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As is well known, complex networks are ubiquitous in the real world. One network always behaves differently from but still coexists
in balance with others. This phenomenon of harmonious coexistence between different networks can be termed as “generalized
outer synchronization (GOS).” This paper investigates GOS between two different complex dynamical networks with unknown
parameters according to two different methods. When the exact functional relations between the two networks are previously
known, a sufficient criterion for GOS is derived based on Barbalat’s lemma. If the functional relations are not known, the auxiliary-
systemmethod is employed and a sufficient criterion forGOS is derived.Numerical simulations are further provided to demonstrate
the feasibility and effectiveness of the theoretical results.

1. Introduction

The past decade has seen many important achievements in
the research of synchronization of complex networks. Most
of this research has been focused on the coherent behavior
within a network, where all the nodes within a network
arrive at the same steady state [1–7]. This kind of syn-
chronization, which was termed as “inner synchronization”
[8], has attracted wide attention. However, in many real-
world complex networks, there exist other kinds of syn-
chronization, such as “outer synchronization” between two
networks [8, 9], where the “complete outer synchronization”
was studied under the assumption that all individuals in
two networks have exactly identical dynamics. However, this
kind of assumptionmay seem impractical. Take the predator-
prey interactions in ecological communities as an example,
where predators and preys influence one another’s behaviors.
Without preys there would not be predators, while too
many predators would bring the preys into extinction. The
networks of predators andpreyswill finally reach harmonious
coexistence without any man-made sabotage. It is worth
noting that inside the networks of predators or preys, one
individual always behaves differently from another. Thus it

is more practical to assume that the nodes have different
dynamics. Furthermore, the interaction patterns of predators
themselves usually differ from those of preys; that is to say, the
topological structure of the predators community is different
from that of the preys community. There are a great many
examples about harmonious coexistence between different
real-world networks.

This kind of coexistence between different dynamical
networks is termed as “generalized outer synchronization”
[10], which represents another degree of coherence. As is
known, due to parameter variation, various dynamics, or
random perturbations, one individual always behaves differ-
ently from but still coexists in balance with others. That is to
say, generalized synchronization widely exists. Particularly, it
plays an important role in engineering networks [11–13], bio-
logical systems [10], social activities, and many other fields.
Therefore, it is necessary and significant to investigate this
kind of relationships between different dynamical networks.

In general, the methods to achieve GS can be divided
into two classes. One approach is to design control laws
to force coupled systems to satisfy a prescribed functional
relation. But this approach has the disadvantage that the
designed controllers are usually quite complicated and thus
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difficult to implement in real applications. The other is the
auxiliary-system approach, proposed by Abarbanel et al. [2],
which makes an identical duplication of the response system
that is driven by the same driving signal, as shown below:

ẋ = 𝐹 (x) ,

ẏ = 𝐺 (x, y) ,

ż = 𝐺 (x, z) ,

(1)

where x, y, z ∈ 𝑅

𝑛 are, respectively, the states of the drive,
response, and auxiliary systems. GS between x(𝑡) and y(𝑡)
occurs if lim

𝑡→∞
‖y(𝑡) − z(𝑡)‖ = 0 for any initial conditions

y(𝑡
0
) ̸= z(𝑡

0
), that is, if the response system and the auxiliary

system achieve complete synchronization (CS). This method
has been widely used in many fields and also extended to the
area of complex networks [14–16]. It is noticed that it fails to
decide what kind of functional relations exists between each
other when nodes of the network achieve GS. However, if
the purpose is only to show that there exists GS on networks
rather than the exact functional relations, this approach is
efficient for investigation of GS on complex networks.

Some recent work [10, 17–23] has studied generalized
outer synchronization (GOS) in complex networks or com-
plex systems, where the node dynamics parameters are
known in advance. Nevertheless, inmany practical situations,
it is common that some system parameters cannot be exactly
known in prior, and the synchronization will be destroyed
and broken by the effects of these uncertainties.

Motivated by the above discussions, generalized outer
synchronization between two dynamical networks with
unknown parameters is investigated, where nodes in the
two networks may have identical or different dynamics and
the topological structures are different. Since the functional
relations may be previously known or unknown, two kinds
of generalized synchronization are considered.

