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The Bäcklund transformation of fractional Riccati equation with nonlinear superposition principle of solutions is employed to
establish the infinite sequence solutions of nonlinear fractional partial differential equations in the sense of modified Riemann-
Liouville derivative. To illustrate the reliability of the method, some examples are provided.

1. Introduction

Recently, nonlinear fractional differential equations increas-
ingly are used to describe nonlinear phenomena in fluid
mechanics, biology, engineering, physics, and other areas of
science [1–3]. Much efforts have been spent in recent years to
develop various techniques to deal with fractional differential
equations. However, for the nonlinear differential equations
including fractional calculus, the analytical or numerical
results are usually difficult to be obtained. It is therefore
needed to find a proper method to solve the problem of non-
linear differential equations containing fractional calculus.

In the past, several methods have been formulated,
such as Adomian decomposition method [4, 5], variational
iteration method [6, 7], homotopy perturbation method [8,
9], differential transformmethod [10, 11], and fractional sube-
quation method [12–14]. S. Zhang and H.-Q. Zhang [12] first
proposed a new direct method called fractional subequation
method in solving nonlinear time fractional biological pop-
ulation model and (4 + 1)-dimensional space-time fractional
Fokas equation, based on the homogeneous balance principle
and Jumarie’s modified Riemann-Liouville derivative.

In this paper, based on the Bäcklund transformation tech-
nique and the known seed solutions, we will devise effective
way for solving fractional partial differential equations. It
will be shown that the use of the Bäcklund transformation
allows us to obtain new exact solutions from the known seed
solutions.

2. Bäcklund Transformation of
the Fractional Riccati Equation and
Nonlinear Superposition Principle

Firstly, we give some definitions and properties of the modi-
fied Riemann-Liouville derivative [15] which are used in this
paper.

Assume that 𝑓 : 𝑅 → 𝑅, 𝑥 → 𝑓(𝑥) denote a continuous
(but not necessarily differentiable) function, and let ℎ denote
a constant discretization span. Jumarie defined the fractional
derivative in the limit form

𝑓
𝛼

(𝑥) := lim
ℎ↓0

Δ
𝛼

[𝑓 (𝑥) − 𝑓 (0)]

ℎ
𝛼

, 0 < 𝛼 < 1, (1)

where

Δ
𝛼

𝑓 (𝑥) =

∞

∑

𝑘=0

(−1)
𝑘

Γ (1 + 𝛼)

Γ (1 + 𝑘) Γ (𝛼 − 𝑘 + 1)

× 𝑓 [𝑥 + (𝛼 − 𝑘) ℎ] .

(2)

This definition is close to the standard definition of the
derivative (calculus for beginners), and as a direct result, the
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𝛼th derivative of a constant, 0 < 𝛼 < 1, is zero. An alternative,
which is strictly equivalent to (1) is as follows:

𝑓
𝛼

(𝑥) :=
1

Γ (1 − 𝛼)

𝑑

𝑑𝑥
∫

𝑥

0

(𝑥 − 𝜉)
−𝛼

[𝑓 (𝜉) − 𝑓 (0)] 𝑑𝜉,

0 < 𝛼 < 1,

𝑓
𝛼

(𝑥) := (𝑓
(𝑛)

(𝑥))
(𝛼−𝑛)

, 𝑛 ≤ 𝛼 ≤ 𝑛 + 1, 𝑛 ≥ 1.

(3)

Some properties of the fractional modified Riemann-
Liouville derivative that were summarized in four useful
formulas of them are

𝐷
𝛼

𝑥
𝑥
𝛾

=
Γ (1 + 𝛾)

Γ (1 + 𝛾 − 𝛼)
𝑥
𝛾−𝛼

, 𝛾 > 0, (4)

𝐷
𝛼

𝑥
(𝑢 (𝑥) V (𝑥)) = V (𝑥)𝐷𝛼

𝑥
𝑢 (𝑥) + 𝑢 (𝑥)𝐷

𝛼

𝑥
V (𝑥) , (5)

𝐷
𝛼

𝑥
[𝑓 (𝑢 (𝑥))] = 𝑓



𝑢
(𝑢)𝐷
𝛼

𝑥
𝑢 (𝑥) , (6)

𝐷
𝛼

𝑥
[𝑓 (𝑢 (𝑥))] = 𝐷

𝛼

𝑢
𝑓 (𝑢) (𝑢



𝑥
)
𝛼

, (7)

which are direct consequences of the equality 𝑑𝛼𝑥(𝑡) = Γ(1 +
𝛼)𝑑𝑥(𝑡) which holds for nondifferentiable functions. In the
above formulas (5)-(6), 𝑢(𝑥) is nondifferentiable function in
(5) and (6) and differentiable in (7), V(𝑥) is nondifferentiable,
and 𝑓(𝑢) is differentiable in (6) and nondifferentiable in (7).

