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We investigated a nonlinearmodel of the interaction between nutrients and plankton, which was addressed using a pair of reaction-
advection-diffusion equations. Based on numerical analysis, we studied amodel without diffusion and sinking terms, and we found
that the phytoplankton density (a stable state) increased with the increase of nutrient density. We analyzed the model using a linear
analysis technique and found that the sinking of phytoplankton could affect the system. If the sinking velocity exceeded a certain
critical value, the stable state became unstable and the wavelength of phytoplankton increased with the increase of sinking velocity.
Furthermore, band patterns were also produced by our model, which was affected by the diffusion and sinking of phytoplankton.
Thus, the change in the diffusion and sinking of phytoplankton led to different spatial distributions of phytoplankton. All of these
results are expected to be useful in the study of plankton dynamics in aquatic ecosystems.

1. Introduction

Plankton play an important role in the ecology of the ocean
and climate because of their participation in the global
carbon cycle at the base of the food chain [1]. In certain
environmental conditions, lakes, reservoir, andmarinewaters
may experience plankton or algal blooms [2, 3]. However, the
local and global impacts of plankton blooms on water quality,
carbon cycling, and climate may be damaging. If nutrient
source is abundant, and some conditions are satisfied, blooms
may become long-term events that affect ecosystems. Plank-
ton blooms can change the types of species present at the base
of the aquatic food web and affect human health. Thus, the
study of plankton dynamics is currently of major interest.

In the past years, there were many researches on the
model between nutrient and phytoplankton and zooplankton
[4–6]. A larger number of researchers have attempted to
model the relationship between nutrient and phytoplankton
and zooplankton, to investigate the dynamics in plankton
model. Truscott and Brindley [7] presented a model for the
evolution of phytoplankton and zooplankton populations
which resembles models for the behavior of excitable media.

Luo [8] investigated phytoplankton-zooplankton dynamics
in periodic environments, where eutrophication was consid-
ered. El Saadi and Bah [9] modeled phytoplankton aggre-
gation using numerical treatment and explored the asymp-
totic behavior of the model. Banerjee and Venturino [10]
studied a phytoplankton-toxic phytoplankton-zooplankton
model and found that the toxic phytoplankton does not
drive the zooplankton population towards extinction under
a certain mechanism. The result is very important for study
on plankton. These works make contributions for the study
on plankton.

In recent years, many ecologists have paid increasing
attention to spatial processes in a wide variety of practical
contexts [11]. For example, theoretical community ecologists
have explored ecosystems, including vegetation systems [12]
and phytoplankton systems [13]. In particular, the modeling
of plankton systems is becoming increasingly important
because of their roles in carbon cycling and temperature
control, particularly their major impacts on global climate
change [14]. These modeling strategies are focused on two
areas: (i) studies of large and complex systems, which are
eventually used to fit field data or to forecast future changes;
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and (ii) studies of skeleton models for various mechanisms,
which canprovide insights or stimulate new experiments [14].

The present study belongs to the latter area. We propose a
model on phytoplankton using a pair of reaction-advection-
diffusion equations, which allow spatial phenomena, such
as sinking, and turbulence to be described directly, thereby
enabling spatial structures to be studied. It is known that
the sinking and mixing of phytoplankton have pronounced
effects on the tendency of different phytoplankton to increase.
Experimental studies indicated thatmost fresh water diatoms
and other phytoplankton sink in undisturbed water [15].
Theoretical results also demonstrated the importance of
sinking, mixing, and diffusion [16, 17]. Theoretical models
predicted that a process with reduced vertical mixing may
induce oscillations and chaos in the phytoplankton of the
deep chlorophyll maxima, which leads to differences in the
timescale between the sinking flux of phytoplankton and
the upward flux of nutrients [18]. A remarkable finding was
the survival of a sinking phytoplankton population even
when the diffusivity in the deep layers could not prevent
population washout [19–21]. Mellard et al. demonstrated how
externally imposed heterogeneity in the form of resource
gradients and mixing interacted with internally generated
heterogeneity in the form of competition, population dynam-
ics, and movement to determine the spatial distribution of
phytoplankton [22]. Ryabov et al. showed that the upper
mixed layer was an important factor that had the potential
to shape the spatial distribution and species composition
of phytoplankton, but it also provided insights with general
ecological importance [23]. van de Koppel et al. studied self-
organized spatial patterning in an algae-mussel model, where
regular spatial patterns were formed in young mussel beds
on soft sediments in the Wadden Sea [24]. Self-organized
spatial patterns are of considerable interest to theoretical
biology [25–30] because of the basic paper by Turing [31] on
the role of nonequilibrium reaction-diffusion prepatterns in
biomorphogenesis. Furthermore, recent modeling studies of
plankton support the self-organized spatial patterns, such as
patchiness [32, 33] and bands [25, 34, 35].