The paper is organized as follows. In Section 2, GOS
between two networks with predefined functional relations
is investigated and the theoretical result is presented. In
Section 3, based on the auxiliary-system method, GOS
with unknown functional relations is studied. In Section 4,
various numerical simulations are provided to demonstrate
the feasibility and effectiveness of the theoretical results. A
brief conclusion is drawn in Section 5.

2. GOS with Predefined Functional Relations

Consider the following complex dynamical network consist-
ing of 𝑁 nonidentical nodes as the drive network, which is
described by

ẋ
𝑖
(𝑡) = 𝐴

𝑖
x
𝑖
(𝑡) + 𝑓

𝑖
(x
𝑖
(𝑡) , 𝑡) + 𝐹

𝑖
(x
𝑖
(𝑡)) 𝛼 +

𝑁

∑

𝑗=1

𝑏

𝑖𝑗
𝑃x
𝑗
(𝑡) ,

𝑖 = 1, 2, . . . , 𝑁.

(2)

Here, x
𝑖
(𝑡) = (𝑥

𝑖1
, . . . , 𝑥

𝑖𝑛
)

𝑇

∈ 𝑅

𝑛 is the state vector of the
𝑖th node,𝐴

𝑖
x
𝑖
(𝑡) +𝑓

𝑖
(x
𝑖
(𝑡), 𝑡) + 𝐹

𝑖
(x
𝑖
(𝑡))𝛼 represents the node

dynamics, 𝛼 is the unknown parameter vector, 𝑃 ∈ 𝑅

𝑛×𝑛

is the inner-coupling matrix determining the interaction of
variables, and 𝐵 = (𝑏

𝑖𝑗
)

𝑁×𝑁
is the coupling configuration

matrix representing the coupling strength and the topological
structure of the network, in which 𝑏

𝑖𝑗
is defined as follows:

if there is a connection from node 𝑗 to node 𝑖 (𝑗 ̸= 𝑖), 𝑏
𝑖𝑗

̸= 0;
otherwise, 𝑏

𝑖𝑗
= 0. The diagonal elements of matrix 𝐵 are

defined as

𝑏

𝑖𝑖
= −

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑏

𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑁. (3)

Consider another complex networkwhichwill be referred
to as the response network with a different topological
structure and nonidentical node dynamics as follows:

ẏ
𝑖
(𝑡) =

̂

𝐴

𝑖
y
𝑖
(𝑡) + 𝑔

𝑖
(y
𝑖
(𝑡) , 𝑡) + 𝐺

𝑖
(y
𝑖
(𝑡)) 𝛽

+

𝑁

∑

𝑗=1

𝑐

𝑖𝑗
𝑄y
𝑗
(𝑡) + 𝑢

𝑖
(x
𝑖
(𝑡) , y
𝑖
(𝑡)) , 𝑖 = 1, 2, . . . , 𝑁,

(4)

where y
𝑖
(𝑡) = (𝑦

𝑖1
, . . . , 𝑦

𝑖𝑚
)

𝑇

∈ 𝑅

𝑚 is the state vector of
node 𝑖, ̂𝐴

𝑖
y
𝑖
(𝑡) + 𝑔

𝑖
(y
𝑖
(𝑡), 𝑡) + 𝐺

𝑖
(y
𝑖
(𝑡))𝛽 represents the node

dynamics which contains the unknown parameter vector 𝛽,
u
𝑖
(𝑖 = 1, 2, . . . , 𝑁) are the controllers to be designed, and the

other notations convey similar meanings as those in the drive
network.

Definition 1. Let 𝜙

𝑖
: 𝑅

𝑛

→ 𝑅

𝑚

(𝑖 = 1, 2, . . . , 𝑁) be
continuously differentiable vector maps. The two networks
(2) and (4) are said to achieve asymptotical generalized outer
synchronization if

lim
𝑡→∞

𝑁

∑

𝑖=1

󵄩

󵄩

󵄩

󵄩

y
𝑖
(𝑡) − 𝜙

𝑖
(x
𝑖
(𝑡))

󵄩

󵄩

󵄩

󵄩

= 0. (5)

Assumption 2 (global Lipschitz condition). Suppose that
there exist nonnegative constants 𝐿

𝑖
(𝑖 = 1, 2, . . . , 𝑁), such

that for any time-varying vectors x(𝑡), y(𝑡) ∈ 𝑅

𝑚, one has
󵄩

󵄩

󵄩

󵄩

𝑔

𝑖
(x (𝑡)) − 𝑔

𝑖
(y (𝑡))

󵄩

󵄩

󵄩

󵄩

≤ 𝐿

𝑖

󵄩

󵄩

󵄩

󵄩

x (𝑡) − y (𝑡)

󵄩

󵄩

󵄩

󵄩

, 𝑖 = 1, 2, . . . , 𝑁,

(6)

where ‖ ⋅ ‖ denotes the 2-norm throughout the paper.
When the functional relations 𝜙

𝑖
: 𝑅

𝑛

→ 𝑅

𝑚

(𝑖 =

1, 2, . . . , 𝑁) are known, one arrives at the following theorem
with the network models given above.

