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The existence of three weak solutions for the following nonlocal fractional equation (−Δ)𝑠𝑢 − 𝜆𝑢 = 𝜇𝑓(𝑥, 𝑢) inΩ, 𝑢 = 0 in R𝑛 \ Ω,

is investigated, where 𝑠 ∈ (0, 1) is fixed, (−Δ)𝑠 is the fractional Laplace operator, 𝜆 and 𝜇 are real parameters,Ω is an open bounded
subset of R𝑛, 𝑛 > 2𝑠, and the function 𝑓 satisfies some regularity and natural growth conditions. The approach is based on a
three-critical-point theorem for differential functionals.

1. Introduction

In this work we investigate the existence of three weak solu-
tions to the nonlocal counterpart of perturbed semilinear
elliptic partial differential equations of the type

−Δ𝑢 − 𝜆𝑢 = 𝜇𝑓 (𝑥, 𝑢) in Ω,

𝑢 = 0 in R
𝑛

\ Ω,

(1)

namely,

(−Δ)
𝑠

𝑢 − 𝜆𝑢 = 𝜇𝑓 (𝑥, 𝑢) in Ω,

𝑢 = 0 in R
𝑛

\ Ω,

(2)

where 𝑠 ∈ (0, 1) is fixed, Ω is a nonempty bounded open
subset of R𝑛, 𝑛 > 2𝑠, 𝜆 and 𝜇 are positive real parameters,
𝑓 : Ω × R → R is a function satisfying suitable regularity
and growth conditions, and (−Δ)

𝑠 is the fractional Laplace
operator defined as

− (−Δ)
𝑠

𝑢 (𝑥)

:= P.V. ∫
R𝑛

𝑢 (𝑥 + 𝑦) + 𝑢 (𝑥 − 𝑦) − 2𝑢 (𝑥)

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
𝑛+2𝑠

𝑑𝑦,

𝑥 ∈ R
𝑛

.

(3)

Fractional Laplace operators have been proved to be valu-
able tools in the modeling of many phenomena in various
fields, such as minimal surfaces, quasi-geostrophic flows,
conservation laws, optimization, multiple scattering, anoma-
lous diffusion, ultrarelativistic limits of quantum mechanics,
finance, phase transitions, stratified materials, crystal dislo-
cation, semipermeable membranes, flame propagation, soft
thin films, and materials science. Recently, there has been
significant development in fractional Laplace operators; for
examples, see [1–13] and the references therein.

Motivated and inspired by the papers [13–15], in this
paper, a variational approach is provided to investigate the
existence of three weak solutions to a perturbed nonlocal
fractional Laplacian equation (2), by using a three-critical-
point theorem obtained by Bonanno and Marano in [14].

2. Preliminaries

Let 𝑠 ∈ (0, 1) such that 2𝑠 < 𝑛,Ω ⊂ R𝑛.The classical fractional
Sobolev space𝐻𝑠(R𝑛) is defined by

𝐻
𝑠

(R
𝑛

) = {V ∈ 𝐿
2

(R
𝑛

) :

󵄨󵄨󵄨󵄨V (𝑥) − V (𝑦)󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨
(𝑛+2𝑠)/2

∈ 𝐿
2

(R
𝑛

×R
𝑛

)} ,

(4)

endowed with the norm (the so-called Gagliardo norm)
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‖V‖
𝐻
𝑠
(R𝑛) = ‖V‖

𝐿
2
(R𝑛) + (∬

R𝑛×R𝑛

󵄨󵄨󵄨󵄨V (𝑥) − V (𝑦)󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑛+2𝑠

𝑑𝑥 𝑑𝑦)

1/2

.

(5)

Let

𝑋
0
= {𝑔 ∈ 𝐻

𝑠

(R
𝑛

) : 𝑔 = 0 a.e. in R
𝑛

\ Ω} . (6)

By [6] in the sequel we can take the function

𝑋
0
∋ V 󳨃󳨀→ ‖V‖

𝑋
0

= (∬
(R𝑛×R𝑛)\O

󵄨󵄨󵄨󵄨V (𝑥) − V (𝑦)󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑛+2𝑠

𝑑𝑥 𝑑𝑦)

1/2

(7)

as normon𝑋
0
, whereO = (CΩ)×(CΩ) ⊂ R𝑛×R𝑛. It is easily

seen that (𝑋
0
, ‖ ⋅ ‖
𝑋
0

) is a Hilbert space, with scalar product

⟨𝑢, V⟩
𝑋
0

= ∬
(R𝑛×R𝑛)\O

(𝑢 (𝑥) − 𝑢 (𝑦)) (V (𝑥) − V (𝑦))
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨
𝑛+2𝑠

𝑑𝑥 𝑑𝑦.

(8)

Since V ∈ 𝑋
0
, we have that the integral in (7) (and in the

related scalar product) can be extended to allR𝑛 ×R𝑛.
By a weak solution 𝑢 of (2) we mean a function 𝑢 ∈ 𝑋

0

such that

∬
R𝑛×R𝑛

(𝑢 (𝑥) − 𝑢 (𝑦)) (𝜑 (𝑥) − 𝜑 (𝑦))

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑛+2𝑠

𝑑𝑥 𝑑𝑦

− 𝜆∫
Ω

𝑢 (𝑥) 𝜑 (𝑥) 𝑑𝑥

= 𝜇∫
Ω

𝑓 (𝑥, 𝑢 (𝑥)) 𝜑 (𝑥) 𝑑𝑥

(9)

for all 𝜑 ∈ 𝑋
0
.

