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We firstly prove that 𝛽-times integrated 𝛼-resolvent operator function ((𝛼, 𝛽)-ROF) satisfies a functional equation which extends
that of 𝛽-times integrated semigroup and 𝛼-resolvent operator function. Secondly, for the inhomogeneous 𝛼-Cauchy problem
𝑐𝐷𝛼
𝑡
𝑢(𝑡) = 𝐴𝑢(𝑡) + 𝑓(𝑡), 𝑡 ∈ (0, 𝑇), 𝑢(0) = 𝑥

0
, 𝑢(0) = 𝑥

1
, if 𝐴 is the generator of an (𝛼, 𝛽)-ROF, we give the relation between the

function V(𝑡) = 𝑆
𝛼,𝛽

(𝑡)𝑥
0
+(𝑔
1
∗𝑆
𝛼,𝛽

)(𝑡)𝑥
1
+(𝑔
𝛼−1

∗𝑆
𝛼,𝛽

∗𝑓)(𝑡) andmild solution and classical solution of it. Finally, for the problem
𝑐𝐷𝛼
𝑡
V(𝑡) = 𝐴V(𝑡) + 𝑔

𝛽+1
(𝑡)𝑥, 𝑡 > 0, V(𝑘)(0) = 0, 𝑘 = 0, 1, . . ., 𝑁 − 1, where 𝐴 is a linear closed operator. We show that 𝐴 generates an

exponentially bounded (𝛼, 𝛽)-ROF on a Banach space 𝑋 if and only if the problem has a unique exponentially bounded classical
solution V

𝑥
and 𝐴V

𝑥
∈ 𝐿1loc(R

+, 𝑋). Our results extend and generalize some related results in the literature.

1. Introduction

This paper is concerned with the properties of 𝛽-integrated
𝛼-resolvent operator function ((𝛼, 𝛽)-ROF) and two inhomo-
geneous fractional Cauchy problems.

Throughout this paper, R+ = [0,∞), N denotes the set
of natural numbers. N

0
= N∪ {0}. Let𝑋,𝑌 be Banach spaces,

𝐵(𝑋, 𝑌) denote the space of all bounded linear operators from
𝑋 to 𝑌, 𝐵(𝑋) = 𝐵(𝑋,𝑋). If 𝐴 is a closed linear operator,
𝜌(𝐴) denotes the resolvent set of 𝐴 and 𝑅(𝜆, 𝐴) = (𝜆𝐼 − 𝐴)−1

denotes the resolvent operator of 𝐴. 𝐿1(R+, 𝑋) denotes the
space of 𝑋-valued Bochner integrable functions: 𝑢 : R+ →

𝑋 with the norm ‖𝑢‖
𝐿
1
(R+ ,𝑋) = ∫

∞

0

‖𝑢(𝑡)‖𝑑𝑡, it is a Banach
space. By ∗ we denote the convolution of functions

(𝑓 ∗ 𝑔) (𝑡) = ∫
𝑡

0

𝑓 (𝑡 − 𝜏) 𝑔 (𝜏) 𝑑𝜏, 𝑡 ≥ 0. (1)

𝑔
𝛼
denotes the function

𝑔
𝛼
(𝑡) =

{
{
{

𝑡𝛼−1

Γ (𝛼)
, 𝑡 > 0,

0, 𝑡 ≤ 0,

(2)

and 𝑔
0
(𝑡) = 𝛿

0
(𝑡), the Dirac delta function.

In 1997, Mijatović et al. [1] introduced the concept of 𝛽-
times integrated semigroup (𝛽 ∈ R+) which extends 𝑘-times
integrated semigroup (𝑘 ∈ N

0
) [2], they showed an 𝑅(𝜆)

to be the pseudoresolvent of a 𝛽-times (𝛽 > 0) integrated
semigroup {𝑆(𝑡)} if and only if {𝑆(𝑡)} satisfies the following
functional equation:

∫
𝑡+𝑠

𝑡

(𝑠 + 𝑡 − 𝑟)
𝛽−1𝑆 (𝑟) 𝑑𝑟 − ∫

𝑠

0

(𝑠 + 𝑡 − 𝑟)
𝛽−1𝑆 (𝑟) 𝑑𝑟

= Γ (𝛽) 𝑆 (𝑡) 𝑆 (𝑠) , 𝑡, 𝑠 ≥ 0.

(3)

In the special case of 𝛽 = 𝑘 ∈ N, the corresponding result is
summarized in [2].

For the inhomogeneous Cauchy problem

𝑢 (𝑡) = 𝐴𝑢 (𝑡) + 𝑓 (𝑡) , 𝑡 ∈ [0, 𝑇] , 𝑢 (0) = 𝑥, (4)

where 𝑇 > 0, 𝑓 ∈ 𝐿1([0, 𝑇], 𝑋), 𝑥 ∈ 𝑋, and 𝐴 is
the generator of a 𝑘-times integrated semigroup {𝑆(𝑡)} on
a Banach space 𝑋 for some 𝑘 ∈ N

0
. Let V(𝑡) = 𝑆(𝑡)𝑥 +

∫
𝑡

0

𝑆(𝑡 − 𝑠)𝑓(𝑠)𝑑𝑠, 𝑡 ∈ [0, 𝑇]. Lemmas 3.2.9 and 3.2.10 of [2]
show that if there is a mild(classical) solution 𝑢 of (4), then
V ∈ 𝐶𝑘([0, 𝑇], 𝑋) (𝐶𝑘+1([0, 𝑇], 𝑋)) and 𝑢 = V(𝑘). On the other
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hand, if V ∈ 𝐶𝑘([0, 𝑇], 𝑋) (𝐶𝑘+1([0, 𝑇], 𝑋)), then V(𝑘) is also a
mild (classical) solution of it.

Furthermore, if 𝐴 generates an exponential bounded 𝑘-
times integrated semigroup on a Banach space 𝑋, then, for
any 𝑥 ∈ 𝑋, V(𝑡) = ∫

𝑡

0

𝑆(𝑠)𝑥 𝑑𝑠 is the unique exponential
bounded classical solution of the following problem:

𝑢 (𝑡) = 𝐴𝑢 (𝑡) + 𝑔
𝑘+1

(𝑡) 𝑥, 𝑡 ≥ 0, 𝑢 (0) = 0. (5)

In recent years, a considerable interest has been paid
to fractional evolution equation due to its applications in
different areas such as stochastic, finance, and physics; see
[3–8]. One of the most important tools in the theory of frac-
tional evolution equation is the solution operator (fractional
resolvent family) [9–15]. The notion of solution operator was
developed to study some abstract Volterra integral equations
[16] and was first used by Bajlekova [17] to study a class of
fractional order abstract Cauchy problem. In [9], Chen and Li
introduced 𝛼-resolvent operator functions (𝛼-ROF for short)
defined by purely algebraic equation. They showed that a
family {𝑆

𝛼
(𝑡)}
𝑡≥0

⊂ 𝐵(𝑋) is an 𝛼-ROF if and only if {𝑆
𝛼
(𝑡)}
𝑡≥0

is a solution of abstract fractional Cauchy problem

𝑐

𝐷
𝛼

𝑡
V (𝑡) = 𝐴V (𝑡) + 𝑔

𝛽+1
(𝑡) 𝑥, 𝑡 > 0,

V (0) = 𝑥, V(𝑘) (0) = 0, 𝑘 = 1, . . . , 𝑁 − 1.
(6)

When 0 < 𝛼 < 1, Peng and Li [18] proved that the solution
operator {𝑆

𝛼
(𝑡)}
𝑡≥0

for (6) satisfies the following equality:

∫
𝑡+𝑠

𝑡

𝑆
𝛼
(𝜏)

(𝑡 + 𝑠 − 𝜏)𝛼
𝑑𝜏 − ∫

𝑠

0

𝑆
𝛼
(𝜏)

(𝑡 + 𝑠 − 𝜏)𝛼
𝑑𝜏

= 𝛼∫
𝑡

0

∫
𝑠

0

𝑆
𝛼
(𝜏
1
) 𝑆
𝛼
(𝜏
2
)

(𝑡 + 𝑠 − 𝜏
1
− 𝜏
2
)
1+𝛼

𝑑𝜏
1
𝑑𝜏
2
, 𝑡, 𝑠 ≥ 0.

(7)

We refer to [5, 15, 16, 19] for further information concerning
general resolvent operator functions. In addition, Chen and
Li [9] also introduced the concept of integrated fractional
resolvent operator function in an algebraic notion as follows.

Definition 1 (see [9, Definition 3.7]). Let 𝛼 > 0, 𝛽 ≥ 0. A
function 𝑆

𝛼,𝛽
: R+ → 𝐵(𝑋) is called a 𝛽-times integrated

𝛼-resolvent operator function or an (𝛼, 𝛽)-resolvent operator
function ((𝛼, 𝛽)-ROF for short) if the following conditions
hold:

(a) 𝑆
𝛼,𝛽

(⋅) is strongly continuous on R+ and 𝑆
𝛼,𝛽

(0) =
𝑔
𝛽+1

(0)𝐼;
(b) 𝑆
𝛼,𝛽

(𝑠)𝑆
𝛼,𝛽

(𝑡) = 𝑆
𝛼,𝛽

(𝑡)𝑆
𝛼,𝛽

(𝑠) for all 𝑠, 𝑡 ≥ 0;
(c) the functional equation

𝑆
𝛼,𝛽

(𝑠) 𝐽
𝛼

𝑡
𝑆
𝛼,𝛽

(𝑡) − 𝐽𝛼
𝑠
𝑆
𝛼,𝛽

(𝑠) 𝑆
𝛼,𝛽

(𝑡)

= 𝑔
𝛽+1

(𝑠) 𝐽
𝛼

𝑡
𝑆
𝛼,𝛽

(𝑡) − 𝑔
𝛽+1

(𝑡) 𝐽
𝛼

𝑠
𝑆
𝛼,𝛽

(𝑠)
(8)

holds for 𝑠, 𝑡 ≥ 0, where 𝐽𝛼
𝑡
is the Riemann-Liouville

fractional integral of order 𝛼.

