of noncompactness. This can be
achieved as follows.

The most effective way in the characterization of compact operators between the
Banach spaces is by applying the Hausdorff measure of noncompactness. This can be
achieved as follows.

Let X and Y be Banach spaces and L ∈ B(X;Y ). Then, the Hausdorff measure of
noncompactness of L, denoted by ‖L‖χ, can be given by

‖L‖χ = χ(L(SX)), (2.12)

and we have

L is compact if and only if ‖L‖χ = 0. (2.13)

Since matrix mappings between BK spaces define bounded linear operators between
these spaces which are Banach spaces, it is natural to use the Hausdorff measure of
noncompactness to obtain necessary and sufficient conditions for matrix operators between
BK spaces to be compact operators. This technique has recently been used by several authors
in many research papers (see, for instance, [5, 6, 15–32]).

3. Applications to Infinite Systems of Differential Equations

This section is mainly based on the work of Banaś and Lecko [33], Mursaleen and
Mohiuddine [26], and Mursaleen [32]. In this section, we apply the technique of measures
of noncompactness to the theory of infinite systems of differential equations in some Banach
sequence spaces c0, c, �p(1 ≤ p < ∞), and n(φ).

Infinite systems of ordinary differential equations describe numerous world real
problems which can be encountered in the theory of branching processes, the theory of
neural nets, the theory of dissociation of polymers, and so on (cf. [34–38], e.g.). Let us
also mention that several problems investigated in mechanics lead to infinite systems of
differential equations [39–41]. Moreover, infinite systems of differential equations can be
also used in solving some problems for parabolic differential equations investigated via
semidiscretization [42, 43]. The theory of infinite systems of ordinary differential equation
seems not to be developed satisfactorily up to now. Indeed, the existence results concerning
systems of such a kind were formulated mostly by imposing the Lipschitz condition on
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right-hand sides of those systems (cf. [10, 11, 39, 40, 44–50]). Obviously, the assumptions
formulated in terms of the Lipschitz condition are rather restrictive and not very useful in
applications. On the other hand, the infinite systems of ordinary differential equations can be
considered as a particular case of ordinary differential equations in Banach spaces. Until now
several existence results have been obtained concerning the Cauchy problem for ordinary
differential equations in Banach spaces [33, 35, 51–53]. A considerable number of those results
were formulated in terms of measures of noncompactness. The results of such a type have
a concise form and give the possibility to formulate more general assumptions than those
requiring the Lipschitz continuity. But in general those results are not immediately applicable
in concrete situations, especially in the theory of infinite systems of ordinary differential
equations.

In this section, we adopt the technique of measures of noncompactness to the theory of
infinite systems of differential equations. Particularly, we are going to present a few existence
results for infinite systems of differential equations formulated with the help of convenient
and handy conditions.

Consider the ordinary differential equation

x′ = f(t, x), (3.1)

with the initial condition

x(0) = x0. (3.2)

Then the following result for the existence of the Cauchy problem (3.1)-(3.2)was given
in [34]which is a slight modification of the result proved in [33].

Assume that X is a real Banach space with the norm ‖ · ‖. Let us take an interval
I = [0, T], T > 0 and B(x0, r) the closed ball in X centered at x0 with radius r.

Theorem A (see [34]). Assume that f(t, x) is a function defined on I × X with values in X such
that

∥
∥f(t, x)

∥
∥ ≤ Q + R‖x‖, (3.3)

for any x ∈ X, where Q and R are nonnegative constants. Further, let f be uniformly continuous on
the set I1 ×B(x0, r), where r = (QT1 +RT1‖x0‖)/(1−RT1) and I1 = [0, T1] ⊂ I, RT1 < 1. Moreover,
assume that for any nonempty set Y ⊂ B(x0, s) and for almost all t ∈ I the following inequality holds:

μ
(
f(t, Y )

) ≤ q(t)μ(Y ), (3.4)

with a sublinear measure of noncompactness μ such that {x0} ∈ kerμ. Then problem (3.1)-(3.2)
has a solution x such that {x(t)} ∈ kerμ for t ∈ I1, where q(t) is an integrable function on I, and
kerμ = {E ∈ MX : μ(E) = 0} is the kernel of the measure μ.

