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We study existence of solutions for the fractional Laplacian equation (−Δ)𝑠𝑢 + 𝑉(𝑥)𝑢 = |𝑢|
2
∗

(𝑠)−2

𝑢 + 𝑓(𝑥, 𝑢) in R𝑁, 𝑢 ∈ 𝐻
𝑠

(𝑅
𝑁

),
with critical exponent 2∗(𝑠) = 2𝑁/(𝑁 − 2𝑠), 𝑁 > 2𝑠, 𝑠 ∈ (0, 1), where 𝑉(𝑥) ≥ 0 has a potential well and 𝑓 : R𝑁

× R → R is a
lower order perturbation of the critical power |𝑢|2

∗

(𝑠)−2

𝑢. By employing the variational method, we prove the existence of nontrivial
solutions for the equation.

1. Introduction

In the last 20 years, the classical nonlinear Schrödinger
equation has been extensively studied by many authors [1–
10] and the references therein. We just mention some earlier
work about it. Brézis andNirenberg [1] proved that the critical
problem with small linear perturbations can provide positive
solutions. In [3], Rabinowitz proved the existence of standing
wave solutions of nonlinear Schrödinger equations.Making a
standing wave ansatz reduces the problem to that of studying
a class of semilinear elliptic equations. Floer and Weinstein
[10] proved that Schrödinger equation with potential 𝑉 and
cubic nonlinearity has standing wave solutions concentrated
near each nondegenerate critical point of 𝑉.

However, a great attention has been focused on the study
of problems involving the fractional Laplacian recently. This
type of operator seems to have a prevalent role in physical
situations such as combustion and dislocations inmechanical
systems or in crystals. In addition, these operators arise in
modelling diffusion and transport in a highly heterogeneous
medium. This type of problems has been studied by many
authors [11–18] and the references therein.

Servadei and Valdinoci [11–14] studied the problem

𝐿
𝐾
𝑢 + 𝜆𝑢 + |𝑢|

2
∗

(𝑠)−2

𝑢 + 𝑓 (𝑥, 𝑢) = 0 in Ω,

𝑢 = 0 in R
𝑁

\ Ω,

(1)

where 𝑠 ∈ (0, 1), Ω is an open bounded set of R𝑁, 𝑁 > 2𝑠,
with Lipschitz boundary, 𝜆 > 0 is a real parameter, and
2
∗

(𝑠) = 2𝑁/(𝑁−2𝑠) is a fractional critical Sobolev exponent.
𝐿
𝐾
is defined as follows:

𝐿
𝐾
𝑢 (𝑥) =

1

2
∫
R𝑁

(𝑢 (𝑥 + 𝑦)+𝑢 (𝑥 − 𝑦)− 𝑢 (𝑥))𝐾 (𝑦) 𝑑𝑥 𝑑𝑦,

𝑥 ∈ R
𝑁

.

(2)

Here 𝐾 : R𝑁

\ {0} → (0, +∞) is a function such that

𝑚𝐾 ∈ 𝐿
1

(R
𝑁

) , where 𝑚(𝑥) = min {|𝑥|2, 1} ; (3)

there exists 𝜃 > 0 such that 𝐾(𝑥) ≥ 𝜃|𝑥|
−(𝑁+2𝑠) and 𝐾(𝑥) =

𝐾(−𝑥) for any 𝑥 ∈ R𝑁

\ {0}. They proved that problem (1)
admits a nontrivial solution for any 𝜆 > 0. They also studied
the case 𝑓(𝑥, 𝑢) ≡ 0 and𝐾(𝑥) = |𝑥|

−(𝑁+2𝑠), respectively.
Felmer et al. [15] studied the following nonlinear

Schrödinger equation with fractional Laplacian:

(−Δ)
𝛼

𝑢 + 𝑢 = 𝑓 (𝑥, 𝑢) in R
𝑁

,

𝑢 > 0 in R
𝑁

, lim
|𝑥|→∞

𝑢 (𝑥) = 0,

(4)

where 0 < 𝛼 < 1, 𝑁 ≥ 2, and 𝑓 : R𝑁

× R → R is
superlinear and has subcritical growth with respect to 𝑢. The
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fractional Laplacian can be characterized as ϝ((−Δ)𝛼𝜙)(𝜁) =
|𝜁|

2𝛼

ϝ(𝜙)(𝜁), where ϝ is the Fourier transform. They gave the
proof of existence of positive solutions and further analyzed
regularity, decay, and symmetry properties of these solutions.

In this paper, we consider the following problem:

(−Δ)
𝑠

𝑢 + 𝑉 (𝑥) 𝑢 = |𝑢|
2
∗

(𝑠)−2

𝑢 + 𝑓 (𝑥, 𝑢) in R
𝑁

,

𝑢 ∈ 𝐻
𝑠

(R
𝑁

) ,

(5)

with critical exponent 2∗(𝑠) = 2𝑁/(𝑁 − 2𝑠), 𝑁 > 2𝑠, 𝑠 ∈

(0, 1), where𝑉(𝑥) ≥ 0 has a potential well, where (−Δ)𝑠 is the
fractional Laplace operator, which may be defined as

−(−Δ)
𝑠

𝑢 (𝑥) =
1

2
∫
R𝑁

𝑢 (𝑥 + 𝑦) + 𝑢 (𝑥 − 𝑦) − 2𝑢 (𝑥)

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

𝑁+2𝑠
𝑑𝑦,

𝑥 ∈ R
𝑁

.

(6)

𝐻
𝑠

(R𝑁

) is the usual fractional Sobolev space.
𝑓 : R𝑁

× R → R is a lower order perturbation of the
critical power |𝑢|2

∗

(𝑠)−2

𝑢. Nowwe give ourmain assumptions.
In order to find weak solutions of (5), we will assume the
following general hypotheses:

(𝑉0) 𝑉(𝑥) is a continuous nonnegative function onR𝑁 and
satisfying

lim
|𝑥|→∞

𝑉 (𝑥) = +∞; (7)

(𝑓0) 𝑓 : R𝑁

×R → R is a Carathéodory function;

(𝑓1) lim
𝑡→𝑜

(𝑓(𝑥, 𝑡)/𝑡) = 0 uniformly in 𝑥 ∈ R𝑁;

(𝑓2) there exist 𝑎
1
, 𝑎

2
> 0 and 𝑞 ∈ (2, 2

∗

(𝑠)), 2∗(𝑠) =

2𝑁/(𝑁 − 2𝑠), such that

󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝑎

1
+ 𝑎

2
|𝑡|

𝑞−1 a.e. 𝑥 ∈ R
𝑁

, 𝑡 ∈ R; (8)

(𝑓3) sup {|𝑓(𝑥, 𝑡)| : a.e. 𝑥 ∈ R𝑁

, |𝑡| ≤ 𝑀} < +∞ for any
𝑀 > 0;

(𝑓4) there exists 𝜇 > 2 such that, for all 𝑡 > 0 and a.e. 𝑥 ∈

R𝑁,

0 < 𝜇𝐹 (𝑥, 𝑡) ≤ 𝑡𝑓 (𝑥, 𝑡) , (9)

where 𝐹(𝑥, 𝑡) = ∫
𝑡

0

𝑓(𝑥, 𝜏)𝑑𝜏.

