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A new approach is presented for obtaining the solutions to Yakubovich-𝑗-conjugate quaternion matrix equation 𝑋 − 𝐴𝑋𝐵 = 𝐶𝑌
based on the real representation of a quaternion matrix. Compared to the existing results, there are no requirements on the
coefficient matrix 𝐴. The closed form solution is established and the equivalent form of solution is given for this Yakubovich-𝑗-
conjugate quaternion matrix equation. Moreover, the existence of solution to complex conjugate matrix equation 𝑋 − 𝐴𝑋𝐵 = 𝐶𝑌
is also characterized and the solution is derived in an explicit form by means of real representation of a complex matrix. Actually,
Yakubovich-conjugate matrix equation over complex field is a special case of Yakubovich-𝑗-conjugate quaternion matrix equation
𝑋 − 𝐴𝑋𝐵 = 𝐶𝑌. Numerical example shows the effectiveness of the proposed results.

1. Introduction

The linear matrix equation𝑋−𝐴𝑋𝐵 = 𝐶, which is called the
Kalman-Yakubovich matrix equation in [1], is closely related
to many problems in conventional linear control systems
theory, such as pole assignment design [2], Luenberger-type
observer design [3, 4], and robust fault detection [5, 6].
In recent years, many studies have been reported on the
solutions to many algebraic equations including quaternion
matrix equations and nonlinear matrix equations. Yuan
and Liao [7] investigated the least squares solution of the
quaternion 𝑗-conjugatematrix equation𝑋−𝐴𝑋𝐵 = 𝐶 (where
𝑋 denotes the 𝑗-conjugate of quaternion matrix 𝑋) with the
least norm using the complex representation of quaternion
matrix, the Kronecker product of matrices, and the Moore-
Penrose generalized inverse. The authors in [8] considered
the matrix nearness problem associated with the quaternion
matrix equation 𝐴𝑋𝐴𝐻 + 𝐵𝑌𝐵𝐻 = 𝐶 by means of the
CCD-Q, GSVD-Q, and the projection theorem in the finite
dimensional inner product space. In addition, Song et al.

[9, 10] established the explicit solutions to the quaternion 𝑗-
conjugate matrix equation 𝑋 − 𝐴𝑋𝐵 = 𝐶, 𝑋𝐹 − 𝐴𝑋 = 𝐶𝑌,
but here the known quaternion matrix 𝐴 is a block diagonal
form.Wang et al. in [11, 12] investigatedHermitian tridiagonal
solutions and the minimal-norm solution with the least
norm of quaternionic least squares problem in quaternionic
quantum theory. Besides, in [13, 14], some solutions for
the Kalman-Yakubovich equation are presented in terms of
the coefficients of characteristic polynomial of matrix 𝐴 or
the Leverrier algorithm. The existence of solution to the
matrix equation 𝑋 − 𝐴𝑋𝐵 = 𝐶, which, for convenience,
is called the Kalman-Yakubovich-conjugate matrix equation,
is established, and the explicit solution is derived. Several
necessary and sufficient conditions for the existence of a
unique solution to the matrix equation ∑𝑘

𝑖=0
𝐴𝑖𝑋𝐵

𝑖
= 𝐸

over quaternion field are obtained [15]. The authors in [16–
18] have provided the consistence of the matrix equation
𝐴𝑋 − 𝑋𝐵 = 𝐶 via the consimilarity of two matrices. In [19],
Wu et al. construct some explicit expressions of the solution
of the matrix equation 𝐴𝑋 − 𝑋𝐵 = 𝐶 by means of a real
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representation of a complex matrix. It is shown that there
exists a unique solution if and only if 𝐴𝐴 and 𝐵𝐵 have no
common eigenvalues.

In this paper, we study quaternion 𝑗-conjugate matrix
equation𝑋−𝐴𝑋𝐵 = 𝐶𝑌 by means of real representation of a
quaternion matrix. Compared to the complex representation
method [9, 10], the real representation method does not
require any special case of the known matrix 𝐴. We propose
the explicit solutions to the above Yakubovich-𝑗-conjugate
quaternionmatrix equation. As the special case of quaternion
𝑗-conjugate matrix equation𝑋−𝐴𝑋𝐵 = 𝐶𝑌, complex conju-
gate matrix equation𝑋−𝐴𝑋𝐵 = 𝐶 and Kalman-Yakubovich
quaternionmatrix equation are also investigated.The explicit
solutions to the complex conjugatematrix equation have been
established.

Throughout this paper, we use the following notations.
Let 𝑅 denote the real number field, 𝐶 the complex number
field, and 𝑄 = 𝑅 ⊕ 𝑅𝑖 ⊕ 𝑅𝑗 ⊕ 𝑅𝑘 the quaternion field, where
𝑖2 = 𝑗2 = 𝑘2 = −1, 𝑖𝑗 = −𝑗𝑖 = 𝑘. 𝑅𝑚×𝑛 (𝐶𝑚×𝑛 or 𝑄𝑚×𝑛)
denotes the set of all 𝑚 × 𝑛 matrices on 𝑅 (𝐶 or 𝑄). For any
matrix 𝐴 ∈ 𝐶𝑚×𝑛, 𝐴𝑇, 𝐴, 𝐴𝐻, det𝐴, and 𝐴∗ represent the
transpose, conjugate, conjugate transpose, determinant, and
adjoint of 𝐴, respectively. In addition, symbol 𝐴

𝜎
is the real

representation of quaternionmatrix𝐴.𝐴⊗𝐵 = (𝑎
𝑖𝑗
𝐵) denotes

the Kronecker product of twomatrices𝐴 and 𝐵. If𝐴 ∈ 𝑄𝑚×𝑛,
let 𝐴 = 𝐴

1
+ 𝐴
2
𝑖 + 𝐴

3
𝑗 + 𝐴

4
𝑘, where 𝐴

𝑡
∈ 𝑅𝑚×𝑛, 𝑡 =

1, . . . , 4, and define 𝐴 = 𝐴
1
− 𝐴
2
𝑖 + 𝐴
3
𝑗 − 𝐴

4
𝑘 to be the 𝑗-

conjugate of 𝐴. For 𝐴 ∈ 𝐶𝑚×𝑛, vec(𝐴) is defined as vec(𝐴) =
[𝑎𝑇
1
𝑎𝑇
2
⋅ ⋅ ⋅ 𝑎𝑇
𝑛
]
𝑇

. Furthermore, letting 𝐴 ∈ 𝑄𝑛×𝑛, 𝐵 ∈ 𝑄𝑛×𝑟,
and 𝐶 ∈ 𝑄𝑚×𝑛, we have the following notations associated
with these matrices:

𝑄
𝑐 (𝐴, 𝐵, 𝑛) = [𝐵 𝐴𝐵 ⋅ ⋅ ⋅ 𝐴𝑛−1𝐵] ,

𝑄
𝑜 (𝐴, 𝐶, 𝑘) =

[
[
[
[

[

𝐶
𝐶𝐴
...