Remark 3.1. In the case when μ = χ (the Hausdorff measure of noncompactness), the
assumption of the uniform continuity on f can be replaced by the weaker one requiring only
the continuity of f .
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Results of Sections 3.1 and 3.2 are from [33], Section 3.3 from [26], and Section 3.4 from
[32].

3.1. Infinite Systems of Differential Equations in the Space c0

From now on, our discussion is exactly same as in Section 3 of [33].
In this section, we study the solvability of the infinite systems of differential equations

in the Banach sequence space c0. It is known that in the space c0 the Hausdorff measure of
noncompactness can be expressed by the following formula [33]:

χ(E) = lim
n→∞

(

sup
x∈E

{

sup
k≥n

|xk|
})

, (3.5)

where E ∈ Mc0 .
We will be interested in the existence of solutions x(t) = (xi(t)) of the infinite systems

of differential equations

x′
i = fi(t, x0, x1, x2, . . .), (3.6)

with the initial condition

xi(0) = x0
i , (3.7)

(i = 0, 1, 2, . . .) which are defined on the interval I = [0, T] and such that x(t) ∈ c0 for each
t ∈ I.

An existence theorem for problem (3.6)-(3.7) in the space c0 can be formulated by
making the following assumptions.

Assume that the functions fi (i = 1, 2, . . .) are defined on the set I × R
∞ and take real

values. Moreover, we assume the following hypotheses:

(i) x0 = (x0
i ) ∈ c0,

(ii) the map f = (f1, f2, . . .) acts from the set I × c0 into c0 and is continuous,

(iii) there exists an increasing sequence (kn) of natural numbers (obviously kn → ∞
as n → ∞) such that for any t ∈ I, x = (xi) ∈ c0 and n = 1, 2, . . . the following
inequality holds:

∣
∣fn(t, x1, x2, . . .)

∣
∣ ≤ pn(t) + qn(t)

(

sup
i≥kn

|xi|
)

, (3.8)

where (pi(t)) and (qi(t)) are real functions defined and continuous on I such that
the sequence (pi(t)) converges uniformly on I to the function vanishing identically
and the sequence (qi(t)) is equibounded on I.
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Now, let us denote

q(t) = sup
n≥1

qn(t),

Q = sup
t∈I

q(t),

P = sup
{
pn(t) : t ∈ I, n = 1, 2, . . .

}
.

(3.9)

Then we have the following result.

Theorem 3.2 (see [33]). Under the assumptions (i)–(iii), initial value problem (3.6)-(3.7) has at
least one solution x = x(t) = (xi(t)) defined on the interval I1 = [0, T1] whenever T1 < T and
QT1 < 1. Moreover, x(t) ∈ c0 for any t ∈ I1.

Proof. Let x = (xi) be any arbitrary sequence in c0. Then, by (i)–(iii), for any t ∈ I and for a
fixed n ∈ N we obtain

∣
∣fn(t, x)

∣
∣ =

∣
∣fn(t, x1, x2, . . .)

∣
∣ ≤ pn(t) + qn(t)

(

sup
i≥kn

|xi|
)

≤ P +Q sup
i≥kn

|xi| ≤ P +Q‖x‖∞.
(3.10)

Hence, we get

∥
∥f(t, x)

∥
∥ ≤ P +Q‖x‖∞. (3.11)

In what follows, let us take the ball B(x0, r), where r is chosen according to Theorem
A. Then, for a subset Y of B(x0, r) and for t ∈ I1, we obtain

χ
(
f(t, Y )

)
= lim

n→∞
sup
x∈Y

(

sup
i≥n

∣
∣fi(t, x)

∣
∣

)

,

χ
(
f(t, Y )

)
= lim

n→∞
sup
x∈Y

(

sup
i≥n

∣
∣fi(t, x1, x2, . . .)

∣
∣

)

≤ lim
n→∞

sup
x∈Y

(

sup
i≥n

{

pi(t) + qi(t)sup
j≥kn

∣
∣xj

∣
∣

})

≤ lim
n→∞

sup
i≥n

pi(t) + q(t) lim
n→∞

{

sup
x∈Y

(

sup
i≥n

{

sup
j≥kn

∣
∣xj

∣
∣

})}

.

(3.12)

Hence, by assumptions, we get

χ
(
f(t, Y )

) ≤ q(t)χ(Y ). (3.13)
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Now, using our assumptions and inequalities (3.11) and (3.13), in view of Theorem A and
Remark 3.1 we deduce that there exists a solution x = x(t) of the Cauchy problem (3.6)-(3.7)
such that x(t) ∈ c0 for any t ∈ I1.

