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LetM andN be von Neumann algebras without central summands of type 𝐼
1
. Assume that 𝜉 ∈ Cwith 𝜉 ̸= 1. In this paper, all maps

Φ :M → N satisfying Φ(𝐴𝐵 − 𝜉𝐵𝐴) = Φ(𝐴)Φ(𝐵) − 𝜉Φ(𝐵)Φ(𝐴) are characterized.

1. Introduction

Let A and A be two algebras over a field F . Recall that
a map Φ : A → A is called a multiplicative map if
Φ(𝐴𝐵) = Φ(𝐴)Φ(𝐵) for all 𝐴, 𝐵 ∈ A; a Lie multiplicative
map if Φ([𝐴, 𝐵]) = [Φ(𝐴), Φ(𝐵)] for all 𝐴, 𝐵 ∈ A, where
[𝐴, 𝐵] = 𝐴𝐵−𝐵𝐴; and a Jordanmultiplicative map ifΦ(𝐴𝐵+
𝐵𝐴) = Φ(𝐴)Φ(𝐵) + Φ(𝐵)Φ(𝐴) for all 𝐴, 𝐵 ∈ A.

The question when a multiplicative map is additive is
studied by many mathematicians. As the first result in this
line, Matindale [1] proved that every multiplicative bijective
map from a prime ring containing a nontrivial idempotent
onto an arbitrary ring is additive and thus is a ring isomor-
phism. Recently, Matindale’s result has been generalized in
several directions, such as multiplicative maps and Jordan
multiplicative maps between standard operator algebras or
nest algebras (see [2, 3] and the references therein). For Lie
multiplicative maps, Bai et al. [4] showed that if R, R are
prime rings withR being unital and containing a nontrivial
idempotent and if Φ : R → R is a Lie multiplicative
bijectivemap, thenΦ(𝑇+𝑆) = Φ(𝑇)+Φ(𝑆)+𝑍

𝑇,𝑆
for all𝑇, 𝑆 ∈

R, where 𝑍
𝑇,𝑆

is an element in the center of R depending
on 𝑇 and 𝑆. This result reveals that the Lie multiplicativity of
a map does not imply its additivity anymore. Note that factor
von Neumann algebras are prime. Later, the similar results
were obtained on triangular algebras and certain Banach
space nest algebras, respectively, in [5, 6].

Let A be an algebra over a field F . For a scalar 𝜉 ∈ F

and for 𝐴, 𝐵 ∈ A, we say that 𝐴 commutes with 𝐵 up to
a factor 𝜉 if 𝐴𝐵 = 𝜉𝐵𝐴. The notion of commutativity up
to a factor for pairs of operators is an important concept
and has been studied in the context of operator algebras and
quantum groups [7, 8]. Motivated by this, a binary operation
[𝐴, 𝐵]

𝜉
= 𝐴𝐵 − 𝜉𝐵𝐴, called 𝜉-Lie product of 𝐴 and 𝐵, was

introduced in [9]. Moreover, a concept of 𝜉-Lie multiplicative
maps was introduced in [10], which unifies the above three
kinds of maps. Recall that a map Φ : A → A is called a
𝜉-Lie multiplicative map if Φ([𝐴, 𝐵]

𝜉
) = [Φ(𝐴), Φ(𝐵)]

𝜉
for

all 𝐴, 𝐵 ∈ A. In addition, Φ is called a 𝜉-Lie multiplicative
isomorphism if Φ is bijective and 𝜉-Lie multiplicative and
is called a 𝜉-Lie ring isomorphism if Φ is bijective, additive,
and 𝜉-Lie multiplicative. A linear (resp., conjugate linear) 𝜉-
Lie ring isomorphism between two algebras is called a 𝜉-Lie
isomorphism (resp., conjugate 𝜉-Lie isomorphism).

Recall that a standard operator algebra on a Banach
space 𝑋 is a subalgebra of the whole operator algebra B(𝑋)
containing the identity operator 𝐼 and the ideal of all finite
rank operators. Qi and Hou in [10] gave a characterization
of all 𝜉-Lie multiplicative isomorphisms between standard
operator algebras. LetA andB be standard operator algebras
on infinite dimensional Banach spaces 𝑋 and 𝑌 over the real
or complex field F , respectively. Assume that Φ : A → B
is a unital bijection and 𝜉 is a scalar. The main result in [10]
states that Φ is 𝜉-Lie multiplicative if and only if one of the
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following holds: (1) 𝜉 = 1, there exists a functional ℎ : A → F

with ℎ([𝐴, 𝐵]) = 0 for all 𝐴, 𝐵, and either there exists an
invertible bounded linear or conjugate linear operator 𝑇 :

𝑋 → 𝑌 such that Φ(𝐴) = 𝑇𝐴𝑇−1 + ℎ(𝐴)𝐼 for all 𝐴 ∈ A or
there exists an invertible bounded linear or conjugate linear
operator 𝑇 : 𝑋∗ → 𝑌 such that Φ(𝐴) = −𝑇𝐴∗𝑇−1 + ℎ(𝐴)𝐼
for all 𝐴 ∈ A; (2) 𝜉 = −1, either there exists an invertible
bounded linear or conjugate linear operator 𝑇 : 𝑋 → 𝑌

such that Φ(𝐴) = 𝑇𝐴𝑇−1 for all 𝐴 ∈ A, or there exists an
invertible bounded linear or conjugate linear operator 𝑇 :

𝑋
∗
→ 𝑌 such that Φ(𝐴) = 𝑇𝐴∗𝑇−1 for all 𝐴 ∈ A; (3)

𝜉 ∈ R\{±1}, there exists an invertible bounded linear operator
𝑇 : 𝑋 → 𝑌 such that Φ(𝐴) = 𝑇𝐴𝑇−1 for all 𝐴 ∈ A if F = R;
there exists an invertible bounded linear or conjugate linear
operator 𝑇 : 𝑋 → 𝑌 such that Φ(𝐴) = 𝑇𝐴𝑇−1 for all 𝐴 ∈ A
if F = C; (4) 𝜉 ∈ C \ R, there exists an invertible bounded
linear operator 𝑇 : 𝑋 → 𝑌 such that Φ(𝐴) = 𝑇𝐴𝑇−1 for all
𝐴 ∈ A. A complete characterization of 𝜉-Lie multiplicative
isomorphisms on matrix algebras and certain nest algebras
was given, respectively, in [10] and [6].These results reveal the
structural properties of the involved operator algebras from
some new aspects. However, we have not seen any description
on the structure of the 𝜉-Lie multiplicative isomorphisms
between nonfactor von Neumann algebras so far.The present
paper considers this problem.

The purpose of this paper is to characterize the 𝜉-Lie
multiplicative isomorphisms with 𝜉 ̸= 1 between certain quite
general von Neumann algebras. Let M and N be two von
Neumann algebras without central summands of type 𝐼

1
.

Denote by 𝐼
𝑀

and 𝐼
𝑁

the unit operators in M and N,
respectively. Assume that Φ : M → N is a map and
𝜉 ∈ C with 𝜉 ̸= 1. We show that Φ is a 𝜉-Lie multiplicative
isomorphism if and only if one of the following statements is
true: (1) 𝜉 = 0,Φ is a ring isomorphism; (2) 𝜉 = −1, there exist
central projections𝑃 ∈M and𝑄 ∈N such thatΦ = Φ

1
⊕Φ
2
,

where Φ
1
= Φ|
𝑃M : 𝑃M → 𝑄N is a ring isomorphism and

Φ
2
= Φ|
(𝐼𝑀−𝑃)M

: (𝐼
𝑀
− 𝑃)M → (𝐼

𝑁
− 𝑄)N is a ring anti-

isomorphism; (3) 𝜉 ̸= 0, −1, there exist central projections𝑃 ∈
M and 𝑄 ∈ N such that Φ = Φ

1
⊕ Φ
2
, where Φ

1
: 𝑃M →

𝑄N is a ring isomorphism with Φ
1
(𝜉𝐴
1
) = 𝜉Φ

1
(𝐴
1
) for all

𝐴
1
∈ 𝑃M and−𝜉Φ

2
: (𝐼
𝑀
−𝑃)M → (𝐼

𝑁
−𝑄)N is a ring anti-

isomorphismwithΦ
2
(𝜉𝐴
2
) = (1/𝜉)Φ

2
(𝐴
2
) for all𝐴

2
∈ (𝐼
𝑀
−

𝑃)M (Theorem 1). It is clear from our result that, for 𝜉 ̸= 1,
the 𝜉-Lie multiplicativity of a bijective map on von Neumann
algebras without central summands of type 𝐼

1
implies its

additivity. Particularly, multiplicative isomorphisms are ring
isomorphisms and the Jordan multiplicative isomorphisms
are Jordan ring isomorphisms. Moreover, for rational real
number 𝜉 ∉ {1, −1}, 𝜉-Lie multiplicative isomorphisms
are ring isomorphisms. However, 𝜉-Lie ring isomorphisms
with nonrational 𝜉 have some more complicated but still
controllable algebraic structures. Assume further that M,N
act on some separable Hilbert spaces and N has no central
summands of type 𝐼

𝑛
for any 𝑛 < ∞; then Φ is a 𝜉-Lie

multiplicative isomorphism if and only if one of the following
statements is true: (1) 𝜉 ∈ R \ {−1}, Φ = Φ

1
⊕ Φ
2
, where Φ

1

is an algebraic isomorphism and Φ
2
is a conjugate algebraic

isomorphism; (2) 𝜉 = −1, Φ = Φ
1
⊕ ⋅ ⋅ ⋅ ⊕ Φ

4
, where

Φ
1
is an algebraic isomorphism, Φ

2
is a conjugate algebraic

isomorphism, Φ
3
is an algebraic anti-isomorphism, and Φ

4

is a conjugate algebraic anti-isomorphism; (3) 𝜉 ∈ C \R with
|𝜉| ̸= 1, Φ is an algebraic isomorphism; (4) 𝜉 ∈ C \ R with
|𝜉| = 1, Φ = Φ

1
⊕ Φ
2
, where Φ

1
is an algebraic isomorphism

and −𝜉Φ
2
is a conjugate algebraic anti-isomorphism.