The generator 𝐴 of 𝑆
𝛼,𝛽

(𝑡) is defined by

𝐷 (𝐴) := {𝑥 ∈ 𝑋 : lim
𝑡→0
+

𝑆
𝛼,𝛽

(𝑡) 𝑥 − 𝑔
𝛽+1

(𝑡) 𝑥

𝑔
𝛼+𝛽+1

(𝑡)
exists} ,

𝐴𝑥 := lim
𝑡→0
+

𝑆
𝛼,𝛽

(𝑡) 𝑥 − 𝑔
𝛽+1

(𝑡) 𝑥

𝑔
𝛼+𝛽+1

(𝑡)
, 𝑥 ∈ 𝐷 (𝐴) .

(9)

Note that an (𝛼, 0)-ROF is just an 𝛼-ROF.
In this paper, we firstly show that (𝛼, 𝛽)-ROF satisfies

an equality which extends (3) and (7) for 𝛽-integrated
semigroup and 𝛼-ROF, respectively. Then, we consider the
inhomogeneous fractional order abstract Cauchy problem

𝑐

𝐷
𝛼

𝑡
𝑢 (𝑡) = 𝐴𝑢 (𝑡) + 𝑓 (𝑡) , 𝑡 ∈ (0, 𝑇) ,

𝑢 (0) = 𝑥
0
, 𝑢 (0) = 𝑥

1
,

(10)

where 1 < 𝛼 < 2, 𝑇 > 0, 𝑓 ∈ 𝐿1((0, 𝑇), 𝑋), and 𝐴 is assumed
to be the generator of an (𝛼, 𝛽)-ROF 𝑆

𝛼,𝛽
(𝑡) on 𝑋. We give

the relation between the function V(𝑡) = 𝑆
𝛼,𝛽

(𝑡)𝑥
0
+ (𝑔
1
∗

𝑆
𝛼,𝛽

) (𝑡)𝑥
1
+ (𝑔
𝛼−1

∗ 𝑆
𝛼,𝛽

∗𝑓) (𝑡) and solution of (10). We also
study the problem

𝑐

𝐷
𝛼

𝑡
V (𝑡) = 𝐴V (𝑡) + 𝑔

𝛽+1
(𝑡) 𝑥, 𝑡 > 0,

V(𝑘) (0) = 0, 𝑘 = 0, 1, . . . , 𝑁 − 1,
(11)

where 𝛼 > 0, 𝑥 ∈ 𝑋, 𝑁 is the smallest integer greater than
or equal to 𝛼. We prove that if 𝐴 generates an exponentially
bounded (𝛼, 𝛽)-ROF on 𝑋 if and only if the problem (11)
has a unique exponentially bounded classical solution V

𝑥
and

𝐴V
𝑥

∈ 𝐿1Loc(R
+, 𝑋). If 𝛼 → 1+, 𝛽 = 𝑘 ∈ N, our Theorem 13

reduces to Lemma 3.2.10 in [2]. When 𝛼 = 1,𝛽 = 𝑘, it is easy
to see that our Theorem 15 extends and generalizes Theorem
3.2.13 in [2].

This paper is organized as follows. In Section 2, we pro-
vide some preliminaries of the fractional calculus and (𝛼, 𝛽)-
ROF. Section 3 is devoted to present an equality characteristic
of the (𝛼, 𝛽)-ROF. Finally, as an application of (𝛼, 𝛽)-ROF, we
discuss the solutions of fractional abstract Cauchy problem
in Section 4.

2. Preliminary

Recall that the Riemann-Liouville fractional integral of order
𝛼 > 0 of 𝑓 is defined by

𝐽𝛼
𝑡
𝑓 (𝑡) = (𝑔

𝛼
∗ 𝑓) (𝑡) = ∫

𝑡

0

𝑔
𝛼
(𝑡 − 𝑠) 𝑓 (𝑠) 𝑑𝑠, (12)

and the Caputo fractional derivative of order 𝛼 > 0 of 𝑓 can
be written as

𝑐

𝐷
𝛼

𝑡
𝑓 (𝑡) =

𝑑𝑚

𝑑𝑡𝑚
(𝑔
𝑚−𝛼

∗ (𝑓 (𝑡) −
𝑚−1

∑
𝑘=0

𝑓(𝑘) (0) 𝑔
𝑘+1

(𝑡))) ,

(13)

where𝑚 is the smallest integer greater than or equal to 𝛼. For
more details in fractional calculus, we refer to [5, 20, 21].
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The Mittag-Leffler function is defined by

𝐸
𝛼,𝛽

(𝑧) =
∞

∑
𝑛=0

𝑧𝑛

Γ (𝛼𝑛 + 𝛽)
, 𝐸

𝛼
(𝑧) = 𝐸

𝛼,1
(𝑧) ,

Re 𝛼 > 0, 𝛽, 𝑧 ∈ C.

(14)

And if 0 < 𝛼 < 2, 𝛽 > 0, then

𝐸
𝛼,𝛽

(𝑧) =
1

𝛼
𝑧(1−𝛽)/𝛼 exp (𝑧1/𝛼) + 𝜀

𝛼,𝛽
(𝑧) ,

arg 𝑧
 ≤

1

2
𝛼𝜋, 𝐸

𝛼,𝛽
(𝑧) = 𝜀

𝛼,𝛽
(𝑧) ,

arg (−𝑧)
 < (1 −

1

2
𝛼)𝜋,

(15)

where

𝜀
𝛼,𝛽

(𝑧) = −
𝑁−1

∑
𝑛=1

𝑧−𝑛

Γ (𝛽 − 𝛼𝑛)
+ 𝑂 (|𝑧|

−𝑁) as 𝑧 → ∞,

(16)

and the𝑂-term is uniform in arg 𝑧 if | arg(−𝑧)| ≤ (1− (𝛼/2)−
𝜖)𝜋.

We now recall some properties of (𝛼, 𝛽)-ROF.

Lemma 2 (see [9, Proposition 3.10]). Let 𝑆
𝛼,𝛽

: R+ → 𝐵(𝑋)
be an (𝛼, 𝛽)-ROF generated by𝐴.The following assertions hold:

(a) 𝑆
𝛼,𝛽

(𝑡)𝐷(𝐴) ⊂ 𝐷(𝐴) and 𝐴𝑆
𝛼,𝛽

(𝑡)𝑥 = 𝑆
𝛼,𝛽

(𝑡)𝐴𝑥 for
𝑥 ∈ 𝐷(𝐴) and 𝑡 ≥ 0;

(b) for all 𝑥 ∈ 𝑋, 𝐽𝛼
𝑡
𝑆
𝛼,𝛽

(𝑡)𝑥 ∈ 𝐷(𝐴) and 𝑆
𝛼,𝛽

(𝑡)𝑥 =

𝑔
𝛽+1

(𝑡)𝑥 + 𝐴𝐽𝛼
𝑡
𝑆
𝛼,𝛽

(𝑡)𝑥, 𝑡 ≥ 0;
(c) 𝑥 ∈ 𝐷(𝐴) and 𝐴𝑥 = 𝑦 if and only if 𝑆

𝛼,𝛽
(𝑡)𝑥 =

𝑔
𝛽+1

(𝑡)𝑥 + 𝐽𝛼
𝑡
𝑆
𝛼,𝛽

(𝑡)𝑦, 𝑡 ≥ 0;
(d) 𝐴 is closed.

Lemma 3 (see [9, Proposition 3.5, Theorem 3.11]). Let 𝛼 > 0,
𝛽 ≥ 0. 𝐴 generates an (𝛼, 𝛽)-ROF 𝑆

𝛼,𝛽
satisfying ‖𝑆

𝛼,𝛽
(𝑡)‖ ≤

𝑀𝑒𝜔𝑡, 𝑡 ≥ 0, for some constants 𝑀 > 0 and 𝜔 ≥ 0, if and
only if (𝜔𝛼,∞) ⊂ 𝜌(𝐴) and there exists a strongly continuous
function 𝑆 : R+ → 𝐵(𝑋) such that ‖𝑆(𝑡)‖ ≤ 𝑀𝑒𝜔𝑡 for all 𝑡 ≥ 0

and ∫
∞

0

𝑒−𝜆𝑡𝑆(𝑡)𝑥 𝑑𝑡 = 𝜆𝛼−𝛽−1𝑅(𝜆𝛼, 𝐴)𝑥, 𝜆 > 𝜔, for all 𝑥 ∈ 𝑋.
Furthermore, 𝑆(𝑡) is 𝑆

𝛼,𝛽
(𝑡).

Lemma 4 (see [2, Proposition B.6]). Let 𝑈 ⊂ C. If function
𝑅 : 𝑈 → 𝐵(𝑋) satisfies 𝑅(𝜆) − 𝑅(𝜇) = (𝜇 − 𝜆)𝑅(𝜆)𝑅(𝜇), then
there is an operator𝐴 on𝑋 such that 𝑅(𝜆) = (𝜆𝐼 −𝐴)−1 for all
𝜆 ∈ 𝑈 if and only if ker𝑅(𝜆) = {0}.