This completes the proof of the theorem.

We illustrate the above result by the following examples.

Example 3.3 (see [33]). Let {kn} be an increasing sequence of natural numbers. Consider the
infinite system of differential equations of the form

x′
i = fi(t, x1, x2, . . .) +

∞∑

j=ki+1

aij(t)xj , (3.14)

with the initial condition

xi(0) = x0
i , (3.15)

(i = 1, 2, . . . ; t ∈ I = [0, T]).
We will investigate problem (3.14)-(3.15) under the following assumptions:

(i) x0 = (x0) ∈ c0,

(ii) the functions fi : I × R
ki → R (i = 1, 2, . . .) are uniformly equicontinuous and there

exists a function sequence (pi(t)) such that pi(t) is continuous on I for any i ∈ N and
(pi(t)) converges uniformly on I to the function vanishing identically. Moreover, the
following inequality holds:

∣
∣fi(t, x1, x2, . . . xki)

∣
∣ ≤ pi(t), (3.16)

for t ∈ I,(x1, x2, . . . xki) ∈ R
ki and i ∈ N,

(iii) the functions aij(t) are defined and continuous on I and the function series
∑∞

j=ki+1 aij(t) converges absolutely and uniformly on I (to a function ai(t)) for any
i = 1, 2, . . .,

(iv) the sequence (ai(t)) is equibounded on I,

(v) QT < 1, where Q = sup{ai(t) : i = 1, 2, . . . ; t ∈ I}.
It can be easily seen that the assumptions of Theorem 3.2 are satisfied under

assumptions (i)–(v). This implies that problem (3.14)-(3.15) has a solution x(t) = (xi(t)) on
the interval I belonging to the space c0 for any fixed t ∈ I.

As mentioned in [33], problem (3.14)-(3.15) considered above contains as a special
case the infinite system of differential equations occurring in the theory of dissociation
of polymers [35]. That system was investigated in [37] in the sequence space �∞ under
very strong assumptions. The existing result proved in [35] requires also rather restrictive
assumptions. Thus, the above result is more general than those quoted above.

Moreover, the choice of the space c0 for the study of the problem (3.14)-(3.15) enables
us to obtain partial characterization of solutions of this problem since we have that xn(t) → 0
when n → ∞, for any fixed t ∈ [0, T].
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On the other hand, let us observe that in the study of the heat conduction problem via
the method of semidiscretization we can obtain the infinite systems of form (3.14) (see [42]
for details).

Example 3.4 (see [33]). In this example, we will consider some special cases of problem (3.14)-
(3.15). Namely, assume that ki = i for i = 1, 2, . . . and aij ≡ 0 on I for all i, j. Then system (3.14)
has the form

x′
1 = f1(t, x1), x′

2 = f2(t, x1, x2), . . . ,

x′
i = fi(t, x1, x2, . . . , xi), . . . ,

(3.17)

and is called a row-finite system [35].
Suppose that there are satisfied assumptions from Example 3.3, that is, x0 = (x0

i ) ∈ c0
and the functions fi act from I × R

i into R (i = 1, 2, . . .) and are uniformly equicontinuous on
their domains. Moreover, there exist continuous functions pi(t) (t ∈ I) such that

∣
∣fi(t, x1, x2, . . . xki)

∣
∣ ≤ pi(t), (3.18)

for t ∈ I and x1, x2, . . . , xi ∈ R (i = 1, 2, . . .). We assume also that the sequence pi(t) converges
uniformly on I to the function vanishing identically.

Further, let | · |i denote the maximum norm in R
i(i = 1, 2, . . .). Take fi = (f1, f2, . . . , fi).

Then we have

∣
∣
∣fi(t, x)

∣
∣
∣
i
= max

{∣
∣f1(t, x1)

∣
∣,
∣
∣f2(t, x1, x2)

∣
∣, . . . ,

∣
∣fi(t, x1, x2, . . . , xi)

∣
∣
}

≤ max
{
p1(t), p2(t), . . . , pi(t)

}
.