Recall the fractional Riccati equation:

𝐷
𝛼

𝜉
𝜙 (𝜉) = 𝜎 + 𝜙

2

(𝜉) , 0 < 𝛼 ≤ 1, (8)

S. Zhang and H.-Q. Zhang [12] derived some exact solutions
to (8) as follows:

𝜙 (𝜉) =

{{{{{{{{

{{{{{{{{

{

−√−𝜎 tanh
𝛼
(√−𝜎𝜉) , 𝜎 < 0,

−√−𝜎coth
𝛼
(√−𝜎𝜉) , 𝜎 < 0,

√𝜎 tan
𝛼
(√𝜎𝜉) , 𝜎 > 0,

−√𝜎cot
𝛼
(√𝜎𝜉) , 𝜎 > 0,

−
Γ (1 + 𝛼)

𝜉
𝛼
+ 𝜔

, 𝜔 = const, 𝜎 = 0,

(9)

where the generalized hyperbolic and trigonometric func-
tions are defined as

sin
𝛼
(𝜉) =

𝐸
𝛼
(𝑖𝜉
𝛼

) − 𝐸
𝛼
(−𝑖𝜉
𝛼

)

2𝑖
,

cos
𝛼
(𝜉) =

𝐸
𝛼
(𝑖𝜉
𝛼

) + 𝐸
𝛼
(−𝑖𝜉
𝛼

)

2𝑖
,

tan
𝛼
(𝜉) =

sin
𝛼
(𝜉)

cos
𝛼
(𝜉)
, cot

𝛼
(𝜉) =

cos
𝛼
(𝜉)

sin
𝛼
(𝜉)
,

sinh
𝛼
(𝜉) =

𝐸
𝛼
(𝜉
𝛼

) − 𝐸
𝛼
(−𝜉
𝛼

)

2
,

cosh
𝛼
(𝜉) =

𝐸
𝛼
(𝜉
𝛼

) + 𝐸
𝛼
(−𝜉
𝛼

)

2
,

tanh
𝛼
(𝜉) =

sinh
𝛼
(𝜉)

cosh
𝛼
(𝜉)
, coth

𝛼
(𝜉) =

cosh
𝛼
(𝜉)

sinh
𝛼
(𝜉)
,

(10)

where 𝐸
𝛼
(𝜉) = ∑

∞

𝑘=0
(𝜉
𝑘

/Γ(1 + 𝑘𝛼)) (𝛼 > 0) is the Mittag-
Leffler function.

Next, we introduce the Bäcklund transformation of frac-
tional Riccati equation (8):

𝜙 (𝜉) =
𝐴
1
+ 𝐴
2
𝜙 (𝜉) + 𝐴

3
𝜙(𝜉)
2

+ 𝐴
4
𝜙(𝜉)
3

+ 𝐴
5
𝜙(𝜉)
4

𝐵
1
+ 𝐵
2
𝜙 (𝜉) + 𝐵

3
𝜙(𝜉)
2

+ 𝐵
4
𝜙(𝜉)
3

+ 𝐵
5
𝜙(𝜉)
4
;

(11)

that is, 𝜙(𝜉) satisfies the fractional Riccati equation

𝐷
𝛼

𝜉
𝜙 (𝜉) = 𝜎 + 𝜙

2

(𝜉) , (12)