3. An Novel Equality Characteristic
for (𝛼, 𝛽)-ROF

The following theorem shows that an (𝛼, 𝛽)-ROF satisfies a
functional equation and the treatment bases on the technique
of Laplace transform. For convenience, we drop the subscript
𝛼, 𝛽 from {𝑆

𝛼,𝛽
}
𝑡≥0

in this theorem.

Theorem 5. Let 𝛼 ∈ R+ \ N
0
, 𝛽 ∈ R+ satisfy 𝛽 − 𝛼 > −1.

If {𝑆(𝑡)}
𝑡≥0

is an (𝛼, 𝛽)-ROF, then it satisfies the following
equality:

∫
𝑡+𝑠

𝑡

(𝑠 + 𝑡 − 𝑟)
𝛽−𝛼𝑆 (𝑟) 𝑑𝑟 − ∫

𝑠

0

(𝑠 + 𝑡 − 𝑟)
𝛽−𝛼𝑆 (𝑟) 𝑑𝑟

=
𝛼Γ (𝛽 − 𝛼 + 1)

Γ (1 − 𝛼)
∫
𝑠

0

∫
𝑡

0

𝑆 (𝑟
1
) 𝑆 (𝑟
2
)

(𝑡 + 𝑠 − 𝑟
1
− 𝑟
2
)
1+𝛼

𝑑𝑟
1
𝑑𝑟
2
.

(17)

Proof. Denote by 𝐿(𝑡, 𝑠) and 𝑅(𝑡, 𝑠) the left and right sides of
equality (17), respectively, and denote by 𝑓

𝑎
(𝑡) the truncation

of 𝑓(𝑡) at 𝑎, that is, 𝑓
𝑎
(𝑡) = 𝑓(𝑡) for 0 ≤ 𝑡 ≤ 𝑎 and 𝑓

𝑎
(𝑡) = 0

otherwise.
We will show that the Laplace transform of 𝐿

𝑎
(𝑡, 𝑠) and

𝑅
𝑎
(𝑡, 𝑠) with respect to 𝑡 and 𝑠 is equivalent, and by the

uniqueness of Laplace transform, we can get that 𝐿
𝑎
(𝑡, 𝑠) =

𝑅
𝑎
(𝑡, 𝑠).
Taking Laplace transform of 𝐿

𝑎
(𝑡, 𝑠) with respect to 𝑠 as

follows

�̂�
𝑎
(𝑡, 𝜆) = ∫

∞

0

𝑒−𝜆𝑠 [∫
𝑡+𝑠

𝑡

(𝑠 + 𝑡 − 𝑟)
𝛽−𝛼𝑆
𝑎
(𝑟) 𝑑𝑟

−∫
𝑠

0

(𝑠 + 𝑡 − 𝑟)
𝛽−𝛼𝑆
𝑎
(𝑟) 𝑑𝑟] 𝑑𝑠

= ∫
∞

𝑡

𝑆
𝑎
(𝑟) ∫
∞

𝑟−𝑡

𝑒−𝜆𝑠(𝑠 + 𝑡 − 𝑟)
𝛽−𝛼𝑑𝑠 𝑑𝑟

− ∫
∞

0

𝑆
𝑎
(𝑟) ∫
∞

𝑟

𝑒−𝜆𝑠(𝑠 + 𝑡 − 𝑟)
𝛽−𝛼𝑑𝑠 𝑑𝑟

= ∫
∞

𝑡

𝑆
𝑎
(𝑟) 𝑒
−𝜆(𝑟−𝑡) ∫

∞

0

𝑒−𝜆𝜏𝜏𝛽−𝛼𝑑𝜏 𝑑𝑟

− ∫
∞

0

𝑆
𝑎
(𝑟) 𝑒
−𝜆(𝑟−𝑡) ∫

∞

𝑡

𝑒−𝜆𝜏𝜏𝛽−𝛼𝑑𝜏 𝑑𝑟

=
Γ (𝛽 − 𝛼 + 1)

𝜆(𝛽−𝛼+1)
∫
∞

𝑡

𝑆
𝑎
(𝑟) 𝑒
−𝜆(𝑟−𝑡)𝑑𝑟

− 𝑒𝜆𝑡𝑆
𝑎
(𝜆) ∫
∞

𝑡

𝑒−𝜆𝜏𝜏𝛽−𝛼𝑑𝜏,

(18)

then taking Laplace transform with respect to 𝑡, we have

�̂�
𝑎
(𝜇, 𝜆) = ∫

∞

0

𝑒−𝜇𝑡 [
Γ (𝛽 − 𝛼 + 1)

𝜆(𝛽−𝛼+1)
∫
∞

𝑡

𝑆
𝑎
(𝑟) 𝑒
−𝜆(𝑟−𝑡)𝑑𝑟

− 𝑒𝜆𝑡𝑆
𝑎
(𝜆) ∫
∞

𝑡

𝑒−𝜆𝜏𝜏𝛽−𝛼𝑑𝜏] 𝑑𝑡

=
Γ (𝛽 − 𝛼 + 1)

𝜆(𝛽−𝛼+1)
∫
∞

0

𝑒−𝜇𝑡 ∫
∞

𝑡

𝑆
𝑎
(𝑟) 𝑒
−𝜆(𝑟−𝑡)𝑑𝑟 𝑑𝑡

− 𝑆
𝑎
(𝜆) ∫
∞

0

𝑒(𝜆−𝜇)𝑡 ∫
∞

𝑡

𝑒−𝜆𝜏𝜏𝛽−𝛼𝑑𝜏 𝑑𝑡
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=
Γ (𝛽 − 𝛼 + 1)

𝜆(𝛽−𝛼+1)
∫
∞

0

𝑒−𝜆𝑟𝑆
𝑎
(𝑟) ∫
𝑟

0

𝑒(𝜆−𝜇)𝑡𝑑𝑡 𝑑𝑟

− ∫
∞

0

𝑒−𝜆𝜏𝜏𝛽−𝛼 ∫
𝜏

0

𝑒(𝜆−𝜇)𝑡𝑑𝑡 𝑑𝜏 𝑆
𝑎
(𝜆)

=
Γ (𝛽 − 𝛼 + 1)

(𝜆 − 𝜇) 𝜆(𝛽−𝛼+1)

× (∫
∞

0

𝑒−𝜇𝑟𝑆
𝑎
(𝑟) 𝑑𝑟 − ∫

∞

0

𝑒−𝜆𝑟𝑆
𝑎
(𝑟) 𝑑𝑟)

−
1

𝜆 − 𝜇

× (∫
∞

0

𝑒−𝜇𝜏𝜏𝛽−𝛼𝑑𝜏 − ∫
∞

0

𝑒−𝜆𝜏𝜏𝛽−𝛼𝑑𝜏) 𝑆
𝑎
(𝜆)

=
Γ (𝛽 − 𝛼 + 1)

(𝜆 − 𝜇) 𝜆(𝛽−𝛼+1)
(𝑆
𝑎
(𝜇) − 𝑆

𝑎
(𝜆))

−
1

𝜆 − 𝜇
(

Γ (𝛽 − 𝛼 + 1)

𝜇(𝛽−𝛼+1)
−

Γ (𝛽 − 𝛼 + 1)

𝜆(𝛽−𝛼+1)
)𝑆
𝑎
(𝜆)

=
Γ (𝛽 − 𝛼 + 1)

𝜆 − 𝜇
(𝜆(𝛼−𝛽−1)𝑆

𝑎
(𝜇) − 𝜇(𝛼−𝛽−1)𝑆

𝑎
(𝜆))

=
Γ (𝛽 − 𝛼 + 1)

(𝜆 − 𝜇) (𝜆𝜇)
𝛽−𝛼+1

× (𝜇(𝛽−𝛼+1)𝑆
𝑎
(𝜇) − 𝜆(𝛽−𝛼+1)𝑆

𝑎
(𝜆))

=
Γ (𝛽 − 𝛼 + 1)

(𝜆 − 𝜇) (𝜆𝜇)
𝛽−𝛼+1

(𝑅 (𝜇𝛼, 𝐴) − 𝑅 (𝜆𝛼, 𝐴)) ,

(19)

where the last equality follows from Lemma 3.
On the other hand, observing that

𝑅
𝑎
(𝑡, 𝑠) =

𝛼Γ (𝛽 − 𝛼 + 1)

Γ (1 − 𝛼)
∫
𝑡

0

𝑆
𝑎
(𝑟)

(𝑡 + 𝑠 − 𝑟)1+𝛼
𝑑𝑟 ∗ 𝑆

𝑎
(𝑠) ,

(20)

Then taking Laplace transform with respect to 𝑡 and 𝑠,
respectively, we deduce

�̂�
𝑎
(𝑡, 𝜆) =

𝛼Γ (𝛽 − 𝛼 + 1)

Γ (1 − 𝛼)

× ∫
∞

0

𝑒−𝜆𝑠 ∫
𝑡

0

𝑆
𝑎
(𝑟)

(𝑡 + 𝑠 − 𝑟)1+𝛼
𝑑𝑟 𝑑𝑠 𝑆

𝑎
(𝜆)

=
𝛼Γ (𝛽 − 𝛼 + 1)

Γ (1 − 𝛼)

× ∫
∞

0

𝑒−𝜆𝑠(𝑡 + 𝑠)
−𝛼−1 ∗ 𝑆

𝑎
(𝑡) 𝑑𝑠 𝑆

𝑎
(𝜆) ,

�̂�
𝑎
(𝜇, 𝜆) =

𝛼Γ (𝛽 − 𝛼 + 1)