Denote by 𝜆
1
> 0 the first eigenvalue of the operator

(−Δ)
𝑠 with homogeneous Dirichlet boundary data

(−Δ)
𝑠

𝑢 = 𝜆𝑢 in Ω,

𝑢 = 0 in R
𝑛

\ Ω.

(10)

For the existence and the basic properties of 𝜆
1
we may

refer to [7]. From [7, 16], we know that if 𝜆 < 𝜆
1
then we can

take a norm on𝑋
0
as follows:

‖V‖
𝑋
0
,𝜆
= (∬

(R𝑛×R𝑛)\O

󵄨󵄨󵄨󵄨V (𝑥) − V (𝑦)󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑛+2𝑠

𝑑𝑥 𝑑𝑦

−𝜆∫
Ω

|V (𝑥)|2𝑑𝑥)
1/2

.

(11)

Moreover, we have

𝑚
𝜆
‖V‖
𝑋
0

≤ ‖V‖
𝑋
0
,𝜆
≤ 𝑀
𝜆
‖V‖
𝑋
0

, (12)

where

𝑚
𝜆
:= min{√𝜆

1
− 𝜆

𝜆
1

, 1} ,

𝑀
𝜆
:= max{√𝜆

1
− 𝜆

𝜆
1

, 1} .

(13)

Remark 1. If 0 < 𝜆 < 𝜆
1
, then

𝑚
𝜆
= √

𝜆
1
− 𝜆

𝜆
1

, 𝑀
𝜆
= 1. (14)

Taking into account Lemma 8 in [6], we know that the
embedding 𝑗 : 𝑋

0
󳨅→ 𝐿](R𝑛) is continuous for any ] ∈

[1, 2∗], while it is compact whenever ] ∈ [1, 2∗). Thus, form
any ] ∈ [1, 2∗) there exists a positive constant 𝑐] such that

‖V‖
𝐿
]
(R𝑛) ≤ 𝑐]‖V‖𝑋

0

≤ 𝑐]𝑚
−1

𝜆
‖V‖
𝑋
0
,𝜆

(15)

for any V ∈ 𝑋
0
.

Let𝑅 := sup
𝑥∈Ω

dist(𝑥, 𝜕Ω); simple calculations show that
there is 𝑥

0
∈ Ω such that 𝐵(𝑥

0
, 𝑅) ⊂ Ω.

Set

𝑢
𝛿
(𝑥)

:=

{{{{

{{{{

{

𝛿 if 𝑥 ∈ 𝐵(𝑥
0
,
𝑅

2
) ,

2𝛿

𝑅
(𝑅 −

󵄨󵄨󵄨󵄨𝑥 − 𝑥
0

󵄨󵄨󵄨󵄨) if 𝑥 ∈ 𝐵 (𝑥
0
, 𝑅) \ 𝐵 (𝑥

0
,
𝑅

2
) ,

0 if 𝑥 ∈ R𝑛 \ 𝐵 (𝑥
0
, 𝑅) .

(16)

Lemma 2. Let 𝛿, 𝑅 > 0, 𝑠 ∈ (0, 1), 0 < 𝜆 < 𝜆
1
, and let

𝑢
𝛿
be defined by (16). Then 𝑢

𝛿
∈ 𝑋
0
, and there exist 𝐶

∗
=

𝐶
∗
(𝑛, 𝑠, 𝑅) > 0 and 𝐶∗ = 𝐶∗(𝑛, 𝑠, 𝑅) such that

𝐶
∗
𝑚
2

𝜆
𝛿
2

≤
󵄩󵄩󵄩󵄩𝑢𝛿

󵄩󵄩󵄩󵄩
2

𝑋
0
,𝜆
≤ 𝐶
∗

𝛿
2

, (17)

where𝑚
𝜆
is as in (14).

Proof. By Proposition 3.4 in [5], we have

󵄩󵄩󵄩󵄩𝑢𝛿
󵄩󵄩󵄩󵄩
2

𝑋
0

= 2𝐶(𝑛, 𝑠)
−1

∫
R𝑛

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
2𝑠󵄨󵄨󵄨󵄨F𝑢

𝛿
(𝜉)

󵄨󵄨󵄨󵄨
2

𝑑𝜉, (18)

where

𝐶 (𝑛, 𝑠) = (∫
R𝑛

1 − cos (𝜁
1
)

󵄨󵄨󵄨󵄨𝜁
󵄨󵄨󵄨󵄨
𝑛+2𝑠

𝑑𝜁)

−1

. (19)

Here 𝜁 = (𝜁
1
, . . . , 𝜁

𝑛
). From the trivial inequality |𝜉|2𝑠 ≤ 1 +

|𝜉|2, 𝑠 ∈ (0, 1], and (18), we obtain

󵄩󵄩󵄩󵄩𝑢𝛿
󵄩󵄩󵄩󵄩
2

𝑋
0

≤ 2𝐶(𝑛, 𝑠)
−1

∫
R𝑛
(1 +

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
2

)
󵄨󵄨󵄨󵄨F𝑢
𝛿
(𝜉)

󵄨󵄨󵄨󵄨
2

𝑑𝜉

= 2𝐶(𝑛, 𝑠)
−1󵄩󵄩󵄩󵄩𝑢𝛿

󵄩󵄩󵄩󵄩
2

𝐻
1
(R𝑛)

.