The aim of this paper is to find solutions for (5) by
variational methods. For this, we give the weak formulation
of (5) by the following problem:

∫
R2𝑁

(𝑢 (𝑥) − 𝑢 (𝑦)) (𝜑 (𝑥) − 𝜑 (𝑦))

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑁+2𝑠
𝑑𝑥 𝑑𝑦

+ ∫
R𝑁

𝑉 (𝑥) 𝑢 (𝑥) 𝜑 (𝑥) 𝑑𝑥

= ∫
R𝑁

|𝑢 (𝑥)|
2
∗

(𝑠)−2

𝑢 (𝑥) 𝜑 (𝑥) 𝑑𝑥

+ ∫
R𝑁

𝑓 (𝑥, 𝑢 (𝑥)) 𝜑 (𝑥) 𝑑𝑥, ∀𝜑 ∈ 𝐻
𝑠

(R
𝑁

) ,

𝑢 ∈ 𝐻
𝑠

(R
𝑁

) .

(10)

This problem represents the Euler-Lagrange equation of the
function 𝐼 : 𝐻𝑠

(R𝑁

) → R defined as

𝐼 (𝑢) =
1

2
∫
R2𝑁

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)
󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑁+2𝑠
𝑑𝑥𝑑𝑦

+
1

2
∫
R𝑁

𝑉 (𝑥) |𝑢 (𝑥)|
2

𝑑𝑥

−
1

2∗ (𝑠)
∫
R𝑁

|𝑢 (𝑥)|
2
∗

(𝑠)

𝑑𝑥

− ∫
R𝑁

𝐹 (𝑥, 𝑢 (𝑥)) 𝑑𝑥,

(11)

where 𝐹 is defined as in (𝑓4). Critical points of 𝐼 are weak
solutions of (5). We will prove the existence of the critical
points of the functional 𝐼.

It is convenient to define
𝑆
𝑠
:= inf

𝑢∈𝐸\{0}

𝑆
𝑠
(𝑢) , (12)

𝑆
𝑟,𝑠
:= inf

𝑢∈𝐻
𝑠

𝑟
(R𝑁)\{0}

𝑆
𝑟,𝑠
(𝑢) , (13)

where 𝐸 will be defined in Section 2 and for any 𝑢 ∈ 𝐸 \ {0}

𝑆
𝑠
(𝑢)

:=

∫
R2𝑁

(
󵄨󵄨󵄨󵄨𝑢(𝑥)−𝑢(𝑦)

󵄨󵄨󵄨󵄨

2

/
󵄨󵄨󵄨󵄨𝑥−𝑦

󵄨󵄨󵄨󵄨

𝑁+2𝑠

) 𝑑𝑥𝑑𝑦+∫
R𝑁
𝑉(𝑥) |𝑢(𝑥)|

2

𝑑𝑥

(∫
R𝑁

|𝑢 (𝑥)|
2
∗
(𝑠)

𝑑𝑥)
2/2
∗
(𝑠)

(14)

and 𝐻
𝑠

𝑟
(R𝑁

) will be defined in Section 2 and for any 𝑢 ∈

𝐻
𝑠

𝑟
(R𝑁

) \ {0}

𝑆
𝑟,𝑠
(𝑢)

:=

∫
R2𝑁

(
󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)

󵄨󵄨󵄨󵄨

2

/
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

𝑁+2𝑠

) 𝑑𝑥𝑑𝑦+∫
R𝑁

|𝑢 (𝑥)|
2

𝑑𝑥

(∫
R𝑁

|𝑢 (𝑥)|
2
∗
(𝑠)

𝑑𝑥)
2/2
∗
(𝑠)

.

(15)

Now, we give our results as follows.
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Theorem 1. Let 𝑁 > 2𝑠, 𝑠 ∈ (0, 1), 𝑉(𝑥), and 𝑓 satisfy (𝑉0)
and (𝑓0)–(𝑓4), respectively. Then, (5) possesses at least one
nontrivial solution.

WeproveTheorem 1 applying themountain pass theorem
to the functional 𝐼. Although the Palais-Smale sequences
might lose compactness in the whole space R𝑁, we cannot
apply the mountain pass theorem directly. In [15], they used
a comparison argument to over this difficulty. But we will
use allow it to us to over this problem related to the lack
of compactness and to show that the Palais-Smale condition
holds true in a suitable range related to 𝑆

𝑠
.

Theorem 2. Let 𝑁 > 2𝑠, 𝑠 ∈ (0, 1), 𝑉(𝑥) ≡ 1, and 𝑓 satisfy
(𝑓0)–(𝑓4). Then, (5) possesses at least one nontrivial radial
symmetric solution.

For the case 𝑉(𝑥) ≡ 1, the proof of the existence of
solutions is similar to the proof of Theorem 1. To prove
symmetry of solutions, we consider the subspace𝐻𝑠

𝑟
(R𝑁

) of
𝐻

𝑠

(R𝑁

). 𝐻𝑠

𝑟
(R𝑁

) consists of radial symmetric functions of
𝐻

𝑠

(R𝑁

).
This paper is organized as follows. In Section 2, we give

some preliminary results. In Section 3, we prove the geometry
and Palais-Smale condition of the functional 𝐼 and finish
the proof of Theorem 1. In Section 4, we finish the proof of
Theorem 2.

2. Preliminary Results

We consider the fractional Sobolev space

𝐻
𝑠

(R
𝑁

) = {𝑢 ∈ 𝐿
2

(R
𝑁

) | ∫
R2𝑁

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)
󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑁+2𝑠
𝑑𝑥 𝑑𝑦

+∫
R𝑁

|𝑢 (𝑥)|
2

𝑑𝑥 < +∞} ,

(16)

equipped with norm

‖𝑢‖
𝐻
= (∫

R2𝑁

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)
󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑁+2𝑠
𝑑𝑥 𝑑𝑦 + ∫

R𝑁
|𝑢 (𝑥)|

2

𝑑𝑥)

1/2

.

(17)

We denote a subspace of the fractional Sobolev space𝐻𝑠

(R𝑁

)

by𝐸.This subspace𝐸 is defined as the completion of𝐶∞

(R𝑁

)

with respect to the norm

‖𝑢‖
𝐸
=(∫

R2𝑁

󵄨󵄨󵄨󵄨𝑢 (𝑥)−𝑢 (𝑦)
󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑁+2𝑠
𝑑𝑥 𝑑𝑦+∫

R𝑁
𝑉 (𝑥) |𝑢 (𝑥)|

2

𝑑𝑥)

1/2

.

(18)

Obviously, (𝐸, ‖ ⋅ ‖
𝐸
) is a Hilbert space, with scalar prod-

uct

⟨𝑢, 𝜑⟩
𝐸
= ∫

R2𝑁

(𝑢 (𝑥) − 𝑢 (𝑦)) (𝜑 (𝑥) − 𝜑 (𝑦))

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑁+2𝑠
𝑑𝑥𝑑𝑦

+ ∫
R𝑁

𝑉 (𝑥) 𝑢 (𝑥) 𝜑 (𝑥) 𝑑𝑥

(19)

and 𝐸 is continuously embedded in𝐻𝑠

(R𝑁

).
On the other hand, we also consider the subspace𝐻𝑠

𝑟
(R𝑁

)

of𝐻𝑠

(R𝑁

).𝐻𝑠

𝑟
(R𝑁

) consists of radial symmetric functions of
𝐻

𝑠

(R𝑁

) and has the same norm with 𝐻𝑠

(R𝑁

), and its norm
is denoted by ‖𝑢‖

𝐻
𝑠

𝑟

. 𝐻𝑠

𝑟
(R𝑁

) is continuously embedded in
𝐻

𝑠

(R𝑁

).
The following two lemmas about the fractional Sobolev

space𝐻𝑠

(R𝑁

) are proved in [15].