where 𝐴
𝑖
(𝑖 = 1, . . . , 4), 𝐵

1
are arbitrary parameters, 𝐴

5
=

(𝐴
2
𝐵
2

1
− 𝐵
3

1
−𝐴
1
𝐴
3
𝐵
1
+𝐴
2

1
𝐴
4
)𝐵
1
/𝐴
3

1
, 𝐵
2
= (𝜎(𝐴

2
𝐵
1
− 𝐵
2

1
) −

𝐴
2

1
)/𝜎𝐴
1
,𝐵
3
= (𝜎(𝐵

3

1
−𝐴
2
𝐵
2

1
+𝐴
1
𝐴
3
𝐵
1
)+𝐵
1
𝐴
2

1
−𝐴
2

1
𝐴
2
)/𝜎𝐴
2

1
,

𝐵
4
= (𝜎(𝐵

3

1
𝐴
2
−𝐵
4

1
−𝐴
1
𝐴
3
𝐵
2

1
+𝐴
2

1
𝐴
4
𝐵
1
)+𝐵
1
𝐴
2

1
𝐴
2
−𝐴
2

1
𝐵
2

1
−

𝐴
3

1
𝐴
3
)/𝜎𝐴
3

1
, 𝐵
5
= (𝐴
1
𝐴
3
𝐵
1
− 𝐴
2

1
𝐴
4
+ 𝐵
3

1
− 𝐴
2
𝐵
2

1
)/𝜎𝐴
2

2
and

𝜙(𝜉) are the known solutions (9).
Specially, if we take 𝐴

3
= 𝐴
4
= 𝐴
5
= 𝐵
3
= 𝐵
4
= 𝐵
5
=

0 in (11), the Bäcklund transformation of factional Riccati
equation can be obtained as

𝜙 (𝜉) =
−𝜎𝐴
1
+ 𝐵
1
𝜙 (𝜉)

𝐵
1
+ 𝐴
1
𝜙 (𝜉)

. (13)

By means of solutions 𝜙(𝜉) (9), we can construct the fol-
lowing infinite sequence exact solutions of fractional Riccati
equation (8). Here in the following cases we given several
Bäcklund transformations of solutions.

Case 1. When 𝜎 < 0, if 𝜙
𝑘−1
(𝜉) is the solution of fractional

Riccati equation (8), then the following 𝜙
𝑘
(𝜉) are also the

solutions of (8):

𝜙
𝑘
(𝜉)

=
𝐴
1
+𝐴
2
𝜙
𝑘−1
(𝜉)+𝐴

3
𝜙
𝑘−1
(𝜉)
2

+𝐴
4
𝜙
𝑘−1
(𝜉)
3

+𝐴
5
𝜙
𝑘−1
(𝜉)
4

𝐵
1
+ 𝐵
2
𝜙
𝑘−1
(𝜉) + 𝐵

3
𝜙
𝑘−1
(𝜉)
2

+𝐵
4
𝜙
𝑘−1
(𝜉)
3

+𝐵
5
𝜙
𝑘−1
(𝜉)
4
,

𝜙
0
(𝜉) = −√−𝜎 tanh

𝛼
[√−𝜎 (𝜉)] .

(14)

Case 2. When 𝜎 < 0, if 𝜙
𝑘−1
(𝜉) is the solution of fractional

Riccati equation (8), then the following 𝜙
𝑘
(𝜉) are also the

solutions of (8):

𝜙
𝑘
(𝜉)

=
𝐴
1
+ 𝐴
2
𝜙
𝑘−1
(𝜉)+𝐴

3
𝜙
𝑘−1
(𝜉)
2

+𝐴
4
𝜙
𝑘−1
(𝜉)
3

+𝐴
5
𝜙
𝑘−1
(𝜉)
4

𝐵
1
+ 𝐵
2
𝜙
𝑘−1
(𝜉) + 𝐵

3
𝜙
𝑘−1
(𝜉)
2

+ 𝐵
4
𝜙
𝑘−1
(𝜉)
3

+ 𝐵
5
𝜙
𝑘−1
(𝜉)
4
,

𝜙
0
(𝜉) = −√−𝜎 coth

𝛼
[√−𝜎 (𝜉)] .

(15)
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Case 3. When 𝜎 > 0, if 𝜙
𝑘−1
(𝜉) is the solution of fractional

Riccati equation (8), then the following 𝜙
𝑘
(𝜉) are also the

solutions of (8):

𝜙
𝑘
(𝜉)

=
𝐴
1
+ 𝐴
2
𝜙
𝑘−1
(𝜉)+𝐴

3
𝜙
𝑘−1
(𝜉)
2

+𝐴
4
𝜙
𝑘−1
(𝜉)
3

+ 𝐴
5
𝜙
𝑘−1
(𝜉)
4

𝐵
1
+ 𝐵
2
𝜙
𝑘−1
(𝜉) + 𝐵

3
𝜙
𝑘−1
(𝜉)
2

+ 𝐵
4
𝜙
𝑘−1
(𝜉)
3

+𝐵
5
𝜙
𝑘−1
(𝜉)
4
,

𝜙
0
(𝜉) = √𝜎 tan

𝛼
[√𝜎 (𝜉)] .