The rest of this paper is organized as follows. In the next
section, we present a model based on the theoretical ecology
and partial differential equations, which is addressed using a
pair of reaction-advection-diffusion equations. In Section 3,
we analyze stable behavior of the nonspatial system firstly.
What is more, the stable behavior of the spatial system is
analyzed. And we obtain the condition under which the
steady state becomes unstable. Finally, a series of simulations
are given.Using simulation,we investigate the effect of critical
factor on the system. In Section 4, discussion and conclusion
are presented.

2. The Model

Natural ecosystems of plankton exhibit great variability in
space and time. The growth of phytoplankton is depen-
dent mainly on nutrients and light. After the mortality
of phytoplankton, nutrients are returned to the system
over short time scales with minimal losses [39] through

microbial decomposition. In addition, biological factors
such as higher predation and physical factors such as the
sinking of phytoplankton into the water column also affect
the ecosystem, which has been examined previously [40].
Turbulence also affects these systems [3, 19, 41]. Vertical
mixing brings nutrients from the lower layers of the ocean
into the mixed layer. Based on the previous analysis, the
following general structure is obtained:

𝜕𝑁

𝜕𝑡
= input − uptake + recycling +mixing, (1a)

𝜕𝑃

𝜕𝑡
= growth −mortality − predation − sinking +mixing,

(1b)

where 𝑁 is the nutrient density and 𝑃 is the phytoplankton
population density.

Dugdale proposed the use of Michaelis-Menten enzyme
kinetics to describe nutrient-phytoplankton interactions
[42]. The Michaelis-Menten equations have the same form
as the well-known Monod equations [43], which are used
in the Droop equations, and they have formed the basis
of a number of modeling studies that aimed to simulate
phytoplankton blooms [44]. Thus, we employed Michaelis-
Menten kinetics in terms of “uptake.” Furthermore, a Holling
type II functional response has been used widely to describe
zooplankton predation in various theoretical studies [45, 46].
It has also been reported that the Holling type II functional
response shows good concordance with experimental data
[33, 47, 48]. Hence, in the present paper, Holling II functional
response is adopted to describe zooplankton grazing on
phytoplankton.Therefore, a pair of specific models is defined
as follows:

𝜕𝑁

𝜕𝑡
= 𝑓 (𝑁, 𝑃) + 𝑑𝑁Δ𝑁 = 𝑘 (𝑁

0
− 𝑁)

− 𝛼𝛽
𝑁

𝐻
𝑁
+ 𝑁

𝑃 + 𝜀𝑚𝑃 + 𝑑
𝑁
Δ𝑁,

(2a)

𝜕𝑃

𝜕𝑡
= 𝑔 (𝑁, 𝑃) − V

𝜕𝑃

𝜕𝑧
+ 𝑑
𝑃
Δ𝑃 = 𝛽

𝑁

𝐻
𝑁
+ 𝑁

𝑃

− 𝑚𝑃 − 𝑓
𝑃

𝑃

𝐻
𝑃
+ 𝑃

− V
𝜕𝑃

𝜕𝑧
+ 𝑑
𝑃
Δ𝑃,

(2b)

where a vertical water column is considered. Let 𝑧 indicate
the depth in the water column; 𝑥 is the width in the
water column. For vertical mixing, we assume that 𝑁

0
is a

constant concentration, which includes the nutrient input
flowing into the system and the nutrient from below the
mixed layer, 𝑘 is the rate of exchange between the lower
and upper layers, 𝛼 is the nutrient content of phytoplankton,
𝛽 denotes the maximum growth rate of phytoplankton,
𝐻
𝑁

is the half-saturation constant for nutrients, 𝐻
𝑃
is the

half-saturation constant for phytoplankton, 𝑓
𝑃
denotes the

maximum predation rate of zooplankton on phytoplankton,
𝑚 is the mortality of phytoplankton, 𝜀 is the proportion of
nutrients in dead phytoplankton that is recycled, V is the
sinking velocity of phytoplankton, and 𝑑

𝑁
and 𝑑

𝑃
are the
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diffusion rates of nutrients and phytoplankton, respectively,
which are caused by mixing and turbulence. In addition,
Δ is the Laplacian operator. Table 1 provides the parameter
values used and their units, which is obtained from published
studies [19, 36–38].

3. Results

3.1. Stable Behavior of the Nonspatial System. In the nonspa-
tial system (i.e., system (2a), (2b) without spatial derivatives),
according to𝑓(𝑥, 𝑦) = 0 and𝑔(𝑥, 𝑦) = 0, vertical isocline and
horizontal isocline can be obtained, respectively, as follows.
Vertical isocline 𝑙

1
: 𝑃 = (𝑘(𝑁

0
−𝑁)(𝐻

𝑁
+𝑁))/((𝛼𝛽−𝜀𝑚)𝑁−

𝜀𝑚𝐻
𝑁
). Horizontal isocline 𝑙

2
: 𝑃 = (𝑓

𝑃
(𝐻
𝑁
+ 𝑁)/((𝛽 −

𝑚)𝑁 − 𝑚𝐻
𝑁
)) − 𝐻

𝑃
. Obviously, the line, 𝑁 = 𝜀𝑚𝐻

𝑁
/

(𝛼𝛽 − 𝜀𝑚), is asymptote of vertical isocline 𝑙
1
, and the line,

𝑁 = (𝑚𝐻
𝑁
)/(𝛽 − 𝑚), is asymptote of horizontal isocline 𝑙

2
.