Γ (1 − 𝛼)

× ∫
∞

0

𝑒−𝜇𝑡 ∫
∞

0

𝑒−𝜆𝑠(𝑡 + 𝑠)
−𝛼−1 ∗ 𝑆

𝑎
(𝑡) 𝑑𝑠 𝑑𝑡 𝑆

𝑎
(𝜆)

=
𝛼Γ (𝛽 − 𝛼 + 1)

Γ (1 − 𝛼)

× ∫
∞

0

𝑒−𝜆𝑠 ∫
∞

0

𝑒−𝜇𝑡(𝑡 + 𝑠)
−𝛼−1 ∗ 𝑆

𝑎
(𝑡) 𝑑𝑠 𝑑𝑡 𝑆

𝑎
(𝜆)

=
𝛼Γ (𝛽 − 𝛼 + 1)

Γ (1 − 𝛼)

× ∫
∞

0

𝑒−𝜆𝑠 ∫
∞

0

𝑒−𝜇𝑡(𝑡 + 𝑠)
−𝛼−1 𝑑𝑡 𝑑𝑠 𝑆

𝑎
(𝜇) 𝑆
𝑎
(𝜆)

=
Γ (𝛽 − 𝛼 + 1)

Γ (1 − 𝛼)

Γ (1 − 𝛼)

𝜆 − 𝜇
(𝜆𝛼 − 𝜇𝛼) 𝑆

𝑎
(𝜇) 𝑆
𝑎
(𝜆)

=
Γ (𝛽 − 𝛼 + 1)

𝜆 − 𝜇
(𝜆𝛼 − 𝜇𝛼) 𝑆

𝑎
(𝜇) 𝑆
𝑎
(𝜆)

=
Γ (𝛽 − 𝛼 + 1)

(𝜆 − 𝜇)
(𝜆𝛼 − 𝜇𝛼)

×
1

(𝜆𝜇)
𝛽−𝛼+1

𝑅 (𝜇𝛼, 𝐴) 𝑅 (𝜆𝛼, 𝐴)

=
Γ (𝛽 − 𝛼 + 1)

(𝜆 − 𝜇) (𝜆𝜇)
𝛽−𝛼+1

(𝑅 (𝜇𝛼, 𝐴) − 𝑅 (𝜆𝛼, 𝐴)) ,

(21)

where the last equality follows from the resolvent identity. In
view of (19), (21), and the uniqueness of Laplace transform,
we obtain 𝐿

𝑎
(𝑡, 𝑠) = 𝑅

𝑎
(𝑡, 𝑠), 𝑡, 𝑠 ≥ 0. The arbitrariness of 𝑎

implies 𝐿(𝑡, 𝑠) = 𝑅(𝑡, 𝑠) for 𝑡, 𝑠 ≥ 0.

Remark 6. (a) If 𝛽 = 0, then (𝛼, 0)-ROF 𝑆
𝛼,0

(𝑡) is an 𝛼-ROF
and the equality (17) degenerates to be equality (7).

(b) If we assume that, for each 𝑥 ∈ 𝑋, the map 𝑡 →
𝑆
𝛼,𝛽

(𝑡)𝑥 is continuously differentiable on [0, ∞) and the limit
of (𝛼, 𝛽)-ROF 𝑆

𝛼,𝛽
(𝑡) exists as 𝛼 → 1−, thenmultiplying both

sides of (17) with 1 − 𝛼 and integrating by parts to the right
side of (17) and letting 𝛼 → 1−, we can get that (3) is just the
limit state of (17).

By Lemma 3, (𝛼, 𝛽)-ROF generated by operator 𝐴 is
exactly operator valued functions whose Laplace transforms
are 𝜆𝛼−𝛽−1𝑅(𝜆, 𝐴). In the following theorem, we show that
this property corresponds to the functional equation (17) for
𝑆
𝛼,𝛽

(𝑡). The proof of this theorem is proved by Ardent [2,
proposition 3.2.4] for 𝛼 → 1−, 𝛽 = 𝑘 ∈ N. Our proof is
different since we could not use the binomial formula as in
[2].
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Theorem 7. Let 𝑆 : R+ → 𝐵(𝑋) be a strongly continuous
function satisfying ‖𝑆(𝑡)‖ ≤ 𝑀𝑒𝜔𝑡 (𝑡 ≥ 0) for some 𝑀, 𝜔 ≥ 0.
Let 𝛼 ∈ R+ \ N

0
, 𝛽 ∈ R+ satisfy that 𝛽 − 𝛼 > −1, set

𝑅 (𝜆𝛼) := 𝜆−𝛼+𝛽+1 ∫
∞

0

𝑒−𝜆𝑡𝑆 (𝑡) 𝑑𝑡. (22)

Then the following assertions are equivalent.
(i) There exists an operator 𝐴 such that (𝜔𝛼,∞) ⊂ 𝜌(𝐴)

and 𝑅(𝜆𝛼) = (𝜆𝛼𝐼 − 𝐴)−1 for 𝜆 > 𝜔.
(ii) For 𝑠, 𝑡 ≥ 0, the equality

∫
𝑡+𝑠

𝑡

(𝑠 + 𝑡 − 𝑟)
𝛽−𝛼𝑆 (𝑟) 𝑑𝑟 − ∫

𝑠

0

(𝑠 + 𝑡 − 𝑟)
𝛽−𝛼𝑆 (𝑟) 𝑑𝑟

=
𝛼Γ (𝛽 − 𝛼 + 1)

Γ (1 − 𝛼)
∫
𝑠

0

∫
𝑡

0

𝑆 (𝑟
1
) 𝑆 (𝑟
2
)

(𝑡 + 𝑠 − 𝑟
1
− 𝑟
2
)
1+𝛼

𝑑𝑟
1
𝑑𝑟
2

(23)

holds and 𝑆(𝑡)𝑥 = 0 for all 𝑡 ≥ 0 implies that 𝑥 = 0.

Proof. Assume that (i) holds; then (𝜔𝛼,∞) ⊂ 𝜌(𝐴), (𝜆𝛼𝐼 −

𝐴)−1 = 𝜆−𝛼+𝛽+1 ∫
∞

0

𝑒−𝜆𝑡𝑆(𝑡) 𝑑𝑡 for 𝜆 > 𝜔; from Lemma 3,
we know that 𝑆(𝑡) is the (𝛼, 𝛽)-ROF generated by 𝐴; then
Theorem 5 shows that equality (23) holds. It follows from
(𝜔𝛼,∞) ⊂ 𝜌(𝐴) and 𝑅(𝜆𝛼) = (𝜆𝛼𝐼 − 𝐴)−1 for 𝜆 > 𝜔 that
𝑅(𝜆𝛼) is injective. If 𝑆(𝑡)𝑥 = 0 for all 𝑡 ≥ 0, from 𝑅(𝜆𝛼) :=

𝜆−𝛼+𝛽+1 ∫
∞

0

𝑒−𝜆𝑡𝑆(𝑡) 𝑑𝑡, we have 𝑅(𝜆𝛼)𝑥 = 0; thus 𝑥 = 0.
If (ii) is satisfied, similar as the calculations of (19) and

(21), we can get that the Laplace transform of the left side and
the right side of (17) are

Γ (𝛽 − 𝛼 + 1)

(𝜆 − 𝜇) (𝜆𝜇)
𝛽−𝛼+1

(𝑅 (𝜇𝛼) − 𝑅 (𝜆𝛼)) ,

Γ (𝛽 − 𝛼 + 1)

𝜆 − 𝜇

𝜆𝛼 − 𝜇𝛼

(𝜆𝜇)
𝛽−𝛼+1

𝑅 (𝜇𝛼) 𝑅 (𝜆𝛼) ,

(24)

respectively. So,

𝑅 (𝜇𝛼) − 𝑅 (𝜆𝛼) = (𝜆𝛼 − 𝜇𝛼) 𝑅 (𝜇𝛼) 𝑅 (𝜆𝛼) . (25)

On the other hand, if 𝑅(𝜆𝛼)𝑥 = 0, by 𝑅(𝜆𝛼) =

𝜆−𝛼+𝛽+1 ∫
∞

0

𝑒−𝜆𝑡𝑆(𝑡) 𝑑𝑡 and uniqueness of Laplace transform,
we have 𝑆(𝑡)𝑥 = 0 for all 𝑡 ≥ 0, then from (ii) we know
𝑥 = 0, so, Ker𝑅(𝜆𝛼) = 0, by (25) and Lemma 4, we get the
conclusion.

4. Fractional Abstract Cauchy Problems

In this section, we study the following inhomogeneous
fractional abstract Cauchy problem:

𝑐

𝐷
𝛼

𝑡
𝑢 (𝑡) = 𝐴𝑢 (𝑡) + 𝑓 (𝑡) , 𝑡 ∈ (0, 𝑇) ,

𝑢 (0) = 𝑥
0
, 𝑢 (0) = 𝑥

1
,

(26)

where 1 < 𝛼 < 2, 𝑇 > 0, 𝑓 ∈ 𝐿1((0, 𝑇), 𝑋), 𝑥
0
, 𝑥
1
∈ 𝑋, 𝐴 is

a linear closed operator.

First, we give the definitions of solutions to (26).

Definition 8. A function 𝑢 ∈ 𝐶([0, 𝑇); 𝑋) is called a mild
solution of (26), if (𝑔

𝛼
∗ 𝑢)(𝑡) ∈ 𝐷(𝐴) and 𝑢(𝑡) = 𝑥

0
+ 𝑡𝑥
1
+

𝐴(𝑔
𝛼
∗ 𝑢)(𝑡) + (𝑔

𝛼
∗ 𝑓)(𝑡), 𝑡 ∈ [0, 𝑇).