For the case of 𝜉 = 1, the result and the approach are quite
different and we will discuss it in another paper.

2. Main Result and Corollary

The following is our main result and its proof will be
presented in the next section.

Theorem 1. LetM andN be von Neumann algebras without
central summands of type 𝐼

1
. Assume that Φ : M → N is

a map and 𝜉 ∈ C with 𝜉 ̸= 1. Then, Φ is a 𝜉-Lie multiplicative
isomorphism, that is,Φ is bijective and satisfiesΦ(𝐴𝐵−𝜉𝐵𝐴) =
Φ(𝐴)Φ(𝐵) − 𝜉Φ(𝐵)Φ(𝐴) for all𝐴, 𝐵 ∈M, if and only if one of
the following statements holds:

(1) 𝜉 = 0, Φ is a ring isomorphism.
(2) 𝜉 = −1, there exist central projections 𝑃 ∈M and 𝑄 ∈

N such that Φ = Φ
1
⊕ Φ
2
, where Φ

1
= Φ|
𝑃M : 𝑃M → 𝑄N

is a ring isomorphism and Φ
2
= Φ|
(𝐼𝑀−𝑃)M

: (𝐼
𝑀
− 𝑃)M →

(𝐼
𝑁
− 𝑄)N is a ring anti-isomorphism.
(3) 𝜉 ̸= 0, −1, there exist central projections 𝑃 ∈M and𝑄 ∈

N such that Φ = Φ
1
⊕ Φ
2
, where Φ

1
: 𝑃M → 𝑄N is a ring

isomorphism with Φ
1
(𝜉𝐴
1
) = 𝜉Φ

1
(𝐴
1
) for all 𝐴

1
∈ 𝑃M and

−𝜉Φ
2
: (𝐼
𝑀
− 𝑃)M → (𝐼

𝑁
−𝑄)N is a ring anti-isomorphism

with Φ
2
(𝜉𝐴
2
) = (1/𝜉)Φ

2
(𝐴
2
) for all 𝐴

2
∈ (𝐼
𝑀
− 𝑃)M. Here,

𝐼
𝑀
denotes the unit inM.

We remark that, from the above result, for bijective maps
between von Neumann algebras without central summands
of type 𝐼

1
, the 𝜉-Lie multiplicativity (𝜉 ̸= 1) will imply the

additivity; moreover, if 𝜉 is a rational real number and 𝜉 ∉
{0, ±1}, then by (3), 𝜉Φ

2
(𝐴
2
) = Φ

2
(𝜉𝐴
2
) = (1/𝜉)Φ

2
(𝐴
2
) for

all 𝐴
2
∈ (𝐼
𝑀
− 𝑃)M, which forces that Φ

2
= 0 and hence

Φ = Φ
1
is a ring isomorphism.

In the sequel, we study inmore detail on 𝜉-Lie multiplica-
tive isomorphisms and get a corollary ofTheorem 1. Firstly, let
us give a lemma which is interesting in itself.

Lemma 2. Let N be a factor von Neumann algebra. Assume
thatM is a von Neumann algebra and Ψ :M → N is a ring
isomorphism (ring anti-isomorphism). If dimN < ∞, then
there exists a field automorphism 𝜏 : C → C such that Ψ is
𝜏-linear; if dimN = ∞, then Ψ is linear or conjugate linear.

Proof. We only deal in detail with the case that Ψ is a ring
isomorphism. The other case can be proved similarly.

Assume that Ψ is a ring isomorphism. It is clear that
Ψ(Z(M)) = Z(N), which implies that Ψ(C𝐼

𝑀
) ⊆ C𝐼

𝑁
as

N is a factor. Then, since Ψ is a ring isomorphism, it is easy
to check that Ψ is unital; that is, Ψ(𝐼

𝑀
) = 𝐼
𝑁
.

IfM is not a factor, there exists a nonzero central element
𝐶 ∈Z(M) such that 𝐶 is not invertible. Thus,Ψ(𝐶) ∈ C𝐼

𝑁
is

also not invertible, and so Ψ(𝐶) = 0, a contradiction. Hence,
M is a factor and Ψ(C𝐼

𝑀
) = C𝐼

𝑁
.
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For any 𝜆 ∈ C, let Ψ(𝜆𝐼
𝑀
) = 𝜏(𝜆)𝐼

𝑁
. Then,

Ψ (𝜆𝐴) = Ψ (𝜆𝐼
𝑀
𝐴) = 𝜏 (𝜆)Ψ (𝐴)

∀𝜆 ∈ C and 𝐴 ∈M.
(1)

We claim that 𝜏 : C → C is a field automorphism. In fact,
since Ψ is additive, 𝜏 : C → C is additive. Note that

𝜏 (𝜆𝛾) 𝐼
𝑁
= Ψ (𝜆𝛾𝐼

𝑀
) = Ψ (𝜆𝐼

𝑀
) Ψ (𝛾𝐼

𝑀
) = 𝜏 (𝜆) 𝜏 (𝛾) 𝐼

𝑁
.

(2)

This implies that 𝜏(𝜆𝛾) = 𝜏(𝜆)𝜏(𝛾); that is, 𝜏 is multiplicative.
In the following, we assume that N is infinite dimen-

sional. We will show that 𝜏 is continuous. As dimN =

∞, there exists a sequence {𝑃
𝑛
}
∞

𝑛=1
of projections which are

orthogonal to each other. So, we have 0 = Ψ(𝑃
𝑛
𝑃
𝑚
) =

Ψ(𝑃
𝑛
)Ψ(𝑃
𝑚
) for 𝑛 ̸=𝑚 and 0 ̸=Ψ(𝑃

𝑛
) = Ψ(𝑃

𝑛
𝑃
𝑛
) = Ψ(𝑃

𝑛
)
2. If 𝜏

is not continuous, then 𝜏 is unbounded on any neighborhood
of 0. So 𝜏 is unbounded on {𝑧 : |𝑧| ≤ (1/2)} and hence there
exists 𝜆

1
with |𝜆

1
| < (1/2) such that

Ψ (𝜆1𝑃1)
 =
𝜏 (𝜆1)



Ψ (𝑃1)
 >
Ψ (𝑃1)

 . (3)

Considering {𝑧 : |𝑧| ≤ (1/22)} gives 𝜆
2
with |𝜆

2
| < (1/2

2
)

such that
Ψ (𝜆2𝑃2)

 =
𝜏 (𝜆2)



Ψ (𝑃2)
 > 2

Ψ (𝑃2)
 . (4)

Generally, for any 𝑛, there exists 𝜆
𝑛
with |𝜆

𝑛
| < (1/2

𝑛
) such

that
Ψ (𝜆𝑛𝑃𝑛)

 =
𝜏 (𝜆𝑛)



Ψ (𝑃𝑛)
 > 𝑛

Ψ (𝑃𝑛)
 . (5)

Let 𝐴 = ∑∞
𝑛=1
𝜆
𝑛
𝑃
𝑛
; then ‖𝐴‖ ≤ 1. This implies that 𝐴 ∈ M

and ‖Ψ(𝐴)‖ < ∞. However,

‖Ψ (𝐴)‖
Ψ (𝑃𝑛)

 ≥
Ψ (𝐴)Ψ (𝑃𝑛)



=
Ψ (𝐴𝑃𝑛)

 =
Ψ (𝜆𝑛𝑃𝑛)

 > 𝑛
Ψ (𝑃𝑛)

 ,

(6)

which implies that ‖Ψ(𝐴)‖ > 𝑛 for any 𝑛, a contradiction.
Hence, 𝜏 is continuous and by [11, pp. 52–57] is the identity
or the conjugation. Therefore, Ψ is linear or conjugate linear.

Lemma 3. Let M be any von Neumann algebra and N a
factor of infinite dimension. Assume that −𝜉Ψ : M → N
is a ring anti-isomorphism and 𝜉 ∈ C with 𝜉 ̸= 0, ±1. Then,
Ψ(𝜉𝐼
𝑀
) = (1/𝜉)𝐼

𝑁
if and only if −𝜉Ψ is a conjugate algebra

anti-isomorphism and |𝜉| = 1.