Theorem 3. Suppose that Assumption 2 holds. The dynamical
networks (2) and (4) reach generalized outer synchronization
as defined in Definition 1 with the following controllers:

u
𝑖
= − 𝑘e

𝑖
+ 𝐷𝜙

𝑖
(x
𝑖
) 𝑓

𝑖
(x
𝑖
)

+ 𝐷𝜙

𝑖
(x
𝑖
) 𝐴

𝑖
x
𝑖
+ 𝐷𝜙

𝑖
(x
𝑖
) 𝐹

𝑖
(x
𝑖
) 𝛼̂

−

̂

𝐴

𝑖
𝜙

𝑖
(x
𝑖
) − 𝑔

𝑖
(𝜙

𝑖
(x
𝑖
)) − 𝐺

𝑖
(y
𝑖
)

̂

𝛽

−

𝑁

∑

𝑗=1

𝑐

𝑖𝑗
𝑄𝜙

𝑗
(x
𝑗
) + 𝐷𝜙

𝑖
(x
𝑖
)

𝑁

∑

𝑗=1

𝑏

𝑖𝑗
𝑃x
𝑗
,

(7)
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Figure 1: A 20-node network generated using theWS small-world algorithm, where the rewiring probability 𝑝 = 0.1 (left); a 20-node directed
ring network (right).
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Figure 2: Phase diagram of the Lorenz attractor for 𝑎 = 10, 𝑏 = 8/3,
and 𝑐 = 28.

and updating laws

̇

𝛼̂ = −𝑟

1

𝑁

∑

𝑖=1

𝐹

𝑇

𝑖
(x
𝑖
)𝐷

𝑇

𝜙

𝑖
(x
𝑖
) e
𝑖
,

̇
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𝛽 = 𝑟

2

𝑁

∑

𝑖=1

𝐺

𝑇

𝑖
(y
𝑖
) e
𝑖
,

(8)

where 𝑟

1
and 𝑟

2
are positive constants, and 𝐷𝜙

𝑖
(x
𝑖
) is the

Jacobian matrix of the map 𝜙

𝑖
(x
𝑖
).

Proof. Define e
𝑖
= y
𝑖
− 𝜙

𝑖
(x
𝑖
). From (2) and (4), one has

ė
𝑖
= ẏ
𝑖
− 𝐷𝜙

𝑖
(x
𝑖
) ⋅ ẋ
𝑖

= − 𝑘e
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+
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𝐴

𝑖
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𝑖
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𝑖
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𝑖
) (𝛼̂ − 𝛼) +

𝑁

∑
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𝑐

𝑖𝑗
𝑄e
𝑗
,

(9)

where e
𝑖
= (𝑒

𝑖1
, 𝑒

𝑖2
, . . . , 𝑒

𝑖𝑚
)

𝑇

∈ 𝑅

𝑚.

Consider the following Lyapunov candidate function:

𝑉 (𝑡) =

1

2

𝑁

∑

𝑖=1

e𝑇
𝑖
e
𝑖
+

1

2𝑟

1
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+

1
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2
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𝑇

(

̂

𝛽 − 𝛽) .