𝐶𝐴𝑘−1

]
]
]
]

]

,

𝑓
𝐴
𝜎

(𝑠) = det (𝑠𝐼 − 𝐴
𝜎
) = 𝑠
2𝑛
+ 𝛼
2𝑛−1

𝑠
2𝑛−1

+ ⋅ ⋅ ⋅ + 𝛼
1
𝑠 + 𝛼
0
,

𝑆
𝑟
(𝐼, 𝐴
𝜎
) =

[
[
[
[
[

[

𝐼
𝑟
𝛼
2
𝐼
𝑟
𝛼
4
𝐼
𝑟
⋅ ⋅ ⋅ 𝛼
2(𝑛−1)

𝐼
𝑟

𝐼
𝑟

𝛼
2
𝐼
𝑟
⋅ ⋅ ⋅ 𝛼
2(𝑛−2)

𝐼
𝑟

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
𝐼
𝑟

𝛼
2
𝐼
𝑟

𝐼
𝑟

]
]
]
]
]

]

.

(1)
Obviously, 𝑄

𝑐
(𝐴, 𝐵, 𝑛) is the controllability matrix of the

matrix pair (𝐴, 𝐵), 𝑄
𝑜
(𝐴, 𝐶, 𝑘) is the observability matrix of

the matrix pair (𝐴, 𝐶), and 𝑆
𝑟
(𝐼, 𝐴
𝜎
) is a symmetric matrix.

2. Quaternion-𝑗-Conjugate Matrix Equation
𝑋−𝐴𝑋𝐵=𝐶𝑌

2.1. RealMatrix Equation𝑋−𝐴𝑋𝐵 = 𝐶𝑌. In this subsection,
we investigate the Yakubovich matrix equation over real field

𝑋 − 𝐴𝑋𝐵 = 𝐶𝑌. (2)

Theorem 1. Suppose the real matrices 𝐴 ∈ 𝑅𝑛×𝑛, 𝐵 ∈ 𝑅𝑝×𝑝,
𝐶 ∈ 𝑅𝑛×𝑟, {𝑠 | det(𝐼 − 𝑠𝐴) = 0} ∩ 𝜆(𝐵) = 𝜙; let

𝑓
(𝐼,𝐴) (𝑠) = det (𝐼 − 𝑠𝐴) = 𝛼𝑛𝑠

𝑛
+ ⋅ ⋅ ⋅ + 𝛼

1
𝑠 + 𝛼
0
, 𝛼
0
= 1,

adj (𝐼 − 𝑠𝐴) = 𝑅𝑛−1𝑠
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑅
1
𝑠 + 𝑅
0
.

(3)

Then, all the solutions to the Yakubovich matrix equation (2)
can be established as

𝑋 =
𝑛−1

∑
𝑖=0

𝑅
𝑖
CZB𝑖,

𝑌 = 𝑍𝑓
(𝐼,𝐴) (𝐵) ,

(4)

where the matrix 𝑍 ∈ 𝑅𝑟×𝑝 is an arbitrary matrix.

Proof. Wefirst show that thematrices𝑋 and𝑌 given in (4) are
solutions of the matrix equation (2). By the direct calculation
we have

𝑋 − 𝐴𝑋𝐵 =
𝑛−1

∑
𝑖=0

𝑅
𝑖
𝐶𝑍𝐵
𝑖
− 𝐴
𝑛−1

∑
𝑖=0

𝑅
𝑖
𝐶𝑍𝐵
𝑖
𝐵

=
𝑛−1

∑
𝑖=0

𝑅
𝑖
𝐶𝑍𝐵
𝑖
−
𝑛−1

∑
𝑖=0

𝐴𝑅
𝑖
𝐶𝑍𝐵
𝑖+1

= 𝑅
0
𝐶𝑍 +

𝑛−1

∑
𝑖=1

(𝑅
𝑖
− 𝐴𝑅
𝑖−1
) 𝐶𝑍𝐵

𝑖

− 𝐴𝑅
𝑛−1
𝐶𝑍𝐵
𝑛
.

(5)

Due to the relation (𝐼 − 𝑠𝐴)adj(𝐼 − 𝑠𝐴) = 𝐼 det(𝐼 − 𝑠𝐴), it is
easily derived that

𝑅
0
= 𝛼
0
𝐼,

𝑅
𝑖
− 𝐴𝑅
𝑖−1
= 𝛼
𝑖
𝐼, 𝑖 = 1 : 𝑛 − 1,

−𝐴𝑅
𝑛−1

= 𝛼
𝑛
𝐼.

(6)

So one has

𝑅
0
𝐶𝑍 +

𝑛−1

∑
𝑖=1

(𝑅
𝑖
− 𝐴𝑅
𝑖−1
) 𝐶𝑍𝐵

𝑖
− 𝐴𝑅
𝑛−1
𝐶𝑍𝐵
𝑛

= 𝐶𝑍
𝑛

∑
𝑖=0

𝛼
𝑖
𝐵
𝑖
= 𝐶𝑍𝑓

(𝐼,𝐴) (𝐵) = 𝐶𝑌.

(7)

Thus, the matrices 𝑋 and 𝑌 given in (4) satisfy the matrix
equation (2).

Secondly, we show the completeness of solution (4). It
follows from Theorem 6 of [20] that there are 𝑟𝑝 degrees of
freedom in the solution ofmatrix equation (2), while solution
(4) has exactly 𝑟𝑝 parameters represented by the elements of
the free matrix 𝑍. Therefore, in the following we only need
to show that all the parameters in the matrix 𝑍 contribute to
the solution. To do this, it suffices to show that the mapping
𝑍 → (𝑋, 𝑌) defined by (5) is injective. This is true since
𝑓
(𝐼,𝐴)

(𝐵) is nonsingular under the condition of {𝑠 | det(𝐼 −
𝑠𝐴) = 0} ∩ 𝜆(𝐵) = 𝜙. The proof is thus completed.
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In [21], we can find the following well-known generalized
Faddeev-Leverrier algorithm:

𝑅
𝑘
= 𝑅
𝑘−1
𝐴 + 𝛼

𝑘
𝐼
𝑛
, 𝑅

0
= 𝐼
𝑛
, 𝑘 = 1, 2, . . . , 𝑛,

𝛼
𝑘
=
trace (𝑅

𝑘−1
𝐴)

𝑘
, 𝛼

0
= 1, 𝑘 = 1, 2, . . . , 𝑛,

(8)

where 𝛼
𝑖
, 𝑖 = 0, 1, 2, . . . , 𝑛 − 1, are the coefficients of

the characteristic polynomial of the matrix 𝐴, and 𝑅
𝑖
, 𝑖 =

0, 1, . . . , 𝑛−1, are the coefficientmatrices of the adjointmatrix
adj(𝑠𝐼

𝑛
− 𝐴).

Theorem 2. Given matrices 𝐴 ∈ 𝑅𝑛×𝑛, 𝐵 ∈ 𝑅𝑝×𝑝, 𝐶 ∈ 𝑅𝑟×𝑝,
let

𝑓
(𝐼,𝐴) (𝑠) = det (𝐼 − 𝑠𝐴) = 𝛼𝑛𝑠

𝑛

+ ⋅ ⋅ ⋅ + 𝛼
1
𝑠 + 𝛼
0
, 𝛼
0
= 1.

(9)

Then the matrices 𝑋 and 𝑌 given by (4) have the following
equivalent form:

𝑋 =
𝑛−1

∑
𝑗=0

𝑗

∑
𝑘=0

𝛼
𝑘
𝐴
𝑗−𝑘
𝐶𝑍𝐵
𝑗
,

𝑌 = 𝑍𝑓
(𝐼,𝐴) (𝐵) .