In the following discussion, it is assumed that the condition
𝛽 > 𝑚 always holds; otherwise phytoplankton become extinct
eventually. For vertical isocline 𝑙

1
, 𝑃󸀠 = ((𝜀𝑚 − 𝛼𝛽)𝑁

2
+

2𝜀𝑚𝐻
𝑁
𝑁 + (𝜀𝑚𝐻

𝑁
− 𝛼𝛽𝑁

0
)𝐻
𝑁
)/((𝜀𝑚 − 𝛼𝛽)𝑁 + 𝜀𝑚𝐻

𝑁
)
2,

which is derivative. There are two roots in 𝑃
󸀠

= 0

when the condition 𝜀𝑚 > 𝛼𝛽 holds, root is 𝑁 =

(𝜀𝑚𝐻
𝑁
±√𝛼𝛽𝐻

𝑁
(𝜀𝑚𝐻

𝑁
+ (𝜀𝑚 − 𝛼𝛽)𝑁

0
))/(𝛼𝛽− 𝜀𝑚). Then,

it is obvious that the asymptote, 𝑁 = 𝜀𝑚𝐻
𝑁
/(𝛼𝛽 − 𝜀𝑚), is

on the left of line 𝑁 = 0. Therefore, the vertical isocline 𝑙
1
is

continuous when 𝑁 > 0. And 𝑃 > 0 holds when 𝑁 > 𝑁
0
;

𝑃 < 0 holds when 0 < 𝑁 < 𝑁
0
. From the horizontal isocline

𝑙
2
, if 𝑓
𝑃
> 𝐻
𝑃
(𝛽 − 𝑚), then there is a positive equilibrium in

the nonspatial system at least; if𝑓
𝑃
< 𝐻
𝑃
(𝛽−𝑚), then there is

a positive equilibrium in the nonspatial system at least when
the condition𝑚𝐻

𝑁
/(𝛽 − 𝑚) > 𝑁

0
holds.

When the condition 𝜀𝑚 < 𝛼𝛽 holds, there is no root in
𝑃
󸀠
= 0 if𝑁

0
> (𝜀𝑚𝐻

𝑁
/(𝛼𝛽 − 𝜀𝑚)). From 𝑃

󸀠, vertical isocline
𝑙
1
is monotone decreasing when 𝑁 > (𝜀𝑚𝐻

𝑁
/(𝛼𝛽 − 𝜀𝑚)),

and 𝑃 < 0 holds when 𝑁 ∈ (0, (𝜀𝑚𝐻
𝑁
/(𝛼𝛽 − 𝜀𝑚))); 𝑃 > 0

holds when 𝑁 ∈ ((𝜀𝑚𝐻
𝑁
/(𝛼𝛽 − 𝜀𝑚)),𝑁

0
). According to

horizontal isocline 𝑙
2
, if 𝑓
𝑃
> 𝐻
𝑃
(𝛽 − 𝑚), then there is a

positive equilibrium in the nonspatial system at least when
the condition (𝑚/𝛽)𝜀 < 𝛼 < 𝜀 holds; if 𝑓

𝑃
< 𝐻
𝑃
(𝛽 − 𝑚),

then there is no positive equilibrium in the nonspatial system
when the condition (𝑚𝐻

𝑁
/(𝛽 − 𝑚)) > 𝑁

0
holds.

When the condition 𝜀𝑚 < 𝛼𝛽 holds, there are two roots in
𝑃
󸀠
= 0 if𝑁

0
< (𝜀𝑚𝐻

𝑁
/(𝛼𝛽−𝜀𝑚)). From𝑃

󸀠, vertical isocline 𝑙
1

is monotone increasing, when𝑁 ∈ (𝑁
0
, (𝜀𝑚𝐻

𝑁
/(𝛼𝛽−𝜀𝑚))).

And 𝑃 < 0 holds, when 𝑁 ∈ (0,𝑁
0
) ∪ ((𝜀𝑚𝐻

𝑁
/(𝛼𝛽 − 𝜀𝑚)),

+∞); 𝑃 > 0 holds, when 𝑁 ∈ (𝑁
0
, (𝜀𝑚𝐻

𝑁
/(𝛼𝛽 − 𝜀𝑚))).

According to horizontal isocline 𝑙
2
, if 𝑓
𝑃
> 𝐻
𝑃
(𝛽 − 𝑚),

then there is a positive equilibrium state in the nonspatial
system at least when the condition (𝑚/𝛽)𝜀 < 𝛼 < 𝜀 holds;
if 𝑓
𝑃
< 𝐻
𝑃
(𝛽 −𝑚), then there is no positive equilibrium state

in the nonspatial system when the condition 𝛼 > 𝜀 holds.
It is noted that these conditions only confirm that there

exists positive equilibrium state in the nonspatial system
when these conditions are satisfied. It does not mean that
there must be no positive equilibrium state in the nonspatial
system when these conditions are not satisfied. In addition, it
is not difficult to find that there is always a trivial steady state,

Table 1: Parameter values used.