(3.19)

Taking Pi(t) = max{p1(t),p2(t), . . . , pi(t)}, then the above estimate can be written in the form

∣
∣
∣fi(t, x)

∣
∣
∣
i
≤ Pi(t). (3.20)

Observe that from our assumptions it follows that the initial value problem u′ =
Pi(t), u(0) = x0

i has a unique solution on the interval I. Hence, applying a result from [33], we
infer that Cauchy problem (3.17)-(3.15) has a solution on the interval I. Obviously from the
result contained in Theorem 3.2 and Example 3.3, we deduce additionally that the mentioned
solution belongs to the space c0.

Finally, it is noticed [33] that the result described above for row-finite systems of the
type (3.17) can be obtained under more general assumptions.

In fact, instead of inequality (3.18), we may assume that the following estimate holds
to be true:

∣
∣fi(t, x1, x2, . . . , xi)

∣
∣ ≤ pi(t) + qi(t)max{|x1|, |x2|, . . . , |xi|}, (3.21)

where the functions pi(t) and qi(t) (i = 1, 2, . . .) satisfy the hypotheses analogous to those
assumed in Theorem 3.2.
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Remark 3.5 (see [33]). Note that in the birth process one can obtain a special case of the infinite
system (3.17) which is lower diagonal linear infinite system [35, 43]. Thus, the result proved
above generalizes that from [35, 37].

3.2. Infinite Systems of Differential Equations in the Space c

Now, we will study the solvability of the following perturbed diagonal system of differential
equations

x′
i = ai(t)xi + gi(t, x1, x2, . . .), (3.22)

with the initial condition

xi(0) = x0
i , (3.23)

(i = 1, 2, . . .), where t ∈ I = [0, T].
From now, we are going exactly the same as in Section 4 of [33].
We consider the following measures μ of noncompactness in c which is more

convenient, regular, and even equivalent to the Hausdorff measure of noncompactness [33].
For E ∈ Mc

μ(E) = lim
p→∞

{

sup
x∈E

{

sup
n,m≥p

|xn − xm|
}}

,

χ(E) = lim
n→∞

(

sup
x∈Q

{

sup
k≥n

|xk|
})

.

(3.24)

Let us formulate the hypotheses under which the solvability of problem (3.22)-(3.23)
will be investigated in the space c. Assume that the following conditions are satisfied.

Assume that the functions fi (i = 1, 2, . . .) are defined on the set I × R
∞ and take real

values. Moreover, we assume the following hypotheses:

(i) x0 = (x0
i ) ∈ c,

(ii) the map g = (g1, g2, . . .) acts from the set I × c into c and is uniformly continuous
on I × c,

(iii) there exists sequence (bi) ∈ c0 such that for any t ∈ I, x = (xi) ∈ c and n = 1, 2, . . .
the following inequality holds:

∣
∣gn(t, x1, x2, . . .)

∣
∣ ≤ bi, (3.25)

(iv) the functions ai(t) are continuous on I such that the sequence (ai(t)) converges
uniformly on I.
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Further, let us denote

a(t) = sup
i≥1

ai(t),

Q = sup
t∈I

a(t).
(3.26)

Observe that in view of our assumptions, it follows that the function a(t) is continuous
on I. Hence, Q < ∞.

Then we have the following result which is more general than Theorem 3.2.

Theorem 3.6 (see [33]). Let assumptions (i)–(iv) be satisfied. If QT < 1, then the initial value
problem (3.12)-(3.13) has a solution x(t) = (xi(t)) on the interval I such that x(t) ∈ c for each t ∈ I.

Proof. Let t ∈ I and x = (xi) ∈ c and

fi(t, x) = ai(t)xi + gi(t;x),

f(t, x) =
(
f1(t, x), f2(t;x), . . .

)
=
(
fi(t, x)

)
.

(3.27)

Then, for arbitrarily fixed natural numbers n,mwe get

∣
∣fn(t, x) − fm(t, x)

∣
∣ =

∣
∣an(t)xn + gn(t;x) − am(t)xm − gm(t;x)

∣
∣

≤ ∣
∣an(t)xn + gn(t;x)

∣
∣ − ∣

∣am(t)xm + gm(t;x)
∣
∣

≤ |an(t)xn − an(t)xm| + |an(t)xm − am(t)xm| + bn + bm

≤ |an(t)||xn − xm| + |an(t) − am(t)||xm| + bn + bm

≤ |an(t)||xn − xm| + ‖x‖∞|an(t) − am(t)| bn + bm.