(10)

Proof. According to (8), the following is easily obtained:

𝑅
0
= 𝐼,

𝑅
1
= 𝛼
1
𝐼 + 𝐴,

𝑅
2
= 𝛼
2
𝐼 + 𝛼
1
𝐴 + 𝐴

2
,

...

𝑅
𝑛−1

= 𝛼
𝑛−1
𝐼 + 𝛼
𝑛−2
𝐴 + ⋅ ⋅ ⋅ + 𝐴

𝑛−1
.

(11)

This relation can be compactly expressed as

𝑅
𝑗
=

𝑗

∑
𝑘=0

𝛼
𝑘
𝐴
𝑗−𝑘
, 𝛼

0
= 1, 𝑗 = 1, 2, . . . , 𝑛 − 1. (12)

Substituting this into the expression of 𝑋 in (10) and record-
ing the sum, we have

𝑋 =
𝑛−1

∑
𝑗=0

𝑅
𝑗
𝐶𝑍𝐵
𝑗
=
𝑛−1

∑
𝑗=0

(

𝑗

∑
𝑘=0

𝛼
𝑘
𝐴
𝑗−𝑘
)𝐶𝑍𝐵

𝑗

=
𝑛−1

∑
𝑗=0

𝑗

∑
𝑘=0

𝛼
𝑘
𝐴
𝑗−𝑘
𝐶𝑍𝐵
𝑗
.

(13)

Combining this withTheorem 1 gives the conclusion.

2.2. Real Representation of a Quaternion Matrix. For any
quaternion matrix 𝐴 = 𝐴

1
+ 𝐴
2
𝑖 + 𝐴

3
𝑗 + 𝐴

4
𝑘 ∈ 𝑄𝑚×𝑛,

𝐴
𝑙
∈ 𝑅𝑚×𝑛 (𝑙 = 1, 2, 3, 4), the real representation matrix of

quaternion matrix 𝐴 can be defined as

𝐴
𝜎
=
[
[
[

[

𝐴
1
𝐴
2
−𝐴
3
𝐴
4

𝐴
2
−𝐴
1
−𝐴
4
−𝐴
3

𝐴
3
−𝐴
4
𝐴
1

𝐴
2

𝐴
4
𝐴
3

𝐴
2
−𝐴
1

]
]
]

]

∈ 𝑅
4𝑚×4𝑛

. (14)

For a 𝑚 × 𝑛 quaternion matrix 𝐴, we define 𝐴𝑡
𝜎
= (𝐴
𝜎
)
𝑡.

In addition, if we let

𝑃
𝑡
=
[
[
[

[

𝐼
𝑡
0 0 0

0 −𝐼
𝑡
0 0

0 0 𝐼
𝑡
0

0 0 0 −𝐼
𝑡

]
]
]

]

, 𝑄
𝑡
=
[
[
[

[

0 −𝐼
𝑡
0 0

𝐼
𝑡
0 0 0

0 0 0 𝐼
𝑡

0 0 −𝐼
𝑡
0

]
]
]

]

,

𝑆
𝑡
=
[
[
[

[

0 0 0 −𝐼
𝑡

0 0 𝐼
𝑡
0

0 −𝐼
𝑡
0 0

𝐼
𝑡
0 0 0

]
]
]

]

, 𝑅
𝑡
=
[
[
[

[

0 0 𝐼
𝑡
0

0 0 0 𝐼
𝑡

−𝐼
𝑡
0 0 0

0 −𝐼
𝑡
0 0

]
]
]

]

,

(15)

in which 𝐼
𝑡
is a 𝑡 × 𝑡 identity matrix, then 𝑃

𝑡
, 𝑄
𝑡
, 𝑆
𝑡
, 𝑅
𝑡
are

unitary matrices.
The real representation has the following properties,

which are given in [13].

Proposition 3. Let 𝐴, 𝐵 ∈ 𝑄𝑚×𝑛, 𝐶 ∈ 𝑄𝑛×𝑠, 𝑎 ∈ 𝑅. Then

(1) (𝐴+𝐵)
𝜎
= 𝐴
𝜎
+𝐵
𝜎
, (𝑎𝐴)

𝜎
= 𝑎𝐴
𝜎
, (𝐴𝐶)

𝜎
= 𝐴
𝜎
𝑃
𝑛
𝐶
𝜎
=

𝐴
𝜎
(𝐶)
𝜎
𝑃
𝑠
;

(2) 𝐴 = 𝐵 ⇔ 𝐴
𝜎
= 𝐵
𝜎
;

(3) 𝑄−1
𝑚
𝐴
𝜎
𝑄
𝑛
= −𝐴

𝜎
, 𝑅−1
𝑚
𝐴
𝜎
𝑅
𝑛
= 𝐴
𝜎
, 𝑆−1
𝑚
𝐴
𝜎
𝑆
𝑛
= −𝐴

𝜎
,

𝑃−1
𝑚
𝐴
𝜎
𝑃
𝑛
= (𝐴)

𝜎
;

(4) the quaternion matrix 𝐴 is nonsingular if and only
if 𝐴
𝜎
is nonsingular, and the quaternion matrix 𝐴 is

an unitary matrix if and only if 𝐴
𝜎
is an orthogonal

matrix;

(5) if 𝐴 ∈ 𝑄𝑚×𝑚, then 𝐴2𝑘
𝜎
= ((𝐴𝐴)

𝑘
)
𝜎
𝑃
𝑚
;

(6) 𝐴 ∈ 𝑄𝑚×𝑚, 𝐵 ∈ 𝑄𝑛×𝑛,𝐶 ∈ 𝑄𝑚×𝑛, and 𝑘+𝑙 is even, then

𝐴
𝑘

𝜎
𝐶
𝜎
𝐵
𝑙

𝜎

=
{

{
{

((𝐴𝐴)
𝑠

(𝐴𝐶𝐵)(𝐵𝐵)
𝑡

)
𝜎

, 𝑘 = 2𝑠 + 1, 𝑙 = 2𝑡 + 1,

((𝐴𝐴)
𝑠

𝐶(𝐵𝐵)
𝑡

)
𝜎

, 𝑘 = 2𝑠, 𝑙 = 2𝑡.
(16)

Proposition 4. If 𝜆 is a characteristic value of 𝐴
𝜎
, then so are

±𝜆, ±𝜆.

For any 𝐴 ∈ 𝑄𝑚×𝑚, let the characteristic polynomial of
the real representation matrix 𝐴

𝜎
be 𝑓
(𝐼,𝐴
𝜎
)
(𝜆) = det(𝐼

4𝑚
−

𝜆𝐴
𝜎
) = ∑

2𝑚

𝑘=0
𝑎
2𝑘
𝜆2𝑘, and define ℎ

𝐴
𝜎

(𝜆) = 𝜆4𝑚𝑓
(𝐼,𝐴
𝜎
)
(𝜆−1) =

∑
2𝑚

𝑘=0
𝑎
2𝑘
𝜆2(2𝑚−𝑘). So by Propositions 3 and 4 we have the

following proposition.
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Proposition 5. Let 𝐴 ∈ 𝑄𝑚×𝑚, 𝐵 ∈ 𝑄𝑛×𝑛. Then

(1) 𝑓
(𝐼,𝐴
𝜎
)
(𝜆) is a real polynomial, and 𝑓

(𝐼,𝐴
𝜎
)
(𝜆) =

∑
2𝑚

𝑘=0
𝑎
2𝑘
𝜆2𝑘;

(2) ℎ
𝐴
𝜎

(𝜆) is a real polynomial, and ℎ
𝐴
𝜎

(𝜆) =

∑
2𝑚

𝑘=0
𝑎
2𝑘
𝜆2(2𝑚−𝑘);

(3) ℎ
𝐴
𝜎

(𝐵
𝜎
) = (𝑔

𝐴
𝜎

(𝐵𝐵))
𝜎
𝑃
𝑛
, 𝑓
(𝐼,𝐴
𝜎
)
(𝐵
𝜎
) = (𝑝

𝐴
𝜎

(𝐵𝐵))
𝜎

𝑃
𝑛
, in which 𝑔

𝐴
𝜎

(𝜆) = ∑
2𝑚

𝑘=0
𝑎
2𝑘
𝜆𝑚−𝑘, 𝑝

𝐴
𝜎

(𝜆) =

∑
2𝑚

𝑘=0
𝑎
2𝑘
𝜆𝑘 are real polynomials.