Definition 9. A function 𝑢 ∈ 𝐶([0, 𝑇); 𝑋) is called a classical
solution of (26) if 𝑢 satisfies the following.

(a) 𝑢 ∈ 𝐶([0, 𝑇); 𝐷(𝐴)) ∩ 𝐶1([0, 𝑇); 𝑋).
(b) 𝑔
2−𝛼

∗ (𝑢 − 𝑥
0
− 𝑡𝑥
1
) ∈ 𝐶2([0, 𝑇); 𝑋).

(c) 𝑢 satisfies (26).

From the above definitions, it is clear that a classical
solution of (26) is a mild solution of it. The following
assertion shows that a mild solution of the problem (26) with
suitable regularity is also a classical solution.

Theorem 10. Let 𝑢 be a mild solution of (26) and 𝑓 ∈

𝐶([0, 𝑇); 𝑋), if 𝑔
2−𝛼

∗(𝑢−𝑥
0
−𝑡𝑥
1
) ∈ 𝐶2([0, 𝑇); 𝑋), and for any

𝑡 ∈ (0, 𝑇), 𝑔
𝛼
∗ 𝑢 ∈ 𝐿1((0, 𝑡), 𝐷(𝐴)); then 𝑢 is also a classical

solution of (26).

Proof. Since 𝑢 is a mild solution of (26), we have

(𝑔
𝛼
∗ 𝑢) (𝑡) ∈ 𝐷 (𝐴) ,

𝑢 (𝑡) = 𝑥
0
+ 𝑡𝑥
1
+ 𝐴 (𝑔

𝛼
∗ 𝑢) (𝑡) + (𝑔

𝛼
∗ 𝑓) (𝑡) ,

𝑡 ∈ [0, 𝑇) .

(27)

If we denote 𝑤(𝑡) := 𝑢(𝑡) − 𝑥
0
− 𝑡𝑥
1
, then it follows from (27)

that
(𝑔
2−𝛼

∗ 𝑤) (𝑡) = 𝑔
2−𝛼

∗ (𝐴 (𝑔
𝛼
∗ 𝑢) (𝑡) + (𝑔

𝛼
∗ 𝑓) (𝑡))

= 𝐴 (𝑔
2
∗ 𝑢) (𝑡) + (𝑔

2
∗ 𝑓) (𝑡) .

(28)

Since 𝑔
2−𝛼

∗ 𝑤 ∈ 𝐶2([0, 𝑇); 𝑋), then 𝑐𝐷𝛼
𝑡
𝑢(𝑡) =

(𝑑2/𝑑𝑡2)(𝑔
2−𝛼

∗ 𝑤)(𝑡) is well defined, and by (28), we have

𝑐

𝐷
𝛼

𝑡
𝑢 (𝑡) =

𝑑2

𝑑𝑡2
(𝑔
2−𝛼

∗ 𝑤) (𝑡)

= lim
ℎ→0

1

ℎ2
[(𝑔
2−𝛼

∗ 𝑤) (𝑡) − 2 (𝑔
2−𝛼

∗ 𝑤) (𝑡 − ℎ)

+ (𝑔
2−𝛼

∗ 𝑤) (𝑡 − 2ℎ)]

= lim
ℎ→0

1

ℎ2
[𝐴 (𝑔
2
∗ 𝑢) (𝑡) − 2𝐴 (𝑔

2
∗ 𝑢) (𝑡 − ℎ)

+𝐴 (𝑔
2
∗ 𝑢) (𝑡 − 2ℎ)]

+ lim
ℎ→0

1

ℎ2
[(𝑔
2
∗ 𝑓) (𝑡) − 2 (𝑔

2
∗ 𝑓) (𝑡 − ℎ)

+ (𝑔
2
∗ 𝑓) (𝑡 − 2ℎ)]

= lim
ℎ→0

1

ℎ2
[𝐴 (𝑔
2
∗ 𝑢) (𝑡) − 2𝐴 (𝑔

2
∗ 𝑢) (𝑡 − ℎ)

+𝐴 (𝑔
2
∗ 𝑢) (𝑡 − 2ℎ)] + 𝑓 (𝑡) .

(29)
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Thus,

lim
ℎ→0

1

ℎ2
[𝐴 (𝑔
2
∗ 𝑢) (𝑡) − 2𝐴 (𝑔

2
∗ 𝑢) (𝑡 − ℎ)

+𝐴 (𝑔
2
∗ 𝑢) (𝑡 − 2ℎ)] =

𝑐𝐷𝛼
𝑡
𝑢 (𝑡) − 𝑓 (𝑡) .

(30)

On the other hand, from the closeness of 𝐴 and 𝑔
𝛼

∗ 𝑢 ∈

𝐿1((0, 𝑡), 𝐷(𝐴)) for 𝑡 ∈ [0, 𝑇), by Proposition 1.1.7 in [2], we
have

(𝑔
2
∗ 𝑢) (𝑡) = (𝑔

2−𝛼
∗ (𝑔
𝛼
∗ 𝑢)) (𝑡) ∈ 𝐷 (𝐴) , (31)

Then from (30) and the closeness of 𝐴, we obtain

𝑢 (𝑡) = lim
ℎ→0

1

ℎ2
[(𝑔
2
∗ 𝑢) (𝑡) − 2 (𝑔

2
∗ 𝑢) (𝑡 − ℎ)

+ (𝑔
2
∗ 𝑢) (𝑡 − 2ℎ)] ∈ 𝐷 (𝐴) ,

𝑐

𝐷
𝛼

𝑡
𝑢 (𝑡) = 𝐴𝑢 (𝑡) + 𝑓 (𝑡) , 𝑡 ∈ [0, 𝑇) .

(32)

It is clear that 𝑢(0) = 𝑥
0
, 𝑢(0) = 𝑥

1
. Thus, 𝑢 is a classical

solution of (26).

Lemma 11. Let 1 < 𝛼 < 2, 𝑓 ∈ 𝐿1((0, 𝑇), 𝑋). Suppose 𝐴 is
the generator of an (𝛼, 𝛽)-ROF 𝑆

𝛼,𝛽
(𝑡) on 𝑋 for some 𝛽 ∈ R+.

Then, for every 𝑡 ∈ [0, 𝑇), (𝑔
𝛼−1

∗𝑆
𝛼,𝛽

∗𝑓)(𝑡) exists, and (𝑔
𝛼−1

∗
𝑆
𝛼,𝛽

∗ 𝑓) ∈ 𝐶([0, 𝑇), 𝑋).

Proof. For every 𝑡 ∈ [0, 𝑇), since 𝑔
𝛼−1

∈ 𝐿1((0, 𝑡),R+), 𝑓 ∈

𝐿1((0, 𝑡), 𝑋), we get 𝑔
𝛼−1

∗ 𝑓 ∈ 𝐿1((0, 𝑡), 𝑋), hence, from

(𝑔
𝛼−1

∗ 𝑆
𝛼,𝛽

∗ 𝑓) (𝑡) = (𝑆
𝛼,𝛽

∗ 𝑔
𝛼−1

∗ 𝑓) (𝑡)

= ∫
𝑡

0

𝑆
𝛼,𝛽

(𝑡 − 𝑠) (𝑔
𝛼−1

∗ 𝑓) (𝑠) 𝑑𝑠,
(33)

we obtain that (𝑔
𝛼−1

∗ 𝑆
𝛼,𝛽

∗ 𝑓)(𝑡) exists.
For ℎ ∈ R, |ℎ| ≪ 1 and 𝑡 + ℎ ∈ [0, 𝑇), we have

(𝑔
𝛼−1

∗ 𝑆
𝛼,𝛽

∗ 𝑓) (𝑡 + ℎ) − (𝑔
𝛼−1

∗ 𝑆
𝛼,𝛽

∗ 𝑓) (𝑡)

= ∫
𝑡+ℎ

0

𝑆
𝛼,𝛽

(𝑡 + ℎ − 𝑠) (𝑔
𝛼−1

∗ 𝑓) (𝑠) 𝑑𝑠

− ∫
𝑡

0

𝑆
𝛼,𝛽

(𝑡 − 𝑠) (𝑔
𝛼−1

∗ 𝑓) (𝑠) 𝑑𝑠

= ∫
𝑡+ℎ

0

(𝑆
𝛼,𝛽

(𝑡 + ℎ − 𝑠) − 𝑆
𝛼,𝛽

(𝑡 − 𝑠)) (𝑔
𝛼−1

∗ 𝑓) (𝑠) 𝑑𝑠

− ∫
𝑡+ℎ

𝑡

𝑆
𝛼,𝛽

(𝑡 − 𝑠) (𝑔
𝛼−1

∗ 𝑓) (𝑠) 𝑑𝑠.

(34)

From the dominated convergence theorem and absolute
continuity of integral, we deduce

lim
ℎ→0

((𝑔
𝛼−1

∗ 𝑆
𝛼,𝛽

∗ 𝑓) (𝑡 + ℎ) − (𝑔
𝛼−1

∗ 𝑆
𝛼,𝛽

∗ 𝑓) (𝑡)) = 0.

(35)

So, (𝑔
𝛼−1

∗ 𝑆
𝛼,𝛽

∗ 𝑓) ∈ 𝐶([0, 𝑇), 𝑋).