(20)
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Moreover, according to the definition of norm for𝐻1(R𝑛), we
get

󵄩󵄩󵄩󵄩𝑢𝛿
󵄩󵄩󵄩󵄩
2

𝐻
1
(R𝑛)

= ∫
R𝑛

󵄨󵄨󵄨󵄨∇𝑢𝛿 (𝑥)
󵄨󵄨󵄨󵄨
2

𝑑𝑥

= ∫
𝐵(𝑥
0
, 𝑅)\𝐵(𝑥

0
, 𝑅/2)

(2𝛿)
2

𝑅2
𝑑𝑥

=
4𝛿2

𝑅2
[meas (𝐵 (𝑥

0
, 𝑅)) −meas(𝐵(𝑥

0
,
𝑅

2
))]

=
4𝛿
2

𝑅2
𝜋𝑛/2

Γ (1 + 𝑛/2)
(𝑅
𝑛

− (
𝑅

2
)
𝑛

)

=
4𝑅𝑛−2𝜋𝑛/2 (1 − 1/2

𝑛

)

Γ (1 + 𝑛/2)
𝛿
2

.

(21)

By [5], we have

𝐶(𝑛, 𝑠)
−1

= ∫
R𝑛

1 − cos (𝜁
1
)

󵄨󵄨󵄨󵄨𝜁
󵄨󵄨󵄨󵄨
𝑛+2𝑠

𝑑𝜁 = 𝐴 (𝑛, 𝑠)𝐷 (𝑠) ,

(22)

where

𝐴 (𝑛, 𝑠) = ∫
R𝑛−1

1

(1 +
󵄨󵄨󵄨󵄨𝜂
󵄨󵄨󵄨󵄨
2

)
(𝑛+2𝑠)/2

𝑑𝜂,

𝐷 (𝑠) = ∫
R

1 − cos 𝑡
|𝑡|
1+2𝑠

𝑑𝑡.

(23)

By polar coordinates, for any 𝑠 ∈ (0, 1), we obtain

𝐴 (𝑛, 𝑠)= 𝜔
𝑛−2

∫
+∞

0

𝜌𝑛−2

(1 + 𝜌2)
(𝑛+2𝑠)/2

𝑑𝜌

= 𝜔
𝑛−2

[∫
1

0

𝜌𝑛−2

(1 + 𝜌2)
(𝑛+2𝑠)/2

𝑑𝜌

+∫
+∞

1

𝜌𝑛−2

(1 + 𝜌2)
(𝑛+2𝑠)/2

𝑑𝜌]

< 𝜔
𝑛−2

[

[

∫
1

0

(1 + 𝜌2)
(𝑛−2)/2

(1 + 𝜌2)
(𝑛+2𝑠)/2

𝑑𝜌

+ ∫
+∞

1

𝜌𝑛−2

(𝜌2)
(𝑛+2𝑠)/2

𝑑𝜌]

]

< 𝜔
𝑛−2

[∫
1

0

𝑑𝜌

1 + 𝜌2
+∫
+∞

1

𝑑𝜌

𝜌2(1+𝑠)
]

= 𝜔
𝑛−2

(
𝜋

4
+

1

1 + 2𝑠
) := 𝐶

1
,

(24)

where 𝜔
𝑛−2

is the Lebesgue measure of the unit sphere in
R𝑛−1. Furthermore, we have

𝐷 (𝑠) = 2∫
+∞

0

1 − cos 𝑡
𝑡1+2𝑠

𝑑𝑡

= 2 [∫
1

0

1 − cos 𝑡
𝑡1+2𝑠

𝑑𝑡 + ∫
+∞

1

1 − cos 𝑡
𝑡1+2𝑠

𝑑𝑡]

< 2 [∫
1

0

𝑡2/2

𝑡1+2𝑠
𝑑𝑡 + 2∫

+∞

1

1

𝑡1+2𝑠
𝑑𝑡]

=
1

2 (1 − 𝑠)
+
2

𝑠
:= 𝐶
2
.