Lemma 3. Let 2 ≤ 𝑞 ≤ 2
∗

(𝑠) = 2𝑁/(𝑁 − 2𝑠); then one has

‖𝑢‖
𝐿
𝑞
(R𝑁) ≤ 𝐶‖𝑢‖

𝐻
∀𝑢 ∈ 𝐻

𝑠

(R
𝑁

) . (20)

Consequently, the embedding 𝐸 󳨅→ 𝐿
2
∗

(𝑠)

(R𝑁

) and
𝐻

𝑠

𝑟
(R𝑁

) 󳨅→ 𝐿
2
∗

(𝑠)

(R𝑁

) are continuous. If further 2 ≤ 𝑞 <

2
∗

(𝑠) and Ω ⊂ R𝑁 is a bounded domain, then the bound
sequence {𝑢

𝑘
} ⊂ 𝐻

𝑠

(R𝑁

) has a convergent subsequence in
𝐿
𝑞

(Ω).

Thanks to Lemma 3, we can define the constants 𝑆
𝑠
and

𝑆
𝑟,𝑠

and get that 𝑆
𝑠
> 0 and 𝑆

𝑟,𝑠
> 0.

Lemma4. Let𝑁 ≥ 2. Assume that {𝑢
𝑘
} is bounded in𝐻𝑠

(R𝑁

)

and it satisfies

lim
𝑘→∞

sup
𝜉∈R𝑁

∫
𝐵
𝐾
(𝜉)

󵄨󵄨󵄨󵄨𝑢𝑘 (𝑥)
󵄨󵄨󵄨󵄨

2

𝑑𝑥 = 0, (21)

where 𝑅 > 0. Then 𝑢
𝑘
→ 0 in 𝐿𝑞(R𝑁

) for 2 < 𝑞 < 2
∗

(𝑠).

Lemma 5. (a) If (𝑉0) holds true, then the embedding 𝐸 󳨅→

𝐿
]
(R𝑁

) is compact for any ] ∈ [2, 2∗(𝑠)).
(b)The embedding𝐻𝑠

𝑟
(R𝑁

) 󳨅→ 𝐿
𝑞

(R𝑁

) is compact for any
𝑞 ∈ (2, 2

∗

(𝑠)).

Proof. (a) We give the proof as in [19].

Case ] = 2. We will show that 𝑢
𝑛
→ 0 strongly in 𝐿

2

(R𝑁

),
whenever 𝑢

𝑛
→ 0weakly in 𝐸. Indeed, let𝐶 > 0 be such that

‖𝑢‖
𝐸
≤ 𝐶. Given 𝜀 > 0, pick 𝑅 > 0 such that 𝑉(𝑥) ≥ 2𝐶

2

/𝜀

for all |𝑥| ≥ 𝑅 and denote by 𝐵
𝑅
the ball of radius 𝑅 in R𝑁.

Then we have that 𝑢
𝑛
→ 0 weakly in 𝐻𝑠

(𝐵
𝑅
). The compact

embedding 𝐻𝑠

(𝐵
𝑅
) 󳨅→ 𝐿

2

(𝐵
𝑅
) implies that for some natural

number 𝑛
0
,

∫
𝐵
𝑅

󵄨󵄨󵄨󵄨𝑢𝑛 (𝑥)
󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤
𝜀

2
, ∀𝑛 > 𝑛

0
. (22)
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On the other hand, by our choice of 𝑅 > 0, we have
2

𝜀
∫
R𝑁\𝐵

𝑅

󵄨󵄨󵄨󵄨𝑢𝑛 (𝑥)
󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤
1

𝐶2
∫
R𝑁\𝐵

𝑅

𝑉 (𝑥)
󵄨󵄨󵄨󵄨𝑢𝑛 (𝑥)

󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤
1

𝐶2

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

2

𝐸
≤ 1.

(23)

Combining (22) and (23), we obtain that ‖𝑢
𝑛
‖
2

𝐿
2
(R𝑁) < 𝜀 for

all 𝑛 > 𝑛
0
.

Case 2 < ] < 2
∗

(𝑠). Using Lemma 3, together with the
interpolation inequality (where 1/] = (𝜎/2)+((1−𝜎)/2

∗

(𝑠))),

‖𝑢‖
𝐿
]
(R𝑁) ≤ ‖𝑢‖

𝜎

𝐿
2
(R𝑁)‖𝑢‖

1−𝜎

𝐿
2
∗
(𝑠)
(R𝑁)

,

∀𝑢 ∈ 𝐿
2

(R
𝑁

) ∩ 𝐿
2
∗

(𝑠)

(R
𝑁

)

(24)

and by the fact that the embedding 𝐸 󳨅→ 𝐿
2

(R𝑁

) is compact,
we can obtain that the embedding 𝐸 󳨅→ 𝐿

]
(R𝑁

) is also
compact.

(b) We give the proof as in Corollary 4.7.2 of [20].
For all 𝑥 ∈ R𝑁, for all 𝑅 > 0, let 𝑚(𝑥, 𝑅) be the largest

number of disjoint balls with radius 𝑅 and the centers lie on
the same sphere with radius |𝑥| centered at 0. It is easily seen
that 𝑚(𝑥, 𝑅) → ∞ as |𝑥| → ∞. By definition, for all 𝑢 ∈

𝐿
2

(R𝑁

) and for all 𝑟 > 0,

∫
𝐵
𝑟
(𝑥)

|𝑢|
2

𝑑𝑥 ≤ 𝑚(𝑥, 𝑟)
− 1

‖𝑢‖
2

𝐿
2
(R𝑁). (25)

If {𝑢
𝑗
} is a bounded sequence in𝐻𝑠

𝑟
(R𝑁

), for all 𝜀 > 0, ∃𝑅 > 0,
we have

sup
𝑥∈R𝑁

{∫
𝐵
𝑟
(𝑥)

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 | |𝑥| ≥ 𝑅} < 𝜀. (26)

We may assume that 𝑢
𝑗

→ 0 weakly in 𝐻
𝑠

𝑟
(R𝑁

); then,
by Lemma 3, after a subsequence ∫

𝐵
𝑅+𝑟

(0)

|𝑢
𝑛
𝑗

|
2

𝑑𝑥 → 0, it
follows that

sup
𝑥∈R𝑁

{∫
𝐵
𝑟
(𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨
𝑢
𝑛
𝑗

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 | |𝑥| ≤ 𝑅} 󳨀→ 0. (27)

By (26), (27), and Lemma 4, we have

𝑢
𝑛
𝑗

󳨀→ 0 in 𝐿𝑞 (R𝑁

) (28)

for 𝑞 ∈ (2, 2∗(𝑠)).

In [11, Lemma 6], Servadei and Valdinoci proved the
following result.

Lemma 6. Assume that 𝑓 satisfies (𝑓0)–(𝑓4). Then, for any
𝜀 > 0, there exists 𝛿 = 𝛿(𝜀) such that a.e. 𝑥 ∈ R𝑁, and for any
𝑡 ∈ R𝑁

󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨 ≤ 2𝜀 |𝑡| + 𝑞𝛿 (𝜀) |𝑡|

𝑞−1

, (29)

and so, as a consequence,

|𝐹 (𝑥, 𝑡)| ≤ 𝜀|𝑡|
2

+ 𝛿 (𝜀) |𝑡|
𝑞

, (30)

where 𝐹 is defined as in (𝑓4) and 𝑞 ∈ (2, 2∗(𝑠)).

In [17, Lemma 4], Servadei and Valdinoci proved the
following result.