Proof. By Lemma 2, Ψ is linear or conjugate linear. So
Ψ(𝜉𝐼
𝑀
) = 𝜉𝐼

𝑁
or Ψ(𝜉𝐼

𝑀
) = 𝜉𝐼

𝑁
. If Ψ(𝜉𝐼

𝑀
) = (1/𝜉)𝐼

𝑁
, it

follows that (1/𝜉)𝐼
𝑁
= 𝜉𝐼
𝑁
or (1/𝜉)𝐼

𝑁
= 𝜉𝐼
𝑁
, which imply

that 𝜉2 = 1 or 𝜉𝜉 = 1. Since 𝜉 ̸= 0, ±1, we see that Ψ must be
conjugate linear and |𝜉| = 1. The converse is obvious.

Lemma 4. Let M and N be von Neumann algebras acting
on separable Hilbert spaces and assume thatN has no central
summands of type 𝐼

𝑛
for any 1 ≤ 𝑛 < ∞.

(1) Ψ : M → N is a ring isomorphism (resp., a ring
anti-isomorphism) if and only if there exist central projections
𝑃 ∈ M and 𝑄 ∈ N, an algebraic isomorphism (resp.,
an algebraic anti-isomorphism) Ψ

1
: 𝑃M → 𝑄N and a

conjugate algebraic isomorphism (resp., a conjugate algebraic
anti-isomorphism) Ψ

2
: (𝐼
𝑀
− 𝑃)M → (𝐼

𝑁
− 𝑄)N such that

Ψ = Ψ
1
⊕ Ψ
2
.

(2) Assume that −𝜉Ψ : M → N is a ring anti-
isomorphism and 𝜉 ∈ C \ {0, ±1}. Then, Ψ(𝜉𝐼

𝑀
) = (1/𝜉)𝐼

𝑁

if and only if −𝜉Ψ is a conjugate algebraic anti-isomorphism
and |𝜉| = 1.

Proof. (1)We consider the case of ring anti-isomorphism; the
case of ring isomorphism is treated similarly.

Assume thatΨ is a ring anti-isomorphism. By [12, pp. 209,
236], there exists a positive measure space (X, Ω, 𝜇) such that

N = ∫
X
N
𝑡
𝑑𝜇
𝑡
, M = ∫

X
Ψ
−1

𝑡
(N
𝑡
) 𝑑𝜇
𝑡
, Ψ = ∫

X
Ψ
𝑡
𝑑𝜇
𝑡
,

(7)

where every N
𝑡
is a factor and Ψ

𝑡
: M
𝑡
= Ψ
−1
(N
𝑡
) →

N
𝑡
is a ring anti-isomorphism. Since N has no central

summands of type 𝐼
𝑛
for any 1 ≤ 𝑛 < ∞, N

𝑡
is a factor

of infinite dimensional a.e. [𝜇]. By Lemma 2, Ψ
𝑡
is linear

or conjugate linear. If Ψ
𝑡
is not a conjugate algebraic anti-

isomorphism a.e. [𝜇] for all 𝑡, then there exists a measurable
subset with nonzero measure such that Ψ

𝑡
is an algebraic

anti-isomorphism a.e. [𝜇] on it. It follows that there exists a
proper central projection 𝑃

1
such that Ψ|

𝑃1M
is an algebraic

anti-isomorphism. Note that Ψ(𝑃
1
) is a central projection.

Now it is clear (e.g., using Zorn’s Lemma) that there exist
central projections 𝑃 ∈ M and 𝑄 ∈ N, an algebraic anti-
isomorphism Ψ

1
: 𝑃M → 𝑄N and a conjugate algebraic

anti-isomorphism Ψ
2
: (𝐼
𝑀
− 𝑃)M → (𝐼

𝑁
− 𝑄)N such that

Ψ = Ψ
1
⊕ Ψ
2
.

Conversely, if Ψ has the mentioned decomposition, then
Ψ is clearly a ring anti-isomorphism.

(2) The “if ” part is clear. To check the “only if ” part,
assume that −𝜉Φ is a ring anti-isomorphism and Ψ(𝜉𝐼

𝑀
) =

(1/𝜉)Ψ(𝐼
𝑀
). For any 𝐴 ∈ M, writing 𝐴 = ∫X 𝐴 𝑡𝑑𝜇𝑡, we have

Ψ(𝐴) = ∫X Ψ𝑡(𝐴 𝑡)𝑑𝜇𝑡. Hence,

1

𝜉
∫
X
𝐼
𝑡𝑁
𝑑𝜇
𝑡
=
1

𝜉
𝐼
𝑁
= Ψ (𝜉𝐼

𝑀
) = ∫

X
Ψ
𝑡
(𝜉𝐼
𝑡𝑀
) 𝑑𝜇
𝑡
. (8)

It follows that Ψ
𝑡
(𝜉𝐼
𝑡𝑀
) = (1/𝜉)𝐼

𝑡𝑁
a.e. [𝜇]. By Lemma 3, we

have |𝜉| = 1 and −𝜉Ψ
𝑡
is conjugate linear a.e. [𝜇], and so −𝜉Ψ

is a conjugate algebraic anti-isomorphism.

Now, we are in a position to give the following corollary
of Theorem 1.

Corollary 5. Let M and N be any von Neumann algebras
acting on separable Hilbert spaces without central summands
of type 𝐼

1
. Assume further thatN has no any central summands

of type 𝐼
𝑛
for 1 ≤ 𝑛 < ∞. LetΦ :M → N be amap and 𝜉 ∈ C

with 𝜉 ̸= 1.Then,Φ is a 𝜉-Lie multiplicative isomorphism if and
only if one of the following statements is true.
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(1) 𝜉 ∈ R \ {−1}, there exist central projections 𝑃 ∈M and
𝑄 ∈ N, and an algebraic isomorphism Φ

1
: 𝑃M → 𝑄N

and a conjugate algebraic isomorphism Φ
2
: (𝐼
𝑀
− 𝑃)M →

(𝐼
𝑁
− 𝑄)N such that Φ = Φ

1
⊕ Φ
2
.

(2) 𝜉 = −1, there exist central projections 𝑃
1
, . . . , 𝑃

4
∈ M

and 𝑄
1
, . . . , 𝑄

4
∈ N with 𝑃

1
+ ⋅ ⋅ ⋅ + 𝑃

4
= 𝐼
𝑀

and 𝑄
1
+ ⋅ ⋅ ⋅ +

𝑄
4
= 𝐼
𝑁
such that Φ = Φ

1
⊕ ⋅ ⋅ ⋅ ⊕ Φ

4
, where Φ

1
= Φ|
𝑃1M

:

𝑃
1
M → 𝑄

1
N is an algebraic isomorphism, Φ

2
= Φ|
𝑃2M

:

𝑃
2
M → 𝑄

2
N is a conjugate algebraic isomorphism, Φ

3
=

Φ|
𝑃3M

: 𝑃
3
M → 𝑄

3
N is an algebraic anti-isomorphism, and

Φ
4
= Φ|
𝑃4M

: 𝑃
4
M → 𝑄

4
N is a conjugate algebraic anti-

isomorphism.
(3) 𝜉 ∈ C \R with |𝜉| ̸= 1, Φ is an algebraic isomorphism.
(4) 𝜉 ∈ C \ R with |𝜉| = 1, there exist central projections

𝑃 ∈M and𝑄 ∈N such thatΦ = Φ
1
⊕Φ
2
, whereΦ

1
: 𝑃M →

𝑄N is an algebraic isomorphism and −𝜉Φ
2
: (𝐼
𝑀
− 𝑃)M →

(𝐼
𝑁
− 𝑄)N is a conjugate algebraic anti-isomorphism.

Proof. We only need to check the “only if ” part. Assume that
Φ is a 𝜉-Lie multiplicative isomorphism. By Theorem 1 and
Lemma 4(1), if 𝜉 = −1, (2) is true; if 𝜉 = 0, (1) holds; if
𝜉 ̸= 0, −1, there exists central projections 𝑃 ∈ M and 𝑄 ∈ N
such that Φ = Ψ

1
⊕ Ψ
2
, where Ψ

1
: 𝑃M → 𝑄N is a ring

isomorphism with Ψ
1
(𝜉𝐴
1
) = 𝜉Ψ

1
(𝐴
1
) for all 𝐴

1
∈ 𝑃M and

−𝜉Ψ
2
: (𝐼
𝑀
−𝑃)M → (𝐼

𝑁
−𝑄)N is a ring anti-isomorphism

with Ψ
2
(𝜉𝐴
2
) = (1/𝜉)Ψ

2
(𝐴
2
) for all 𝐴

2
∈ (𝐼
𝑀
− 𝑃)M.