(3.28)

By assumptions (iii) and (iv), from the above estimate we deduce that (fi(t, x)) is a real
Cauchy sequence. This implies that (fi(t, x)) ∈ c.

Also we obtain the following estimate:

∣
∣fi(t, x)

∣
∣ ≤ |ai(t)||xi| +

∣
∣gi(t, x)

∣
∣

≤ Q|xi| + bi ≤ Q‖x‖∞ + B,
(3.29)

where B = supi≥1bi. Hence,

∥
∥f(t, x)

∥
∥ ≤ Q‖x‖∞ + B. (3.30)

In what follows, let us consider the mapping f(t, x) on the set I × B(x0, r), where r is
taken according to the assumptions of Theorem A, that is, r = (BT + QT‖x0‖∞)/(1 − QT).
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Further, fix arbitrarily t, s ∈ I and x, y ∈ B(x0, r). Then, by our assumptions, for a fixed i, we
obtain

∣
∣fi(t, x) − fi

(
s, y

)∣
∣ =

∣
∣ai(t)xi + gi(t, x) − ai(s)yi − gi

(
s, y

)∣
∣

≤ ∣
∣ai(t)xi − ai(s)yi

∣
∣ +

∣
∣gi(t, x) − gi

(
s, y

)∣
∣

≤ |ai(t) − ai(s)||xi| + |ai(s)|
∣
∣xi − yi

∣
∣ +

∣
∣gi(t, x) − gi

(
s, y

)∣
∣.

(3.31)

Then,

∥
∥f(t, x) − f

(
s, y

)∥
∥ = sup

i≥1

∣
∣fi(t, x) − fi

(
s, y

)∣
∣

≤ (r + ‖x0‖∞) · sup
i≥1

|ai(t) − ai(s)|

+Q
∥
∥x − y

∥
∥
∞ +

∥
∥g(t, x) − g

(
s, y

)∥
∥.

(3.32)

Hence, taking into account that the sequence (ai(t)) is equicontinuous on the interval I
and g is uniformly continuous on I × c, we conclude that the operator f(t, x) is uniformly
continuous on the set I × B(x0, r).

In the sequel, let us take a nonempty subset E of the ball B(x0, r) and fix t ∈ I, x ∈ X.
Then, for arbitrarily fixed natural numbers n,m we have

∣
∣fn(t, x) − fm(t, x)

∣
∣ ≤ |an(t)||xn − xm| + |xm||an(t) − am(t)| +

∣
∣gn(t, x)

∣
∣ +

∣
∣gm(t, x)

∣
∣

≤ a(t)|xn − xm| + (r + ‖x0‖∞)|an(t) − am(t)| + bn + bm.
(3.33)

Hence, we infer the following inequality:

μ
(
f(t, E)

) ≤ a(t)μ(E). (3.34)

Finally, combining (3.30), (3.34) and the fact (proved above) that f is uniformly
continuous on I × B(x0, r), in view of Theorem A, we infer that problem (3.22)-(3.23) is
solvable in the space c.

This completes the proof of the theorem.

Remark 3.7 (see [33, Remark 4]). The infinite systems of differential equations (3.22)-(3.23)
considered above contain as special cases the systems studied in the theory of neural sets (cf.
[35, pages 86-87] and [37], e.g.). It is easy to notice that the existence results proved in [35, 37]
are obtained under stronger and more restrictive assumptions than our one.

3.3. Infinite Systems of Differential Equations in the Space �p

In this section, we study the solvability of the infinite systems of differential equations (3.6)-
(3.7) in the Banach sequence space �p (1 ≤ p < ∞) such that x(t) ∈ �p for each t ∈ I.
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An existence theorem for problem (3.6)-(3.7) in the space �p can be formulated by
making the following assumptions:

(i) x0 = (x0
i ) ∈ �p,

(ii) fi : I × R
∞ → R (i = 0, 1, 2, . . .)maps continuously the set I × �p into �p,

(iii) there exist nonnegative functions qi(t) and ri(t) defined on I such that

∣
∣fi(t, x)

∣
∣p =

∣
∣fi(t, x0, x1, x2, . . .)