Lemma7. Assume that𝑓 satisfies (𝑓0)–(𝑓4).Then, there exist
two positive measurable functions 𝑚 = 𝑚(𝑥) and𝑀 = 𝑀(𝑥)

such that a.e. 𝑥 ∈ R𝑁, and for any 𝑡 ∈ R,

𝐹 (𝑥, 𝑡) ≥ 𝑚 (𝑥) |𝑡|
𝜇

−𝑀(𝑥) , (31)

where 𝐹 is defined as in (𝑓4), 2 < 𝜇 < 2
∗

(𝑠), and 𝑚, 𝑀 ∈

𝐿
∞

(R𝑁

).

3. The Proof of Theorem 1

In this section we study the mountain pass geometry and
Palais-Smale condition in a suitable energy range and finish
the proof of Theorem 1. We consider the functional

𝐼 (𝑢) =
1

2
∫
R2𝑁

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)
󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑁+2𝑠
𝑑𝑥 𝑑𝑦 +

1

2
∫
R𝑁

𝑉 (𝑥) |𝑢 (𝑥)|
2

𝑑𝑥

−
1

2∗ (𝑠)
∫
R𝑁

|𝑢 (𝑥)|
2
∗

(𝑠)

𝑑𝑥 − ∫
R𝑁

𝐹 (𝑥, 𝑢 (𝑥)) 𝑑𝑥,

(32)

where 𝐹 is defined as in (𝑓4).
Then 𝐼 ∈ 𝐶1

(𝐸,R) and critical points of 𝐼 are solutions of

(−Δ)
𝑠

𝑢 + 𝑉 (𝑥) 𝑢 = |𝑢|
2
∗

(𝑠)−2

𝑢 + 𝑓 (𝑥, 𝑢) ,

𝑢 ∈ 𝐻
𝑠

(R
𝑁

) .

(33)

The Fréchet derivative of 𝐼 is

⟨𝐼
󸀠

(𝑢) , 𝜑⟩ = ∫
R2𝑁

(𝑢 (𝑥) − 𝑢 (𝑦)) (𝜑 (𝑥) − 𝜑 (𝑦))

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑁+2𝑠
𝑑𝑥 𝑑𝑦

+ ∫
R𝑁

𝑉 (𝑥) 𝑢 (𝑥) 𝜑 (𝑥) 𝑑𝑥

− ∫
R𝑁

|𝑢 (𝑥)|
2
∗

(𝑠)−2

𝑢 (𝑥) 𝜑 (𝑥) 𝑑𝑥

− ∫
R𝑁

𝑓 (𝑥, 𝑢 (𝑥)) 𝜑 (𝑥) 𝑑𝑥 ∀𝜑 ∈ 𝐸.

(34)

Proposition 8. Let 𝑁 > 2𝑠, 𝑠 ∈ (0, 1), 𝑉(𝑥), and 𝑓 satisfy
(𝑉0) and (𝑓0)–(𝑓4), respectively. Then, there exist 𝜌 > 0 and
𝛽 > 0 such that for any 𝑢 ∈ 𝐸 with ‖𝑢‖

𝐸
= 𝜌 it results that

𝐼(𝑢) ≥ 𝛽.
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Proof. Let 𝑢 be a function in 𝐸. By Lemma 3 and (30), we get
that, for any 𝜀 > 0,

𝐼 (𝑢) ≥
1

2
∫
R2𝑁

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)
󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑁+2𝑠
𝑑𝑥 𝑑𝑦 +

1

2
∫
R𝑁
𝑉 (𝑥) |𝑢 (𝑥)|

2

𝑑𝑥

−
1

2∗ (𝑠)
∫
R𝑁

|𝑢 (𝑥)|
2
∗

(𝑠)

𝑑𝑥 − 𝜀∫
R𝑁

|𝑢 (𝑥)|
2

𝑑𝑥

− 𝛿 (𝜀) ∫
R𝑁

|𝑢 (𝑥)|
𝑞

𝑑𝑥

=
1

2
‖𝑢‖

2

𝐸
− 𝜀‖𝑢‖

2

𝐿
2
(R𝑁) −

1

2∗ (𝑠)
‖𝑢‖

2
∗

(𝑠)

𝐿
2
∗
(𝑠)
(R𝑁)

− 𝛿 (𝜀) ‖𝑢‖
𝑞

𝐿
𝑞
(R𝑁)

≥
1

2
‖𝑢‖

2

𝐸
− 𝜀𝐶

1
‖𝑢‖

2

𝐸
−

1

2∗ (𝑠)
𝐶
2
‖𝑢‖

2
∗

(𝑠)

𝐸
− 𝛿 (𝜀) 𝐶

3
‖𝑢‖

𝑞

𝐸
.

(35)

Choosing 𝜀 > 0 such that (1/2)−𝜀𝐶
1
> 0, by (35), it easily

follows that

𝐼 (𝑢) ≥ 𝐶
4
‖𝑢‖

2

𝐸
(1 − 𝐶

5
‖𝑢‖

2
∗

(𝑠)−2

𝐸
− 𝐶

6
‖𝑢‖

𝑞−2

𝐸
) , (36)

for suitable positive constants 𝐶
4
, 𝐶

5
, and 𝐶

6
.

Now, let 𝑢 ∈ 𝐸 be such that ‖𝑢‖
𝐸
= 𝜌 > 0. Since 2∗(𝑠) >

𝑞 > 2, we can choose 𝜌 sufficiently small, so that

inf
𝑢∈𝐸,‖𝑢‖

𝐸
=𝜌

𝐼 (𝑢) ≥ 𝐶
4
𝜌
2

(1 − 𝐶
5
𝜌
2
∗

(𝑠)−2

− 𝐶
6
𝜌
𝑞−2

) =: 𝛽 > 0.

(37)

Hence, Proposition 8 is proved.

Proposition 9. There exists 𝑢
0
∈ 𝐸 \ {0} with 𝑢

0
≥ 0 a.e. in

R𝑁, such that

sup
𝑡≥0

𝐼 (𝑡𝑢
0
) <

𝑠

𝑁
𝑆
𝑁/2𝑠

𝑠
. (38)

Proof. By definition of 𝑆
𝑠
, we have that there exists 𝑢

0
∈ 𝐸\{0}

such that
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩

2

𝐸

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩

2

𝐿
2
∗
(𝑠)
(R𝑁)

< 𝑆
𝑠
+ 𝜀, (39)

for any 𝜀 > 0. We have 𝑢
0
≥ 0 a.e. in R𝑁 , or else we can take

|𝑢
0
| ∈ 𝐸. Indeed, by triangle inequality, a.e. 𝑥, 𝑦 ∈ R𝑁,

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑢0 (𝑥)
󵄨󵄨󵄨󵄨 −

󵄨󵄨󵄨󵄨𝑢0 (𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝑢0 (𝑥) − 𝑢0 (𝑦)

󵄨󵄨󵄨󵄨 , (40)

and so
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑢0
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩

2

𝐸
≤
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩

2

𝐸
. (41)

Thus,
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑢0
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩

2

𝐸

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩

2

𝐿
2
∗
(𝑠)
(R𝑁)

< 𝑆
𝑠
+ 𝜀. (42)

It follows that there exists 𝑡
0
> 0 such that

max
𝑡≥0

𝐼 (𝑡𝑢
0
)

= max
𝑡≥0

(
𝑡
2

2

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩

2

𝐸
−
𝑡
2
∗

(𝑠)

2∗ (𝑠)

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩

2
∗

(𝑠)

𝐿
2
∗
(𝑠)
(R𝑁)

−∫
R𝑁

𝐹 (𝑥, 𝑡𝑢
0
(𝑥)) 𝑑𝑥)