Let

V (𝑡) = 𝑆
𝛼,𝛽

(𝑡) 𝑥
0
+ (𝑔
1
∗ 𝑆
𝛼,𝛽

) (𝑡) 𝑥
1
+ (𝑔
𝛼−1

∗ 𝑆
𝛼,𝛽

∗ 𝑓) (𝑡) .

(36)

From Lemma 11, we know that V is well defined, and V ∈
𝐶([0, 𝑇), 𝑋).

The following theorem is proved by Arendt [2, Lemma
3.2.9] for 𝛼 = 1, 𝛽 = 𝑙 ∈ N. Our proof is different because
we could not use the formula of integration by parts as [2,
Lemma 3.2.9].

Theorem 12. Suppose that𝐴 is the generator of an (𝛼, 𝛽)-ROF
𝑆
𝛼,𝛽

(𝑡) on 𝑋 for some 𝛽 ∈ R+. Let V be defined by (36). Then
one has the following results.

(a) If (26) has a mild solution 𝑢, then 𝑔
𝑚−𝛽

∗ (V −

∑
𝑚−1

𝑘=0
V(𝑘)(0)𝑔

𝑘+1
(𝑡)) ∈ 𝐶𝑚([0, 𝑇); 𝑋) and 𝑢(𝑡) =

𝑐𝐷
𝛽

𝑡
V(𝑡).

(b) If there is a classical solution 𝑢 of (26), then 𝑔
2−𝛼

∗

(𝑐𝐷
𝛽

𝑡
V(𝑡) − 𝑥

0
− 𝑡𝑥
1
) ∈ 𝐶2([0, 𝑇); 𝑋) and 𝑢(𝑡) =

𝑐𝐷
𝛽

𝑡
V(𝑡).

Proof. If 𝑢 is a mild solution of (26), then (𝑔
𝛼
∗ 𝑢)(𝑡) ∈ 𝐷(𝐴)

and

𝑢 (𝑡) = 𝑥
0
+ 𝑡𝑥
1
+ 𝐴 (𝑔

𝛼
∗ 𝑢) (𝑡) + (𝑔

𝛼
∗ 𝑓) (𝑡) , 𝑡 ∈ [0, 𝑇) .

(37)

Using Lemma 2(b) and the closeness of 𝐴, we have

(𝑔
𝛽+1

∗ 𝑢) (𝑡) = (𝑆
𝛼,𝛽

− 𝐴 (𝑔
𝛼
∗ 𝑆
𝛼,𝛽

)) ∗ 𝑢 (𝑡)

= (𝑆
𝛼,𝛽

∗ 𝑢) (𝑡) − (𝐴 (𝑔
𝛼
∗ 𝑆
𝛼,𝛽

) ∗ 𝑢) (𝑡)

= (𝑆
𝛼,𝛽

∗ 𝑢) (𝑡) − 𝑆
𝛼,𝛽

∗ 𝐴 (𝑔
𝛼
∗ 𝑢) (𝑡)

= (𝑆
𝛼,𝛽

∗ 𝑢) (𝑡)

− 𝑆
𝛼,𝛽

∗ (𝑢 − 𝑥
0
− 𝑡𝑥
1
− (𝑔
𝛼
∗ 𝑓) (𝑡))

= 𝑆
𝛼,𝛽

∗ 𝑥
0
+ 𝑆
𝛼,𝛽

∗ 𝑡𝑥
1
+ (𝑆
𝛼,𝛽

∗ 𝑔
𝛼
∗ 𝑓) (𝑡) ;

(38)

that is, (𝑔
𝛽+1

∗𝑢)(𝑡) = (1∗𝑆
𝛼,𝛽

)(𝑡)𝑥
0
+(𝑔
2
∗𝑆
𝛼,𝛽

)(𝑡)𝑥
1
+(𝑔
𝛼
∗

𝑆 ∗ 𝑓)(𝑡). So

𝐽
𝛽

𝑡
𝑢 (𝑡) = (𝑔

𝛽
∗ 𝑢) (𝑡) =

𝑑

𝑑𝑡
(𝑔
𝛽+1

∗ 𝑢) (𝑡)

= 𝑆
𝛼,𝛽

(𝑡) 𝑥
0
+ (𝑔
1
∗ 𝑆
𝛼,𝛽

) (𝑡) 𝑥
1

+ (𝑔
𝛼−1

∗ 𝑆
𝛼,𝛽

∗ 𝑓) (𝑡) = V (𝑡) .

(39)

Thus, it follows from 𝑢 ∈ 𝐶([0, 𝑇), 𝑋) that 𝑔
𝑚−𝛽

∗ (V −

∑
𝑚−1

𝑘=0
V(𝑘)(0)𝑔

𝑘+1
(𝑡)) ∈ 𝐶𝑚([0, 𝑇); 𝑋) and 𝑢(𝑡) = 𝑐𝐷

𝛽

𝑡
V(𝑡).

Hence (a) holds. If 𝑢 is a classical solution of (26), then 𝑢 is
a mild solution of (26). So, assertion (b) follows immediately
from (a).
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Theorem 13. Let V be defined by (36). Assume that V ∈

𝐶𝑚−1([0, 𝑇); 𝑋), V(𝑘)(0) = 0 for 𝑘 = 0, 1, . . . , 𝑚 − 1, and
𝑔
𝑚−𝛽

∗ V ∈ 𝐶𝑚([0, 𝑇); 𝑋); then 𝑐𝐷𝛽
𝑡
V(𝑡) is a mild solution

of the problem (26). Moreover, if 𝑔
2−𝛼

∗ (𝑐𝐷
𝛽

𝑡
V(𝑡) − 𝑥

0
−

𝑡𝑥
1
) ∈ 𝐶2([0, 𝑇); 𝑋), and for any 𝑡 ∈ (0, 𝑇), 𝑔

𝛼
∗ 𝑐𝐷
𝛽

𝑡
V(𝑡) ∈

𝐿1((0, 𝑡), 𝐷(𝐴)), then 𝑐𝐷𝛽
𝑡
V(𝑡) is also a classical solution of

(26).

Proof. Consider the following steps.
Step 1.We first claim that 𝐽𝛼

𝑡
V(𝑡) ∈ 𝐷(𝐴) and

𝑐

𝐷
𝛽

𝑡
𝐴𝐽𝛼
𝑡
V (𝑡) = 𝑐𝐷

𝛽

𝑡
V (𝑡) − 𝑥

0
− 𝑡𝑥
1
− 𝑔
𝛼
∗ 𝑓. (40)

In view of definition of V(𝑡), we have

𝐽𝛼
𝑡
V (𝑡) = (𝑔

𝛼
∗ 𝑆
𝛼,𝛽

) (𝑡) 𝑥
0
+ (𝑔
𝛼
∗ 𝑔
1
∗ 𝑆
𝛼,𝛽

) (𝑡) 𝑥
1

+ (𝑔
𝛼
∗ 𝑔
𝛼−1

∗ 𝑆
𝛼,𝛽

∗ 𝑓) (𝑡)

= (𝑔
𝛼
∗ 𝑆
𝛼,𝛽

) (𝑡) 𝑥
0
+ ∫
𝑡

0

(𝑔
𝛼
∗ 𝑆
𝛼,𝛽

) (𝜏) 𝑥
1
𝑑𝜏

+ ∫
𝑡

0

(𝑔
𝛼
∗ 𝑆
𝛼,𝛽

) (𝑡 − 𝜏) (𝑔
𝛼−1

∗ 𝑓) (𝜏) 𝑑𝜏,

(41)

for 𝑡 ∈ [0, 𝑇).
From Lemma 2(b), for 0 < 𝜏 < 𝑡, we have

(𝑔
𝛼
∗ 𝑆
𝛼,𝛽

) (𝑡) 𝑥
0
∈ 𝐷 (𝐴) , (𝑔

𝛼
∗ 𝑆
𝛼,𝛽

) (𝜏) 𝑥
1
∈ 𝐷 (𝐴) ,

(𝑔
𝛼
∗ 𝑆
𝛼,𝛽

) (𝑡 − 𝜏) (𝑔
𝛼−1

∗ 𝑓) (𝜏) ∈ 𝐷 (𝐴) ,

𝐴 (𝑔
𝛼
∗ 𝑆
𝛼,𝛽

) (𝜏) 𝑥
1
= 𝑆
𝛼,𝛽

(𝜏) 𝑥
1
− 𝑔
𝛽+1

(𝜏) 𝑥
1
∈ 𝐿1 (0, 𝑡) ,

𝐴 (𝑔
𝛼
∗ 𝑆
𝛼,𝛽

) (𝑡 − 𝜏) (𝑔
𝛼−1

∗ 𝑓) (𝜏)

= 𝑆
𝛼,𝛽

(𝑡 − 𝜏) (𝑔
𝛼−1

∗ 𝑓) (𝜏)

− 𝑔
𝛽+1

(𝑡 − 𝜏) (𝑔
𝛼−1

∗ 𝑓) (𝜏) ∈ 𝐿1 (0, 𝑡) ,

(42)

combining with the closeness of 𝐴, one has

∫
𝑡

0

(𝑔
𝛼
∗ 𝑆
𝛼,𝛽

) (𝜏) 𝑥
1
𝑑𝜏 ∈ 𝐷 (𝐴) ,

∫
𝑡

0

(𝑔
𝛼
∗ 𝑆
𝛼,𝛽

) (𝑡 − 𝜏) (𝑔
𝛼−1

∗ 𝑓) (𝜏) 𝑑𝜏 ∈ 𝐷 (𝐴) .