(25)

Thanks to (20)–(25), we conclude that

󵄩󵄩󵄩󵄩𝑢𝛿
󵄩󵄩󵄩󵄩
2

𝑋
0

<
8𝑅𝑛−2𝜋𝑛/2 (1 − 1/2𝑛)

Γ (1 + 𝑛/2)
𝐶
1
𝐶
2
𝛿
2

< ∞, (26)

which implies that 𝑢
𝛿
∈ 𝑋
0
. By (12), (14), and (26), we obtain

󵄩󵄩󵄩󵄩𝑢𝛿
󵄩󵄩󵄩󵄩
2

𝑋
0
,𝜆
≤
󵄩󵄩󵄩󵄩𝑢𝛿

󵄩󵄩󵄩󵄩
2

𝑋
0

≤ 𝐶
∗

𝛿
2

, (27)

where

𝐶
∗

:=
8𝜋𝑛/2 (1 − 1/2𝑛)

Γ (1 + 𝑛/2)
𝐶
1
𝐶
2
𝑅
𝑛−2

. (28)

Hence, the conclusion of right-hand side of (17) holds.
On the other hand, we have

󵄩󵄩󵄩󵄩𝑢𝛿
󵄩󵄩󵄩󵄩
2

𝑋
0

= ∬
R𝑛×R𝑛

󵄨󵄨󵄨󵄨𝑢𝛿 (𝑥) − 𝑢
𝛿
(𝑦)

󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑛+2𝑠

𝑑𝑥 𝑑𝑦

= ∬
𝐵(𝑥
0
,𝑅)×𝐵(𝑥

0
,𝑅)

󵄨󵄨󵄨󵄨𝑢𝛿 (𝑥) − 𝑢
𝛿
(𝑦)

󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑛+2𝑠

𝑑𝑥 𝑑𝑦

+ 2∬
𝐵(𝑥
0
,𝑅)×(R𝑛\𝐵(𝑥

0
,𝑅))

󵄨󵄨󵄨󵄨𝑢𝛿 (𝑥) − 𝑢
𝛿
(𝑦)

󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑛+2𝑠

𝑑𝑥 𝑑𝑦

= 2∬
𝐵(𝑥0 ,𝑅/2)×(𝐵(𝑥0 ,𝑅)\𝐵(𝑥0,𝑅/2))

󵄨󵄨󵄨󵄨𝑢𝛿 (𝑥) − 𝑢
𝛿
(𝑦)

󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑛+2𝑠

𝑑𝑥 𝑑𝑦

+∬
(𝐵(𝑥0,𝑅)\𝐵(𝑥0 ,𝑅/2))×(𝐵(𝑥0 ,𝑅)\𝐵(𝑥0 ,𝑅/2))

×

󵄨󵄨󵄨󵄨𝑢𝛿 (𝑥) − 𝑢
𝛿
(𝑦)

󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑛+2𝑠

𝑑𝑥 𝑑𝑦

+ 2∬
𝐵(𝑥
0
,𝑅)×(R𝑛\𝐵(𝑥

0
,𝑅))

󵄨󵄨󵄨󵄨𝑢𝛿 (𝑥) − 𝑢
𝛿
(𝑦)

󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑛+2𝑠

𝑑𝑥 𝑑𝑦
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=
8𝛿2

𝑅2

× ∫
𝐵(𝑥0,𝑅/2)

(∫
𝐵(𝑥
0
,𝑅)\𝐵(𝑥

0
,𝑅/2)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑥 − 𝑥

0

󵄨󵄨󵄨󵄨 − 𝑅/2
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑛+2𝑠

𝑑𝑥)𝑑𝑦

+
4𝛿2

𝑅2

×∬
(𝐵(𝑥0 ,𝑅)\𝐵(𝑥0 ,𝑅/2))×(𝐵(𝑥0 ,𝑅)\𝐵(𝑥0,𝑅/2))

×

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑥 − 𝑥

0

󵄨󵄨󵄨󵄨 −
󵄨󵄨󵄨󵄨𝑦 − 𝑥

0

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑛+2𝑠

𝑑𝑥 𝑑𝑦

+ 2∫
𝐵(𝑥0 ,𝑅/2)

(∫
R𝑛\𝐵(𝑥

0
,𝑅)

𝛿2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑛+2𝑠

𝑑𝑥)𝑑𝑦

+
8𝛿2

𝑅2

× ∫
(𝐵(𝑥0,𝑅)\𝐵(𝑥0 ,𝑅/2)

(∫
R𝑛\𝐵(𝑥

0
,𝑅)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑦 − 𝑥

0

󵄨󵄨󵄨󵄨 |−𝑅|
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑛+2𝑠

𝑑𝑥)𝑑𝑦

≥
8𝛿
2

𝑅2

× ∫
𝐵(𝑥0,𝑅/2)

(∫
𝐵(𝑥
0
,𝑅)\𝐵(𝑥

0
,𝑅/2)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑥 − 𝑥

0

󵄨󵄨󵄨󵄨 − 𝑅/2
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑛+2𝑠

𝑑𝑥)𝑑𝑦

+ 2∫
𝐵(𝑥
0
,𝑅/2)

(∫
R𝑛\𝐵(𝑥

0
,𝑅)

𝛿2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑛+2𝑠

𝑑𝑥)𝑑𝑦.

(29)

For 𝑥 ∈ R𝑛 \ 𝐵(𝑥
0
, 𝑅) and 𝑦 ∈ 𝐵(𝑥

0
, 𝑅/2), we have

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨𝑥 − 𝑥
0

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑦 − 𝑥

0

󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝑥 − 𝑥

0

󵄨󵄨󵄨󵄨 +
𝑅

2
≤
3

2

󵄨󵄨󵄨󵄨𝑥 − 𝑥
0

󵄨󵄨󵄨󵄨 .