=
𝑡
2

0

2

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩

2

𝐸
−
𝑡
2
∗

(𝑠)

0

2∗ (𝑠)

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩

2
∗

(𝑠)

𝐿
2
∗
(𝑠)
(R𝑁)

− ∫
R𝑁

𝐹 (𝑥, 𝑡
0
𝑢
0
(𝑥)) 𝑑𝑥

≤ max
𝑡≥0

(
𝑡
2

2

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩

2

𝐸
−
𝑡
2
∗

(𝑠)

2∗ (𝑠)

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩

2
∗

(𝑠)

𝐿
2
∗
(𝑠)
(R𝑁)

)

− ∫
R𝑁

𝐹 (𝑥, 𝑡
0
𝑢
0
(𝑥)) 𝑑𝑥

=
𝑠

𝑁
(

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩

2

𝐸

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩

2

𝐿
2
∗
(𝑠)

(R
𝑁

)

)

𝑁/2𝑠

− ∫
R𝑁

𝐹 (𝑥, 𝑡
0
𝑢
0
(𝑥)) 𝑑𝑥

<
𝑠

𝑁
(𝑆

𝑠
+ 𝜀)

𝑁/2𝑠

− ∫
R𝑁

𝐹 (𝑥, 𝑡
0
𝑢
0
(𝑥)) 𝑑𝑥,

(43)

thanks to (39). Since ∫
R𝑁

𝐹(𝑥, 𝑡
0
𝑢
0
(𝑥))𝑑𝑥 > 0, so we can

choose 𝜀 > 0 such that

sup
𝑡≥0

𝐼 (𝑡𝑢
0
) <

𝑠

𝑁
𝑆
𝑁/2𝑠

𝑠
. (44)

Hence, Proposition 9 is proved.

Proposition 10. Let 𝑁 > 2𝑠, 𝑠 ∈ (0, 1), 𝑉(𝑥), and 𝑓 satisfy
(𝑉0) and (𝑓0)–(𝑓4), respectively. Then, there exists 𝑒 ∈ 𝐸 such
that 𝑒 ≥ 0 a.e. in R𝑁, ‖𝑒‖

𝐸
> 𝜌, and 𝐼(𝑒) < 𝛽, where 𝜌 and 𝛽

are given in Proposition 8.

In particular, we can construct 𝑒 as follows:
𝑒 = 𝑡

0
𝑢
0

(45)

with 𝑢
0
as in (38) and 𝑡

0
> 0 large enough.

Proof. We fix 𝑢 ∈ 𝐸 such that ‖𝑢‖
𝐸

̸= 0. By (31), we get

𝐼 (𝑡𝑢) ≤
1

2
𝑡
2

∫
R2𝑁

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)
󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑁+2𝑠
𝑑𝑥 𝑑𝑦

+
1

2
𝑡
2

∫
R𝑁

𝑉 (𝑥) |𝑢 (𝑥)|
2

𝑑𝑥

−
1

2∗ (𝑠)
𝑡
2
∗

(𝑠)

∫
R𝑁

|𝑢 (𝑥)|
2
∗

(𝑠)

𝑑𝑥

− 𝑡
𝜇

∫
R𝑁

𝑚(𝑥) |𝑢 (𝑥)|
𝜇

−𝑀(𝑥) 𝑑𝑥

=
1

2
𝑡
2

‖𝑢‖
2

𝐸
−

1

2∗ (𝑠)
𝑡
2
∗

(𝑠)

‖𝑢‖
2
∗

(𝑠)

𝐿
2
∗
(𝑠)
(R𝑁)

− 𝑡
𝜇

𝐶
1
‖𝑢‖

𝜇

𝐿
𝜇
(R𝑁)

+ 𝐶
2
,

(46)

where 𝐶
1
, 𝐶

2
≥ 0 are constant. Since 2∗(𝑠) > 2 and 𝜇 > 2,

passing to the limit as 𝑡 → +∞, we get that 𝐼(𝑡𝑢) → −∞,
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so that the assertion follows taking 𝑒 = 𝑡𝑢, with 𝑡 sufficiently
large.

In particular, we can take 𝑢 = 𝑢
0
∈ 𝐸, then 𝑒 = 𝑡

0
𝑢
0
with

𝑡
0
large enough.

We easily see that 𝐼(0) = 0 < 𝛽, with 𝛽 given in
Proposition 8. Now, set

𝑐 = inf
𝑇∈Γ

sup
𝑢∈𝑇([0,1])

𝐼 (𝑢) , (47)

where

Γ = {𝑇 ∈ 𝐶 ([0, 1] ; 𝐸) : 𝑇 (0) = 0, 𝑇 (1) = 𝑒} , (48)

with 𝑒 = 𝑡
0
𝑢
0
in Proposition 9.

In [11, the proof of Theorem 1], Servadei and Valdinoci
proved the following result.

Proposition 11. The constant 𝑐 is given in (47) such that

𝛽 ≤ 𝑐 <
𝑠

𝑁
𝑆
𝑁/2𝑠

𝑠
, (49)

where 𝛽 is given in Proposition 8 and 𝑆
𝑠
is defined in formula

(12).

By [6,Theorem 2.2], we have a sequence 𝑢
𝑗
in 𝐸 such that

𝐼 (𝑢
𝑗
) 󳨀→ 𝑐, (50)

sup {󵄨󵄨󵄨󵄨󵄨⟨𝐼
󸀠

(𝑢
𝑗
) , 𝜑⟩

󵄨󵄨󵄨󵄨󵄨
: 𝜑 ∈ 𝐸,

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐸

= 1} 󳨀→ 0 (51)

as 𝑗 → +∞.

Proposition 12. There exists 𝑢
∞

∈ 𝐸 such that, up to a
subsequence, ‖𝑢

𝑗
− 𝑢

∞
‖
𝐸

→ 0 as 𝑗 → +∞.

Proof. We proceed by steps.

Step 1.The sequence 𝑢
𝑗
is bounded in 𝐸.

Proof. For any 𝑗 ∈ N by (50) and (51) it easily follows that
there exists 𝐶

1
> 0 such that

󵄨󵄨󵄨󵄨󵄨
𝐼 (𝑢

𝑗
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐶

1
,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨𝐼
󸀠

(𝑢
𝑗
) ,

𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩𝐸

⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
1
.

(52)

As a consequence of (52), we have

𝐼 (𝑢
𝑗
) −

1

𝜇
⟨𝐼

󸀠

(𝑢
𝑗
) , 𝑢

𝑗
⟩ ≤ 𝐶

1
(1 +

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩𝐸
) . (53)

By (𝑓2) and (𝑓4), we have 𝜇 < 2
∗

(𝑠) and

𝐼 (𝑢
𝑗
) −

1

𝜇
⟨𝐼

󸀠

(𝑢
𝑗
) , 𝑢

𝑗
⟩

= (
1

2
−
1

𝜇
)(∫

R2𝑁

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑥) − 𝑢

𝑗
(𝑦)

󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑁+2𝑠
𝑑𝑥 𝑑𝑦

+∫
R𝑁

𝑉 (𝑥)
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥)

+ (
1

𝜇
−

1

2∗ (𝑠)
)∫

R𝑁

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2
∗

(𝑠)

𝑑𝑥

− ∫
R𝑁

𝐹 (𝑥, 𝑢
𝑗
(𝑥)) 𝑑𝑥

+
1

𝜇
∫
R𝑁

𝑓 (𝑥, 𝑢
𝑗
(𝑥)) 𝑢

𝑗
(𝑥) 𝑑𝑥

≥ (
1

2
−
1

𝜇
)
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩

2

𝐸

+ (
1

𝜇
−

1

2∗ (𝑠)
)
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩

2
∗

(𝑠)

𝐿
2
∗
(𝑠)
(R𝑁)

.