(16)

Case 4. When 𝜎 > 0, if 𝜙
𝑘−1
(𝜉) is the solution of fractional

Riccati equation (8), then the following 𝜙
𝑘
(𝜉) are also the

solutions of (8):

𝜙
𝑘
(𝜉)

=
𝐴
1
+ 𝐴
2
𝜙
𝑘−1
(𝜉)+𝐴

3
𝜙
𝑘−1
(𝜉)
2

+𝐴
4
𝜙
𝑘−1
(𝜉)
3

+ 𝐴
5
𝜙
𝑘−1
(𝜉)
4

𝐵
1
+ 𝐵
2
𝜙
𝑘−1
(𝜉) + 𝐵

3
𝜙
𝑘−1
(𝜉)
2

+𝐵
4
𝜙
𝑘−1
(𝜉)
3

+ 𝐵
5
𝜙
𝑘−1
(𝜉)
4
,

𝜙
0
(𝜉) = −√𝜎cot

𝛼
[√𝜎 (𝜉)] ,

(17)

where 𝐴
𝑖
(𝑖 = 1, . . . , 4), 𝐵

1
are arbitrary parameters, 𝐴

5
=

(𝐴
2
𝐵
2

1
− 𝐵
3

1
−𝐴
1
𝐴
3
𝐵
1
+𝐴
2

1
𝐴
4
)𝐵
1
/𝐴
3

1
, 𝐵
2
= (𝜎(𝐴

2
𝐵
1
− 𝐵
2

1
) −

𝐴
2

1
)/𝜎𝐴
1
,𝐵
3
= (𝜎(𝐵

3

1
−𝐴
2
𝐵
2

1
+𝐴
1
𝐴
3
𝐵
1
)+𝐵
1
𝐴
2

1
−𝐴
2

1
𝐴
2
)/𝜎𝐴
2

1
,

𝐵
4
= (𝜎(𝐵

3

1
𝐴
2
−𝐵
4

1
−𝐴
1
𝐴
3
𝐵
2

1
+𝐴
2

1
𝐴
4
𝐵
1
)+𝐵
1
𝐴
2

1
𝐴
2
−𝐴
2

1
𝐵
2

1
−

𝐴
3

1
𝐴
3
)/𝜎𝐴
3

1
, and 𝐵

5
= (𝐴
1
𝐴
3
𝐵
1
− 𝐴
2

1
𝐴
4
+ 𝐵
3

1
− 𝐴
2
𝐵
2

1
)/𝜎𝐴
2

2
.

Case 5. When 𝜎 = 0, if 𝜙
𝑘−1
(𝜉) is the solution of fractional

Riccati equation (8), then the following 𝜙
𝑘
(𝜉) are also the

solutions of (8):

𝜙
𝑘
(𝜉) =

𝐵
1
𝜙
𝑘−1
(𝜉)

𝐵
1
+ 𝐵
2
𝜙
𝑘−1
(𝜉)
,

𝜙
0
(𝜉) = −

Γ (1 + 𝛼)

𝜉
𝛼
+ 𝜔

,

(18)

where 𝐵
1
, 𝐵
2
are arbitrary constant, and 𝐵

2
̸= 0.

Nonlinear Superposition Principle. (1) If 𝜙
𝑘−1
(𝜉), 𝜙

𝑘−2
(𝜉) are

the solutions of fractional Riccati equation (8), respectively,
then the following 𝜙

𝑘
(𝜉) (𝑘 = 2, 3, . . .) are also the solutions

of (8) which read

𝜙
𝑘
(𝜉) = (𝜎√−𝜎 (−2𝑎

1
+ 𝑎
2
) − 𝑎
1
(𝜙
𝑘−1
(𝜉) + 𝜙

𝑘−2
(𝜉))

+𝑎
2
√−𝜎𝜙

𝑘−1
(𝜉) 𝜙
𝑘−2
(𝜉))

× (−𝑎
2
+ 𝑎
1
√−𝜎 (𝜙

𝑘−1
(𝜉) 𝜙
𝑘−2
(𝜉))

+ (−2𝑎
1
+ 𝑎
2
) 𝜙
𝑘−1
(𝜉) 𝜙
𝑘−2
(𝜉) )
−1

,

(19)

where 𝑎
1
, 𝑎
2
are arbitrary nonzero constants.