(30)

Thus,

∫
𝐵(𝑥
0
,𝑅/2)

(∫
R𝑛\𝐵(𝑥

0
,𝑅)

1
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨
𝑛+2𝑠

𝑑𝑥)𝑑𝑦

≥ (
2

3
)
𝑛+2𝑠

∫
𝐵(𝑥
0
,𝑅/2)

(∫
R𝑛\𝐵(𝑥

0
,𝑅)

1
󵄨󵄨󵄨󵄨𝑥 − 𝑥

0

󵄨󵄨󵄨󵄨
𝑛+2𝑠

𝑑𝑥)𝑑𝑦

≥ (
2

3
)
𝑛+2𝑠

⋅
𝜔
𝑛−1

𝑛
(
𝑅

2
)
𝑛

⋅ 𝜔
𝑛−1

∫
∞

𝑅

𝜌𝑛−1

𝜌𝑛+2𝑠
𝑑𝜌

= (
2

3
)
𝑛+2𝑠𝜔2
𝑛−1

𝑛
(
𝑅

2
)
𝑛

⋅
1

2𝑠
𝑅
−2𝑠

= 𝐶
3
𝑅
𝑛−2𝑠

,

(31)

where 𝐶
3
:= (22𝑠−1/3𝑛+2𝑠𝑛𝑠)𝜔2

𝑛−1
. Moreover, we obtain

∫
𝐵(𝑥
0
,𝑅/2)

(∫
𝐵(𝑥
0
,𝑅)\𝐵(𝑥

0
,𝑅/2)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑥 − 𝑥

0

󵄨󵄨󵄨󵄨 − 𝑅/2
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑛+2𝑠

𝑑𝑥)𝑑𝑦

≥
1

((3/2)𝑅)
𝑛+2𝑠

⋅
𝜔
𝑛−1

𝑛
(
𝑅

2
)
𝑛

⋅ ∫
𝐵(𝑥
0
,𝑅)\𝐵(𝑥

0
,𝑅/2)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥 − 𝑥
0

󵄨󵄨󵄨󵄨 −
𝑅

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

=
22𝑠𝜔
𝑛−1

𝑛3𝑛+2𝑠𝑅2𝑠

× [∫
𝐵(𝑥
0
,𝑅)

(
󵄨󵄨󵄨󵄨𝑥 − 𝑥

0

󵄨󵄨󵄨󵄨
2

− 𝑅
󵄨󵄨󵄨󵄨𝑥 − 𝑥

0

󵄨󵄨󵄨󵄨 +
𝑅2

4
)𝑑𝑥

−∫
𝐵(𝑥
0
,𝑅/2)

(
󵄨󵄨󵄨󵄨𝑥 − 𝑥

0

󵄨󵄨󵄨󵄨
2

− 𝑅
󵄨󵄨󵄨󵄨𝑥 − 𝑥

0

󵄨󵄨󵄨󵄨 +
𝑅2

4
)𝑑𝑥]

=
22𝑠𝜔
𝑛−1

𝑛3𝑛+2𝑠𝑅2𝑠
⋅ 𝜔
𝑛−1

𝑅
𝑛+2

× [
𝑛2 − 𝑛 + 2

4𝑛 (𝑛 + 1) (𝑛 + 2)
+

1

2𝑛+1𝑛 (𝑛 + 1) (𝑛 + 2)
]

= 𝐶
4
𝑅
𝑛+2−2𝑠

,

(32)

where

𝐶
4
:=

2
2𝑠

𝜔
2

𝑛−1

𝑛2 (𝑛 + 1) (𝑛 + 2) 3𝑛+2𝑠
[
𝑛2 − 𝑛 + 2

4
+

1

2𝑛+1
] . (33)

Substitute (31) and (32) into (29), we get

∬
R𝑛×R𝑛

󵄨󵄨󵄨󵄨𝑢𝛿 (𝑥) − 𝑢
𝛿
(𝑦)

󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑛+2𝑠

𝑑𝑥 𝑑𝑦 ≥ 2 (𝐶
3
+ 4𝐶
4
) 𝑅
𝑛−2𝑠

𝛿
2

.

(34)

From (34) and (12), we obtain
󵄩󵄩󵄩󵄩𝑢𝛿

󵄩󵄩󵄩󵄩
2

𝑋
0
,𝜆
≥ 𝑚
2

𝜆

󵄩󵄩󵄩󵄩𝑢𝛿
󵄩󵄩󵄩󵄩
2

𝑋
0

≥ 𝐶
∗
𝑚
2

𝜆
𝛿
2

, (35)

where

𝐶
∗
:= 2 (𝐶

3
+ 4𝐶
4
) 𝑅
𝑛−2𝑠

. (36)
Thus, the conclusion of left-hand side of (17) holds.

In this paper our main tool is a three-critical-point
theorem of [14] which is recalled below.