Symbol Value Unit
𝑁
0

0.5 g⋅m−3

𝑘 0.08 day−1

𝛼 0.02 dimensionless
𝛽 0.5 day−1

𝜀 0.01 dimensionless
𝑚 0.24 day−1

𝑓
𝑃

2 g⋅m−2⋅day−1

𝐻
𝑁

0.005 g⋅m−2

𝐻
𝑃

4 g⋅m−2

V 1.008 m⋅day−1

𝑑
𝑁

1.038 m2
⋅day−1

𝑑
𝑃

1.038 m2
⋅day−1

Note: parameter value 𝜀 was estimated, parameter value 𝐻𝑃 was estimated
based on de Angelis et al. [36], and the other parameter values were derived
from previous studies [19, 36–38].

𝐸
0
= (𝑁

0
, 0), consisting of bare nutrients without phyto-

plankton in the nonspatial model. The Jacobian matrix of
nonspatial system at the equilibrium 𝐸

0
= (𝑁
0
, 0) is

𝐴 = (

−𝑘 𝜀𝑚 −
𝛼𝛽𝑁
0

𝐻
𝑁
+ 𝑁
0

0
(𝛽 − 𝑚)𝑁

0
− 𝑚𝐻

𝑁

𝐻
𝑁
+ 𝑁
0

−
𝑓
𝑃

𝐻
𝑃

). (3)

It is obvious that the index of equilibrium 𝐸
0
is +1, when

the condition𝛽𝑁
0
𝐻
𝑃
< (𝑚𝐻

𝑃
+𝑓
𝑃
)(𝑁
0
+𝐻
𝑁
) holds, which is

stable. In particular, when the conditions 𝜀𝑚 < 𝛼𝛽 and 𝑓
𝑃
<

𝐻
𝑃
(𝛽−𝑚) hold, if (𝑚𝐻

𝑁
/(𝛽−𝑚)) > 𝑁

0
> (𝜀𝑚𝐻

𝑁
/(𝛼𝛽−𝜀𝑚))

or 𝑁
0
< (𝜀𝑚𝐻

𝑁
/(𝛼𝛽 − 𝜀𝑚)) and 𝛼 > 𝜀, then there is

no positive equilibrium in nonspatial system. Under these
conditions, equilibrium 𝐸

0
is locally asymptotically stable.

Furthermore, equilibrium𝐸
0
is globally asymptotically stable

inΩ = [0, +∞)×[0, +∞]. Because first quadrant is a positive
invariant set according to𝑓(𝑥, 𝑦) and𝑔(𝑥, 𝑦), there is no limit
cycle because there is no equilibrium in first quadrant.

Based on previous discussion, there exists positive equi-
librium in the nonspatial model under some conditions,
which is defined by 𝐸

∗
= (𝑁
∗
, 𝑃
∗
). The Jacobian matrix of

nonspatial model at the equilibrium 𝐸
∗
= (𝑁
∗
, 𝑃
∗
) is

𝑇 = (

−𝑘 −
𝛼𝛽𝐻
𝑁
𝑃
∗

(𝐻
𝑁
+ 𝑁
∗
)
2

𝑘 (𝑁
∗
− 𝑁
0
)

𝑃
∗

𝛽𝐻
𝑁
𝑃
∗

(𝐻
𝑁
+ 𝑁
∗
)
2

𝑓
𝑃
𝑃
∗

(𝐻
𝑃
+ 𝑃
∗
)
2

). (4)

From 𝑇, it is easy to find that the equilibrium 𝐸
∗
= (𝑁
∗
,

𝑃
∗
) is unstable when𝑁

∗
> 𝑁
0
, which is saddle. When𝑁

∗
<

𝑁
0
, the index of equilibrium 𝐸

∗
is +1 when the condition

𝑘𝛽𝐻
𝑁
(𝑁
0
−𝑁
∗
)(𝐻
𝑃
+𝑃
∗
)
2
> (𝑘(𝐻

𝑁
+𝑁
∗
)
2
+𝛼𝛽𝐻

𝑁
𝑃
∗
)𝑓
𝑃
𝑃
∗

holds, and it is locally asymptotically stable using Roth-
Hurwitz criterion when the condition (𝑓

𝑃
𝑃
∗
/(𝐻
𝑃
+ 𝑃
∗
)
2
) <

𝑘 + (𝛼𝛽𝐻
𝑁
𝑃
∗
/(𝐻
𝑁
+ 𝑁
∗
)
2
) holds.
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Figure 1: The existence and stability of an equilibrium versus the parameter𝑁
0
(a, b) and parameter 𝜀 (c, d). The other parameters are given

in Table 1.