(54)

We obtain that 𝑢
𝑗
is bounded in 𝐸 by 2 < 𝜇 < 2

∗

(𝑠), (53), and
(54).

Step 2. Problem (10) admits a solution 𝑢
∞
∈ 𝐸.

Proof. By Step 1 and since 𝐸 is a reflexive space, up to a
subsequence, still denoted by 𝑢

𝑗
, there exists 𝑢

∞
∈ 𝐸 such

that 𝑢
𝑗
→ 𝑢

∞
weakly in 𝐸; that is,

∫
R2𝑁

(𝑢
𝑗
(𝑥) − 𝑢

𝑗
(𝑦)) (𝜑 (𝑥) − 𝜑 (𝑦))

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑁+2𝑠
𝑑𝑥 𝑑𝑦

+ ∫
R𝑁

𝑉 (𝑥) 𝑢
𝑗
(𝑥) 𝜑 (𝑥) 𝑑𝑥

󳨀→ ∫
R2𝑁

(𝑢
∞
(𝑥) − 𝑢

∞
(𝑦)) (𝜑 (𝑥) − 𝜑 (𝑦))

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑁+2𝑠
𝑑𝑥 𝑑𝑦

+ ∫
R𝑁

𝑉 (𝑥) 𝑢
∞
(𝑥) 𝜑 (𝑥) 𝑑𝑥

(55)

as 𝑗 → +∞. By 2 < 𝜇 < 2
∗

(𝑠), (53), and (54), we have that 𝑢
𝑗

is bounded in 𝐿2
∗

(𝑠)

(R𝑁

). Since 𝐿2
∗

(𝑠)

(R𝑁

) is a reflexive space,
up to a subsequence,

𝑢
𝑗
󳨀→ 𝑢

∞
weakly in 𝐿

2
∗

(𝑠)

(R
𝑁

) (56)

as 𝑗 → +∞, while by Lemma 5(a), up to a subsequence,

𝑢
𝑗
󳨀→ 𝑢

∞
in 𝐿

]
(R

𝑁

) , (57)

𝑢
𝑗
󳨀→ 𝑢

∞
a.e. in R

𝑁 (58)

as 𝑗 → +∞, for any ] ∈ [2, 2
∗

(𝑠)). By (56) and since
|𝑢

𝑗
|
2
∗

(𝑠)−2

𝑢
𝑗
is bounded in 𝐿2

∗

(𝑠)/(2
∗

(𝑠)−1)

(R𝑁

), we have

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗

󵄨󵄨󵄨󵄨󵄨

2
∗

(𝑠)−2

𝑢
𝑗
󳨀→

󵄨󵄨󵄨󵄨𝑢∞
󵄨󵄨󵄨󵄨

2
∗

(𝑠)−2

𝑢
∞

weakly in 𝐿
2
∗

(𝑠)/(2
∗

(𝑠)−1)

(R
𝑁

)

(59)

as 𝑗 → +∞. By the proof of Lemma 6 [11, Lemma 6], we get

∫
R𝑁

𝑓 (𝑥, 𝑢 (𝑥)) 𝑑𝑥

≤ 2𝜀∫
𝐵
𝜎

|𝑢 (𝑥)| 𝑑𝑥 + 𝑞𝛿 (𝜀) ∫
R𝑁\𝐵

𝜎

|𝑢 (𝑥)|
𝑞−1

𝑑𝑥.

(60)
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Moreover, we have, by taking 𝜀 = 1,

∫
R𝑁

𝑓 (𝑥, 𝑢 (𝑥)) 𝑑𝑥 ≤ 𝐶
1
+ 𝐶

2
∫
R𝑁\𝐵

𝜎

|𝑢 (𝑥)|
𝑞−1

𝑑𝑥. (61)

By (61), 𝑢
𝑗
being bounded in 𝐸, and Lemma 5(a), we obtain

𝑓 (⋅, 𝑢
𝑗
(⋅)) is bounded in 𝐿

𝑞/(𝑞−1)

(R
𝑁

) . (62)

Since 𝐿𝑞/(𝑞−1)(R𝑁

) is a reflexive space, we get

𝑓(⋅, 𝑢
𝑗
(⋅))󳨀→𝑓(⋅, 𝑢

∞
(⋅)) weakly in 𝐿

𝑞/(𝑞−1)

(R
𝑁

)

(63)

as 𝑗 → +∞. It is easily seen that

∫
R𝑁

𝑓 (𝑥, 𝑢
𝑗
(𝑥)) 𝜑 (𝑥) 𝑑𝑥 󳨀→ ∫

R𝑁
𝑓 (𝑥, 𝑢

∞
(𝑥)) 𝜑 (𝑥) 𝑑𝑥

∀𝜑 ∈ 𝐿
𝑞

(R
𝑁

)

(64)

as 𝑗 → +∞ and so, in particular,

∫
R𝑁

𝑓 (𝑥, 𝑢
𝑗
(𝑥)) 𝜑 (𝑥) 𝑑𝑥 󳨀→ ∫

R𝑁
𝑓 (𝑥, 𝑢

∞
(𝑥)) 𝜑 (𝑥) 𝑑𝑥

∀𝜑 ∈ 𝐸

(65)

as 𝑗 → +∞. Since (51) holds true, for any 𝜑 ∈ 𝐸,

0 ←󳨀 ⟨𝐼
󸀠

(𝑢
𝑗
) , 𝜑⟩

= ∫
R2𝑁

(𝑢
𝑗
(𝑥) − 𝑢

𝑗
(𝑦)) (𝜑 (𝑥) − 𝜑 (𝑦))

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑁+2𝑠
𝑑𝑥 𝑑𝑦

+ ∫
R𝑁

𝑉 (𝑥) 𝑢
𝑗
(𝑥) 𝜑 (𝑥) 𝑑𝑥

− ∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2
∗

(𝑠)−2

𝑢
𝑗
(𝑥) 𝜑 (𝑥) 𝑑𝑥

− ∫
R𝑁

𝑓 (𝑥, 𝑢
𝑗
(𝑥)) 𝜑 (𝑥) 𝑑𝑥.

(66)

Passing to the limit in this expression as 𝑗 → +∞ and
taking into account (55), (57), (59), and (65), we get

∫
R2𝑁

(𝑢
∞
(𝑥) − 𝑢

∞
(𝑦)) (𝜑 (𝑥) − 𝜑 (𝑦))

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑁+2𝑠
𝑑𝑥 𝑑𝑦

+ ∫
R𝑁

𝑉 (𝑥) 𝑢
∞
(𝑥) 𝜑 (𝑥) 𝑑𝑥

− ∫
R𝑁

󵄨󵄨󵄨󵄨𝑢∞ (𝑥)
󵄨󵄨󵄨󵄨

2
∗

(𝑠)−2

𝑢
∞
(𝑥) 𝜑 (𝑥) 𝑑𝑥

− ∫
R𝑁

𝑓 (𝑥, 𝑢
∞
(𝑥)) 𝜑 (𝑥) 𝑑𝑥 = 0

(67)

for any 𝜑 ∈ 𝐸; that is, 𝑢
∞

is a solution of problem (10).