Theorem 3 (see [14]). Let 𝑋 be a reflexive real Banach space;
let Φ : 𝑋 → R be a coercive, continuously Gâteaux differ-
entiable, and sequentially weakly lower semicontinuous func-
tional whose Gâteaux derivative admits a continuous inverse
on 𝑋
∗, and let Ψ : 𝑋 → R be a continuously Gâteaux

differentiable functional whose Gâteaux derivative is compact
such that

Φ (0) = Ψ (0) = 0. (37)
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Assume that there exist 𝑟 > 0 and x ∈ X, with r < Φ(x), such
that

(i) sup
Φ(𝑥)≤𝑟

Ψ(𝑥)/𝑟 < Ψ(x)/Φ(x);
(ii) for each 𝜇 ∈ Λ

𝑟
:= ]Φ(x)/Ψ(x), 𝑟/sup

Φ(x)≤𝑟Ψ(x)[ the
functional Φ − 𝜇Ψ is coercive.

Then, for each 𝜇 ∈ Λ
𝑟
, the functionalΦ−𝜇Ψ has at least three

distinct critical points in 𝑋.

3. Main Result

Let 𝑓 : Ω ×R → R be a Carathéodory function such that

(H1) there exist 𝑎
1
, 𝑎
2
≥ 0 and 𝑞 ∈ (1, 2∗

𝑠
), 2∗
𝑠
:= 2𝑛/(𝑛−2𝑠),

such that
󵄨󵄨󵄨󵄨𝑓 (𝑥, V)󵄨󵄨󵄨󵄨 ≤ 𝑎

1
+ 𝑎
2
|V|𝑞−1, ∀ (𝑥, V) ∈ Ω ×R. (38)

Theorem 4. Let function 𝑓 satisfy condition (H1). Assume
that

(H2) 𝐹(𝑥, V) := ∫
V
0

𝑓(𝑥, 𝜏)𝑑𝜏 ≥ 0 for all (𝑥, V) ∈ Ω ×R+;
(H3) there exist two positive constants 𝑏 and 𝑝 < 2 such that

𝐹 (𝑥, V) ≤ 𝑏 (1 + |V|𝑝) , (39)

for almost every 𝑥 ∈ Ω and for every V ∈ R;
(H4) let 0 < 𝜆 < 𝜆

1
such that there exist two positive

constants 𝛾 and 𝛿, with 𝛿 > √2/𝐶
∗
(𝛾/𝑚
𝜆
) such that

inf
𝑥∈Ω

𝐹 (𝑥, 𝛿)

𝛿2
>
𝑏
1

𝛾
+ 𝑏
2
𝛾
𝑞−2

, (40)

where

𝑏
1
=
𝑛2𝑛−1/2𝑎

1
𝑐
1
𝐶∗

𝜔
𝑛−1

𝑚
𝜆
𝑅𝑛

, 𝑏
2
=
𝑛2𝑛+(𝑞−2)/2𝑎

2
𝑐𝑞
𝑞
𝐶∗

𝑞𝜔
𝑛−1

𝑚
𝑞

𝜆
𝑅𝑛

, (41)

and two positive constants𝐶∗ and𝐶
∗
are as in (28) and

(36), respectively. Then, for every 𝜇 belonging to

Λ := ]

]

𝑛2𝑛−1𝐶∗

𝜔
𝑛−1

𝑅𝑛
𝛿2

inf
𝑥∈Ω

𝐹 (𝑥, 𝛿)
,
𝑛2𝑛−1𝐶∗

𝜔
𝑛−1

𝑅𝑛
1

𝑏
1
/𝛾 + 𝑏

2
𝛾𝑞−2

[

[

,

(42)

problem (2) possesses at least three weak solutions in
𝑋
0
.

Proof. Let us apply Theorem 3 with𝑋
0
and

J
𝜆,𝜇

(𝑢) := Φ
𝜆
(𝑢) − 𝜇Ψ (𝑢) , 𝑢 ∈ 𝑋

0
, (43)

where

Φ
𝜆
(𝑢) :=

1

2
∬

R𝑛×R𝑛

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑛+2𝑠

𝑑𝑥 𝑑𝑦 −
𝜆

2
∫
Ω

|𝑢 (𝑥)|
2

𝑑𝑥,

Ψ (𝑢) := ∫
Ω

𝐹 (𝑥, 𝑢 (𝑥)) 𝑑𝑥.

(44)

For each 𝑢, V ∈ 𝑋
0
, one has

Φ
󸀠

𝜆
(𝑢) (V) = ∬

R𝑛×R𝑛

(𝑢 (𝑥) − 𝑢 (𝑦)) (V (𝑥) − V (𝑦))
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨
𝑛+2𝑠

𝑑𝑥 𝑑𝑦

− 𝜆∫
Ω

𝑢 (𝑥) V (𝑥) 𝑑𝑥,

Ψ
󸀠

(𝑢) (V) = ∫
Ω

𝑓 (𝑥, 𝑢 (𝑥)) V (𝑥) 𝑑𝑥.