∣
∣p ≤ qi(t) + ri(t)|xi|p, (3.35)

for t ∈ I;x = (xi) ∈ �p and i = 0, 1, 2, . . .,

(iv) the functions qi(t) are continuous on I and the function series
∑∞

i=0 qi(t) converges
uniformly on I,

(v) the sequence (ri(t)) is equibounded on the interval I and the function r(t) =
lim supi→∞ri(t) is integrable on I.

Now, we prove the following result.

Theorem 3.8 (see [26]). Under the assumptions (i)–(v), problem (3.6)-(3.7) has a solution x(t) =
(xi(t)) defined on the interval I = [0, T] whenever RT < 1, where R is defined as the number

R = sup{ri(t) : t ∈ I, i = 0, 1, 2, . . .}. (3.36)

Moreover, x(t) ∈ �p for any t ∈ I.

Proof. For any x(t) ∈ �p and t ∈ I, under the above assumptions, we have

∥
∥f(t, x)

∥
∥p

p =
∞∑

i=0

∣
∣fi(t, x)

∣
∣p

≤
∞∑

i=0

[
qi(t) + ri(t)|xi|p

]

≤
∞∑

i=0

qi(t) +

(

sup
i≥0

ri(t)

)( ∞∑

i=0
|xi|p

)

≤ Q + R‖x‖pp,

(3.37)

where Q = supt∈I(
∑∞

i=0 qi(t)).
Now, choose the number s = (QT + RT‖x0‖pp)/(1 − RT) as defined in Theorem A.

Consider the operator f = (fi) on the set I ×B(x0; s). Let us take a set Y ∈ M�p . Then by using
(2.8), we get

χ
(
f(t, Y )

)
= lim

n→∞
sup
x∈Y

(
∑

i≥n

∣
∣fi(t, x1, x2, . . .)

∣
∣p
)

≤ lim
n→∞

(
∑

i≥n
qi(t) +

(

sup
i≥n

ri(t)

)(
∑

i≥n
|xi|p

) )

.

(3.38)
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Hence, by assumptions (iv)-(v), we get

χ
(
f(t, Y )

) ≤ r(t)χ(Y ), (3.39)

that is, the operator f satisfies condition (3.4) of Theorem A. Hence, by Theorem A and
Remark 3.1 we conclude that there exists a solution x = x(t) of problem (3.6)-(3.7) such that
x(t) ∈ �p for any t ∈ I.

This completes the proof of the theorem.

Remark 3.9. (I) For p = 1, we get Theorem 5 of [33].

(II) It is easy to notice that the existence results proved in [44] are obtained under
stronger and more restrictive assumptions than our one.

(III) We observe that the above theorem can be applied to the perturbed diagonal infinite
system of differential equations of the form

x′
i = ai(t)xi + gi(t, x0, x1, x2, . . .), (3.40)

with the initial condition

xi(0) = x0
i , (3.41)

(i = 0, 1, 2, . . .) where t ∈ I.

An existence theorem for problem (3.6)-(3.7) in the space �p can be formulated by
making the following assumptions:

(i) x0 = (x0
i ) ∈ �p,

(ii) the sequence (|ai(t)|) is defined and equibounded on the interval I = [0, T].
Moreover, the function a(t) = lim supi→∞ sup |ai(t)| is integrable on I,

(iii) the mapping g = (gi) maps continuously the set I × �p into �p,

(iv) there exist nonnegative functions bi(t) such that

∣
∣fi(t, x0, x1, x2, . . .)

∣
∣p ≤ bi(t), (3.42)

for t ∈ I;x = (xi) ∈ �p and i = 0, 1, 2, . . .,

(v) the functions bi(t) are continuous on I and the function series
∑∞

i=0 bi(t) converges
uniformly on I.

3.4. Infinite Systems of Differential Equations in the Space n(φ)

An existence theorem for problem (3.6)-(3.7) in the space n(φ) can be formulated by making
the following assumptions:

(i) x0 = (x0
i ) ∈ n(φ),
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(ii) fi : I × R
∞ → R (i = 1, 2, . . .)maps continuously the set I × n(φ) into n(φ),

(iii) there exist nonnegative functions pi(t) and qi(t) defined on I such that

∣
∣fi(t, u)

∣
∣ =

∣
∣fi(t, u1, u2, . . .)