Although the expression of equilibrium 𝐸
∗
can hardly

be obtained, the stable behavior of the nonspatial system is
determined when some parameters are given in Table 1. In
the present paper, our interest is how some factors, such as
the nutrient concentration 𝑁

0
and nutrient cycling effect 𝜀,

affect the system. Hence, the stable behavior of the nonspatial
system is analyzed using the graph (see Figure 1). In Figure 1,
when the nutrient concentration𝑁

0
or nutrient cycling effect

𝜀 increases, there is always a trivial equilibrium consisting
of bare nutrients without phytoplankton. In Figures 1(a) and
1(b), when the nutrient concentration is 0 ≤ 𝑁

0
< 0.489,

there is only a trivial steady state in the nonspatial system.
When the nutrient concentration 0.489 < 𝑁

0
< 0.609,

there were two other steady states: one is always unstable
(green dashed, saddle), while the other is stable (red solid line,
focus). When the nutrient concentration is 0.609 < 𝑁

0
< 2,

the focus disappears, and a node emerges (blue line, node).
In Figures 1(c) and 1(d), a similar analysis is obtained, and the
difference among Figures 1(a), 1(b), 1(c), and 1(d) is indicated
by the grey zone. The trivial steady state and saddle coexist
in the grey zone. In the following discussion, the nontrivial
homogeneous steady state (focus or node) is defined by 𝐸∗ =
(𝑁
∗
, 𝑃
∗
).

3.2. Stable Behavior of the Spatial System. In this section, we
consider the sensitivity of the system (2a), (2b) to change in
the parameter values. A linear analysis technique is employed
to focus on the parameters essential for the system behavior

[49].Our interest is how the nutrient concentration𝑁
0
, nutri-

ent cycling effect 𝜀, sinking velocity V, and the diffusion rate
of phytoplankton 𝑑

𝑃
affect the system. Symmetry breaking

occurred when the stationary homogeneous solution, 𝐸∗ =
(𝑁
∗
, 𝑃
∗
), is linearly unstable to small spatial perturbations in

the presence of diffusion and advection, but that is linearly
stable to perturbations in the absence of the diffusion and
advection terms. To analyze the spatial system and determine
how a small heterogeneous perturbation of the homogeneous
steady state developed within a large time period, the follow-
ing perturbation is considered [41]:

(
𝑁

𝑃
) = (

𝑁
∗

𝑃
∗) + 𝛿(

𝑁
0

𝑃
0

) exp (𝜆𝑡 + 𝑖𝑘𝑧) + 𝑐.𝑐. + 𝑂 (𝜀2) ,

(5)

where 𝜆 is the perturbation growth rate, 𝑘 is the wave-
number, and 𝑖 is an imaginary unit (𝑖2 = −1). Substituting
expression (5) into (2a), (2b) and neglecting all nonlinear
terms in 𝑁 and 𝑃, the following characteristic equation is
obtained for the eigenvalues 𝜆:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎
11
− 𝑘
2
𝑑
𝑁
− 𝜆 𝑎

12

𝑎
21

𝑎
22
− 𝑘
2
𝑑
𝑃
− 𝑖V𝑘 − 𝜆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0, (6)
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Figure 2: (a) An illustration of 𝑎
22
> 0 versus 𝜀 and𝑁

0
. The other parameters are given in Table 1. (b) An illustration of the sign of Δ

𝑘
versus

𝑑
𝑃
and𝑁

0
, V = 0.6 (m⋅day−1).

where the elements of the Jacobian determinant of the
nonspatial system are taken at the stationary homogeneous
solution 𝐸∗ = (𝑁∗, 𝑃∗), as follows:

𝐽 = (

−𝑘 −
𝛼𝛽𝐻
𝑁
𝑃
∗

(𝐻
𝑁
+ 𝑁∗)

2

𝑘 (𝑁
∗
− 𝑁
0
)

𝑃∗

𝛽𝐻
𝑁
𝑃
∗

(𝐻
𝑁
+ 𝑁∗)

2

𝑓
𝑃
𝑃
∗

(𝐻
𝑃
+ 𝑃∗)

2

) = (

𝑎
11

𝑎
12

𝑎
21

𝑎
22

) .

(7)

By 𝐽, it is not difficult to find that 𝑎
11
< 0, 𝑎

21
> 0, and

𝑎
22
> 0, when 𝐸∗ is positive equilibrium. When 𝑁∗ < 𝑁

0
,

𝑎
12
< 0. The characteristic equation (8) can be described as

𝜆
2
− (tr
𝑘
− 𝑖V𝑘) 𝜆 + Δ

𝑘
+ 𝑖V𝑘 (𝑘2𝑑

𝑁
− 𝑎
11
) = 0, (8)

where tr
𝑘
= (𝑎
11
+ 𝑎
22
) − (𝑑

𝑁
+ 𝑑
𝑃
)𝑘
2 and Δ

𝑘
= 𝑎
11
𝑎
22
−

𝑎
21
𝑎
12
−𝑘
2
(𝑎
11
𝑑
𝑃
+𝑎
22
𝑑
𝑁
)+𝑘
4
𝑑
𝑁
𝑑
𝑃
. In the previous analysis,

the parameters 𝑁
0
, 𝜀, V, and 𝑑

𝑃
are allowed to vary, but the

other parameters are fixed in Table 1. In Figure 2(a), the value
of 𝑎
22

is given when the parameters 𝑁
0
and 𝜀 are changed.