Step 3.The following equality holds true:

𝐼 (𝑢
∞
) =

𝑠

𝑁
∫
R𝑁

󵄨󵄨󵄨󵄨𝑢∞ (𝑥)
󵄨󵄨󵄨󵄨

2
∗

(𝑠)

𝑑𝑥

+
1

2
∫
R𝑁

𝑓 (𝑥, 𝑢
∞
(𝑥)) 𝑢

∞
(𝑥) 𝑑𝑥

− ∫
R𝑁

𝐹 (𝑥, 𝑢
∞
(𝑥)) 𝑑𝑥 ≥ 0.

(68)

Proof. By Step 2, taking 𝜑 = 𝑢
∞
∈ 𝐸 as a test function in (10),

we have

∫
R2𝑁

󵄨󵄨󵄨󵄨𝑢∞ (𝑥) − 𝑢
∞
(𝑦)

󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑁+2𝑠
𝑑𝑥 𝑑𝑦 + ∫

R𝑁
𝑉 (𝑥)

󵄨󵄨󵄨󵄨𝑢∞ (𝑥)
󵄨󵄨󵄨󵄨

2

𝑑𝑥

= ∫
R𝑁

󵄨󵄨󵄨󵄨𝑢∞ (𝑥)
󵄨󵄨󵄨󵄨

2
∗

(𝑠)

𝑑𝑥 + ∫
R𝑁

𝑓 (𝑥, 𝑢
∞
(𝑥)) 𝑢

∞
(𝑥) 𝑑𝑥

(69)

so that

𝐼 (𝑢
∞
) =

𝑠

𝑁
∫
R𝑁

󵄨󵄨󵄨󵄨𝑢∞ (𝑥)
󵄨󵄨󵄨󵄨

2
∗

(𝑠)

𝑑𝑥

+
1

2
∫
R𝑁

𝑓 (𝑥, 𝑢
∞
(𝑥)) 𝑢

∞
(𝑥) 𝑑𝑥

− ∫
R𝑁

𝐹 (𝑥, 𝑢
∞
(𝑥)) 𝑑𝑥 ≥ 0.

(70)

The last inequality follows from assumption (𝑓4).
Now, we conclude the proof of Proposition 12.
We write V

𝑗
:= 𝑢

𝑗
− 𝑢

∞
; then, V

𝑗
→ 0 weakly in 𝐸.

Moreover, since (58) holds true, by the Brézis-Lieb Lemma,
we get

∫
R2𝑁

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑥) − 𝑢

𝑗
(𝑦)

󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑁+2𝑠
𝑑𝑥 𝑑𝑦

+ ∫
R𝑁

𝑉 (𝑥)
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

= ∫
R2𝑁

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥) − V

𝑗
(𝑦)

󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑁+2𝑠
𝑑𝑥 𝑑𝑦

+ ∫
R𝑁

𝑉 (𝑥)
󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

+ ∫
R2𝑁

󵄨󵄨󵄨󵄨𝑢∞ (𝑥) − 𝑢
∞
(𝑦)

󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑁+2𝑠
𝑑𝑥 𝑑𝑦

+ ∫
R𝑁

𝑉 (𝑥)
󵄨󵄨󵄨󵄨𝑢∞ (𝑥)

󵄨󵄨󵄨󵄨

2

𝑑𝑥 + ∘ (1) ,

∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2
∗

(𝑠)

𝑑𝑥 = ∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2
∗

(𝑠)

𝑑𝑥

+ ∫
R𝑁

󵄨󵄨󵄨󵄨𝑢∞ (𝑥)
󵄨󵄨󵄨󵄨

2
∗

(𝑠)

𝑑𝑥 + ∘ (1) .

(71)
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Then,

𝑐 ←󳨀 𝐼 (𝑢
𝑗
) =

1

2
∫
R2𝑁

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑥) − 𝑢

𝑗
(𝑦)

󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑁+2𝑠
𝑑𝑥 𝑑𝑦

+
1

2
∫
R𝑁

𝑉 (𝑥)
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

−
1

2∗ (𝑠)
∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2
∗

(𝑠)

𝑑𝑥

− ∫
R𝑁

𝐹 (𝑥, 𝑢
𝑗
(𝑥)) 𝑑𝑥

=
1

2
∫
R2𝑁

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥) − V

𝑗
(𝑦)

󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑁+2𝑠
𝑑𝑥 𝑑𝑦

+
1

2
∫
R𝑁

𝑉 (𝑥)
󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

+
1

2
∫
R2𝑁

󵄨󵄨󵄨󵄨𝑢∞ (𝑥) − 𝑢
∞
(𝑦)

󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑁+2𝑠
𝑑𝑥 𝑑𝑦

+
1

2
∫
R𝑁

𝑉 (𝑥)
󵄨󵄨󵄨󵄨𝑢∞ (𝑥)

󵄨󵄨󵄨󵄨

2

𝑑𝑥

−
1

2∗ (𝑠)
∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2
∗

(𝑠)

𝑑𝑥

−
1

2∗ (𝑠)
∫
R𝑁

󵄨󵄨󵄨󵄨𝑢∞ (𝑥)
󵄨󵄨󵄨󵄨

2
∗

(𝑠)

𝑑𝑥

− ∫
R𝑁

𝐹 (𝑥, 𝑢
∞
(𝑥)) 𝑑𝑥 + ∘ (1)

= 𝐼 (𝑢
∞
) +

1

2
∫
R2𝑁

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥) − V

𝑗
(𝑦)

󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑁+2𝑠
𝑑𝑥 𝑑𝑦

+
1

2
∫
R𝑁

𝑉 (𝑥)
󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

−
1

2∗ (𝑠)
∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2
∗

(𝑠)

𝑑𝑥 + ∘ (1) ,

(72)

⟨𝐼
󸀠

(𝑢
𝑗
) , 𝑢

𝑗
⟩ = ∫

R2𝑁

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑥) − 𝑢

𝑗
(𝑦)

󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑁+2𝑠
𝑑𝑥𝑑𝑦

+ ∫
R𝑁

𝑉 (𝑥)
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

− ∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2
∗

(𝑠)

𝑑𝑥

− ∫
R𝑁

𝑓 (𝑥, 𝑢
𝑗
(𝑥)) 𝑢

𝑗
(𝑥) 𝑑𝑥

= ∫
R2𝑁

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥) − V

𝑗
(𝑦)

󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑁+2𝑠
𝑑𝑥 𝑑𝑦

+ ∫
R𝑁

𝑉 (𝑥)
󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

+ ∫
R2𝑁

󵄨󵄨󵄨󵄨𝑢∞ (𝑥) − 𝑢
∞
(𝑦)

󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑁+2𝑠
𝑑𝑥 𝑑𝑦

+ ∫
R𝑁

𝑉 (𝑥)
󵄨󵄨󵄨󵄨𝑢∞ (𝑥)

󵄨󵄨󵄨󵄨

2

𝑑𝑥 − ∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2
∗

(𝑠)

𝑑𝑥

− ∫
R𝑁

󵄨󵄨󵄨󵄨𝑢∞ (𝑥)
󵄨󵄨󵄨󵄨

2
∗

(𝑠)

𝑑𝑥

− ∫
R𝑁

𝑓 (𝑥, 𝑢
∞
(𝑥)) 𝑢

∞
(𝑥) 𝑑𝑥 + ∘ (1)

= ⟨𝐼
󸀠

(𝑢
∞
) , 𝑢

∞
⟩+∫

R2𝑁

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥) − V

𝑗
(𝑦)

󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑁+2𝑠
𝑑𝑥 𝑑𝑦

+ ∫
R𝑁

𝑉 (𝑥)
󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

− ∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2
∗

(𝑠)

𝑑𝑥 + ∘ (1) .