For Ψ
1
, by Lemma 4(1), there exist central projections

𝑃
1
∈ 𝑃M and 𝑄

1
∈ 𝑄N such that Ψ

1
= Φ
1
⊕ Φ
2
, where

Φ
1
= Ψ
1
|
𝑃1M

: 𝑃
1
M → 𝑄

1
N is linear and Φ

2
= Ψ
1
|
(𝑃−𝑃1)M

:

(𝑃 − 𝑃
1
)M → (𝑄 − 𝑄

1
)N is conjugate linear. Note that

Ψ
1
(𝜉𝐴
1
) = 𝜉Ψ

1
(𝐴
1
) for all𝐴

1
∈ 𝑃M.This implies thatΦ

2
= 0

if 𝜉 ∉ R.
For Ψ

2
, by Lemma 4(2), Ψ

2
= 0 if |𝜉| ̸= 1 and −𝜉Ψ

2
is a

conjugate algebraic anti-isomorphism if |𝜉| = 1. Thus, if 𝜉 ∈
R\{0, −1},Φ is a ring isomorphism and has the form (1); if 𝜉 ∈
C \R with |𝜉| ̸= 1, then Ψ

1
= Φ
1
is an algebraic isomorphism

andΨ
2
= 0, and consequently,Φ is an algebraic isomorphism,

which implies the form (3); if 𝜉 ∈ C \ R with |𝜉| = 1, then
Ψ
1
= Φ
1
is an algebraic isomorphism and −𝜉Ψ

2
is a conjugate

algebraic anti-isomorphism, which implies (4).

3. Proof of the Main Result

In this section, we present a proof of the main result
Theorem 1. Before doing this, we need some notions.
Let M be any von Neumann algebra and 𝐴 ∈ M.
Recall that the central carrier of 𝐴, denoted by 𝐴, is the
intersection of all central projections 𝑃 such that 𝑃𝐴 = 0.
If 𝐴 is self-adjoint, then the core of 𝐴, denoted by 𝐴, is
sup{𝑆 ∈ Z(M) : 𝑆 = 𝑆∗, 𝑆 ≤ 𝐴}. Particularly, if 𝐴 = 𝑃 is a
projection, it is clear that 𝑃 is the largest central projection
≤ 𝑃. A projection 𝑃 is core-free if 𝑃 = 0. It is easy to see that
𝑃 = 0 if and only if 𝐼

𝑀
− 𝑃 = 𝐼

𝑀
[13].

The following two lemmas are needed.

Lemma 6 (see [13]). Let M be a von Neumann algebra
without central summands of type 𝐼

1
. Then, each nonzero

central projection 𝐶 ∈M is the carrier of a core-free projection

in M. Particularly, there exists a nonzero core-free projection
𝑃 ∈M with 𝑃 = 𝐼

𝑀
.

Lemma 7 (see [14]). LetM be a von Neumann algebra with-
out central summands of type 𝐼

1
or 𝐼
2
. Then, the idealL ofM

generated algebraically by {[𝐴2, 𝐶]𝐵[𝐴, 𝐶] − [𝐴, 𝐶]𝐵[𝐴2, 𝐶] :
𝐴, 𝐵, 𝐶 ∈M} is equal toM.

Proof of Theorem 1. For M, by Lemma 6, we can find a
nonzero central core-free projection 𝑃

0
∈ M with central

carrier 𝐼
𝑀
. By the definitions of core and central carrier, 𝐼

𝑀
−

𝑃
0
is core-free and 𝐼

𝑀
− 𝑃
0
= 𝐼
𝑀
. For the convenience, denote

M
𝑖𝑗
= 𝑃
𝑖
M𝑃
𝑗
, 𝑖, 𝑗 ∈ {1, 2}, where 𝑃

1
= 𝑃
0
and 𝑃

2
= 𝐼
𝑀
− 𝑃
0
.

Then,M =M
11
+M
12
+M
21
+M
22
. In the sequel, when we

write 𝑆
𝑖𝑗
, we always indicate 𝑆

𝑖𝑗
∈M
𝑖𝑗
.

If the statement (1) holds, it is clear that Φ is a multi-
plicative isomorphism. If the statement (2) holds, it is easy
to check thatΦ is a Jordan multiplicative isomorphism. If the
statement (3) holds, then for any 𝐴

1
, 𝐵
1
∈ 𝑃M, we have

Φ
1
(𝐴
1
𝐵
1
− 𝜉𝐵
1
𝐴
1
) = Φ

1
(𝐴
1
)Φ
1
(𝐵
1
) − Φ
1
(𝜉𝐵
1
)Φ
1
(𝐴
1
)

= Φ
1
(𝐴
1
)Φ
1
(𝐵
1
) − 𝜉Φ

1
(𝐵
1
)Φ
1
(𝐴
1
) ,

(9)

and for any 𝐴
2
, 𝐵
2
∈ (𝐼
𝑀
− 𝑃)M, we have

−𝜉Φ
2
(𝐴
2
𝐵
2
− 𝜉𝐵
2
𝐴
2
) = (−𝜉Φ

2
) (𝐵
2
) (−𝜉Φ

2
) (𝐴
2
)

− (−𝜉Φ
2
) (𝐴
2
) (−𝜉Φ

2
) (𝜉𝐵
2
)

= 𝜉
2
Φ
2
(𝐵
2
)Φ
2
(𝐴
2
)

− 𝜉
2
Φ
2
(𝐴
2
)Φ
2
(𝜉𝐵
2
)

= 𝜉
2
Φ
2
(𝐵
2
)Φ
2
(𝐴
2
)

− 𝜉Φ
2
(𝐴
2
)Φ
2
(𝐵
2
)

= −𝜉 (Φ
2
(𝐴
2
)Φ
2
(𝐵
2
)

− 𝜉Φ
2
(𝐵
2
)Φ
2
(𝐴
2
)) ,

(10)

which implies that Φ
2
(𝐴
2
𝐵
2
− 𝜉𝐵
2
𝐴
2
) = Φ

2
(𝐴
2
)Φ
2
(𝐵
2
) −

𝜉Φ
2
(𝐵
2
)Φ
2
(𝐴
2
). Hence, for any 𝐴, 𝐵 ∈ M, one obtains that

Φ(𝐴𝐵− 𝜉𝐵𝐴) = Φ(𝐴)Φ(𝐵) − 𝜉Φ(𝐵)Φ(𝐴). This completes the
proof of “if ” part.

We will prove the “only if ” part by checking a series of
claims.

Claim 1. Φ is additive. We will complete the proof of Claim 1
by nine steps.

Step 1.Φ(0) = 0. SinceΦ is surjective, there exists an element
𝐴 ∈ M such that Φ(𝐴) = 0. So Φ(0) = Φ(0𝐴 − 𝜉𝐴0) =
Φ(0)Φ(𝐴) − 𝜉Φ(𝐴)Φ(0) = 0.

In the sequel, we will use a so-called standard argument:
suppose that 𝑆, 𝐴, 𝐵 ∈M are such that Φ(𝑆) = Φ(𝐴) + Φ(𝐵).
Multiplying this equation byΦ(𝑇) from the left and the right,
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respectively, we get Φ(𝑇)Φ(𝑆) = Φ(𝑇)Φ(𝐴) + Φ(𝑇)Φ(𝐵) and
Φ(𝑆)Φ(𝑇) = Φ(𝐴)Φ(𝑇) + Φ(𝐵)Φ(𝑇). Then,

Φ (𝑇)Φ (𝑆) − 𝜉Φ (𝑆)Φ (𝑇) = Φ (𝑇)Φ (𝐴) − 𝜉Φ (𝐴)Φ (𝑇)

+ Φ (𝑇)Φ (𝐵) − 𝜉Φ (𝐵)Φ (𝑇) ,

Φ (𝑆)Φ (𝑇) − 𝜉Φ (𝑇)Φ (𝑆) = Φ (𝐴)Φ (𝑇) − 𝜉Φ (𝑇)Φ (𝐴)

+ Φ (𝐵)Φ (𝑇) − 𝜉Φ (𝑇)Φ (𝐵) .

(11)

It follows that

Φ (𝑇𝑆 − 𝜉𝑆𝑇) = Φ (𝑇𝐴 − 𝜉𝐴𝑇) + Φ (𝑇𝐵 − 𝜉𝐵𝑇) ,

Φ (𝑆𝑇 − 𝜉𝑇𝑆) = Φ (𝐴𝑇 − 𝜉𝑇𝐴) + Φ (𝐵𝑇 − 𝜉𝑇𝐵) .

(12)

Moreover, if we haveΦ(𝑇𝐴−𝜉𝐴𝑇)+Φ(𝑇𝐵−𝜉𝐵𝑇) = Φ(𝑇𝐴−
𝜉𝐴𝑇+𝑇𝐵−𝜉𝐵𝑇) andΦ(𝐴𝑇−𝜉𝑇𝐴)+Φ(𝐵𝑇−𝜉𝑇𝐵) = Φ(𝐴𝑇−
𝜉𝑇𝐴 + 𝐵𝑇 − 𝜉𝑇𝐵), by the injectivity ofΦ, one gets

𝑇𝑆 − 𝜉𝑆𝑇 = 𝑇𝐴 − 𝜉𝐴𝑇 + 𝑇𝐵 − 𝜉𝐵𝑇,

𝑆𝑇 − 𝜉𝑇𝑆 = 𝐴𝑇 − 𝜉𝑇𝐴 + 𝐵𝑇 − 𝜉𝑇𝐵.