In addition, in Figure 2(b), in zone III, 𝑎
11
𝑑
𝑃
+ 𝑎
22
𝑑
𝑁
< 0,

so Δ
𝑘
> 0 for 𝑘 > 0; in zone II, 𝑎

11
𝑑
𝑃
+ 𝑎
22
𝑑
𝑁
> 0, but

min(Δ
𝑘
) > 0 for 𝑘 > 0, soΔ

𝑘
> 0; in zone I, 𝑎

11
𝑑
𝑃
+𝑎
22
𝑑
𝑁
> 0,

and min(Δ
𝑘
) < 0 for 𝑘 > 0. In zone I, to determine the sign

ofΔ
𝑘
for different values of𝑁

0
and 𝑑
𝑃
, we need to analyzeΔ

𝑘

further because of the min(Δ
𝑘
) < 0 for 𝑘 > 0.

From expression (8), we can obtain

𝜆 =
1

2
[tr
𝑘
− 𝑖V𝑘 ± √Φ + 𝑖Θ] , (9)

whereΦ = tr2
𝑘
−V2𝑘2−4Δ

𝑘
andΘ = −2(tr

𝑘
+2(𝑘
2
𝑑
𝑁
−𝑎
11
))V𝑘.

To analyze the spatial system, the real and imaginary parts
of the eigenvalues must be obtained, which are described as
follows:

Re (𝜆) = 1

2
[tr
𝑘
+ 𝑗√

1

2
(√Φ2 + Θ2 + Φ)] , (10a)

Im (𝜆) =
1

2
[−V𝑘 + 𝑗 sign (Φ)√1

2
(√Φ2 + Θ2 − Φ)] ,

(10b)

where 𝑗 = ±1. The solution is stable when the real parts of all
eigenvalues are less than zero; that is, Re(𝜆) < 0. The solution
is unstable when one of the real parts with a finite wave
number 𝑘 > 0 is greater than zero at least. The critical point
is got when Re(𝜆) = 0. However, the analytical expression
for the critical point is difficult to be obtained. Indeed, we
only need to consider the maximum value of Re(𝜆).Thus, the
critical condition can be obtained using Re(𝜆) = 0, as follows:

V2 =
tr2
𝑘
Δ
𝑘

(𝑘2𝑑
𝑁
− 𝑎
11
) (𝑎
22
− 𝑑
𝑃
𝑘2) 𝑘2

. (11)

In expression (11), the solution is unstable if the right-
hand side of the equal sign is always less than zero. Otherwise,
a necessary condition for expression (11) to hold is that
Δ
𝑘
(𝑎
22
− 𝑑
𝑃
𝑘
2
) > 0. We consider the following case: the

nutrient concentration 𝑁
0
is allowed to vary, but the values

of other parameters are in Table 1. Then, the sinking velocity
V is a function related to the nutrient concentration 𝑁

0
and

the wave number 𝑘. By Figure 2(b), if the diffusion rate of
phytoplankton, 𝑑

𝑃
, is larger than 0.2 cm2⋅s−1, then Δ

𝑘
> 0.

Thus, the right-hand side of expression (11) is positive within
0 < 𝑘 < √𝑎

22
/𝑑
𝑃
, and the sinking velocity V has a minimum

V
𝑐
at the point 𝑘 = 𝑘

𝑐
. Figure 3(a) confirms expression (11).

In Figure 3(a), the neutral curve is convex with a unique
minimum in the range 0 < 𝑘 < √𝑎

22
/𝑑
𝑃
.



6 Abstract and Applied Analysis

30

20

10

0

0 0.2 0.4 0.6

k

�

N0 = 0.7

N0 = 0.6

N0 = 0.5

(a)

0

0
0

0

0.5

15

30

45

1

1 2

N0

I
II

III

�

200

400

(b)

0

0.0

0.25 0.50 0.75

−0.2

−0.1

Re(𝜆)
Im(𝜆)

(c)

Figure 3: (a) A typical neutral curve V, defined using expression (11) for different values of𝑁
0
. (b) Numerical calculation of the stability on

(V, 𝑁
0
) space. (c) An illustration of the dispersion relation (Re(𝜆), Im(𝜆) versus the wave number 𝑘), where 𝑑

𝑃
= 0.3 (m2⋅day−1) and the

other parameters are given in Table 1. Blue line: V = 0.6 > V
𝑐
≈ 0.358 (m⋅day−1); red line: V = V

𝑐
≈ 0.358 (m⋅day−1); green line: V = 0.1 < V

𝑐
≈

0.358 (m⋅day−1).