(45)

From the proof of Theorem 1 in [16], we obtain that Φ
𝜆

is coercive, continuously Gâteaux differentiable, and sequen-
tially weakly lower semicontinuous functional. Moreover,
similar to the proof of proposition in [17], we get by (12) that

(Φ
󸀠

𝜆
(𝑢) − Φ

󸀠

𝜆
(V)) (𝑢 − V)

= ∬
R𝑛×R𝑛

[(𝑢 − V) (𝑥) − (𝑢 − V) (𝑦)]2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑛+2𝑠

𝑑𝑥 𝑑𝑦

− 𝜆∫
Ω

(𝑢 (𝑥) − V (𝑥))2𝑑𝑥

= ‖𝑢 − V‖2
𝑋
0
,𝜆
≥ 𝑚
2

𝜆
‖𝑢 − V‖2

𝑋
0

,

(46)

for every 𝑢 and V belonging to 𝑋
0
. This actually means that

Φ󸀠
𝜆
is a uniformly monotone operator in 𝑋

0
. In addition,

standard arguments ensure thatΦ󸀠
𝜆
also turns out to be coer-

cive and hemicontinuos in 𝑋
0
. Therefore, Φ󸀠

𝜆
admits that a

continuous inverse in 𝑋∗
0
follows immediately by applying

Theorem 26. A. of [18]. Furthermore, the functionalΨ is well
defined, continuously Gâteaux differentiable with compact
derivative andΦ

𝜆
(0) = Ψ(0) = 0.

By [16] we know that being 𝑢 a weak solution of problem
(2) is equivalent to being a critical point of the functional
I
𝜆,𝜇

. Since 0 < 𝜆 < 𝜆
1
, from Lemma 2, one has

Φ
𝜆
(𝑢
𝛿
) =

1

2

󵄩󵄩󵄩󵄩𝑢𝛿
󵄩󵄩󵄩󵄩
2

𝑋
0
,𝜆
≥
1

2
𝐶
∗
𝑚
2

𝜆
𝛿
2

. (47)

Bearing in mind that 𝛿 > √2/𝐶
∗
(𝛾/𝑚
𝜆
) (H4), it follows that

Φ
𝜆
(𝑢
𝛿
) > 𝛾2. By (H2), we obtain

Ψ (𝑢
𝛿
) = ∫
Ω

𝐹 (𝑥, 𝑢
𝛿
(𝑥)) 𝑑𝑥 ≥ ∫

𝐵(𝑥
0
,𝑅/2)

𝐹 (𝑥, 𝛿) 𝑑𝑥

≥ inf
𝑥∈Ω

𝐹 (𝑥, 𝛿) ⋅
𝜔
𝑛−1

𝑛
(
𝑅

2
)
𝑛

.

(48)

By Lemma 2, we have

Φ
𝜆
(𝑢
𝛿
) =

1

2

󵄩󵄩󵄩󵄩𝑢𝛿
󵄩󵄩󵄩󵄩
2

𝑋
0
,𝜆
≤
1

2
𝐶
∗

𝛿
2

. (49)

So, by (48) and (49), one has

Ψ (𝑢
𝛿
)

Φ
𝜆
(𝑢
𝛿
)
≥

𝜔
𝑛−1

𝑅𝑛

𝑛2𝑛−1𝐶∗
inf
𝑥∈Ω

𝐹 (𝑥, 𝛿)

𝛿2
. (50)
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Thanks to (H1), one has

𝐹 (𝑥, 𝑢) ≤ 𝑎
1
|𝑢| +

𝑎
2

𝑞
|𝑢|
𝑞

, (𝑥, 𝑢) ∈ Ω ×R. (51)

Thus, by (15) and (51), for every 𝑢 ∈ 𝑋
0
: Φ
𝜆
(𝑢) ≤ 𝑟, we obtain

Ψ (𝑢) = ∫
Ω

𝐹 (𝑥, 𝑢 (𝑥)) 𝑑𝑥 ≤ 𝑎
1
‖𝑢‖
𝐿
1
(Ω)

+
𝑎
2

𝑞
‖𝑢‖
𝑞

𝐿
𝑞
(Ω)

≤
√2𝑎
1
𝑐
1

𝑚
𝜆

√𝑟 +
2𝑞/2𝑐𝑞
𝑞
𝑎
2

𝑞𝑚
𝑞

𝜆

𝑟
𝑞/2

.

(52)

Therefore

sup
𝑢∈Φ
−1

𝜆
(]−∞,𝑟])

Ψ (𝑢) ≤
√2𝑎
1
𝑐
1

𝑚
𝜆

√𝑟 +
2
𝑞/2𝑐𝑞
𝑞
𝑎
2

𝑞𝑚
𝑞

𝜆

𝑟
𝑞/2

. (53)

Denote the function

𝜒 (𝑟) :=
sup
𝑢∈Φ
−1

𝜆
(]−∞,𝑟])

Ψ (𝑢)

𝑟
, 𝑟 > 0. (54)

By (53), we have

𝜒 (𝑟) ≤
√2𝑎
1
𝑐
1

𝑚
𝜆

𝑟
−1/2

+
2𝑞/2𝑐𝑞
𝑞
𝑎
2

𝑞𝑚
𝑞

𝜆

𝑟
𝑞/2−1

, 𝑟 > 0. (55)

Owing to (50), (55), and (H4), we have

𝜒 (𝛾
2

) ≤
√2𝑎
1
𝑐
1

𝑚
𝜆
𝛾

+
2
𝑞/2𝑐𝑞
𝑞
𝑎
2

𝑞𝑚
𝑞

𝜆

𝛾
𝑞−2

=
𝜔
𝑛−1

𝑅
𝑛

𝑛2𝑛−1𝐶∗
(
𝑏
1

𝛾
+ 𝑏
2
𝛾
𝑞−2

)

<
𝜔
𝑛−1

𝑅𝑛

𝑛2𝑛−1𝐶∗
inf
𝑥∈Ω

𝐹 (𝑥, 𝛿)

𝛿2
≤

Ψ (𝑢
𝛿
)

Φ
𝜆
(𝑢
𝛿
)
.