(10)

The derivative of 𝑉 along the trajectory of (9) is

̇

𝑉 (𝑡) =

𝑁

∑
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e𝑇
𝑖
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Figure 3: (a) Synchronization error between the drive and response networks composed of identical node dynamics; (b) estimation of
unknown parameters in the drive and response networks. Here, the node dynamics is Lorenz system, and the functional relations are y
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Figure 4: GOS error between the drive and response networks
consisting of identical Lorenz systems, with the functional relations
being y

𝑖
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𝑁
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𝑖
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Denote 𝐿 = max{𝐿
𝑖

| 𝑖 = 1, 2, . . . , 𝑁}. Let e =

(e𝑇
1
, e𝑇
2
, . . . , e𝑇

𝑁
)

𝑇

∈ 𝑅

𝑚𝑁, A = diag(̂𝐴,

̂

𝐴, . . . ,

̂

𝐴) ∈ 𝑅

𝑚𝑁×𝑚𝑁,
Q = 𝐶 ⊗ 𝑄, and let 𝜆

𝑚
(⋅) be the largest eigenvalue of the

matrix. Thus one has

̇

𝑉 (𝑡) ≤ (𝜆

𝑚
(

A +A𝑇

2

) − 𝑘 + 𝐿 + 𝜆

𝑚
(

Q + Q𝑇

2

)) e𝑇e.

(12)

Let

𝑘 ≥ 𝑘 = 𝐿 + 𝜆

𝑚
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A +A𝑇

2

) + 𝜆

𝑚
(

Q + Q𝑇

2

) + 1; (13)

one obtains

̇

𝑉 (𝑡) ≤ −e𝑇e. (14)

Obviously, ̇

𝑉(𝑡) ≤ 0, so 𝑉(𝑡) is uniformly continuous.
Furthermore, 𝑉(𝑡) ≤ 𝑉(0)𝑒

−2𝑡; that is, lim
𝑡→∞

∫

𝑡

0

𝑉(𝑠)𝑑𝑠

exists, then 𝑉(𝑡) is integrable on [0, +∞]. According to Bar-
balat’s lemma, one gets lim

𝑡→∞
𝑉(𝑡) = 0, thus lim

𝑡→∞
𝑒

𝑖
(𝑡) =

0 for 𝑖 = 1, 2, . . . , 𝑁. That is, networks (2) and (4) achieve
generalized outer synchronization asymptotically. This com-
pletes the proof.

3. GOS with Unknown Functional Relations

The preceding section focuses on GOS between networks
(2) and (4) with previously known relations y

𝑖
= 𝜙

𝑖
(x
𝑖
),

𝑖 = 1, 2, . . . , 𝑁. However, the functional relations are
sometimes unknown. For this case, one has to refer to the
auxiliary-system method proposed by Kocarev and Parlitz
[24]. According to the method, one can make a replica for
each system in the response network (4), which results in the
following network:
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𝑖
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𝑖
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𝑁
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𝑖
(𝑡)) ,

(15)

where z
𝑖

∈ 𝑅

𝑚. The drive network (2) and the response
network (4) are said to achieve generalized outer synchro-
nization; if the response network (4) and the auxiliary
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Figure 5: The phase diagrams for node 3 in the drive and response networks consisting of identical Lorenz systems, with the functional
relations being y
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Figure 6: Relationships between the subvariables for node 3 in the drive and response network. Left: 𝑦
𝑖1

= 2𝑥

𝑖1
; right: 𝑦

𝑖3
= 𝑥

2

𝑖3
.

network (15) reach complete outer synchronization, that
is, lim

𝑡→∞
‖z
𝑖
(𝑡) − y

𝑖
(𝑡)‖ = 0 for any initial conditions

y
𝑖
(0) ̸= z

𝑖
(0) (𝑖 = 1, 2, . . . , 𝑁).

Assumption 4 (global Lipschitz condition). Suppose that
there exist nonnegative constants 𝐿

𝑖
(𝑖 = 1, 2, . . . , 𝑁), such

that
󵄩

󵄩

󵄩

󵄩

𝐺

𝑖
(z (𝑡)) 𝛽∗ − 𝐺

𝑖
(y (𝑡)) 𝛽

∗󵄩
󵄩

󵄩

󵄩

≤ 𝐿

𝑖

󵄩

󵄩

󵄩

󵄩

z (𝑡) − y (𝑡)

󵄩

󵄩

󵄩

󵄩

,

(𝑖 = 1, 2, . . . , 𝑁) ,

(16)

holds for any time-varying vectors y(𝑡), z(𝑡) ∈ 𝑅

𝑚, where 𝛽

∗

is the parameter vector.

Theorem 5. Suppose that Assumptions 2 and 4 hold. Using the
following controllers:

𝑢 (x
𝑖
, z
𝑖
) = −𝑘 (z

𝑖
− x
𝑖
) , 𝑢 (x

𝑖
, y
𝑖
) = −𝑘 (y

𝑖
− x
𝑖
) (17)

and updating laws

̇

𝛽 = −𝑟

𝑁

∑

𝑖=1

(𝐺

𝑖
(z
𝑖
) − 𝐺

𝑖
(y
𝑖
))

𝑇e
𝑖
, (18)

then the drive network (2) and the response network (4) reach
generalized outer synchronization.