The effects of sinking velocity V and nutrient concen-
tration 𝑁

0
on the behavior of system (2a), (2b) are shown

in Figure 3(b), which shows the transition from a no
phytoplankton state through a banded phytoplankton state
to a homogeneous phytoplankton state when the nutrient
concentration𝑁

0
increases and the sinking velocity V is fixed.

However, when the nutrient concentration 𝑁
0
is fixed, a

homogeneous phytoplankton state becomes a banded phyto-
plankton state with the increase of sinking velocity V, that is, a
banded self-organized spatial pattern emerges because of the
sinking velocity V.

In zone I of Figure 3(b), there is only a trivial steady
state, that is, no phytoplankton. In zone II, the steady state
is stable, while the steady state becomes unstable in zone III

because of the effect of sinking velocity of phytoplankton,
which is further confirmed by Figure 3(c), where V

𝑐
≈

0.358 (m⋅day−1) and 𝑘
𝑐
≈ 0.283. It is obvious that the

maximal real part of 𝜆 is larger than zero when the sinking
velocity of phytoplankton is larger than the critical value of
the sinking velocity of phytoplankton; that is, the instability
of the steady state will occur. The imaginary value of 𝜆 is
not equal to zero. In Figure 3(b), the red line represents
the critical value of the sinking velocity of phytoplankton.
The critical value of the sinking velocity of phytoplankton
increases with the increase of nutrient concentration 𝑁

0
;

that is, when the nutrient concentration 𝑁
0
increases, the

sinking velocity V cannot affect the stability of the stable
state.
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3.3. Effects of the Parameters on the Wavelength of the
Banded Pattern. Section 3.2 has described how a banded
phytoplankton state emerges when the sinking velocity V
has reached a certain critical value. The determination of
the wavelength of the banded pattern is a key issue. In
particular, how do the parameters, such as the nutrient
concentration𝑁

0
, and the sinking velocity V, affect the change

of wavelength? The relationships among the wavelength, the
nutrient concentration 𝑁

0
, and the sinking velocity V are

shown in Figure 4, which shows that thewavelength increases
when the sinking velocity V exceeds the critical value V

𝑐
, but

thewavelength decreaseswhen the nutrient concentration𝑁
0

increases.

3.4. The Simulation. In the previous sections, we discussed
the effects of parameters, including the nutrient concentra-
tion 𝑁

0
and the sinking velocity V, on the system (2a), (2b).

In this section, we discuss the numerical solution of the
system (2a), (2b) in one-dimensional and two-dimensional
spaces. In a one-dimensional space, a periodic boundary
condition is employed, and system (2a), (2b) is solved on a
rectangular spatial grid of 1 × 200 points. In two-dimensional
space, system (2a), (2b) is studied in a horizontal (x, z)-
plane with zero-flux boundary conditions (left and right)
and periodic boundary conditions (top and bottom), which
is solved on a rectangular spatial grid of 100 × 300 points.
The initial conditions comprise a homogeneous state which
is randomly perturbed. Furthermore, we assume that the
diffusion rate of phytoplankton is larger or smaller than
that of nutrients because of the viscosity and living of
phytoplankton. Of course, it is also feasible that the diffusion
rate of phytoplankton is equal to that of nutrients.

Firstly, the one-dimensional solution of system (2a), (2b)
is shown in Figure 5. In Figure 5, we consider a vertical
water column, where the depth of the water column is 120m
and the time is 600 days. We found that oscillations did
occur; that is, the stable state became unstable because of
spatial effects. Figure 6 shows the analysis of relationship
between nutrients and phytoplankton further. In Figure 6(a),
the relationship between the spatial distributions of nutrients
and phytoplankton is given at the 600th day, which shows
that nutrient concentration reaches the minimal value when
the density of phytoplankton reaches the maximal value. The
nutrient concentration affects the density of phytoplankton,
and the density of phytoplankton increases with the increases
of nutrient concentration. Thus, eutrophication may explain
phytoplankton blooms. Furthermore, the effects of phyto-
plankton sinking on the relative maxima for nutrients and
phytoplankton are shown in Figure 6(b). The relative max-
ima of phytoplankton increase with the increase of sinking
velocity, whereas the relative maxima of nutrients decrease
with the increase of sinking velocity. Therefore, the sinking
flux has an important role in the increase of the density of
phytoplankton.

To further analyze the dynamic behavior of system
(2a), (2b), we consider the solution of system (2a), (2b)
in two-dimensional space. The band patterns are observed
in the field, as shown in Figure 7. Figures 7(a), 7(b), and
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Figure 4: An illustration of the variation in the pattern wavelength
with V and𝑁

0
, where the symbol (◼) represents the critical value of

the sinking velocity V, 𝑑
𝑃
= 0.3 (m2⋅day−1), and the other parameters

are given in Table 1.
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Figure 5: Model simulations based on depth and time: (a) nutrient
density (unit g⋅m−3); (b) phytoplankton density (unit g⋅m−3), where
𝑑
𝑃
= 1.2 (m2⋅day−1), V = 1.2 (m⋅day−1), and the other parameters

are given in Table 1.
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Figure 6: (a) Spatial distributions of the nutrient density and phytoplankton density on the 600th day, where the left vertical axis denotes the
nutrient density, the right vertical axis denotes the phytoplankton density, 𝑑