(56)

Hence, the assumption (i) of Theorem 3 is satisfied.
Furthermore, if 𝑝 < 2, for each 𝑢 ∈ 𝑋

0
, |𝑢|𝑝 ∈ 𝐿2/𝑝(Ω),

Hölder’s inequality and (15) give

∫
Ω

|𝑢 (𝑥)|
𝑝

𝑑𝑥 ≤ ‖𝑢‖
𝑝

𝐿
2
(Ω)

meas (Ω)(2−𝑝)/2

≤
𝑐
𝑝

2

𝑚
𝑝

𝜆

‖𝑢‖
𝑝

𝑋
0
,𝜆
meas (Ω)(2−𝑝)/2, ∀𝑢 ∈ 𝑋

0
.

(57)

Due to (H3) and (57), we deduce that

J
𝜆,𝜇

(𝑢) ≥
1

2
‖𝑢‖
2

𝑋
0
,𝜆
−
𝜇𝑏𝑐
𝑝

2

𝑚
𝑝

𝜆

meas(Ω)(2−𝑝)/2‖𝑢‖𝑝
𝑋
0
,𝜆

− 𝜇𝑏 ⋅meas (Ω) , ∀𝑢 ∈ 𝑋
0
.

(58)

Hence, J
𝜆,𝜇
(𝑢) is a coercive functional for every positive

parameter 𝜇, in particular, for each 𝜇 ∈ Λ ⊂]Φ
𝜆
(𝑢
𝛿
)/Ψ(𝑢

𝛿
),

𝛾2/sup
Φ
𝜆
(𝑢)≤𝛾

2Ψ(𝑢)[. So also condition (ii) holds. So all the
assumptions of Theorem 3 are satisfied. Thus, for each 0 <

𝜆 < 𝜆
1
there exists 𝜇 > 0, depending on 𝜆, such that, for

any 𝜇 ∈ Λ, the functional J
𝜆,𝜇
(𝑢) has at least three distinct

critical points that are weak solutions to problem (2).

Remark 5. Similar to Example 3.1 in [15], we can give a
concrete example of function satisfying hypotheses (H1)–
(H4). Set 𝑞 ∈ (2, 2

∗

𝑠
), 𝑠 ∈ (0, 1), and 0 < 𝑝 < 2 and let

ℎ := max{1, 1

𝑚
𝜆

√
2

𝐶
∗

, (𝐴
1
+ 𝐴
2
)
1/(𝑞−2)

𝑞
1/(𝑞−2)

} , (59)

where

𝐴
1
=
𝑛2𝑛−1/2𝑐

1
𝐶∗

𝜔
𝑛−1

𝑚
𝜆
𝑅𝑛

, 𝐴
2
=
𝑛2𝑛+(𝑞−2)/2𝑐𝑞

𝑞
𝐶∗

𝑞𝜔
𝑛−1

𝑚
𝑞

𝜆
𝑅𝑛

. (60)

From (H4) we know that 𝑏
1
= 𝑎
1
𝐴
1
and 𝑏
2
= 𝑎
2
𝐴
2
. Let 𝑟 be a

positive constant such that 𝑟 > ℎ and consider the following
continuous and positive function 𝑓 : Ω ×R → R:

𝑓 (𝑥, V) := {
1 + |V|𝑞−1 if V ≤ 𝑟,

1 + 𝑟𝑞−𝑝V𝑝−1 if V > 𝑟.
(61)

Obviously, 𝑓(𝑥, V) ≤ 1 + |V|𝑞−1 for each (𝑥, V) ∈ Ω × R, and
(H1) holds. Furthermore, for every 𝜂 ∈ R, we have

𝐹 (𝑥, 𝜂) ≤ (𝑟 +
𝑟
𝑞

𝑝
)(1 +

󵄨󵄨󵄨󵄨𝜂
󵄨󵄨󵄨󵄨
max{1,𝑝}

) . (62)

Thus the conditions (H2) and (H3) are satisfied. Moreover,
𝑟 > ℎ ≥ (1/𝑚

𝜆
)√2/𝐶

∗
and

∫
𝑟

0

𝑓 (𝑥, 𝑡) 𝑑𝑡

𝑟2
=
𝑟𝑞−2

𝑞
+
1

𝑟
> 𝐴
1
+ 𝐴
2
, (63)

which implies that (H4) holds.
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[3] X. Cabré and J. Tan, “Positive solutions of nonlinear problems
involving the square root of the Laplacian,” Advances in Mathe-
matics, vol. 224, no. 5, pp. 2052–2093, 2010.



Abstract and Applied Analysis 7
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