Proof. According to the auxiliary-system method, networks
(2) and (4) achieve generalized outer synchronization if
networks (4) and (15) reach complete outer synchronization.
Define the synchronization error between (4) and (15) for the
𝑖th node as e

𝑖
= z
𝑖
− y
𝑖
. Then the error dynamical systems can

be described by

ė
𝑖
=

̂

𝐴

𝑖
(z
𝑖
− y
𝑖
) + 𝑔

𝑖
(z
𝑖
) − 𝑔

𝑖
(y
𝑖
) + 𝐺

𝑖
(z
𝑖
) 𝛽 − 𝐺

𝑖
(y
𝑖
) 𝛽

+

𝑁

∑

𝑗=1

𝑐

𝑖𝑗
𝑄z
𝑗
−

𝑁

∑

𝑗=1

𝑐

𝑖𝑗
𝑄y
𝑗
+ 𝑢

𝑖
(x
𝑖
, z
𝑖
) − 𝑢

𝑖
(x
𝑖
, y
𝑖
) .

(19)

Let 𝑢(x
𝑖
, z
𝑖
) = −𝑘(z

𝑖
− x
𝑖
) and 𝑢(x

𝑖
, y
𝑖
) = −𝑘(y

𝑖
− x
𝑖
). Then

the error dynamical systems can be rewritten into

ė
𝑖
=

̂

𝐴

𝑖
e
𝑖
+ 𝑔

𝑖
(z
𝑖
) − 𝑔

𝑖
(y
𝑖
) + (𝐺

𝑖
(z
𝑖
) − 𝐺

𝑖
(y
𝑖
)) 𝛽

+

𝑁

∑

𝑗=1

𝑐

𝑖𝑗
𝑄(z
𝑗
− y
𝑗
) − 𝑘 (z

𝑖
− y
𝑖
) ,

(20)

where 𝑖 = 1, 2, . . . , 𝑁.
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Figure 7: Phase diagram of the Chen attractor for 𝑙 = 35, 𝑚 = 3,
and 𝑛 = 28.

Consider the following Lyapunov candidate function:

𝑉 (𝑡) =

1

2

𝑁

∑

𝑖=1

e𝑇
𝑖
e
𝑖
+

1

2𝑟

(𝛽 − 𝛽

∗

)

𝑇

(𝛽 − 𝛽

∗

) . (21)

The derivative of 𝑉 along the trajectory of (20) is

̇

𝑉 (𝑡) =

𝑁

∑

𝑖=1

e𝑇
𝑖
ė
𝑖
+

1

𝑟

(𝛽 − 𝛽

∗

)

𝑇
̇

𝛽

=

𝑁

∑

𝑖=1

e𝑇
𝑖

̂

𝐴

𝑖
e
𝑖
+

𝑁

∑

𝑖=1

e𝑇
𝑖
[𝑔

𝑖
(z
𝑖
) − 𝑔

𝑖
(y
𝑖
)

+ (𝐺

𝑖
(z
𝑖
) − 𝐺

𝑖
(y
𝑖
)) 𝛽

+

𝑁

∑

𝑗=1

𝑐

𝑖𝑗
𝑄(z
𝑗
− y
𝑗
) − 𝑘 (z

𝑖
− y
𝑖
) ]

+

1

𝑟

(𝛽 − 𝛽

∗

)

𝑇
̇

𝛽

=

𝑁

∑

𝑖=1

e𝑇
𝑖

̂

𝐴

𝑖
e
𝑖
+

𝑁

∑

𝑖=1

e𝑇
𝑖
(𝑔

𝑖
(z
𝑖
) − 𝑔

𝑖
(y
𝑖
))

+

𝑁

∑

𝑖=1

e𝑇
𝑖
(𝐺

𝑖
(z
𝑖
) − 𝐺

𝑖
(y
𝑖
)) 𝛽

+

𝑁

∑

𝑖=1

e𝑇
𝑖

𝑁

∑

𝑗=1

𝑐

𝑖𝑗
𝑄e
𝑗
− 𝑘

𝑁

∑

𝑖=1

e𝑇
𝑖
e
𝑖
+

1

𝑟

𝛽

𝑇
̇

𝛽 −

1

𝑟

(𝛽

∗

)