𝑃
= 0.3 (m2⋅day−1), V = 1.2 (m⋅day−1), and the other parameters

are given in Table 1. (b) Relationship between nutrient density, phytoplankton density, and the sinking velocity V, where the right vertical axis
denotes the maximal nutrient density, and the left vertical axis denotes the maximal phytoplankton density. The purple field shows that the
equilibrium state is stable, where𝑁

0
= 0.5 (g⋅m−3) and 𝑑

𝑃
= 0.3 (m2⋅day−1).
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Figure 7: Simulation in two-dimensional space. The figures show the density levels of the phytoplankton on the 1000th day, where the width
is 100m and the depth is 300m. (a) 𝑑

𝑃
= 0.3 (m2⋅day−1) and V = 0.9 (m⋅day−1). (b) 𝑑

𝑃
= 1.038 (m2⋅day−1) and V = 1.2 (m⋅day−1). (c)

𝑑
𝑃
= 1.038 (m2⋅day−1) and V = 0.9 + 0.25 ∗ sin(4 ∗ 𝜋 ∗ 𝑥/100). The other parameters are given in Table 1.

7(c) show the patterns of phytoplankton at the 1000th day
in the two-dimensional space. As discussed in Section 3.2,
our numerical results confirm the predictions of the linear
analysis that a band pattern of phytoplankton occurs if
the nutrient concentration 𝑁

0
and the sinking velocity of

phytoplankton satisfy some conditions. Figure 7(a) shows the
emergence of parallel and crossed patterns, which indicate
that band patterns with different speeds coexist in the system

(2a), (2b) where the wavelength of patterns is different. By
contrast, the patterns in Figure 7(b) are much more regular
and almost parallel. In the real world, the sinking velocity of
phytoplankton varies at different spatial points. Thus, to add
more realism to the system, we forced the model to undergo
periodic changes in the sinking velocity of phytoplankton,
that is, V = V

∗
+𝐴× sin(4𝜋×𝑥/𝐿), where 𝐿 denotes the width

of water column. The results are shown in Figure 7(c), where
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the values of the parameters are the same as those used in
Figures 7(a) and 7(b), except the sinking velocity V. However,
it is obvious that the patterns in Figure 7(c) are very different
from those in Figures 7(a) and 7(b). Thus, the sinking flux of
phytoplankton has an important role in the system.

4. Discussion and Conclusion

Banded patterns have been described in several resource-
limited ecosystems around the world. In the real world,
numerous population patterns have been observed, including
banded vegetation, patches, and spiral waves, which can be
regular or irregular. Physical factors may cause these types
of pattern, such as wind, water flow, and turbulence. Internal
factors in populations also force these patterns to occur.

In the present study, we used a nutrient-plankton model
with both diffusion and advection to investigate the interac-
tion between nutrient and plankton. Our model was simple
because it was only an abstraction of real-world phenom-
ena but the model reproduced many features of real-world
phenomena. Our explanation focuses on a predator-prey
interaction between phytoplankton and their nutrient source.
In particular, how do the sinking of phytoplankton and
the input of nutrients affect the interaction? Our analytical
results showed that the homogeneous steady state became
unstable because of the sinking of phytoplankton.The critical
value of the sinking phytoplankton led to an instability
in the homogeneous steady state, which depended on the
input of nutrients. Our numerical results showed that the
homogeneous steady statewas unstable against small spatially
heterogeneous perturbations.

Figure 1(b) shows that when the nutrient concentration
𝑁
0
increased beyond a critical value, the increase in the

concentration of phytoplankton was stable; that is, the con-
centration of phytoplankton tended toward a certain stable
state. Spatial effects did not influence the stable state when
the sinking flux was below a critical value, as shown in
Figure 3(b). Thus, an abundance of nutrient inputs flowed
into the system, which led to the high-level reproduction of
phytoplankton, which may trigger phytoplankton blooms.

Figures 5 and 7 show that oscillation could occur because
of the sinking flux. In particular, Figure 5 shows that both
spatial and temporal oscillations arose in the nutrients
and the phytoplankton. The sinking of phytoplankton can
also lead to the increase in the phytoplankton density and
wavelength when the input of nutrients is fixed. It is possible
that the phytoplankton sinks from the surface of water until
it reaches a depth where the nutrient conditions are suitable
for growth. Figure 6(a) shows that the relationship between
phytoplankton and nutrients is mutually constrained. Thus,
abundant nutrition leads to the mass propagation of phy-
toplankton, which consumes large amounts of nutrient,
thereby depleting the nutrient levels. Thus, the sinking of
phytoplankton and the input of nutrients can change the
spatial distribution of phytoplankton under these conditions,
which may promote the increase of phytoplankton density.
In particular, eutrophication may promote phytoplankton
blooms.
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