(13)

Step 2. For any 𝐴
𝑖𝑖
∈ M
𝑖𝑖
and 𝐴

𝑖𝑗
∈ M
𝑖𝑗
, we have Φ(𝐴

𝑖𝑖
+

𝐴
𝑖𝑗
) = Φ(𝐴

𝑖𝑖
) + Φ(𝐴

𝑖𝑗
), 1 ≤ 𝑖 ̸= 𝑗 ≤ 2.

By the surjectivity ofΦ, there is an element 𝑆 = 𝑆
11
+𝑆
12
+

𝑆
21
+ 𝑆
22
∈M such that

Φ (𝑆) = Φ (𝐴
𝑖𝑖
) + Φ (𝐴

𝑖𝑗
) . (14)

For any 𝑇
𝑗𝑗
∈ M
𝑗𝑗
, applying the standard argument to (14),

we obtain

Φ(𝑆𝑇
𝑗𝑗
− 𝜉𝑇
𝑗𝑗
𝑆) = Φ (𝐴

𝑖𝑖
𝑇
𝑗𝑗
− 𝜉𝑇
𝑗𝑗
𝐴
𝑖𝑖
)

+ Φ (𝐴
𝑖𝑗
𝑇
𝑗𝑗
− 𝜉𝑇
𝑗𝑗
𝐴
𝑖𝑗
) = Φ (𝐴

𝑖𝑗
𝑇
𝑗𝑗
) ,

(15)

Φ(𝑇
𝑗𝑗
𝑆 − 𝜉𝑆𝑇

𝑗𝑗
) = Φ (−𝜉𝐴

𝑖𝑗
𝑇
𝑗𝑗
) . (16)

By (15) and the injectivity ofΦ, one gets 𝑆𝑇
𝑗𝑗
−𝜉𝑇
𝑗𝑗
𝑆 = 𝑆
𝑖𝑗
𝑇
𝑗𝑗
+

𝑆
𝑗𝑗
𝑇
𝑗𝑗
− 𝜉𝑇
𝑗𝑗
𝑆
𝑗𝑖
− 𝜉𝑇
𝑗𝑗
𝑆
𝑗𝑗
= 𝐴
𝑖𝑗
𝑇
𝑗𝑗
for all 𝑇

𝑗𝑗
∈ M
𝑗𝑗
, which

implies that 𝜉𝑇
𝑗𝑗
𝑆
𝑗𝑖
= 0, 𝑆

𝑖𝑗
𝑇
𝑗𝑗
= 𝐴
𝑖𝑗
𝑇
𝑗𝑗
and 𝑆
𝑗𝑗
𝑇
𝑗𝑗
= 𝜉𝑇
𝑗𝑗
𝑆
𝑗𝑗

for all 𝑇
𝑗𝑗
∈ M
𝑗𝑗
. Particularly, taking 𝑇

𝑗𝑗
= 𝑃
𝑗
, one gets

𝑆
𝑖𝑗
= 𝐴
𝑖𝑗
and, as 𝜉 ̸= 1, 𝑆

𝑗𝑗
= 0. This, combining (16) and the

injectivity of Φ, yields 𝑇
𝑗𝑗
𝑆
𝑗𝑖
= 0, and so 𝑆

𝑗𝑖
= 0.

For any𝑇
𝑖𝑗
∈M
𝑖𝑗
, applying the standard argument to (14)

again, we get

Φ(𝑆𝑇
𝑖𝑗
− 𝜉𝑇
𝑖𝑗
𝑆) = Φ (𝐴

𝑖𝑖
𝑇
𝑖𝑗
− 𝜉𝑇
𝑖𝑗
𝐴
𝑖𝑖
)

+ Φ (𝐴
𝑖𝑗
𝑇
𝑖𝑗
− 𝜉𝑇
𝑖𝑗
𝐴
𝑖𝑗
) = Φ (𝐴

𝑖𝑖
𝑇
𝑖𝑗
) .

(17)

It follows from the injectivity ofΦ that

𝑆𝑇
𝑖𝑗
− 𝜉𝑇
𝑖𝑗
𝑆 = 𝐴

𝑖𝑖
𝑇
𝑖𝑗 (18)

for every 𝑇
𝑖𝑗
∈ M
𝑖𝑗
. Note that 𝑆

𝑗𝑖
= 𝑆
𝑗𝑗
= 0 and 𝑆

𝑖𝑗
= 𝐴
𝑖𝑗
.

The above equation reduces to 𝑆
𝑖𝑖
𝑇
𝑖𝑗
= 𝐴
𝑖𝑖
𝑇
𝑖𝑗
; that is, 𝑆

𝑖𝑖
𝑇𝑃
𝑗
=

𝐴
𝑖𝑖
𝑇𝑃
𝑗
holds for all 𝑇 ∈ M. Note that 𝑃

𝑗
= 𝐼
𝑀
. It follows

from the definition of the central carrier that span {𝑇𝑃
𝑗
𝑥 :

𝑇 ∈M, 𝑥 ∈ 𝐻} is dense in𝐻. Hence, 𝑆
𝑖𝑖
= 𝐴
𝑖𝑖
. Consequently,

𝑆 = 𝐴
𝑖𝑖
+ 𝐴
𝑖𝑗
.

Similarly, one can check that the following Step 3 holds.

Step 3. For any 𝐴
𝑖𝑖
∈ M
𝑖𝑖
and 𝐴

𝑗𝑖
∈ M
𝑗𝑖
, we have Φ(𝐴

𝑖𝑖
+

𝐴
𝑗𝑖
) = Φ(𝐴

𝑖𝑖
) + Φ(𝐴

𝑗𝑖
), 1 ≤ 𝑖 ̸= 𝑗 ≤ 2.

Step 4. Φ is additive onM
𝑖𝑗
, 1 ≤ 𝑖 ̸= 𝑗 ≤ 2.

For any 𝐴
12
, 𝐵
12
∈M
12
, since

𝐴
12
+ 𝐵
12
= (𝑃
1
+ 𝐵
12
) (𝐴
12
+ 𝑃
2
)

= (𝑃
1
+ 𝐵
12
) (𝐴
12
+ 𝑃
2
) − 𝜉 (𝐴

12
+ 𝑃
2
) (𝑃
1
+ 𝐵
12
) ,

(19)

by Steps 2-3, one can obtain

Φ(𝐴
12
+ 𝐵
12
) = Φ (𝑃

1
+ 𝐵
12
)Φ (𝐴

12
+ 𝑃
2
)

− 𝜉Φ (𝐴
12
+ 𝑃
2
)Φ (𝑃

1
+ 𝐵
12
)

= (Φ (𝑃
1
) + Φ (𝐵

12
)) (Φ (𝐴

12
) + Φ (𝑃

2
))

− 𝜉 (Φ (𝐴
12
) + Φ (𝑃

2
))

× (Φ (𝑃
1
) + Φ (𝐵

12
))

= Φ (𝑃
1
𝐴
12
− 𝜉𝐴
12
𝑃
1
) + Φ (𝑃

1
𝑃
2
− 𝜉𝑃
2
𝑃
1
)

+ Φ (𝐵
12
𝐴
12
− 𝜉𝐴
12
𝐵
12
)

+ Φ (𝐵
12
𝑃
2
− 𝜉𝑃
2
𝐵
12
)

= Φ (𝐴
12
) + Φ (𝐵

12
) .

(20)

For any 𝐴
21
, 𝐵
21
∈M
21
, note that

𝐴
21
+ 𝐵
21
= (𝐴
21
+ 𝑃
2
) (𝑃
1
+ 𝐵
21
)

= (𝐴
21
+ 𝑃
2
) (𝑃
1
+ 𝐵
21
) − 𝜉 (𝑃

1
+ 𝐵
21
) (𝐴
21
+ 𝑃
2
) .

(21)

By a similar computation as above, one can show Φ(𝐴
21
+

𝐵
21
) = Φ(𝐴

21
) + Φ(𝐵

21
).

Step 5. Φ is additive onM
𝑖𝑖
, 𝑖 = 1, 2.

Take any 𝐴
𝑖𝑖
, 𝐵
𝑖𝑖
∈ M
𝑖𝑖
and choose 𝑆 = 𝑆

11
+ 𝑆
12
+ 𝑆
21
+

𝑆
22
∈M such that

Φ (𝑆) = Φ (𝐴
𝑖𝑖
) + Φ (𝐵

𝑖𝑖
) . (22)

Let 𝑗 ̸= 𝑖. For 𝑃
𝑗
∈ M
𝑗𝑗
, applying the standard argument to

(22) and the injectivity of Φ, we get 0 = 𝑃
𝑗
𝑆 − 𝜉𝑆𝑃

𝑗
= 𝑆
𝑗𝑖
+

𝑆
𝑗𝑗
−𝜉𝑆
𝑖𝑗
−𝜉𝑆
𝑗𝑗
and 0 = 𝑆𝑃

𝑗
−𝜉𝑃
𝑗
𝑆 = 𝑆
𝑖𝑗
+𝑆
𝑗𝑗
−𝜉𝑆
𝑗𝑖
−𝜉𝑆
𝑗𝑗
. Note

that 𝜉 ̸= 1, these two equations imply that 𝑆
𝑖𝑗
= 𝑆
𝑗𝑖
= 𝑆
𝑗𝑗
= 0.