𝑇
̇

𝛽

≤

𝑁

∑

𝑖=1

e𝑇
𝑖

̂

𝐴

𝑖
e
𝑖
+ 𝐿

𝑁

∑

𝑖=1

e𝑇
𝑖
e
𝑖
+

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

e𝑇
𝑖
𝑐

𝑖𝑗
𝑄e
𝑗
− 𝑘

𝑁

∑

𝑖=1

e𝑇
𝑖
e
𝑖

+

𝑁

∑

𝑖=1

(𝐺

𝑖
(z
𝑖
) 𝛽

∗

− 𝐺

𝑖
(y
𝑖
) 𝛽

∗

)

𝑇e
𝑖

≤

𝑁

∑

𝑖=1

e𝑇
𝑖

̂

𝐴

𝑖
e
𝑖
+ 𝐿

𝑁

∑

𝑖=1

e𝑇
𝑖
e
𝑖
+

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

e𝑇
𝑖
𝑐

𝑖𝑗
𝑄e
𝑗

− 𝑘

𝑁

∑

𝑖=1

e𝑇
𝑖
e
𝑖
+ 𝐿

𝑁

∑

𝑖=1

e𝑇
𝑖
e
𝑖
,

(22)

where 𝐿 = max(𝐿
1
, 𝐿

2
, . . . , 𝐿

𝑛
) and 𝐿 = max(𝐿

1
, 𝐿

2
, . . . , 𝐿

𝑛
).
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Figure 8: GOS error with different node dynamics, where the node
dynamics in the drive and response networks are the Lorenz and
Chen systems with unknown parameters, respectively. Here, the
functional relations are (𝑦

𝑖1
, 𝑦

𝑖2
, 𝑦

𝑖3
) = (2𝑥

𝑖1
, 2𝑥

𝑖2
− 1, 𝑥

𝑖3
).

Let e, A, Q, and 𝜆

𝑚
(⋅) have the same meaning as that in

the proof of Theorem 3, then it turns out

̇

𝑉 (𝑡) ≤ e𝑇Ae + 𝐿e𝑇e − 𝑘e𝑇e + 𝑒

𝑇

Qe + 𝐿e𝑇e

≤ e𝑇 [𝜆
𝑚
(

A +A𝑇

2

) − 𝑘 + 𝐿 + 𝜆

𝑚
(

Q + Q𝑇

2

) + 𝐿] e.

(23)

Taking

𝑘 ≥ 𝑘

∗

= 𝜆

𝑚
(

A +A𝑇

2

) + 𝐿 + 𝜆

𝑚
(

Q + Q𝑇

2

) + 𝐿 + 1,

(24)

one obtains

̇

𝑉 (𝑡) ≤ −e𝑇e. (25)

According to Barbalat’s lemma, networks (4) and (15)
achieve complete outer synchronization; that is, networks
(2) and (4) achieve generalized outer synchronization. This
completes the proof.

4. Numerical Simulations

In this section, numerical simulations are carried out on net-
works consisting of 20 nodes to verify the effectiveness of the
control schemes obtained in the preceding sections. Watts-
Strogatz (WS) [25] algorithm is employed here to generate a
small-world network. Specifically, start from a ring-shaped
network with 20 nodes, with each node connecting to its
4 nearest neighbors. Then, rewire each edge in such a way
that the beginning end of the edge is kept but the other
end is disconnected with probability 𝑝 and reconnected to
another node randomly chosen from the network. In all the
following simulations, a WS small-world network generated
with rewiring probability 𝑝 = 0.1, as shown in the left
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Figure 9: Phase plane diagrams for node 3, where (𝑦

𝑖1
, 𝑦

𝑖2
, 𝑦

𝑖3
) = (2𝑥

𝑖1
, 2𝑥

𝑖2
− 1, 𝑥

𝑖3
). (a) Projection in the (𝑥

𝑖1
, 𝑥

𝑖2
) plane of node 3 in the

drive network. (b) Projection in the (𝑦

𝑖1
, 𝑦

𝑖2
) plane of node 3 in the response network.

panel of Figure 1, is used as the topological structure for
the drive network. Moreover, a directed ring network is
employed as the structure of the response network, as shown
in the right panel of Figure 1. The weight for every existent
edge is supposed to be 0.01. For brevity, the inner-coupling
matrices 𝑃 and 𝑄 are taken as identity matrices with proper
dimensions.