(2) If 𝜙
𝑘−1
(𝜉), 𝜙

𝑘−2
(𝜉), and 𝜙

𝑘−3
(𝜉) are the solutions

of fractional Riccati equation (8), respectively, then the

following 𝜙
𝑘
(𝜉) (𝑘 = 2, 3, . . .) are also the solutions of (8)

which read
𝜙
𝑘
(𝜉) = (𝜙

𝑘−1
(𝜉) (𝜙
𝑘−3
(𝜉) − 𝜙

𝑘−2
(𝜉))

−𝑐𝜙
𝑘−2
(𝜉) (𝜙
𝑘−3
(𝜉) − 𝜙

𝑘−1
(𝜉)))

× (𝜙
𝑘−3
(𝜉) − 𝜙

𝑘−2
(𝜉)

−𝑐 (𝜙
𝑘−3
(𝜉) − 𝜙

𝑘−1
(𝜉)))
−1

,

(20)

where 𝑐 is an arbitrary nonzero constant.
Applying the nonlinear superposition formulas (19)-(20),

we can obtain the following new infinite sequence exact
solutions of fractional Riccati equation (8). For example,
when 𝜎 < 0, we can get the infinite sequence new solutions
𝜙
𝑙
(𝜉) (𝑙 = 2, 3, . . .) as follows:

𝜙
𝑙
(𝜉) = 𝜙

𝑘
(𝜉)

= (𝜎√−𝜎 (−2𝑎
1
+ 𝑎
2
) − 𝑎
1
(𝜙
𝑘−1
(𝜉) + 𝜙

𝑘−2
(𝜉))

+𝑎
2
√−𝜎𝜙

𝑘−1
(𝜉) 𝜙
𝑘−2
(𝜉))

× (−𝑎
2
+ 𝑎
1
√−𝜎 (𝜙

𝑘−1
(𝜉) 𝜙
𝑘−2
(𝜉))

+ (−2𝑎
1
+ 𝑎
2
) 𝜙
𝑘−1
(𝜉) 𝜙
𝑘−2
(𝜉) )
−1

,

(𝑙 = 2, 3, . . .) ,

(21)

𝜙
0
(𝜉) = −√−𝜎 tanh

𝛼
[√−𝜎 (𝜉)] , (22)

𝜙
𝑘
(𝜉) = (𝐴

1
+ 𝐴
2
𝜙
𝑘−1
(𝜉) + 𝐴

3
𝜙
𝑘−1
(𝜉)
2

+𝐴
4
𝜙
𝑘−1
(𝜉)
3

+ 𝐴
5
𝜙
𝑘−1
(𝜉)
4

)

× (𝐵
1
+ 𝐵
2
𝜙
𝑘−1
(𝜉) + 𝐵

3
𝜙
𝑘−1
(𝜉)
2

+𝐵
4
𝜙
𝑘−1
(𝜉)
3

+ 𝐵
5
𝜙
𝑘−1
(𝜉)
4

)
−1

,

(23)

where 𝑎
1
, 𝑎
2
are arbitrary nonzero constants.

3. Summary of the Method

In this section, we describe the main steps of the fractional
subequation method for finding exact solutions of fractional
differential equations.

Let us consider the fractional differential equation with
independent variables 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
, 𝑡) and dependent

variable 𝑢,

𝐹 (𝑢, 𝑢
𝑡
, 𝑢
𝑥
1

, 𝑢
𝑥
2

, 𝑢
𝑥
3

, 𝐷
𝛼

𝑡
𝑢,𝐷
𝛼

𝑥
1

𝑢,𝐷
𝛼

𝑥
2

𝑢,𝐷
𝛼

𝑥
3

𝑢, . . .) = 0, (24)

where𝐷𝛼
𝑡
𝑢,𝐷𝛼
𝑥
1

𝑢,𝐷𝛼
𝑥
2

𝑢, and𝐷𝛼
𝑥
3

𝑢 are themodifiedRiemann-
Liouville derivatives of 𝑢 with respect to 𝑡, 𝑥

1
, 𝑥
2
, and 𝑥

3
,

respectively.