(73)

By ⟨𝐼󸀠(𝑢
∞
), 𝑢

∞
⟩ = 0 and ⟨𝐼󸀠(𝑢

𝑗
), 𝑢

𝑗
⟩ → 0, we get

∫
R2𝑁

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥) − V

𝑗
(𝑦)

󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑁+2𝑠
𝑑𝑥 𝑑𝑦 + ∫

R𝑁
𝑉 (𝑥)

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 󳨀→ 𝑏,

∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2
∗

(𝑠)

𝑑𝑥 󳨀→ 𝑏.

(74)

By the definition of 𝑆
𝑠
, we have

󵄩󵄩󵄩󵄩󵄩
V
𝑗

󵄩󵄩󵄩󵄩󵄩

2

𝐸

≥ 𝑆
𝑠

󵄩󵄩󵄩󵄩󵄩
V
𝑗

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
∗
(𝑠)
(R𝑁)

(75)

and so 𝑏 ≥ 𝑆
𝑠
𝑏
2/2
∗

(𝑠). Either 𝑏 = 0 or 𝑏 ≥ 𝑆
𝑁/2𝑠

𝑠
. If 𝑏 = 0, the

proof is complete. Assuming that 𝑏 ≥ 𝑆
𝑁/2𝑠

𝑠
, we obtain, from

(49), (68), and (72),

𝑠

𝑁
𝑆
𝑁/2𝑠

𝑠
≤ (

1

2
−

1

2∗ (𝑠)
) 𝑏 ≤ 𝑐 <

𝑠

𝑁
𝑆
𝑁/2𝑠

𝑠
(76)

which is a contradiction. Thus 𝑏 = 0 and

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗
− 𝑢

∞

󵄩󵄩󵄩󵄩󵄩𝐸
󳨀→ 0 (77)

as 𝑗 → +∞. This ends the proof of Proposition 12.

We have finished the proof of Theorem 1 by Propositions
8, 10, and 12 and the mountain pass theorem.

4. The Proof of Theorem 2

In this section we consider the case 𝑉(𝑥) ≡ 1, study the
mountain pass geometry and Palais-Smale condition in a
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suitable energy range, and finish the proof of Theorem 2. We
consider the functional

𝐼
1
(𝑢) =

1

2
∫
R2𝑁

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)
󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑁+2𝑠
𝑑𝑥 𝑑𝑦 +

1

2
∫
R𝑁

|𝑢 (𝑥)|
2

𝑑𝑥

−
1

2∗ (𝑠)
∫
R𝑁

|𝑢 (𝑥)|
2
∗

(𝑠)

𝑑𝑥 − ∫
R𝑁

𝐹 (𝑥, 𝑢 (𝑥)) 𝑑𝑥,

(78)

where 𝐹 is defined as in (𝑓4). Then 𝐼
1
∈ 𝐶

1

(𝐸,R) and critical
points of 𝐼

1
are solutions of

(−Δ)
𝑠

𝑢 + 𝑢 = |𝑢|
2
∗

(𝑠)−2

𝑢 + 𝑓 (𝑥, 𝑢) , 𝑢 ∈ 𝐻
𝑠

(R
𝑁

) .

(79)

The Fréchet derivative of 𝐼
1
is

⟨𝐼
󸀠

1
(𝑢) , 𝜑⟩ = ∫

R2𝑁

(𝑢 (𝑥) − 𝑢 (𝑦)) (𝜑 (𝑥) − 𝜑 (𝑦))

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑁+2𝑠
𝑑𝑥 𝑑𝑦

+ ∫
R𝑁

𝑢 (𝑥) 𝜑 (𝑥) 𝑑𝑥

− ∫
R𝑁

|𝑢 (𝑥)|
2
∗

(𝑠)−2

𝑢 (𝑥) 𝜑 (𝑥) 𝑑𝑥

− ∫
R𝑁

𝑓 (𝑥, 𝑢 (𝑥)) 𝜑 (𝑥) 𝑑𝑥

(80)

for any 𝜑 ∈ 𝐻
𝑠

𝑟
(R𝑁

).
Similar to the proof of Theorem 1, we have the following

conclusions.

Proposition 13. Let 𝑁 > 2𝑠, 𝑠 ∈ (0, 1), and 𝑓 satisfy (𝑓0)–
(𝑓4). Then, there exist 𝜌 > 0 and 𝛽 > 0 such that for any
𝑢 ∈ 𝐻

𝑠

𝑟
(R𝑁

) with ‖𝑢‖
𝐻
𝑠

𝑟

= 𝜌 it results that 𝐼
1
(𝑢) ≥ 𝛽.

Proposition 14. There exists 𝑢
0
∈ 𝐻

𝑠

𝑟
(R𝑁

) \ {0} with 𝑢
0
≥ 0

a.e. in R𝑁, such that

sup
𝑡≥0

𝐼
1
(𝑡𝑢

0
) <

𝑠

𝑁
𝑆
𝑁/2𝑠

𝑟,𝑠
. (81)

Proposition 15. Let 𝑁 > 2𝑠, 𝑠 ∈ (0, 1), and 𝑓 satisfy (𝑓0)–
(𝑓4). Then, there exists 𝑒 ∈ 𝐻

𝑠

𝑟
(R𝑁

) such that 𝑒 ≥ 0 a.e. in
R𝑁, ‖𝑒‖

𝐻
𝑠

𝑟

> 𝜌, and 𝐼
1
(𝑒) < 𝛽, where 𝜌 and 𝛽 are given in

Proposition 13.

In particular, we can construct 𝑒 as follows:

𝑒 = 𝑡
0
𝑢
0

(82)

with 𝑢
0
as in (81) and 𝑡

0
> 0 large enough.

We easily see that 𝐼
1
(0) = 0 < 𝛽, with 𝛽 given in

Proposition 13. Now, set

𝑐 = inf
𝑇∈Γ

sup
𝑢∈𝑇([0,1])

𝐼
1
(𝑢) , (83)

where

Γ = {𝑇 ∈ 𝐶 ([0, 1] ;𝐻
𝑠

𝑟
(R

𝑁

)) : 𝑇 (0) = 0, 𝑇 (1) = 𝑒} ,

(84)

with 𝑒 = 𝑡
0
𝑢
0
in Proposition 13.

Proposition 16. The constant 𝑐 is given in (83) such that

𝛽 ≤ 𝑐 <
𝑠

𝑁
𝑆
𝑁/2𝑠

𝑟,𝑠
, (85)

where 𝛽 is given in Proposition 13 and 𝑆
𝑟,𝑠
is defined in formula

(13).

By [6, Theorem 2.2], we have a sequence 𝑢
𝑗
in 𝐻

𝑠

𝑟
(R𝑁

)

such that

𝐼
1
(𝑢

𝑗
) 󳨀→ 𝑐,

sup {󵄨󵄨󵄨󵄨󵄨⟨𝐼
󸀠

1
(𝑢

𝑗
) , 𝜑⟩

󵄨󵄨󵄨󵄨󵄨
: 𝜑 ∈ 𝐻

𝑠

𝑟
(R

𝑁

) ,
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐻𝑠
𝑟

= 1} 󳨀→ 0

(86)

as 𝑗 → +∞.

Proposition 17. There exists 𝑢
∞
∈ 𝐻

𝑠

𝑟
(R𝑁

) such that, up to a
subsequence, ‖𝑢

𝑗
− 𝑢

∞
‖
𝐻
𝑠

𝑟

→ 0 as 𝑗 → +∞.

We have finished the proof of Theorem 2 by Propositions
13, 15, and 17 and the mountain pass theorem.
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