4.1. GOS with Known Functional Relations

4.1.1. GOS with Identical Node Dynamics. In this subsection,
it is supposed that nodes in the drive and response networks
have the same dynamics described by the well-known Lorenz
system [26]:

ẋ
𝑖
= 𝐴

𝑖
x
𝑖
+ 𝑓

𝑖
(x
𝑖
) + 𝐹

𝑖
(x
𝑖
) 𝛼

= (

0 0 0

0 −1 0

0 0 0

)(

𝑥

𝑖1

𝑥

𝑖2

𝑥

𝑖3

) + (

0

−𝑥

𝑖1
𝑥

𝑖3

𝑥

𝑖1
𝑥

𝑖2

)

+ (

𝑥

𝑖2
− 𝑥

𝑖1
0 0

0 0 𝑥

𝑖1

0 −𝑥

𝑖3
0

)(

𝑎

𝑏

𝑐

) ,

(26)

where the parameter vector 𝛼 = (𝑎, 𝑏, 𝑐)

⊤ is unknown. Since
Lorenz system is chaotic, it is easy to verify that it is bounded.
Figure 2 displays a typical Lorenz chaotic attractor.

For a response network (4) consisting of identical Lorenz
systems, one has

̂

𝐴

𝑖
= (

0 0 0

0 −1 0

0 0 0

) , 𝑔

𝑖
(y
𝑖
) = (

0

−𝑦

𝑖1
𝑦

𝑖3

𝑦

𝑖1
𝑦

𝑖2

) ,

𝐺

𝑖
(y
𝑖
) = (

𝑦

𝑖2
− 𝑦

𝑖1
0 0

0 0 𝑦

𝑖1

0 −𝑦

𝑖3
0

) ,

(27)

and the unknown parameter vector is 𝛽 = (𝑙, 𝑚, 𝑛)

⊤.
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Figure 10: Synchronization error between the response and auxil-
iary networks.

First consider complete outer synchronization between
the drive and response networks; that is, the functional
relations are

y
𝑖
= 𝜙

𝑖
(x
𝑖
) = 𝜙 (x

𝑖
) = x
𝑖
. (28)

The feedback gain 𝑘 in the controllers is taken as 10, and
the gains 𝑟

1
, 𝑟
2
in the updating laws (8) are taken as 10. The

left panel of Figure 3 displays the GOS error 𝐸(𝑡) between
the drive and response networks, where 𝐸(𝑡) = ⟨‖y

𝑖
(𝑡) −

x
𝑖
(𝑡)‖⟩ and ⟨⋅⟩ means averaging over all the nodes. One can

see from the panel that complete outer synchronization is
quickly achieved by employing the control method proposed
inTheorem 3.The right panel of Figure 3 shows the estimated
evolution of unknown parameters in the drive and response
networks. It is obtained that all the estimated parameters
evolving with the updating laws (8) tend to some certain
constants, which is consistent to the proof of Theorem 3.
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Figure 11: Phase diagrams of node 3 in the drive network (a) and response network (b).

Next, consider the following nonlinear functional rela-
tions:

y
𝑖
= 𝜙

𝑖
(x
𝑖
) = (2𝑥

𝑖1
, 𝑥

𝑖2
+ 1, 𝑥

2

𝑖3
)

⊤

;
(29)

then

𝐷𝜙

𝑖
(x
𝑖
) = (

2 0 0

0 1 0

0 0 2𝑥

𝑖3

) . (30)

The GOS error 𝐸(𝑡) = ⟨‖y
𝑖
− 𝜙

𝑖
(x
𝑖
)‖⟩ between the drive

and response networks is displayed in Figure 4. It is obvious
that the two networks reach generalized outer synchroniza-
tion with the proposed controller and updating laws (8). The
phase diagrams of node 3 in both networks are displayed
in Figure 5. Some corresponding subvariables of node 3 are
also depicted in Figure 6, where transients are discarded.The
relationships between dynamics of corresponding nodes in
the two networks can be clearly observed.