Proof. By Proposition 4, we easily know that 𝑎
𝑘
is a real

number, and 𝑎
2𝑘+1

= 0. For any 𝑘, by Proposition 3, we have
𝐵2𝑘
𝜎
= ((𝐵𝐵)

𝑘
)
𝜎
𝑃
𝑛
, so we can obtain the result (3).

2.3. On Solutions to the Quaternion 𝑗-Conjugate Matrix
Equation 𝑋−𝐴𝑋𝐵=𝐶𝑌. In this subsection, we discuss the
solution of the following quaternion matrix equation:

𝑋 − 𝐴𝑋𝐵 = 𝐶𝑌, (17)

by means of real representation, where 𝐴 ∈ 𝑄𝑛×𝑛, 𝐵 ∈ 𝑄𝑝×𝑝,
and 𝐶 ∈ 𝑄𝑛×𝑟 are known matrices, 𝑋 ∈ 𝑄𝑛×𝑝 and 𝑌 ∈ 𝑄𝑟×𝑝
are unknown matrices.

We first define the real representation of quaternion
matrix equation (17) by

𝑉 − 𝐴
𝜎
𝑉𝐵
𝜎
= 𝐶
𝜎
𝑃
𝑟
𝑊. (18)

According to (1) in Proposition 3, the quaternion matrix
equation (17) is equivalent to the following equation:

(𝑋 − 𝐴𝑋𝐵)
𝜎
= 𝑋
𝜎
− 𝐴
𝜎
𝑋
𝜎
𝐵
𝜎
. (19)

Therefore, the matrix equation (17) can be converted into

𝑋
𝜎
− 𝐴
𝜎
𝑋
𝜎
𝐵
𝜎
= 𝐶
𝜎
𝑃
𝑟
𝑌
𝜎
. (20)

Thus, we have the following conclusion.

Proposition 6. Given the quaternion matrices 𝐴 ∈ 𝑄𝑛×𝑛,
𝐵 ∈ 𝑄𝑝×𝑝 and 𝐶 ∈ 𝑄𝑛×𝑟, then the quaternion matrix equation
(17) has a solution (𝑋, 𝑌) if and only if the real representation
matrix equation (18) has a solution (𝑉,𝑊) = (𝑋

𝜎
, 𝑌
𝜎
).

Theorem 7. Let 𝐴 ∈ 𝑄𝑛×𝑛, 𝐵 ∈ 𝑄𝑝×𝑝, and 𝐶 ∈ 𝑄𝑛×𝑟. Then
quaternion matrix equation (17) has a solution (𝑋, 𝑌) if and
only if real representation matrix equation (18) has a solution
(𝑉,𝑊). Furthermore, if (𝑉,𝑊) is a solution to (18), then

the following quaternion matrices are solutions to quaternion
matrix equation (17):

𝑋 =
1

16
[𝐼𝑛 𝑖𝐼𝑛 𝑗𝐼𝑛 𝑘𝐼𝑛]

× (𝑉 − 𝑄
−1

𝑛
𝑉𝑄
𝑝
+ 𝑅
−1

𝑛
𝑉𝑅
𝑝
− 𝑆
−1

𝑛
𝑉𝑆
𝑝
)
[
[
[
[

[

𝐼
𝑝

−𝑖𝐼
𝑝

−𝑗𝐼
𝑝

−𝑘𝐼
𝑝

]
]
]
]

]

,

𝑌 =
1

16
[𝐼𝑟 𝑖𝐼𝑟 𝑗𝐼𝑟 𝑘𝐼𝑟]

× (𝑊 − 𝑄
−1

𝑛
𝑊𝑄
𝑝
+ 𝑅
−1

𝑛
𝑊𝑅
𝑝
− 𝑆
−1

𝑛
𝑊𝑆
𝑝
)
[
[
[
[

[

𝐼
𝑝

−𝑖𝐼
𝑝

−𝑗𝐼
𝑝

−𝑘𝐼
𝑝

]
]
]
]

]

.

(21)

Proof. By (3) of Proposition 3, the quaternion matrix equa-
tion (18) is equivalent to

𝑉 − 𝑅
−1

𝑛
𝐴
𝜎
𝑅
𝑛
𝑉𝑅
−1

𝑝
𝐵
𝜎
𝑅
𝑝
= 𝑅
−1

𝑛
𝐶
𝜎
𝑅
𝑟
𝑃
𝑟
𝑊. (22)

Aftermultiplying the two sides of quaternionmatrix equation
(22) by 𝑅−1

𝑝
, we can obtain

𝑉𝑅
−1

𝑝
− 𝑅
−1

𝑛
𝐴
𝜎
𝑅
𝑛
𝑉𝑅
−1

𝑝
𝐵
𝜎
= 𝑅
−1

𝑛
𝐶
𝜎
𝑅
𝑟
𝑃
𝑟
𝑊𝑅
−1

𝑝
. (23)

Before multiplying the two sides of quaternion matrix equa-
tion (23) by 𝑅

𝑛
, we have

𝑅
𝑛
𝑉𝑅
−1

𝑝
− 𝐴
𝜎
𝑅
𝑛
𝑉𝑅
−1

𝑝
𝐵
𝜎
= 𝐶
𝜎
𝑅
𝑟
𝑃
𝑟
𝑊𝑅
−1

𝑝
. (24)

Noting that 𝑅−1
𝑝
= −𝑅
𝑝
, 𝑅
𝑟
𝑃
𝑟
= 𝑃
𝑟
𝑅
𝑟
, we give

𝑅
−1

𝑛
𝑉𝑅
𝑝
− 𝐴
𝜎
𝑅
−1

𝑛
𝑉𝑅
𝑝
𝐵
𝜎
= 𝐶
𝜎
𝑃
𝑟
𝑅
−1

𝑟
𝑊𝑅
𝑝
. (25)

This shows that if (𝑉,𝑊) is a real solution of matrix equa-
tion (18), then (𝑅−1

𝑛
𝑉𝑅
𝑝
, 𝑅−1
𝑟
𝑊𝑅
𝑝
) is also a real solution of

quaternionmatrix equation (18). In addition, according to (3)
of Proposition 3, the quaternion matrix equation (18) is also
equivalent to