(43)

Thus 𝐽𝛼
𝑡
V(𝑡) ∈ 𝐷(𝐴), and

𝐴𝐽𝛼
𝑡
V (𝑡) = 𝐴 (𝑔

𝛼
∗ 𝑆
𝛼,𝛽

) (𝑡) 𝑥
0
+ 𝑔
1
∗ 𝐴 (𝑔

𝛼
∗ 𝑆
𝛼,𝛽

) (𝑡) 𝑥
1

+ 𝑔
𝛼−1

∗ 𝐴 (𝑔
𝛼
∗ 𝑆
𝛼,𝛽

∗ 𝑓) (𝑡)

= 𝑆
𝛼,𝛽

(𝑡) 𝑥
0
− 𝑔
𝛽+1

(𝑡) 𝑥
0
+ (𝑔
1
∗ 𝑆
𝛼,𝛽

) (𝑡) 𝑥
1

− (𝑔
1
∗ 𝑔
𝛽+1

) (𝑡) 𝑥
1

+ 𝑔
𝛼−1

∗ (𝑆
𝛼,𝛽

∗ 𝑓 − 𝑔
𝛽+1

∗ 𝑓) (𝑡)

= 𝑆
𝛼,𝛽

(𝑡) 𝑥
0
+ (𝑔
1
∗ 𝑆
𝛼,𝛽

) (𝑡) 𝑥
1

+ (𝑔
𝛼−1

∗ 𝑆
𝛼,𝛽

∗ 𝑓) (𝑡) − 𝑔
𝛽+1

(𝑡) 𝑥
0

− (𝑔
1
∗ 𝑔
𝛽+1

) (𝑡) 𝑥
1
− (𝑔
𝛼+𝛽

∗ 𝑓) (𝑡)

= V (𝑡) − 𝑔
𝛽+1

(𝑡) 𝑥
0
− (𝑔
1
∗ 𝑔
𝛽+1

) (𝑡) 𝑥
1

− (𝑔
𝛼+𝛽

∗ 𝑓) (𝑡) .

(44)

So

𝐴𝐽𝛼
𝑡
V (𝑡) = V (𝑡) − 𝑔

𝛽+1
(𝑡) 𝑥
0
− (𝑔
1
∗ 𝑔
𝛽+1

) (𝑡) 𝑥
1

− (𝑔
𝛼+𝛽

∗ 𝑓) (𝑡) ,

𝑐

𝐷
𝛽

𝑡
𝐴𝐽𝛼
𝑡
V (𝑡) = 𝑐𝐷

𝛽

𝑡
V (𝑡) − 𝑥

0
− 𝑡𝑥
1
− 𝑔
𝛼
∗ 𝑓.

(45)

Step 2. We prove 𝑐𝐷𝛽
𝑡
𝐽𝛼
𝑡
V(𝑡) ∈ 𝐷(𝐴) and 𝐴 𝑐𝐷

𝛽

𝑡
𝐽𝛼
𝑡
V(𝑡) =

𝑐

𝐷
𝛽

𝑡
𝐴𝐽𝛼
𝑡
V(𝑡).

Since V ∈ 𝐶𝑘([0, 𝑇); 𝑋), V(𝑘)(0) = 0 for 𝑘 = 0, 1, . . . , 𝑚−1,
we have

𝑑𝑘

𝑑𝑡𝑘
(𝑔
𝛼
∗ V) (𝑡)|

𝑡=0
= (𝑔
𝛼
∗ V(𝑘)) (𝑡)|

𝑡=0
= 0. (46)

So

𝑐

𝐷
𝛽

𝑡
𝐽𝛼
𝑡
V (𝑡) =

𝑑𝑚

𝑑𝑡𝑚
(𝑔
𝑚−𝛽

∗ 𝑔
𝛼
∗ V) (𝑡)

= lim
ℎ→0

1

ℎ𝑚

𝑚

∑
𝑟=0

𝐶𝑟
𝑚

(𝑔
𝑚−𝛽

∗ 𝑔
𝛼
∗ V) (𝑡 − 𝑟ℎ) ,

(47)

where𝐶𝑟
𝑚

= (𝑚(𝑚−1) ⋅ ⋅ ⋅ (𝑚−𝑟+1))/𝑟!. From (45), we know
that 𝐴𝐽𝛼

𝑡
V ∈ 𝐿1((0, 𝑡), 𝑋), and the closeness of 𝐴 implies that

(𝑔
𝑚−𝛽

∗ 𝑔
𝛼
∗ V)(𝑡) ∈ 𝐷(𝐴), and𝐴(𝑔

𝑚−𝛽
∗ 𝑔
𝛼
∗ V)(𝑡) = 𝑔

𝑚−𝛽
∗

𝐴(𝑔
𝛼
∗ V)(𝑡), by Step 1, 𝑐𝐷𝛽

𝑡
𝐴𝐽𝛼
𝑡
V(𝑡) exists, then 𝑐𝐷𝛽

𝑡
𝐽𝛼
𝑡
V(𝑡) ∈

𝐷(𝐴), and

𝐴 𝑐𝐷
𝛽

𝑡
𝐽𝛼
𝑡
V (𝑡) = 𝑐𝐷

𝛽

𝑡
𝐴𝐽𝛼
𝑡
V (𝑡) . (48)

Step 3. We show that V(𝑘)(0) = 0 for 𝑘 = 0, 1, . . . , 𝑚−1 implies

𝑐

𝐷
𝛽

𝑡
𝐽𝛼
𝑡
V (𝑡) = 𝐽𝛼

𝑡

𝑐

𝐷
𝛽

𝑡
V (𝑡) . (49)

In fact, if 𝛼 ≥ 𝛽, we have 𝑐𝐷𝛽
𝑡
𝐽𝛼
𝑡
V(𝑡) = 𝐽

𝛼−𝛽

𝑡
V(𝑡), and

𝐽𝛼
𝑡

𝑐

𝐷
𝛽

𝑡
V (𝑡) = 𝐽

𝛼−𝛽

𝑡
𝐽
𝛽

𝑡

𝑐

𝐷
𝛽

𝑡
V (𝑡)

= 𝐽
𝛼−𝛽

𝑡
(V (𝑡) −

𝑚−1

∑
𝑘=0

V(𝑘) (0) 𝑔
𝑘+1

(𝑡)) .
(50)



8 Abstract and Applied Analysis

If 𝛼 < 𝛽, we have 𝑐𝐷𝛽
𝑡
𝐽𝛼
𝑡
V(𝑡) = 𝑐𝐷

𝛽−𝛼

𝑡
V(𝑡), and

𝐽𝛼
𝑡

𝑐

𝐷
𝛽

𝑡
V (𝑡) = 𝑐𝐷

𝛽−𝛼

𝑡
𝐽
𝛽

𝑡

𝑐

𝐷
𝛽

𝑡
V (𝑡)

= 𝑐𝐷
𝛽−𝛼

𝑡
(V (𝑡) −

𝑚−1

∑
𝑘=0

V(𝑘) (0) 𝑔
𝑘+1

(𝑡)) .
(51)

From the above discussion and V(𝑘)(0) = 0 for 𝑘 = 0, 1, . . . ,
𝑚 − 1, we conclude that (49) holds.

Finally, in view of (40), (48), and (49), we have

𝐴𝐽𝛼
𝑡

𝑐

𝐷
𝛽

𝑡
V (𝑡) = 𝐴 𝑐𝐷

𝛽

𝑡
𝐽𝛼
𝑡
V (𝑡) = 𝑐𝐷

𝛽

𝑡
𝐴𝐽𝛼
𝑡
V (𝑡)

= 𝑐𝐷
𝛽

𝑡
V (𝑡) − 𝑥

0
− 𝑡𝑥
1
− (𝑔
𝛼
∗ 𝑓) (𝑡) .

(52)

Therefore, 𝑐𝐷𝛽
𝑡
V(𝑡) is a mild solution of (26).

Moreover, if𝑔
2−𝛼

∗(𝑐𝐷
𝛽

𝑡
V(𝑡)−𝑥

0
−𝑡𝑥
1
) ∈ 𝐶2([0, 𝑇); 𝑋), and

for any 𝑡 ∈ (0, 𝑇), 𝑔
𝛼
∗ 𝑐𝐷
𝛽

𝑡
V(𝑡) ∈ 𝐿1((0, 𝑡), 𝐷(𝐴)), applying

Theorem 10, we have that 𝑐𝐷𝛽
𝑡
V(𝑡) is a classical solution of

(26).

Remark 14. If 𝛼 → 1+, 𝛽 = 𝑘, then (26) becomes (4).
Theorem 13 degenerated to Lemma 3.2.10 in [2]. Note that the
condition V(𝑗)(0) = 0 for 𝑗 = 0, 1, . . . , 𝑘 − 1 is not necessary in
Lemma 3.2.10 of [2], since from its proof, it is easy to see that
V(0) = 0 implies that V(𝑗)(0) = 0 for 𝑗 = 1, . . . , 𝑘 − 1.

Now, we turn our attention to the problem
𝑐

𝐷
𝛼

𝑡
V (𝑡) = 𝐴V (𝑡) + 𝑔

𝛽+1
𝑡 (𝑥) , 𝑡 > 0,

V(𝑘) (0) = 0, 𝑘 = 0, 1, . . . , 𝑁 − 1,
(53)

where 𝛼 > 0, 𝑥 ∈ 𝑋, 𝐴 is a linear closed operator on 𝑋 and
𝑁 is the smallest integer greater than or equal to 𝛼.

Theorem 15. Let 𝐴 be a closed operator on 𝑋 and 𝛽 > 0; the
following two assertions are equivalent.