∣
∣ ≤ pi(t) + qi(t)|ui|, (3.43)

for t ∈ I;x = (xi) ∈ n(φ) and i = 1, 2, . . ., where u = (ui) is a sequence of
rearrangement of x = (xi),

(iv) the functions pi(t) are continuous on I and the function series
∑∞

i=1 pi(t)Δφi

converges uniformly on I,

(v) the sequence (qi(t)) is equibounded on the interval I and the function q(t) =
lim supi→∞qi(t) is integrable on I.

Now, we prove the following result.

Theorem 3.10 (see [32]). Under the assumptions (i)–(v), problem (3.6)-(3.7) has a solution x(t) =
(xi(t)) defined on the interval I = [0, T] whenever QT < 1, where Q is defined as the number

Q = sup
{
qi(t) : t ∈ I, i = 1, 2, . . .

}
. (3.44)

Moreover, x(t) ∈ n(φ) for any t ∈ I.

Proof. For any x(t) ∈ n(φ) and t ∈ I, under the above assumptions, we have

∥
∥f(t, x)

∥
∥
n(φ) = sup

u∈S(x)

∞∑

i=1

∣
∣fi(t, u)

∣
∣Δφi

≤ sup
u∈S(x)

∞∑

i=1

[
pi(t) + qi(t)|ui|

]
Δφi

≤
∞∑

i=1

pi(t)Δφi +

(

sup
i

qi(t)

)(

sup
u∈S(x)

∞∑

i=1

|ui|Δφi

)

≤ P +Q‖x‖n(φ),

(3.45)

where P = supt∈I
∑∞

i=1 pi(t)Δφi.
Now, choose the number r defined according to Theorem A, that is, r = (PT +

QT‖x0‖n(φ))/(1 − QT). Consider the operator f = (fi) on the set I × B(x0; r). Let us take a
set X ∈ M n(φ) . Then by using Theorem 2.4, we get

χ
(
f(t, X)

)
= lim

k→∞
sup
x∈X

(

sup
u∈S(x)

( ∞∑

n=k

∣
∣fn(t, u1, u2, . . .)

∣
∣Δφn

))

≤ lim
k→∞

( ∞∑

n=k

pn(t)Δφn +

(

sup
n≥k

qn(t)

)(

sup
u∈S(x)

∞∑

n=k

|un|Δφn

))

.

(3.46)
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Hence, by assumptions (iv)-(v), we get

χ
(
f(t, X)

) ≤ q(t)χ(X), (3.47)

that is, the operator f satisfies condition (3.4) of Theorem A. Hence, the problem (3.6)-(3.7)
has a solution x(t) = (xi(t)).

This completes the proof of the theorem.

Remark 3.11. Similarly, we can establish such type of result for the spacem(φ).

References

[1] F. Basar, Summability Theory and Its Applications, Bentham Science Publishers, e-books, Monographs,
Istanbul, Turkey, 2011.

[2] M. Mursaleen, Elements of Metric Spaces, Anamaya Publishers, New Delhi, India, 2005.
[3] A. Wilansky, Summability through Functional Analysis, vol. 85 of North-Holland Mathematics Studies,

North-Holland Publishing, Amsterdam, The Netherlands, 1984.
[4] W. L. C. Sargent, “On compact matrix transformations between sectionally bounded BK-spaces,”

Journal of the London Mathematical Society, vol. 41, pp. 79–87, 1966.
[5] E. Malkowsky and Mursaleen, “Matrix transformations between FK-spaces and the sequence spaces

m(ϕ) and n(ϕ),” Journal of Mathematical Analysis and Applications, vol. 196, no. 2, pp. 659–665, 1995.
[6] E. Malkowsky and M. Mursaleen, “Compact matrix operators between the spaces m(φ) and n(φ),”

Bulletin of the Korean Mathematical Society, vol. 48, no. 5, pp. 1093–1103, 2011.
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[16] M. Başarir and E. E. Kara, “On compact operators on the Riesz Bm—difference sequence spaces,”
Iranian Journal of Science & Technology A, vol. 35, no. 4, pp. 279–285, 2011.
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Banach spaces,” Archives Mathématiques, vol. 39, no. 2, pp. 153–160, 1982.

[52] D. O’Regan andM. Meehan, Existence Theory for Nonlinear Integral and Integrodifferential Equations, vol.
445 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands,
1998.

[53] S. Szufla, “On the existence of solutions of differential equations in Banach spaces,” L’Académie
Polonaise des Sciences, vol. 30, no. 11-12, pp. 507–515, 1982.