𝑉 − 𝑄
𝑛
𝐴
𝜎
𝑄
𝑛
𝑉𝑄
𝑝
𝐵
𝜎
𝑄
𝑝
= 𝑄
𝑛
𝐶
𝜎
𝑄
𝑟
𝑃
𝑟
𝑊. (26)

Aftermultiplying the two sides of quaternionmatrix equation
(26) by 𝑄−1

𝑝
, we have

𝑉𝑄
−1

𝑝
− 𝑄
𝑛
𝐴
𝜎
𝑄
𝑛
𝑉𝑄
𝑝
𝐵
𝜎
= 𝑄
𝑛
𝐶
𝜎
𝑄
𝑟
𝑃
𝑟
𝑊𝑄
−1

𝑝
. (27)

Noting that 𝑄−1
𝑝
= −𝑄

𝑝
, 𝑄
𝑟
𝑃
𝑟
= −𝑃
𝑟
𝑄
𝑟
, before multiplying

the two sides of the quaternion matrix equation (27) by 𝑄−1
𝑛
,

gives

(−𝑄
−1

𝑛
𝑉𝑄
𝑝
) − 𝐴

𝜎
(−𝑄
−1

𝑛
𝑉𝑄
𝑝
) 𝐵
𝜎
= 𝐶
𝜎
𝑃
𝑝
(−𝑄
−1

𝑟
𝑊𝑄
𝑝
) .

(28)
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This is to say that if (𝑉,𝑊) is a real solution of matrix
equation (18), then (−𝑄−1

𝑛
𝑉𝑄
𝑝
, −𝑄−1
𝑟
𝑊𝑄
𝑝
) is also a real

solution of matrix equation (18). Similarly, we can prove
that (−𝑆−1

𝑛
𝑉𝑆
𝑝
, −𝑆−1
𝑟
𝑊𝑆
𝑝
) is also a real solution of quaternion

matrix equation (18). In this case, the conclusion can be
obtained along the line of the proof of Theorem 4.2 in
[13].

Theorem 8. Given the quaternion matrices 𝐴 ∈ 𝑄𝑛×𝑛, 𝐵 ∈
𝑄𝑝×𝑝, and 𝐶 ∈ 𝑄𝑛×𝑟, let

𝑓
(𝐼,𝐴
𝜎
) (𝑠) = det (𝐼

4𝑛
− 𝑠𝐴
𝜎
) =
2𝑛

∑
𝑘=0

𝑎
2𝑘
𝑠
2𝑘
,

𝑝
𝐴
𝜎

(𝑠) =
2𝑛

∑
𝑘=0

𝑎
2𝑘
𝑠
𝑘
.

(29)

Then the matrices 𝑋 ∈ 𝑄𝑛×𝑝, 𝑌 ∈ 𝑄𝑟×𝑝 are given by

𝑋 =
2𝑛−1

∑
𝑘=0

2𝑛−1

∑
𝑠=𝑘

𝛼
2𝑘
(𝐴𝐴)

𝑠−𝑘

𝐶𝑍(𝐵𝐵)
𝑠

+
2𝑛−1

∑
𝑘=0

2𝑛−1

∑
𝑠=𝑘

𝛼
2𝑘
(𝐴𝐴)

𝑠−𝑘

𝐴𝐶𝑍𝐵(𝐵𝐵)
𝑠

,

𝑌 = 𝑍𝑝
𝐴
𝜎

(𝐵𝐵) ,

(30)

in which 𝑍 is an arbitrary quaternion matrix.

Proof. If Yakubovich quaternion 𝑗-conjugatematrix equation
(17) has solution (𝑋, 𝑌), then real representation matrix
equation (18) has solution (𝑉,𝑊) = (𝑋

𝜎
, 𝑌
𝜎
) with the free

parameter 𝑍
𝜎
. By Theorems 2 and 7, we have

𝑋
𝜎
=
2𝑛−1

∑
𝑘=0

𝑘

∑
𝑗=0

𝛼
𝑗
𝐴
𝑗−𝑘

𝜎
𝐶
𝜎
𝑃
𝑟
𝑍
𝜎
𝐵
𝑗

𝜎

=
2𝑛−1

∑
𝑘=0

4𝑛−1

∑
𝑗=2𝑘

𝛼
2𝑘
𝐴
𝑗−2𝑘

𝜎
𝐶
𝜎
𝑃
𝑟
𝑍
𝜎
𝐵
𝑗

𝜎

=
2𝑛−1

∑
𝑘=0

𝛼
2𝑘
[
2𝑛−1

∑
𝑠=𝑘

𝐴
2𝑠−2𝑘

𝜎
𝐶
𝜎
𝑃
𝑟
𝑍
𝜎
𝐵
2𝑠

𝜎

+
2𝑛−1

∑
𝑠=𝑘

𝐴
2𝑠−2𝑘+1

𝜎
𝐶
𝜎
𝑃
𝑟
𝑍
𝜎
𝐵
2𝑠+1

𝜎
]

=
2𝑛−1

∑
𝑘=0

𝛼
2𝑘

× [
2𝑛−1

∑
𝑠=𝑘

((𝐴𝐴)
𝑠−𝑘

)
𝜎

𝑃
𝑛
𝐶
𝜎
𝑃
𝑟
𝑍
𝜎
((𝐵𝐵)

𝑠

)
𝜎
𝑃
𝑝

+
2𝑛−1

∑
𝑠=𝑘

((𝐴𝐴)
𝑠−𝑘

)
𝜎

𝑃
𝑛
𝐴
𝜎
𝐶
𝜎
𝑃
𝑟
𝑍
𝜎
𝐵
𝜎
((𝐵𝐵)

𝑠

)
𝜎
𝑃
𝑝
]

=
2𝑛−1

∑
𝑘=0

𝛼
2𝑘
[
2𝑛−1

∑
𝑠=𝑘

((𝐴𝐴)
𝑠−𝑘

𝐶𝑍(𝐵𝐵)
𝑠

)
𝜎

+
2𝑛−1

∑
𝑠=𝑘

((𝐴𝐴)
𝑠−𝑘

𝐴𝐶𝑍𝐵(𝐵𝐵)
𝑠

)
𝜎

] .

(31)

In addition, by Proposition 5, 𝑓
(𝐼,𝐴
𝜎
)
(𝑠) is a real polyno-

mial and 𝑓
(𝐼,𝐴
𝜎
)
(𝐵
𝜎
) = (𝑝

𝐴
𝜎

(𝐵𝐵))
𝜎
𝑃
𝑝
. So according to

Proposition 3, we obtain

𝑌
𝜎
= 𝑍
𝜎
𝑓
(𝐼,𝐴
𝜎
)
(𝐵
𝜎
) = 𝑍
𝜎
(𝑝
𝐴
𝜎

(𝐵𝐵))
𝜎
𝑃
𝑝
= (𝑍𝑝

𝐴
𝜎

(𝐵𝐵))
𝜎
.

(32)

Thus, the conclusion above has been proved.

In the following, we provide an equivalent statement of
Theorem 8.

Theorem 9. Given quaternion matrices 𝐴 ∈ 𝑄𝑛×𝑛, 𝐵 ∈ 𝑄𝑝×𝑝,
and 𝐶 ∈ 𝑄𝑛×𝑟, let

𝑓
(𝐼,𝐴
𝜎
) (𝑠) = det (𝐼

4𝑛
− 𝑠𝐴
𝜎
) =
2𝑛

∑
𝑘=0

𝑎
2𝑘
𝑠
2𝑘
,

𝑝
𝐴
𝜎

(𝑠) =
2𝑛

∑
𝑘=0

𝑎
2𝑘
𝑠
𝑘
.