For any 𝑇
𝑖𝑗
∈ M
𝑖𝑗
, applying the standard argument to

(22), and by Step 4, one obtains

Φ(𝑆𝑇
𝑖𝑗
− 𝜉𝑇
𝑖𝑗
𝑆) = Φ (𝐴

𝑖𝑖
𝑇
𝑖𝑗
) + Φ (𝐵

𝑖𝑖
𝑇
𝑖𝑗
)

= Φ (𝐴
𝑖𝑖
𝑇
𝑖𝑗
+ 𝐵
𝑖𝑖
𝑇
𝑖𝑗
) .

(23)
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Note that Φ is injective and 𝑆
𝑖𝑗
= 𝑆
𝑗𝑖
= 𝑆
𝑗𝑗
= 0. The above

equation implies 𝑆
𝑖𝑖
𝑇
𝑖𝑗
= (𝐴
𝑖𝑖
+ 𝐵
𝑖𝑖
)𝑇
𝑖𝑗
for all 𝑇

𝑖𝑗
∈ M
𝑖𝑗
; that

is, 𝑆
𝑖𝑖
𝑇𝑃
𝑗
= (𝐴

𝑖𝑖
+ 𝐵
𝑖𝑖
)𝑇𝑃
𝑗
for all 𝑇 ∈ M. It follows from

𝑃
𝑗
= 𝐼
𝑀
that 𝑆

𝑖𝑖
= 𝐴
𝑖𝑖
+ 𝐵
𝑖𝑖
.

Step 6. Consider Φ(𝐴
12
+ 𝐴
21
) = Φ(𝐴

12
) + Φ(𝐴

21
).

Choose 𝑆 = 𝑆
11
+ 𝑆
12
+ 𝑆
21
+ 𝑆
22
∈M such that

Φ (𝑆) = Φ (𝐴
12
) + Φ (𝐴

21
) . (24)

For any 𝑇
12
∈ M
12
, applying the standard argument to (24),

and the injectivity of Φ, we have 𝑆𝑇
12
− 𝜉𝑇
12
𝑆 = 𝐴

21
𝑇
12
−

𝜉𝑇
12
𝐴
21

for all 𝑇
12
∈ M
12
. Multiplying this equation by 𝑃

2

from both sides, we get 𝑆
21
𝑇
12
= 𝐴
21
𝑇
12

for all 𝑇
12
∈ M
12
,

which implies that 𝑆
21
= 𝐴
21
.

Similarly, for any 𝑇
21
∈ M

21
, applying the standard

argument to (24), one can prove that 𝑆
12
= 𝐴
12
.

For 𝑃
1
and 𝑃

2
, applying the standard argument to (24),

respectively, we have

Φ(𝑃
2
𝑆 − 𝜉𝑆𝑃

2
) = Φ (−𝜉𝐴

12
) + Φ (𝐴

21
) ,

Φ (𝑆𝑃
1
− 𝜉𝑃
1
𝑆) = Φ (−𝜉𝐴

12
) + Φ (𝐴

21
) .

(25)

Therefore,Φ(𝑃
2
𝑆−𝜉𝑆𝑃

2
) = Φ(𝑆𝑃

1
−𝜉𝑃
1
𝑆), which implies that

𝑃
2
𝑆 − 𝜉𝑆𝑃

2
= 𝑆𝑃
1
− 𝜉𝑃
1
𝑆. A simple computation reveals that

𝑆
11
= 𝑆
22
= 0. Consequently, 𝑆 = 𝐴

12
+ 𝐴
21
.

Step 7. Consider Φ(𝐴
11
+ 𝐴
12
+ 𝐴
21
) = Φ(𝐴

11
) + Φ(𝐴

12
) +

Φ(𝐴
21
).

Let 𝑆 = 𝑆
11
+ 𝑆
12
+ 𝑆
21
+ 𝑆
22
∈ M be such that Φ(𝑆) =

Φ(𝐴
11
) + Φ(𝐴

12
) + Φ(𝐴

21
). Then, by Steps 2-3, we have

Φ (𝑆) = Φ (𝐴
11
+ 𝐴
12
) + Φ (𝐴

21
) , (26)

Φ (𝑆) = Φ (𝐴
11
+ 𝐴
21
) + Φ (𝐴

12
) . (27)

For any 𝑇
12
∈ M
12
, applying the standard argument to (27)

and the injectivity ofΦ, we get

𝑆𝑇
12
− 𝜉𝑇
12
𝑆 = 𝐴

11
𝑇
12
+ 𝐴
21
𝑇
12
− 𝜉𝑇
12
𝐴
21
. (28)

Multiplying by 𝑃
2
from the left in (28), one obtains 𝑆

21
𝑇
12
=

𝐴
21
𝑇
12
for each 𝑇

12
∈M
12
, and so 𝑆

21
= 𝐴
21
. Multiplying by

𝑃
1
and 𝑃
2
from the left and the right, respectively, in (28), one

gets

𝜉𝑇
12
𝑆
22
= (𝑆
11
− 𝐴
11
) 𝑇
12

∀𝑇
12
∈M
12
. (29)

Similarly, for any𝑇
21
∈M
21
, applying the standard argument

to (26), one can get 𝑆
12
= 𝐴
12
.

For𝑃
2
, applying the standard argument to (26), by Step 6,

we haveΦ(𝑆𝑃
2
−𝜉𝑃
2
𝑆) = Φ(𝐴

12
)+Φ(−𝜉𝐴

21
) = Φ(𝐴

12
−𝜉𝐴
21
),

which implies that 𝑆𝑃
2
−𝜉𝑃
2
𝑆 = 𝐴

12
−𝜉𝐴
21
. As 𝑆
12
= 𝐴
12
and

𝑆
21
= 𝐴
21
, a direct computation leads to 𝑆

22
= 0. This fact

and (29) yield (𝑆
11
− 𝐴
11
)𝑇
12
= 0 for all 𝑇

12
∈ M
12
, and so

𝑆
11
= 𝐴
11
. Consequently, 𝑆 = 𝐴

11
+ 𝐴
12
+ 𝐴
21
, as desired.

Step 8.ConsiderΦ(𝐴
11
+𝐴
12
+𝐴
21
+𝐴
22
) = Φ(𝐴

11
)+Φ(𝐴

12
)+

Φ(𝐴
21
) + Φ(𝐴

22
).

Let 𝑆 = 𝑆
11
+ 𝑆
12
+ 𝑆
21
+ 𝑆
22
∈M be such that

Φ (𝑆) = Φ (𝐴
11
) + Φ (𝐴

12
) + Φ (𝐴

21
) + Φ (𝐴

22
) . (30)

For 𝑃
1
, applying the standard argument to (30), by Step 7, we

have

Φ(𝑃
1
𝑆 − 𝜉𝑆𝑃

1
) = Φ (𝑃

1
)Φ (𝑆) − 𝜉Φ (𝑆)Φ (𝑃

1
)

= Φ ((1 − 𝜉)𝐴
11
+ 𝐴
12
− 𝜉𝐴
21
)

(31)

and Φ(𝑆𝑃
1
− 𝜉𝑃
1
𝑆) = Φ((1 − 𝜉)𝐴

11
− 𝜉𝐴
12
+ 𝐴
21
). It follows

that 𝑃
1
𝑆 − 𝜉𝑆𝑃

1
= (1 − 𝜉)𝐴

11
+ 𝐴
12
− 𝜉𝐴
21
and 𝑆𝑃

1
− 𝜉𝑃
1
𝑆 =

(1−𝜉)𝐴
11
−𝜉𝐴
12
+𝐴
21
. By a simple computation, one obtains

𝑆
11
= 𝐴
11
, 𝑆
12
= 𝐴
12
, and 𝑆

21
= 𝐴
21
.

For any 𝑇
12
∈ M
12
, applying the standard argument to

(30), one gets

Φ(𝑇
12
𝑆 − 𝜉𝑆𝑇

12
) = Φ (−𝜉𝐴

11
𝑇
12
)

+ Φ (𝑇
12
𝐴
21
− 𝜉𝐴
21
𝑇
12
) + Φ (𝑇

12
𝐴
22
) .

(32)

Furthermore, for 𝑃
1
, applying the standard argument to the

above equation, by Steps 2 and 4, one gets

Φ(𝑃
1
(𝑇
12
𝑆 − 𝜉𝑆𝑇

12
) − 𝜉 (𝑇

12
𝑆 − 𝜉𝑆𝑇

12
) 𝑃
1
)

= Φ (−𝜉𝐴
11
𝑇
12
) + Φ (𝑇

12
𝐴
21
− 𝜉𝑇
12
𝐴
21
) + Φ (𝑇

12
𝐴
22
)

= Φ (−𝜉𝐴
11
𝑇
12
+ 𝑇
12
𝐴
21
− 𝜉𝑇
12
𝐴
21
+ 𝑇
12
𝐴
22
) .