4.1.2. GOS with Different Node Dynamics. In this subsection,
the classical Lorenz system is still taken as the node dynamics
in the drive network. Chen system [27] is taken as the node
dynamics in the response network, which is described by

ẏ
𝑖
=

̂

𝐴

𝑖
y
𝑖
+ 𝑔

𝑖
(y
𝑖
) + 𝐺

𝑖
(y
𝑖
) 𝛽

= (

0 0 0

0 0 0

0 0 0

)(

𝑦

𝑖1

𝑦

𝑖2

𝑦

𝑖3

) + (

0

−𝑦

𝑖1
𝑦

𝑖3

𝑦

𝑖1
𝑦

𝑖2

)

+ (

𝑦

𝑖2
− 𝑦

𝑖1
0 0

−𝑦

𝑖1
0 𝑦

𝑖1
+ 𝑦

𝑖2

0 −𝑦

𝑖3
0

)(

𝑙

𝑚

𝑛

) ,

(31)

where the parameter vector 𝛽 = (𝑙, 𝑚, 𝑛)

⊤ is supposed to be
unknown. A typical Chen attractor is shown in Figure 7.

Let the functional relations be

y
𝑖
= 𝜙

𝑖
(x
𝑖
) = 𝜙 (x

𝑖
) = (2𝑥

𝑖1
, 2𝑥

𝑖2
− 1, 𝑥

𝑖3
)

⊤

. (32)
Thus

𝐷𝜙

𝑖
(x
𝑖
) = (

2 0 0

0 2 0

0 0 1

) . (33)

Figure 8 displays theGOS error𝐸(𝑡) = ⟨‖y
𝑖
(𝑡)−𝜙

𝑖
(x
𝑖
(𝑡))‖⟩

between the two different networks, with 𝑘 = 100, 𝑟
1
= 𝑟

2
=

10. It is obvious that 𝐸(𝑡) tends to zero after a short transient
period. Figure 9 shows the dynamics of node 3 in the drive
and response networks, where projections on different planes
are displayed.

4.2. GOS with Unknown Functional Relations. Take the node
dynamics in the drive network to be Lorenz systemwith three
unknown parameters and that in the response network to be
the classical Chen system with two unknown parameters, as
described by

ẏ
𝑖
=

̂

𝐴

𝑖
y
𝑖
+ 𝑔

𝑖
(y
𝑖
) + 𝐺

𝑖
(y
𝑖
) 𝛽

= (

0 0 0

0 −1 0

0 0 −

8

3

)(

𝑦

𝑖1

𝑦

𝑖2

𝑦

𝑖3

) + (

0

−𝑦

𝑖1
𝑦

𝑖3

𝑦

𝑖1
𝑦

𝑖2

)

+ (

𝑦

𝑖2
− 𝑦

𝑖1
0

0 𝑦

𝑖1

0 0

)(

𝑙

𝑛

) .

(34)

Thus in the auxiliary network, the node dynamics is

ż
𝑖
=

̂

𝐴

𝑖
z
𝑖
+ 𝑔

𝑖
(z
𝑖
) + 𝐺

𝑖
(z
𝑖
) 𝛽

= (

0 0 0

0 −1 0

0 0 −

8

3

)(

𝑧

𝑖1

𝑧

𝑖2

𝑧

𝑖3

) + (

0

−𝑧

𝑖1
𝑧

𝑖3

𝑧

𝑖1
𝑧

𝑖2

)

+ (

𝑧

𝑖2
− 𝑧

𝑖1
0

0 𝑧

𝑖1

0 0

)(

𝑙

𝑛

) .

(35)

Let 𝑘 = 20 in the controllers (17), and 𝑟 = 10 in the
updating laws (18). Figure 10 displays the synchronization
error between the response and auxiliary networks, where
𝐸(𝑡) = ⟨‖z

𝑖
(𝑡) − y

𝑖
(𝑡)‖⟩. One can see that when the

control is imposed, the synchronization error quickly tends
to zero, which means the existence of generalized outer
synchronization between the drive and response networks.
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Figure 11 plots the dynamics of node 3 in the drive and
response networks.

5. Conclusions

Research on generalized outer synchronization between
complex networks has attractedwide attention in the past few
years. To the best of our knowledge, few works focused on
the case that the node dynamics parameters are unknown.
In this paper, the generalized outer synchronization between
two complex dynamical networks with unknown parameters
has been investigated, with previously known or unknown
functional relations. The feasibility and applicability of the
theoretical findings have been validated by numerical simu-
lations.
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