(33)

Then the matrices 𝑋 ∈ 𝑄𝑛×𝑝, 𝑌 ∈ 𝑄𝑟×𝑝 given by (30) have the
following equivalent form:

𝑋 = 𝑄
𝑐
(𝐴𝐴, 𝐶, 2𝑛) 𝑆

𝑟
(𝐼, 𝐴
𝜎
) 𝑄
𝑜
(𝐵𝐵, 𝑍, 2𝑛)

+ 𝑄
𝑐
(𝐴𝐴,𝐴𝐶, 2𝑛) 𝑆

𝑟
(𝐼, 𝐴
𝜎
) 𝑄
𝑜
(𝐵𝐵, 𝑍𝐵, 2𝑛) ,

𝑌 = 𝑍𝑝
𝐴
𝜎

(𝐵𝐵) ,

(34)

in which 𝑍 is an arbitrary quaternion matrix.

Proof. By the direct computation, we have
2𝑛−1

∑
𝑘=0

2𝑛−1

∑
𝑠=𝑘

𝛼
2𝑘
(𝐴𝐴)

𝑠−𝑘

𝐶𝑍(𝐵𝐵)
𝑠

= 𝑄
𝑐
(𝐴𝐴, 𝐶, 𝑛) 𝑆

𝑟
(𝐼, 𝐴
𝜎
) 𝑄
𝑜
(𝐵𝐵, 𝑍, 2𝑛) ,

2𝑛−1

∑
𝑘=0

2𝑛−1

∑
𝑠=𝑘

𝛼
2𝑘
(𝐴𝐴)

𝑠−𝑘

𝐴𝐶𝑍𝐵(𝐵𝐵)
𝑠

= 𝑄
𝑐
(𝐴𝐴,𝐴𝐶, 2𝑛) 𝑆

𝑟
(𝐼, 𝐴
𝜎
) 𝑄
𝑜
(𝐵𝐵, 𝑍𝐵, 2𝑛) .

(35)

Thus, the first conclusion has been proved. With this the
second conclusion is obviously true.

Finally, we consider the solution to the so-called Kalman-
Yakubovich 𝑗-conjugate quaternion matrix equation

𝑋 − 𝐴𝑋𝐵 = 𝐶. (36)

Based on the main result proposed above, we have the
following conclusions regarding the matrix equation (36).
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Corollary 10. Given quaternion matrices 𝐴 ∈ 𝑄𝑛×𝑛, 𝐵 ∈
𝑄𝑝×𝑝, and 𝐶 ∈ 𝑄𝑛×𝑝, let

𝑓
(𝐼,𝐴
𝜎
) (𝑠) = det (𝐼

4𝑛
− 𝑠𝐴
𝜎
) =
2𝑛

∑
𝑘=0

𝑎
2𝑘
𝑠
2𝑘
,

𝑝
𝐴
𝜎

(𝑠) =
2𝑛

∑
𝑘=0

𝑎
2𝑘
𝑠
𝑘
.

(37)

If𝑋 is a solution of equation (36), then

𝑋𝑝
𝐴
𝜎

(𝐵𝐵) =
2𝑛−1

∑
𝑘=0

2𝑛−1

∑
𝑗=𝑘

𝛼
2𝑘
(𝐴𝐴)

𝑗−𝑘

𝐶(𝐵𝐵)
𝑗

+
2𝑛−1

∑
𝑘=0

2𝑛−1

∑
𝑗=𝑘

(𝐴𝐴)
𝑗−𝑘

𝐴𝐶𝐵(𝐵𝐵)
𝑗

.

(38)

Proof. If 𝑋 is a solution of equation (36), then 𝑌 = 𝑋
𝜎
is a

solution of the equation𝑋
𝜎
− 𝐴
𝜎
𝑋
𝜎
𝐵
𝜎
= 𝐶
𝜎
. ByTheorem 3

in [22] and Proposition 3, we have

𝑋
𝜎
𝑓
(𝐼,𝐴
𝜎
)
(𝐵
𝜎
) =
2𝑛−1

∑
𝑘=0

4𝑛−1

∑
𝑗=2𝑘

𝛼
2𝑘
𝐴
𝑗−2𝑘

𝜎
𝐶
𝜎
𝐵
𝑗

𝜎
. (39)

By Proposition 5, 𝑓
(𝐼,𝐴
𝜎
)
(𝑠) is a real polynomial and

𝑓
(𝐼,𝐴
𝜎
)
(𝐵
𝜎
) = (𝑝

𝐴
𝜎

(𝐵𝐵))
𝜎
𝑃
𝑝
. So from Proposition 3 and (39),

we have

[𝑋𝑝
𝐴
𝜎

(𝐵𝐵)]
𝜎

= 𝑋
𝜎
[𝑝
𝐴
𝜎

(𝐵𝐵)]
𝜎
𝑃
𝑝

= 𝑋
𝜎
𝑓
(𝐼,𝐴
𝜎
)
(𝐵
𝜎
) =
2𝑛−1

∑
𝑘=0

4𝑛−1

∑
𝑗=2𝑘

𝛼
2𝑘
𝐴
𝑗−2𝑘

𝜎
𝐶
𝜎
𝐵
𝑗

𝜎

=
2𝑛−1

∑
𝑘=0

𝛼
2𝑘
[

[

2𝑛−1

∑
𝑗=𝑘

𝐴
2𝑗−2𝑘

𝜎
𝐶
𝜎
𝐵
2𝑗

𝜎

+
2𝑛−1

∑
𝑗=𝑘

𝐴
2𝑗+1−2𝑘

𝜎
𝐶
𝜎
𝐵
2𝑗+1

𝜎
]

]

=
2𝑛−1

∑
𝑘=0

𝛼
2𝑘
[

[

2𝑛−1

∑
𝑗=𝑘

((𝐴𝐴)
𝑗−𝑘

)
𝜎

𝑃
𝑛
𝐶
𝜎
((𝐵𝐵)

𝑗

)
𝜎

𝑃
𝑝

+
2𝑛−1

∑
𝑗=𝑘

((𝐴𝐴)
𝑗−𝑘

)
𝜎

𝑃
𝑛
𝐴
𝜎
𝐶
𝜎
𝐵
𝜎
((𝐵𝐵)

𝑗

)
𝜎

𝑃
𝑝
]

]

=
2𝑛−1

∑
𝑘=0

𝛼
2𝑘

× [

[

2𝑛−1

∑
𝑗=𝑘

((𝐴𝐴)
𝑗−𝑘

𝐶(𝐵𝐵)
𝑗

)
𝜎

+
2𝑛−1

∑
𝑗=𝑘

((𝐴𝐴)
𝑗−𝑘

𝐴𝐶𝐵(𝐵𝐵)
𝑗

)
𝜎

]

]

=
2𝑛−1

∑
𝑘=0

2𝑛−1

∑
𝑗=𝑘

𝛼
2𝑘
((𝐴𝐴)

𝑗−𝑘

𝐶(𝐵𝐵)
𝑗

)
𝜎

+
2𝑛−1

∑
𝑘=0

2𝑛−1

∑
𝑗=𝑘

((𝐴𝐴)
𝑗−𝑘

𝐴𝐶𝐵(𝐵𝐵)
𝑗

)
𝜎

.