(33)

Thus, we have

𝑇
12
𝑆
21
+ 𝑇
12
𝑆
22
− 𝜉𝑆
11
𝑇
12
− 𝜉𝑇
12
𝑆
21

= −𝜉𝐴
11
𝑇
12
+ 𝑇
12
𝐴
21
− 𝜉𝑇
12
𝐴
21
+ 𝑇
12
𝐴
22
.

(34)

Note that 𝑆
11
= 𝐴
11
, 𝑆
12
= 𝐴
12
, and 𝑆

21
= 𝐴
21
. It follows

that 𝑇
12
𝑆
22
= 𝑇
12
𝐴
22
for all 𝑇

12
∈M
12
, and hence 𝑆

22
= 𝐴
22
.

Consequently, 𝑆 = 𝐴
11
+ 𝐴
12
+ 𝐴
21
+ 𝐴
22
.

Step 9. Φ is additive, and so Claim 1 is true.
For any 𝐴, 𝐵 ∈M, write 𝐴 = 𝐴

11
+ 𝐴
12
+ 𝐴
21
+ 𝐴
22
and

𝐵 = 𝐵
11
+ 𝐵
12
+ 𝐵
21
+ 𝐵
22
. By Steps 2–8, we have

Φ (𝐴 + 𝐵) = Φ ((𝐴
11
+ 𝐵
11
) + (𝐴

12
+ 𝐵
12
)

+ (𝐴
21
+ 𝐵
21
) + (𝐴

22
+ 𝐵
22
))

= Φ (𝐴
11
+ 𝐵
11
) + Φ (𝐴

12
+ 𝐵
12
)

+ Φ (𝐴
21
+ 𝐵
21
) + Φ (𝐴

22
+ 𝐵
22
)

= Φ (𝐴
11
) + Φ (𝐵

11
) + Φ (𝐴

12
) + Φ (𝐵

12
)

+ Φ (𝐴
21
) + Φ (𝐵

21
) + Φ (𝐴

22
) + Φ (𝐵

22
)

= Φ (𝐴
11
+ 𝐴
12
+ 𝐴
21
+ 𝐴
22
)

+ Φ (𝐵
11
+ 𝐵
12
+ 𝐵
21
+ 𝐵
22
)

= Φ (𝐴) + Φ (𝐵) .

(35)
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Claim 2. The statements (1)-(2) hold in the theorem. By
Claim 1, Φ is additive. So, in the case of 𝜉 = 0, the statement
(1) is true; in the case of 𝜉 = −1, by [14] (also see [15]), it is
also easy to see that the statement (2) is true.

In the sequel, we always assume that 𝜉 ̸= 0, ±1.

Claim 3. Consider Φ(𝐼
𝑀
) ∈Z(N).

For any 𝐴, 𝐵 ∈M, we have

Φ (𝐴𝐵 − 𝜉𝐵𝐴) = Φ (𝐴)Φ (𝐵) − 𝜉Φ (𝐵)Φ (𝐴) ,

Φ (𝐵𝐴 − 𝜉𝐴𝐵) = Φ (𝐵)Φ (𝐴) − 𝜉Φ (𝐴)Φ (𝐵) .

(36)

Note that, by Claim 1, Φ is additive. Thus, the above two
equations imply that

Φ ((1 + 𝜉) (𝐴𝐵 − 𝐵𝐴))

= (1 + 𝜉) (Φ (𝐴)Φ (𝐵) − Φ (𝐵)Φ (𝐴)) , ∀𝐴, 𝐵 ∈M.
(37)

As Φ(0) = 0 and 𝜉 ̸= 0, −1, the above equation ensures
that 𝐴𝐵 = 𝐵𝐴 if and only if Φ(𝐴)Φ(𝐵) = Φ(𝐵)Φ(𝐴). So
Φ(𝐴)Φ(𝐼

𝑀
) = Φ(𝐼

𝑀
)Φ(𝐴) holds for all 𝐴 ∈ M. It follows

from the surjectivity ofΦ thatΦ(𝐼
𝑀
) ∈Z(N).

Claim 4. Φ(𝐼
𝑀
) is invertible.

For any 𝐴 ∈M, by Claim 3, we have

Φ ((1 − 𝜉)𝐴) = Φ (𝐴)Φ (𝐼
𝑀
) − 𝜉Φ (𝐼

𝑀
)Φ (𝐴)

= (1 − 𝜉)Φ (𝐼
𝑀
)Φ (𝐴) = (1 − 𝜉)Φ (𝐴)Φ (𝐼

𝑀
) .

(38)

Taking 𝐴 = 𝐴
0
= (1/(1 − 𝜉))Φ

−1
((1 − 𝜉)𝐼

𝑁
) in the above

equation, one gets (1 − 𝜉)𝐼
𝑁
= (1 − 𝜉)Φ(𝐼

𝑀
)Φ(𝐴
0
) =

(1 − 𝜉)Φ(𝐴
0
)Φ(𝐼
𝑀
). It follows from the fact 𝜉 ̸= 1 that

Φ(𝐼
𝑀
)Φ(𝐴
0
) = Φ(𝐴

0
)Φ(𝐼
𝑀
) = 𝐼

𝑁
. So Φ(𝐼

𝑀
) is invertible

and Φ(𝐴
0
) is its inverse. The claim holds.

Note that Φ(𝐼
𝑀
)
−1
∈ Z(N) as Φ(𝐼

𝑀
) ∈ Z(N). For any

𝐴 ∈M, let Ψ(𝐴) = Φ(𝐼
𝑀
)
−1
Φ(𝐴). Since

Φ((1 − 𝜉)𝐴
2
) = Φ (𝐴

2
)Φ (𝐼

𝑀
) − 𝜉Φ (𝐼

𝑀
)Φ (𝐴

2
)

= (1 − 𝜉)Φ (𝐼
𝑀
)Φ (𝐴

2
) ,

Φ ((1 − 𝜉)𝐴
2
) = Φ (𝐴)Φ (𝐴) − 𝜉Φ (𝐴)Φ (𝐴)

= (1 − 𝜉)Φ(𝐴)
2
,

(39)

we get Φ(𝐴)2 = Φ(𝐼
𝑀
)Φ(𝐴
2
). So

Ψ(𝐴)
2
= Φ(𝐼

𝑀
)
−1

Φ (𝐴)Φ(𝐼
𝑀
)
−1

Φ (𝐴)

= Φ(𝐼
𝑀
)
−1

Φ(𝐼
𝑀
)
−1

Φ(𝐴)
2
= Φ(𝐼

𝑀
)
−1

Φ(𝐴
2
)

= Ψ (𝐴
2
) .

(40)

It follows that Ψ : M → N is a Jordan ring isomorphism
and Φ(𝐴) = Φ(𝐼

𝑀
)Ψ(𝐴). Thus, by [14], there exist central

projections 𝑃 ∈ M and 𝑄 ∈ N such that Ψ|
𝑃M : 𝑃M →

𝑄N is a ring isomorphism and Ψ|
(𝐼𝑀−𝑃)M

: (𝐼
𝑀
− 𝑃)M →

(𝐼
𝑁
− 𝑄)N is a ring anti-isomorphism.
For the convenience, write Φ|

𝑃M = Φ
1
, Φ|
(𝐼𝑀−𝑃)M

= Φ
2
,

Ψ|
𝑃M = Ψ

1
, and Ψ|

(𝐼𝑀−𝑃)M
= Ψ
2
. Then, we may write Φ =

Φ
1
⊕ Φ
2
.

Note that Φ(𝐼
𝑀
) = Φ(𝑃) + Φ(𝐼

𝑀
− 𝑃) ∈ Z(N), Φ(𝑃) =

Φ(𝐼
𝑀
)Ψ(𝑃) ∈ 𝑄N, and Φ(𝐼

𝑀
− 𝑃) = Φ(𝐼

𝑀
)Ψ(𝐼
𝑀
− 𝑃) ∈

(𝐼
𝑁
− 𝑄)N. It is easy to check that Φ(𝑃) ∈ Z(𝑄N), Φ(𝐼

𝑀
−

𝑃) ∈ Z((𝐼
𝑁
− 𝑄)N), Φ

1
(𝑃)
−1
∈ 𝑄N, and Φ

2
(𝐼
𝑀
− 𝑃)
−1
∈

(𝐼
𝑁
− 𝑄)N. Hence,

Ψ
1
(𝐴
1
) = Φ(𝐼

𝑀
)
−1

Φ
1
(𝐴
1
) = Φ

1
(𝑃)
−1
Φ
1
(𝐴
1
)

∀𝐴
1
∈ 𝑃M,

Ψ
2
(𝐴
2
) = Φ(𝐼

𝑀
)
−1

Φ
2
(𝐴
2
) = Φ

2
(𝐼
𝑀
− 𝑃)
−1

Φ
2
(𝐴
2
)

∀𝐴
2
∈ (𝐼
𝑀
− 𝑃)M.

(41)

Claim 5. Φ
1
= Φ|
𝑃M : 𝑃M → 𝑄N is a ring isomorphism

satisfyingΦ
1
(𝜉𝐴
1
) = 𝜉Φ

1
(𝐴
1
) for all 𝐴

1
∈ 𝑃M.