Step 1. Using the variable transformation

𝑢 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
, 𝑡) = 𝑢 (𝜉) ,

𝜉 = 𝑥
1
+ 𝑙
1
𝑥
2
+ ⋅ ⋅ ⋅ + 𝑙

𝑚−1
𝑥
𝑚
+ 𝜆𝑡 + 𝜉

0
,

(25)
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where 𝑙
𝑖
(𝑖 = 1, . . . , 𝑚 − 1) and 𝜆 are constants to be

determined later, the fractional differential equation (24)
is reduced to a nonlinear fractional ordinary differential
equation

𝐻(𝑢 (𝜉) , 𝑢


(𝜉) , 𝑢


(𝜉) , 𝐷
𝛼

𝜉
𝑢 (𝜉) , . . .) = 0, (26)

where “ ” = 𝑑/𝑑(𝜉).

Step 2. We suppose that (26) has the following solution:

𝑢 (𝜉) =

𝑛

∑

𝑗=0

𝑎
𝑗
𝜓
𝑗

(𝜉) , (27)

where 𝑎
𝑗
(𝑗 = 0, . . . , 𝑛) are constants to be determined,

positive integer 𝑛 can be determined by balancing the highest
order derivatives and nonlinear terms in (24) or (26), and
𝜓(𝜉) comes from the following Bäcklund transformation for
the fractional Riccati equation:

𝜓 (𝜉) =
𝐴
1
+ 𝐴
2
𝜙 (𝜉) + 𝐴

3
𝜙(𝜉)
2

+ 𝐴
4
𝜙(𝜉)
3

+ 𝐴
5
𝜙(𝜉)
4

𝐵
1
+ 𝐵
2
𝜙 (𝜉) + 𝐵

3
𝜙(𝜉)
2

+ 𝐵
4
𝜙(𝜉)
3

+ 𝐵
5
𝜙(𝜉)
4
;

(28)

that is, 𝜓(𝜉) satisfies the fractional Riccati equation

𝐷
𝛼

𝜉
𝜓 (𝜉) = 𝜎 + 𝜓

2

(𝜉) , 0 < 𝛼 ≤ 1, (29)

where 𝜙(𝜉) are the known solutions of (8).

Step 3. Substituting the explicit formal solution (27) into (26)
and setting the coefficients of the powers of 𝜓

𝑖
(𝜉) to be zero,

we obtain an overdetermined nonlinear algebraic system in
𝑎
𝑗
(𝑗 = 0, . . . , 𝑛), 𝑙

𝑖
(𝑖 = 1, . . . , 𝑚 − 1), and 𝜆.

Step 4. Solving the nonlinear algebraic system yields the
explicit expressions of the parameters 𝑎

𝑗
(𝑗 = 0, . . . , 𝑛), 𝑙

𝑖
(𝑖 =

1, . . . , 𝑚 − 1), and 𝜆. Then substituting these values into (27),
we may obtain the exact solutions of the nonlinear fractional
differential equation (24).

4. Applications of the Method

In this section, we present two examples to illustrate the
applicability of the our method to solve nonlinear fractional
partial differential equations.

Example 1. We first consider the space-time fractional bidi-
rectional wave equations in the form [16]

𝐷
𝛼

𝑡
V + 𝐷𝛼

𝑥
𝑢 + 𝑢𝐷

𝛼

𝑥
V + V𝐷𝛼

𝑥
𝑢

+ 𝑎𝐷
𝛼

𝑥
𝐷
𝛼

𝑥
𝐷
𝛼

𝑥
𝑢 − 𝑏𝐷

𝛼

𝑥
𝐷
𝛼

𝑥
𝐷
𝛼

𝑡
V = 0, 0 < 𝛼 ≤ 1,

(30)

𝐷
𝛼

𝑡
𝑢 + 𝐷

𝛼

𝑥
V + 𝑢𝐷𝛼

𝑥
𝑢

+ 𝑐𝐷
𝛼

𝑥
𝐷
𝛼

𝑥
𝐷
𝛼

𝑥
V − 𝑑𝐷𝛼

𝑥
𝐷
𝛼

𝑥
𝐷
𝛼

𝑡
𝑢 = 0,

(31)

where 𝑥 represents the distance along the channel, 𝑡 is
the elapsed time, the variable V(𝑥, 𝑡) is the dimensionless

deviation of the water surface from its undisturbed position,
𝑢(𝑥, 𝑡) is the dimensionless horizontal velocity, 𝑎, 𝑏, 𝑐 are
real constants. When 𝛼 = 1, (30) is the generalization of
bidirectional wave equations, which can be used as a model
equation for the propagation of long waves on the surface of
water with a small amplitude.