(40)

Thus, the first conclusion has been proved. With this the
second conclusion is obviously true.

In the following, we provide an equivalent statement of
Theorem 7.

Corollary 11. Given quaternionmatrices𝐴 ∈ 𝑄𝑛×𝑛,𝐵 ∈ 𝑄𝑝×𝑝,
and 𝐶 ∈ 𝑄𝑛×𝑝, let

𝑓
(𝐼,𝐴
𝜎
) (𝑠) = det (𝐼

4𝑛
− 𝑠𝐴
𝜎
) =
2𝑛

∑
𝑘=0

𝑎
2𝑘
𝑠
2𝑘
,

𝑝
𝐴
𝜎

(𝑠) =
2𝑛

∑
𝑘=0

𝑎
2𝑘
𝑠
𝑘
.

(41)

If𝑋 is a solution of (36), then

𝑋𝑝
𝐴
𝜎

(𝐵𝐵) = 𝑄
𝑐
(𝐴𝐴, 𝐶, 2𝑛) 𝑆

𝑝
(𝐼, 𝐴
𝜎
) 𝑄
𝑜
(𝐵𝐵, 𝐼

𝑝
, 2𝑛)

+ 𝑄
𝑐
(𝐴𝐴,𝐴, 2𝑛) 𝑆

𝑛
(𝐼, 𝐴
𝜎
) 𝑄
𝑜
(𝐵𝐵, 𝐶𝐵, 2𝑛) .

(42)

3. Complex Conjugate Matrix Equation
𝑋−𝐴𝑋𝐵=𝐶𝑌

In this section, we study the solution to the complex matrix
equation

𝑋 − 𝐴𝑋𝐵 = 𝐶𝑌, (43)

where 𝐴 ∈ 𝐶𝑛×𝑛, 𝐵 ∈ 𝐶𝑝×𝑝, and 𝐶 ∈ 𝐶𝑛×𝑟. Next, we define
real representation of complex matrix as follows.

For any complex matrix 𝐴 = 𝐴
1
+ 𝐴
2
𝑖 ∈ 𝐶𝑚×𝑛, 𝐴

𝑙
∈

𝑅𝑚×𝑛 (𝑙 = 1, 2.), we define a real representation of a complex
matrix as

𝐴
𝜎
= [

𝐴
1
𝐴
2

𝐴
2
−𝐴
1

] ∈ 𝑅
2𝑚×2𝑛

. (44)
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Then the real matrix 𝐴
𝜎
is called real representation of

complex matrix 𝐴.
Let

𝑃
𝑡
= [

𝐼
𝑡
0

0 −𝐼
𝑡

] , 𝑄
𝑡
= [

0 𝐼
𝑡

−𝐼
𝑡
0
] , (45)

in which 𝐼
𝑡
is 𝑡 × 𝑡 identity matrix. Then 𝑃

𝑡
, 𝑄
𝑡
are unitary

matrices. The real presentation has the following properties,
which are given by Jiang and Wei [14].

Proposition 12. Consider the following.

(1) If 𝐴, 𝐵 ∈ 𝐶𝑚×𝑛, 𝑎 ∈ 𝑅, then (𝐴 + 𝐵)
𝜎
= 𝐴
𝜎
+ 𝐵
𝜎
,

(𝑎𝐴)
𝜎
= 𝑎𝐴
𝜎
, 𝑃
𝑚
𝐴
𝜎
𝑃
𝑛
= (𝐴)

𝜎
;

(2) let𝐴 ∈ 𝐶𝑚×𝑛,𝐶 ∈ 𝐶𝑛×𝑠, 𝑎 ∈ 𝑅, then (𝐴𝐶)
𝜎
= 𝐴
𝜎
𝑃
𝑛
𝐶
𝜎
;

(3) if 𝐴 ∈ 𝐶𝑚×𝑚, then complex matrix 𝐴 is nonsingular if
and only if 𝐴

𝜎
is nonsingular;

(4) if 𝐴 ∈ 𝐶𝑚×𝑚, then 𝐴2𝑘
𝜎
= ((𝐴𝐴)

𝑘
)
𝜎
𝑃
𝑚
;

(5) if 𝐴 ∈ 𝐶𝑚×𝑛, then 𝑄
𝑚
𝐴
𝜎
𝑄
𝑛
= 𝐴
𝜎
.

Actually, since complex matrix is a special case of quater-
nion matrix, in this case, we also have the following similar
results. Because the proofs are similar to Section 2 and are
omitted.

Theorem 13. Given complex matrices 𝐴 ∈ 𝐶𝑛×𝑛, 𝐵 ∈ 𝐶𝑝×𝑝,
and 𝐶 ∈ 𝐶𝑛×𝑟. Let

𝑓
(𝐼,𝐴
𝜎
) (𝑠) = det (𝐼

2𝑛
− 𝑠𝐴
𝜎
) =
𝑛

∑
𝑘=0

𝑎
2𝑘
𝑠
2𝑘
,

𝑝
𝐴
𝜎

(𝑠) =
𝑛

∑
𝑘=0

𝑎
2𝑘
𝑠
𝑘
.

(46)

Then the solution to the matrix equation (43) is given by

𝑋 =
𝑛−1

∑
𝑘=0

𝑛−1

∑
𝑠=𝑘

𝛼
2𝑘
(𝐴𝐴)

𝑠−𝑘

𝐶𝑍(𝐵𝐵)
𝑠

+
𝑛−1

∑
𝑘=0

𝑛−1

∑
𝑠=𝑘

𝛼
2𝑘
(𝐴𝐴)

𝑠−𝑘

𝐴𝐶𝑍𝐵(𝐵𝐵)
𝑠

,

𝑌 = 𝑍𝑝
𝐴
𝜎

(𝐵𝐵) .

(47)

In the following, we provide an equivalent statement of
Theorem 13.

Theorem 14. Given complex matrices 𝐴 ∈ 𝐶𝑛×𝑛, 𝐵 ∈ 𝐶𝑝×𝑝,
and 𝐶 ∈ 𝐶𝑛×𝑝, let

𝑓
(𝐼,𝐴
𝜎
) (𝑠) = det (𝑠𝐼

2𝑛
− 𝐴
𝜎
) =
𝑛

∑
𝑘=0

𝑎
2𝑘
𝑠
2𝑘
,

𝑝
𝐴
𝜎

(𝑠) =
𝑛

∑
𝑘=0

𝑎
2𝑘
𝑠
𝑘
.

(48)

Then the matrices 𝑋 and 𝑌 given by (47) have the following
equivalent form:

𝑋 = 𝑄
𝑐
(𝐴𝐴, 𝐶, 𝑛) 𝑆

𝑟
(𝐼, 𝐴
𝜎
) 𝑄
𝑜
(𝐵𝐵, 𝑍, 𝑛)

+ 𝑄
𝑐
(𝐴𝐴,𝐴𝐶, 𝑛) 𝑆

𝑟
(𝐼, 𝐴
𝜎
) 𝑄
𝑜
(𝐵𝐵, 𝑍𝐵, 𝑛) ,

𝑌 = 𝑍𝑝
𝐴
𝜎

(𝐵𝐵) .