For any𝐴
1
, 𝐵
1
∈ 𝑃M, sinceΨ

1
is a ring isomorphism, we

have

Ψ
1
(𝐴
1
𝐵
1
− 𝜉𝐵
1
𝐴
1
) = Ψ
1
(𝐴
1
) Ψ
1
(𝐵
1
) − Ψ
1
(𝐵
1
) Ψ
1
(𝜉𝐴
1
)

= Ψ
1
(𝐴
1
) Ψ
1
(𝐵
1
)

− Ψ
1
(𝐵
1
) (Ψ
1
(𝐴
1
) − Ψ
1
((1 − 𝜉)𝐴

1
))

= Ψ
1
(𝐴
1
) Ψ
1
(𝐵
1
)

− Ψ
1
(𝐵
1
) (Ψ
1
(𝐴
1
)

−Φ
1
(𝑃)
−1
Φ
1
(𝑃𝐴
1
− 𝜉𝐴
1
𝑃))

= Ψ
1
(𝐴
1
) Ψ
1
(𝐵
1
)

− Ψ
1
(𝐵
1
) (Ψ
1
(𝐴
1
) − (1 − 𝜉)Φ

1
(𝐴
1
))

= Ψ
1
(𝐴
1
) Ψ
1
(𝐵
1
) − Ψ
1
(𝐵
1
)

× (Ψ
1
(𝐴
1
) − (1 − 𝜉)Φ

1
(𝑃)Ψ
1
(𝐴
1
))

= Ψ
1
(𝐴
1
) Ψ
1
(𝐵
1
) − Ψ
1
(𝐵
1
) Ψ
1
(𝐴
1
)

+ (1 − 𝜉)Φ
1
(𝑃)Ψ
1
(𝐵
1
) Ψ
1
(𝐴
1
) ,

Ψ
1
(𝐴
1
𝐵
1
− 𝜉𝐵
1
𝐴
1
) = Φ

1
(𝑃)
−1
Φ
1
(𝐴
1
𝐵
1
− 𝜉𝐵
1
𝐴
1
)

= Φ
1
(𝑃)
−1
(Φ
1
(𝐴
1
)Φ
1
(𝐵
1
)

−𝜉Φ
1
(𝐵
1
)Φ
1
(𝐴
1
))

= Φ
1
(𝑃)Ψ
1
(𝐴
1
) Ψ
1
(𝐵
1
)

− 𝜉Φ
1
(𝑃)Ψ
1
(𝐵
1
) Ψ
1
(𝐴
1
) .

(42)

These imply that [Ψ
1
(𝐴
1
), Ψ
1
(𝐵
1
)] = Φ

1
(𝑃)[Ψ

1
(𝐴
1
), Ψ
1
(𝐵
1
)]

holds for all 𝐴
1
, 𝐵
1
∈ 𝑃M. It follows from the surjectivity of

Ψ
1
that (𝑄 − Φ

1
(𝑃))[𝑇, 𝑆] = 0 holds for all 𝑇, 𝑆 ∈ 𝑄N. Fur-

thermore, it is easily checked that (𝑄−Φ
1
(𝑃))([𝑇

2
, 𝑆]𝑋[𝑇, 𝑆]−
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[𝑇, 𝑆]𝑋[𝑇
2
, 𝑆]) = 0 holds for every 𝑇, 𝑆, 𝑋 ∈ 𝑄N. Note that

𝑄N is a von Neumann algebra without central summands
of type 𝐼

1
. By Lemma 7, one obtains Φ

1
(𝑃) = 𝑄. Hence,

Φ
1
(𝐴
1
) = Φ

1
(𝑃)Ψ
1
(𝐴
1
) = 𝑄Ψ

1
(𝐴
1
) = Ψ

1
(𝐴
1
) for all

𝐴
1
∈ 𝑃M; that is, Φ

1
= Φ|
𝑃M : 𝑃M → 𝑄N is a ring

isomorphism.
Also note that, for any 𝐴

1
∈ 𝑃M, we have

Φ
1
(𝐴
1
) − Φ
1
(𝜉𝐴
1
) = Φ

1
(𝐴
1
𝑃 − 𝜉𝑃𝐴

1
)

= Φ
1
(𝐴
1
)Φ
1
(𝑃) − 𝜉Φ

1
(𝑃)Φ
1
(𝐴
1
)

= Φ
1
(𝐴
1
) − 𝜉Φ

1
(𝐴
1
) .

(43)

This leads to Φ
1
(𝜉𝐴
1
) = 𝜉Φ

1
(𝐴
1
) which completes the proof

of Claim 5.

Claim 6. −𝜉Φ
2
: (𝐼
𝑀
− 𝑃)M → (𝐼

𝑁
− 𝑄)N is a ring anti-

isomorphism andΦ
2
(𝜉𝐴
2
) = (1/𝜉)Φ

2
(𝐴
2
) for all𝐴

2
∈ (𝐼
𝑀
−

𝑃)M.
For every 𝐴

2
, 𝐵
2
∈ (𝐼
𝑀
− 𝑃)M, we have

Ψ
2
(𝐴
2
𝐵
2
− 𝜉𝐵
2
𝐴
2
) = Ψ
2
(𝐵
2
) Ψ
2
(𝐴
2
)

− Ψ
2
(𝐴
2
) Ψ
2
(𝜉𝐵
2
)

= Ψ
2
(𝐵
2
) Ψ
2
(𝐴
2
) − Ψ
2
(𝐴
2
)

× (Ψ
2
(𝐵
2
) − (1 − 𝜉)

× Φ
2
(𝐼
𝑀
− 𝑃)Ψ

2
(𝐵
2
))

= Ψ
2
(𝐵
2
) Ψ
2
(𝐴
2
) − Ψ
2
(𝐴
2
)

× Ψ
2
(𝐵
2
)

+ (1 − 𝜉)Φ
2
(𝐼
𝑀
− 𝑃)Ψ

2
(𝐴
2
)

× Ψ
2
(𝐵
2
) ,

Ψ
2
(𝐴
2
𝐵
2
− 𝜉𝐵
2
𝐴
2
) = Φ

2
(𝐼
𝑀
− 𝑃)
−1

Φ
2
(𝐴
2
𝐵
2
− 𝜉𝐵
2
𝐴
2
)

= Φ
2
(𝐼
𝑀
− 𝑃)
−1

(Φ
2
(𝐴
2
)Φ
2
(𝐵
2
)

− 𝜉Φ
2
(𝐵
2
)Φ
2
(𝐴
2
))

= Φ
2
(𝐼
𝑀
− 𝑃)Ψ

2
(𝐴
2
) Ψ
2
(𝐵
2
)

− 𝜉Φ
2
(𝐼
𝑀
− 𝑃)Ψ

2
(𝐵
2
) Ψ
2
(𝐴
2
) .

(44)

Then, [Ψ
2
(𝐵
2
), Ψ
2
(𝐴
2
)] = −𝜉Φ

2
(𝐼
𝑀
− 𝑃)[Ψ

2
(𝐵
2
), Ψ
2
(𝐴
2
)],

and so ((𝐼
𝑁
− 𝑄) + 𝜉Φ

2
(𝐼
𝑀
− 𝑃))[𝑇, 𝑆] = 0 holds for all

𝑇, 𝑆 ∈ (𝐼
𝑁
− 𝑄)N. It is easily checked that ((𝐼

𝑁
− 𝑄) +

𝜉Φ
2
(𝐼
𝑀
− 𝑃))([𝑇

2
, 𝑆]𝑋[𝑇, 𝑆] − [𝑇, 𝑆]𝑋[𝑇

2
, 𝑆]) = 0 holds for

each 𝑇, 𝑆, 𝑋 ∈ (𝐼
𝑁
− 𝑄)N. It follows from Lemma 7 that

Φ
2
(𝐼
𝑀
− 𝑃) = −𝜉

−1
(𝐼
𝑁
− 𝑄). Hence, −𝜉Φ

2
(𝐴
2
) = −𝜉Φ

2
(𝐼 −

𝑃)Ψ
2
(𝐴
2
) = (𝐼

𝑁
− 𝑄)Ψ

2
(𝐴
2
) = Ψ

2
(𝐴
2
), and −𝜉Φ

2
is a ring

anti-isomorphism.

Since

Φ
2
(𝐴
2
) − Φ
2
(𝜉𝐴
2
) = Φ

2
((1 − 𝜉)𝐴

2
)

= (1 − 𝜉)Φ
2
(𝐼
𝑀
− 𝑃)Φ

2
(𝐴
2
)

= Φ
2
(𝐴
2
) −
1

𝜉
Φ
2
(𝐴
2
) ,

(45)

we get Φ
2
(𝜉𝐴
2
) = (1/𝜉)Φ

2
(𝐴
2
) for all 𝐴

2
∈ (𝐼
𝑀
− 𝑃)M.

Hence, Claim 6 is true.
Combining Claims 3–6, one sees that the statement (3) in

Theorem 1 holds.
The proof of the theorem is therefore completed.
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