(i) 𝐴 generates an exponentially bounded (𝛼, 𝛽)-ROF 𝑆
𝛼,𝛽

on 𝑋.
(ii) For every 𝑥 ∈ 𝑋, there exists a unique classical solution

V
𝑥
of (53) which is exponentially bounded and 𝐴V

𝑥
∈

𝐿1loc(R
+; 𝑋).

Proof. If (𝑖) is satisfied, for every 𝑥 ∈ 𝑋, define V
𝑥
: R+ → 𝑋

by V
𝑥
(𝑡) = (𝑔

𝛼
∗𝑆
𝛼,𝛽

)(𝑡)𝑥, then V(𝑘)
𝑥

(0) = 0 for 𝑘 = 0, 1, . . . , 𝑁−
1. By Lemma 2(b), we have V

𝑥
(𝑡) = (𝑔

𝛼
∗ 𝑆
𝛼,𝛽

)(𝑡)𝑥 ∈ 𝐷(𝐴),
and
𝑐

𝐷
𝛼

𝑡
V
𝑥
(𝑡) = 𝑆

𝛼,𝛽
(𝑡) 𝑥 = 𝐴 (𝑔

𝛼
∗ 𝑆
𝛼,𝛽

) (𝑡) 𝑥 + 𝑔
𝛽+1

(𝑡) 𝑥

= 𝐴V
𝑥
(𝑡) + 𝑔

𝛽+1
(𝑡) 𝑥, 𝑡 > 0.

(54)

Thus, V
𝑥
is a classical solution of (53); it is unique by

Theorem 12. Since 𝑆
𝛼,𝛽

is exponentially bounded, we have that
V
𝑥
is exponentially bounded. From

𝐴V
𝑥
(𝑡) = 𝐴 (𝑔

𝛼
∗ 𝑆
𝛼,𝛽

) (𝑡) 𝑥 = 𝑆
𝛼,𝛽

(𝑡) 𝑥 − 𝑔
𝛽+1

(𝑡) 𝑥, (55)

we know that 𝐴V
𝑥
(𝑡) ∈ 𝐿1loc(R

+; 𝑋). So (ii) is true.

Assume that (ii) holds. From linearity of (53) and the
uniqueness of its solution, we get that V

𝑥
is linear in 𝑥. So, for

each 𝑡 ≥ 0, there exists a linear mapping 𝑉(𝑡) : 𝑋 → 𝐷(𝐴)
such that 𝑉(𝑡)𝑥 = V

𝑥
(𝑡) for any 𝑥 ∈ 𝑋.

Next, we show that, for each 𝑡 ≥ 0, 𝑉(𝑡) ∈ 𝐵(𝑋,𝐷(𝐴)).
We consider the mapping Φ : 𝑋 → 𝐶(R+, 𝐷(𝐴))

by Φ(𝑥) = V
𝑥
(⋅) = 𝑉(⋅)𝑥. Then, Φ is a linear operator

defined on 𝑋. Now we show that Φ is closed, if 𝑥
𝑛

→ 𝑥
in 𝑋 and Φ(𝑥

𝑛
) → 𝑢 in 𝐶(R+, 𝐷(𝐴)). For 𝑡 > 0, by

the dominated convergence theorem, we have that 𝐽𝛼
𝑡
V
𝑥
𝑛

(𝑡)

converges to 𝐽𝛼
𝑡
𝑢(𝑡), since V

𝑥
𝑛

(⋅) = 𝑔
𝛼+𝛽+1

(𝑡)𝑥
𝑛
+ 𝐽𝛼
𝑡
𝐴V
𝑥
𝑛

(𝑡),
from the closeness of 𝐴, it follows that as 𝑛 → ∞, 𝑢(𝑡) =
𝑔
𝛼+𝛽+1

(𝑡)𝑥 + 𝐽𝛼
𝑡
𝐴𝑢(𝑡), which implies that 𝑢 = Φ(𝑥) and

Φ is closed. Therefore, by the closed graph theorem, Φ is
bounded. So, for each 𝑡 ≥ 0, 𝑉(𝑡) ∈ 𝐵(𝑋,𝐷(𝐴)). Then, the
exponentially boundedness of 𝑉(𝑡)𝑥 and Lemma 3.2.14 in
[2], imply that ‖𝑉(𝑡)‖ ≤ 𝑀𝑒𝜔𝑡(𝑡 ≥ 0) for some constants
𝑀, 𝜔 ≥ 0. So 𝑄(𝜆)𝑥 = 𝜆𝛽+1 ∫

∞

0

𝑒−𝜆𝑡𝑉(𝑡)𝑥 𝑑𝑡 is well defined
for 𝜆 > 𝜔, (𝜔𝛼,∞) ⊂ 𝜌(𝐴).

Since𝐴𝑉(𝑡)𝑥 ∈ 𝐿1(R+, 𝑋), then the Laplace transform of
𝐴𝑉(𝑡)𝑥 is well defined, and from the closeness of𝐴, for𝜆 > 𝜔,
we have

(𝜆𝛼 − 𝐴)𝑄 (𝜆) 𝑥 = 𝜆𝛼+𝛽+1 ∫
∞

0

𝑒−𝜆𝑡𝑉 (𝑡) 𝑥 𝑑𝑡 − 𝜆𝛼+𝛽+1

× ∫
∞

0

𝑒−𝜆𝑡𝐴𝑉 (𝑡) 𝑥 𝑑𝑡

= 𝜆𝛼+𝛽+1 ∫
∞

0

𝑒−𝜆𝑡𝑉 (𝑡) 𝑥 𝑑𝑡 − 𝜆𝛽+1

× ∫
∞

0

𝑒−𝜆𝑡
𝑐

𝐷𝛼
𝑡
𝑉 (𝑡) 𝑥 𝑑𝑡 + 𝜆𝛽+1

× ∫
∞

0

𝑒−𝜆𝑡𝑔
𝛽+1

(𝑡) 𝑥 𝑑𝑡

= 𝜆𝛼+𝛽+1�̂� (𝜆) 𝑥 − 𝜆𝛽+1𝜆𝛼�̂� (𝜆) 𝑥

+ 𝜆𝛽+1𝜆−(𝛽+1)𝑥 = 𝑥.

(56)

Now, we show that (𝜆𝛼−𝐴) is injective for 𝜆 > 𝜔. Assume
that (𝜆𝛼 − 𝐴)𝑥 = 0 for some 𝑥 ∈ 𝐷(𝐴) and 𝜆 > 𝜔. Then, by
themethod of Laplace transform, we have that the solution of
(53) is 𝑡𝛼+𝛽𝐸

𝛼,𝛼+𝛽+1
(𝜆𝛼𝑡𝛼). Since ‖V

𝑥
(𝑡)‖ ≤ 𝑀𝑒𝜔𝑡, for all 𝑡 ≥ 0,

combine with (15), it follows that 𝑥 = 0. Hence (𝜆𝛼 − 𝐴)−1 =
𝑄(𝜆) for 𝜆 > 𝜔 and 𝑉(𝑡) is an (𝛼, 𝛼 + 𝛽)-ROF. Let

𝑆
𝛼,𝛽

(𝑡) 𝑥 := 𝑐𝐷
𝛼

𝑡
𝑉 (𝑡) 𝑥 = 𝐴𝑉 (𝑡) 𝑥 + 𝑔

𝛽+1
(𝑡) 𝑥; (57)

then 𝑆
𝛼,𝛽

(𝑡)𝑥 exists and 𝑉(𝑡)𝑥 = 𝐽𝛼
𝑡
𝑆
𝛼,𝛽

(𝑡)𝑥 for all 𝑡 ≥ 0 and
all 𝑥 ∈ 𝑋. So

𝑆
𝛼,𝛽

(𝑡) 𝑥 = 𝐴𝐽𝛼
𝑡
𝑆
𝛼,𝛽

(𝑡) 𝑥 + 𝑔
𝛽+1

(𝑡) 𝑥, (58)

and taking the Laplace transform, we have

𝑆
𝛼,𝛽

(𝜆) 𝑥= 𝐴𝜆−𝛼𝑆
𝛼,𝛽

(𝜆) 𝑥 + 𝜆−𝛽−1𝑥, 𝜆 > 𝜔; (59)
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that is,

𝑆
𝛼,𝛽

(𝜆) 𝑥 = 𝜆𝛼−𝛽−1(𝜆𝛼 − 𝐴)
−1

𝑥, 𝜆 > 𝜔. (60)

From Lemma 3, we know that 𝑆
𝛼,𝛽

is the (𝛼, 𝛽)-ROF gener-
ated by 𝐴.

Remark 16. Theorem 15 extends and generalizes Theorem
3.2.13 in [2]. In fact, when 𝛼 = 1 and 𝛽 = 𝑘, (53) becomes
(5), 𝑆
𝛼,𝛽

(𝑡) is a 𝑘-times integrated semigroup. For problem
(5), the condition 𝐴V

𝑥
∈ 𝐿1loc(R

+; 𝑋) in (ii) is not necessary.
Since from the proof of Theorem 3.2.13 in [2], it is easy to
see that the assumption that exponentially boundedness of
the unique classical solution to the problem (5) imply that
𝐴V
𝑥
∈ 𝐿1loc(R

+; 𝑋).
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Birkhäuser, Basel, Switzerland, 1993.

[20] K. S. Miller and B. Ross, An Introduction to the Fractional
Calculus and Fractional Differential Equations, John Wiley &
Sons, New York, NY, USA, 1993.

[21] I. Podlubny, Fractional Differential Equations, vol. 198 ofMath-
ematics in Science and Engineering, Academic Press, San Diego,
Calif, USA, 1999.