(49)

Finally, we consider the solution to the so-called Kalman-
Yakubovich-conjugate matrix

𝑋 − 𝐴𝑋𝐵 = 𝐶. (50)

Based on the main result proposed above, we have the
following conclusions regarding matrix equation (50).

Theorem 15. Given the complexmatrices𝐴 ∈ 𝐶𝑛×𝑛,𝐵 ∈ 𝐶𝑝×𝑝,
and 𝐶 ∈ 𝐶𝑛×𝑝, let

𝑓
(𝐼,𝐴
𝜎
) (𝑠) = det (𝑠𝐼

2𝑛
− 𝐴
𝜎
) =
𝑛

∑
𝑘=0

𝑎
2𝑘
𝑠
2𝑘
,

𝑝
𝐴
𝜎

(𝑠) =
𝑛

∑
𝑘=0

𝑎
2𝑘
𝑠
𝑘
.

(51)

(1) If𝑋 is a solution of (50), then

𝑋𝑝
𝐴
𝜎

(𝐵𝐵) =
𝑛−1

∑
𝑘=0

𝑛−1

∑
𝑗=𝑘

𝛼
2𝑘
(𝐴𝐴)

𝑗−𝑘

𝐶(𝐵𝐵)
𝑗

+
𝑛−1

∑
𝑘=0

𝑛−1

∑
𝑗=𝑘

𝛼
2𝑘
(𝐴𝐴)

𝑗−𝑘

𝐴𝐶𝐵(𝐵𝐵)
𝑗

.

(52)

(2) If𝑋 is the unique solution of (50), then

𝑋 = [

[

𝑛−1

∑
𝑘=0

𝑛−1

∑
𝑗=𝑘

𝛼
2𝑘
(𝐴𝐴)

𝑗−𝑘

𝐶(𝐵𝐵)
𝑗

+
𝑛−1

∑
𝑘=0

𝑛−1

∑
𝑗=𝑘

𝛼
2𝑘
(𝐴𝐴)

𝑗−𝑘

𝐴𝐶𝐵(𝐵𝐵)
𝑗
]

]

× [𝑝
𝐴
𝜎

(𝐵𝐵)]
−1

.

(53)

Theorem16. Given the complexmatrices𝐴 ∈ 𝐶𝑛×𝑛,𝐵 ∈ 𝐶𝑝×𝑝,
and 𝐶 ∈ 𝐶𝑛×𝑝, let

𝑓
(𝐼,𝐴
𝜎
) (𝑠) = det (𝑠𝐼

2𝑛
− 𝐴
𝜎
) =
𝑛

∑
𝑘=0

𝑎
2𝑘
𝑠
2𝑘
,

𝑝
𝐴
𝜎

(𝑠) =
𝑛

∑
𝑘=0

𝑎
2𝑘
𝑠
𝑘
.

(54)

(1) If𝑋 is a solution of (50), then

𝑋𝑝
𝐴
𝜎

(𝐵𝐵) = 𝑄
𝑐
(𝐴𝐴, 𝐶, 𝑛) 𝑆

𝑝
(𝐼, 𝐴
𝜎
) 𝑄
𝑜
(𝐵𝐵, 𝐼

𝑝
, 𝑛)

+ 𝑄
𝑐
(𝐴𝐴,𝐴, 𝑛) 𝑆

𝑛
(𝐼, 𝐴
𝜎
) 𝑄
𝑜
(𝐵𝐵, 𝐶𝐵, 𝑛) .

(55)
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(2) If𝑋 is the unique solution of (50), then

𝑋 = [𝑄
𝑐
(𝐴𝐴, 𝐶, 𝑛) 𝑆

𝑝
(𝐼, 𝐴
𝜎
) 𝑄
𝑜
(𝐵𝐵, 𝐼

𝑝
, 𝑛)

+𝑄
𝑐
(𝐴𝐴,𝐴, 𝑛) 𝑆

𝑛
(𝐼, 𝐴
𝜎
) 𝑄
𝑜
(𝐵𝐵, 𝐶𝐵, 𝑛)]

× [𝑝
𝐴
𝜎

(𝐵𝐵)]
−1

.

(56)

4. Illustrative Example

In this section, we give an example to obtain the solution of
complex conjugate matrix equation𝑋 − 𝐴𝑋𝐵 = 𝐶𝑌.

Example 1. Consider Yakubovich-conjugate matrix equation
in the form of (43) with the following parameters:

𝐴 = [
1 + 𝑖 2𝑖
4 0

] , 𝐵 = [
3 4 + 𝑖
1 −2𝑖

] ,

𝐶 = [
3 2𝑖
2 − 𝑖 4

] .

(57)

According to the definition of real representation of a
complex matrix, we have

𝐴
𝜎
=
[
[
[

[

1 0 1 2
4 0 0 0
1 2 −1 0
0 0 −4 0

]
]
]

]

. (58)

By some simple computations, we have

𝑓
(𝐼,𝐴
𝜎
) (𝜆) = 64𝜆

4
− 2𝜆
2
+ 1,

𝑝
𝐴
𝜎

(𝜆) = 64𝜆
2
− 2𝜆 + 1,

𝑆
2
(𝐴
𝜎
) = [

𝐼
2
2𝐼
2

0 𝐼
2

] , 𝐼
2
= [

1 0
0 1

] ,

𝑄
𝑐
(𝐴𝐴, 𝐶, 2) = [

3 2𝑖 8 + 18𝑖 −8 − 4𝑖
2 − 𝑖 4 4 − 28𝑖 8 − 24𝑖

] ,

𝑄
𝑜
(𝐵𝐵, 𝑍, 2) =

[
[
[

[

1 𝑖
−1 1

11 + 2𝑖 9 + 3𝑖
−10 + 3𝑖 −2 + 6𝑖

]
]
]

]

,

𝑄
𝑐
(𝐴𝐴,𝐴𝐶, 2) = [

1 + 7𝑖 2 + 6𝑖 −30 − 2𝑖 −60 + 12𝑖
12 −8𝑖 32 − 72𝑖 −32 + 16𝑖

] ,

𝑄
𝑜
(𝐵𝐵, 𝑍𝐵, 2) =

[
[
[

[

3 − 𝑖 2 + 𝑖
−2 −4 − 3𝑖

42 − 9𝑖 40 − 15𝑖
−32 − 15𝑖 −49 − 18𝑖

]
]
]

]

.

(59)

Choose

𝑍 = [
1 𝑖
−1 1

] , (60)

then it follows fromTheorem 14 that the solution of (43) is

𝑋 = [
659 + 840𝑖 1649 + 1118𝑖
1350 − 3683𝑖 1611 − 4132𝑖

] ,

𝑌 = [
10603 + 2684𝑖 12078 − 133𝑖
−9261 + 4026𝑖 −6843 + 8052𝑖

] .

(61)

5. Conclusions

In the present paper, by means of the real representation of a
quaternion matrix, we study the quaternion matrix equation
𝑋 − 𝐴𝑋𝐵 = 𝐶𝑌. Compared to our previous results [10],
there are no requirements on the coefficientmatrix𝐴. Explicit
solutions to this quaternion matrix equation are established
by application of the real representation of a quaternion
matrix. As a special case of quaternion 𝑗-conjugate matrix
equation, complex conjugate matrix equation 𝑋 − 𝐴𝑋𝐵 =
𝐶𝑌 is also considered and the explicit solutions to complex
conjugate are proposed. In addition, the equivalent forms of
the explicit solutions are given.
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