For our purpose, we introduce the following transforma-
tions:

𝑢 (𝑥, 𝑡) = 𝑢 (𝜉) , V (𝑥, 𝑡) = V (𝜉) , 𝜉 = 𝑥 + 𝜆𝑡 + 𝜉
0
, (32)

where 𝜆 is constant.
Substituting (32) into (30), we can know that (30) is

reduced into a fractional ordinary differential equations:

𝜆
𝛼

𝐷
𝛼

𝜉
V + 𝐷𝛼

𝜉
𝑢 + 𝑢𝐷

𝛼

𝜉
V + V𝐷𝛼

𝜉
𝑢

+ 𝑎𝐷
𝛼

𝜉
𝐷
𝛼

𝜉
𝐷
𝛼

𝜉
𝑢 − 𝑏𝜆

𝛼

𝐷
𝛼

𝜉
𝐷
𝛼

𝜉
𝐷
𝛼

𝜉
V = 0, 0 < 𝛼 ≤ 1,

(33)

𝜆
𝛼

𝐷
𝛼

𝜉
𝑢 + 𝐷

𝛼

𝜉
V + 𝑢𝐷𝛼

𝜉
𝑢

+ 𝑐𝐷
𝛼

𝜉
𝐷
𝛼

𝜉
𝐷
𝛼

𝜉
V − 𝑑𝜆𝛼𝐷𝛼

𝜉
𝐷
𝛼

𝜉
𝐷
𝛼

𝜉
𝑢 = 0.

(34)

We suppose that (33) has the solution in the form

𝑢 (𝜉) = 𝑎
0
+

𝑛

∑

𝑖=1

𝑎
𝑖
𝜙(𝜉)
𝑖

,

V (𝜉) = 𝑏
0
+

𝑚

∑

𝑗=1

𝑏
𝑗
𝜙(𝜉)
𝑗

.

(35)

Balancing the highest order derivative terms and nonlin-
ear terms in (33), we have𝑚 = 𝑛 = 2. Substituting (35) given
the value of 𝑛 = 2 and𝑚 = 2 along with (8) into (33) and then
setting the coefficients of 𝜙(𝜉) to zero, we can obtain a set of
algebraic equations about 𝑎

0
, 𝑎
1
, 𝑎
2
, 𝑏
0
, 𝑏
1
, 𝑏
2
, and 𝜆. Solving

the algebraic equations by Maple, we have,

𝑎
0
= −𝜆
𝛼

−
12𝑑𝜆
𝛼

− 𝑎
2
(1 + 8𝑐𝜎)

12𝑐
, 𝑎
1
= 0,

𝑏
0
= −1 − 4𝑎𝜎 −

(𝑎
2
− 12𝜆

𝛼

𝑑) (2𝑑 + 8𝑏𝑐𝜎 − 𝑏) 𝜆
𝛼

24𝑐
2

,

𝑏
1
= 0, 𝑏

2
= −6𝑎 +

𝑏𝜆
𝛼

(12𝑑𝜆
𝛼

− 𝑎
2
)

2𝑐
,

(36)

where 𝜆, 𝑎
2
are arbitrary constants.

Substituting the above result into (35), we obtain new
types of exact solutions of (30) as follows:

𝑢
𝑘
(𝜉) = −𝜆

𝛼

−
12𝑑𝜆
𝛼

− 𝑎
2
(1 + 8𝑐𝜎)

12𝑐
+ 𝑎
2
𝜙
𝑘
(𝜉)
2

,

V
𝑘
(𝜉) = − 1 − 4𝑎𝜎 −

(𝑎
2
− 12𝜆

𝛼

𝑑) (2𝑑 + 8𝑏𝑐𝜎 − 𝑏) 𝜆
𝛼

24𝑐
2

− 6𝑎 +
𝑏𝜆
𝛼

(12𝑑𝜆
𝛼

− 𝑎
2
)

2𝑐
𝜙
𝑘
(𝜉)
2

, 𝑘 = 0, 1, . . . .

(37)

The expression 𝜙
𝑘
(𝜉) appearing in these solutions is given by

relations (14)–(18) and the nonlinear superposition formulas
(19)-(20), where 𝜉 = 𝑥+𝜆𝑡+𝜉

0
, 𝑎
2
, 𝜆, and 𝜎 are real constants.



Abstract and Applied Analysis 5

Example 2. We consider the following space-time fractional
Sharma-Tasso-Olver (STO) equation [17] in the form

𝐷
𝛼

𝑡
𝑢 + 3𝑎(𝐷

𝛼

𝑥
𝑢)
2

+ 3𝑎𝑢
2

𝐷
𝛼

𝑥
𝑢 + 3𝑎𝑢𝐷

𝛼

𝑥
𝐷
𝛼

𝑥
𝑢

+ 𝑎𝐷
𝛼

𝑥
𝐷
𝛼

𝑥
𝐷
𝛼

𝑥
𝑢 = 0, 0 < 𝛼 ≤ 1,

(38)

where 𝑎 is an arbitrary constant and 𝛼 is a parameter
describing the order of the fractional derivative.When 𝛼 = 1,
(38) is the generalization of classical nonlinear STO equation,
which was first derived as an example of odd members of
Burgers hierarchy by Tasso.

For our purpose, we introduce the following transforma-
tions:

𝑢 (𝑥, 𝑡) = 𝑢 (𝜉) , 𝜉 = 𝑥 + 𝜆𝑡 + 𝜉
0
, (39)

where 𝜆 is constant.
Substituting (39) into (38), we can know that (38) is

reduced into a fractional ordinary differential equation:

𝜆
𝛼

𝐷
𝛼

𝜉
𝑢 + 3𝑎(𝐷

𝛼

𝜉
𝑢)
2

+ 3𝑎𝑢
2

𝐷
𝛼

𝜉
𝑢

+ 3𝑎𝑢𝐷
𝛼

𝜉
𝐷
𝛼

𝜉
𝑢 + 𝑎𝐷

𝛼

𝜉
𝐷
𝛼

𝜉
𝐷
𝛼

𝜉
𝑢 = 0.

(40)

We suppose that (40) has the solution in the form

𝑢 (𝜉) = 𝑎
0
+

𝑛

∑

𝑖=1

𝑎
𝑖
𝜙(𝜉)
𝑖

. (41)

Balancing 𝑢𝐷𝛼
𝜉
𝐷
𝛼

𝜉
𝑢 and𝐷𝛼

𝜉
𝐷
𝛼

𝜉
𝐷
𝛼

𝜉
𝑢, we have 2𝑛 + 2 = 𝑛 +

3 ⇒ 𝑛 = 1. Substituting (41) given the value of 𝑛 = 1 along
with (8) into (40) and then setting the coefficients of 𝜙(𝜉) to
zero, we can obtain a set of algebraic equations about 𝑎

0
, 𝑎
1
,

and 𝜆. Solving the algebraic equations by Maple, we have

𝑎
0
= 0, 𝑎

1
= −2, 𝜎 =

𝜆
𝛼

4𝑎
, (42)

where 𝜆 is an arbitrary constant, and

𝑎
1
= −1, 𝜎 =

𝜆
𝛼

+ 3𝑎𝑎
2

0

𝑎
, (43)

where 𝑎
0
, 𝜆 are arbitrary constants.

Substituting the above results into (41), we obtain new
types of exact solutions of (38) as follows:

𝑢
1,𝑘
(𝑥, 𝑡) = −2𝜙

𝑘
(𝜉) , 𝑘 = 0, 1, . . . . (44)

The expression 𝜙
𝑘
(𝜉) appearing in these solutions is given by

relations (14)–(18) and the nonlinear superposition formulas
(19)-(20), where 𝜎 = 𝜆𝛼/4𝑎, 𝜉 = 𝑥 + 𝜆𝑡 + 𝜉

0
, and

𝑢
2,𝑘
(𝑥, 𝑡) = 𝑎

0
− 𝜙
𝑘
(𝜉) , 𝑘 = 0, 1, . . . . (45)

The expression 𝜙
𝑘
(𝜉) appearing in these solutions is given by

relations (14)–(18) and the nonlinear superposition formulas
(19)-(20), where 𝜎 = (𝜆𝛼 + 3𝑎𝑎2

0
)/𝑎 and 𝜉 = 𝑥 + 𝜆𝑡 + 𝜉

0
.

5. Conclusion

Bäcklund transformation of the fractional Riccati equation
with nonlinear superposition principle of known solutions
is applied successfully for solving the system of nonlinear
fractional differential equation. To the best of our knowledge,
the solutions obtained in this paper have not been reported
in the literature. It can be concluded that this method is very
simple and reliable and proposes a variety of exact solutions
to fractional differential equations.
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