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The one-dimensional heat equations with the heat generation arising in fractal transient conduction associated with local fractional
derivative operators are investigated. Analytical solutions are obtained by using the local fractional Adomian decomposition
method via local fractional calculus theory.Themethod in general is easy to implement and yields good results. Illustrative examples
are included to demonstrate the validity and applicability of the new technique.

1. Introduction

The Adomian decomposition method [1–3] was applied to
process linear and nonlinear problems in the fields of science
and engineering. Tatari and Dehghan [4] applied Adomian
decomposition method to process the multipoint boundary
value problem. Wazwaz [5] used Adomian decomposition
method to deal with the Bratu-type equations. Daftardar-
Gejji and Jafari [6] considered Adomian decomposition
method to analyze the Bagley Torvik equation. Larsson [7]
presented the solution for Helmholtz equation by using
the Adomain decomposition method. Tatari and coworkers
[8] investigated solution for the Fokker-Planck equation by
Adomain decomposition method.

Fractional calculus [9–12] was applied to model the phys-
ical and engineering problems for expressions of stress-strain
constitutive relations of different viscoelastic fractional order
properties of materials, diffusion processes with fractional
order properties, fractional order flows, analytical mechanics
of fractional order discrete system vibrations [13–15], and

so on. Recently, the application of Adomian decomposition
method for solving the linear and nonlinear fractional partial
differential equations in the fields of the physics and engineer-
ing had been established in [16, 17]. Adomian decomposition
method was applied to handle the time-fractional Navier-
Stokes equation [18], fractional space diffusion equation [19],
fractional KdV-Burgers equation [20], linear and nonlinear
fractional diffusion and wave equations [21], KdV-Burgers-
Kuramoto equation [22], fractional Burgers’ equation [23],
and so on. For more details on some methods for solving
fractional differential equations, see [24–28].

Recently, local fractional calculus theory was applied to
model some nondifferentiable problems for mathematical
physics (see [29–36] and the references therein). The Ado-
mian decomposition method, as one of efficient tools for
solving the linear and nonlinear differential equations, was
extended to find the solutions for local fractional differen-
tial equations [37–40] and nondifferentiable solutions were
obtained.
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The partial differential equationfs describing thermal
process of fractal heat conduction were suggested in [30, 38]
in the following form:

𝜕
𝛼

𝑢 (𝑥, 𝑡)

𝜕𝑡𝛼
−

𝜕
2𝛼

𝑢 (𝑥, 𝑡)

𝜕𝑥2𝛼
= 0. (1)

The initial and boundary conditions are

𝑢 (0, 𝑡) = 𝑓 (𝑡) ,

𝜕
𝛼

𝑢 (0, 𝑡)

𝜕𝑥𝛼
= 𝑔 (𝑡) ,

(2)

where the operator is the local fractional differential operator
[29, 30, 34, 37, 38], which is applied to model the heat
conduction problems in fractal media, fractal materials,
fractal fracture mechanics, fractal wave behavior, Navier-
Stokes equations on Cantor sets, Schrödinger equation with
local fractional derivative, and diffusion equations on cantor
space-time.

The one-dimensional heat equations with the heat gener-
ation arising in fractal transient conduction were considered
in [30] as

𝜕
𝛼

𝑢 (𝑥, 𝑡)

𝜕𝑡𝛼
−

𝜕
2𝛼

𝑢 (𝑥, 𝑡)

𝜕𝑥2𝛼
= 𝜙 (𝑥, 𝑡) , (3)

where 𝜙(𝑥, 𝑡) is the heat generation term.
We use initial and boundary conditions as follows:

𝑢 (0, 𝑡) = 𝑓 (𝑡) ,

𝜕
𝛼

𝑢 (0, 𝑡)

𝜕𝑥𝛼
= 𝑔 (𝑡) .

(4)

The aim of this paper is to investigate the one-dimensional
heat equations with the heat generation arising in fractal
transient conduction by using the local fractional Adomian
decomposition method.

This paper is structured as follows. In Section 2, we give
the basic notations and definitions of local fractional oper-
ators. In Section 3, local fractional Adomian decomposition
method for heat generation arising in fractal transient con-
duction is presented. Three examples are shown in Section 4.
Finally, Section 5 presents conclusions.

2. Preliminaries

In this section we present some basic definitions and nota-
tions of the local fractional operators which are used further
through the paper.

Let us denote local fractional continuity of 𝑓(𝑥) as

𝑓 (𝑥) ∈ 𝐶
𝛼
(𝑎, 𝑏) . (5)

Definition 1. Local fractional derivative operator of 𝑓(𝑥) at
the point 𝑥

0
is given by [29, 30, 34–38]:

𝑓
(𝛼)

(𝑥
0
) =

𝑑
𝛼

𝑓 (𝑥)

𝑑𝑥𝛼

𝑥=𝑥0

= lim
𝑥→𝑥0

Δ
𝛼

(𝑓 (𝑥) − 𝑓 (𝑥
0
))

(𝑥 − 𝑥
0
)
𝛼

, (6)

whereΔ𝛼(𝑓(𝑥)−𝑓(𝑥
0
)) ≅ Γ(1+𝛼)Δ(𝑓(𝑥)−𝑓(𝑥

0
)) and𝑓(𝑥) ∈

𝐶
𝛼
(𝑎, 𝑏).
Local fractional derivative of high order and local frac-

tional partial derivative of high order are written in the form
[29, 30, 38]

𝑓
(𝑘𝛼)

(𝑥) =

𝑘 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝐷
(𝛼)

𝑥
⋅ ⋅ ⋅ 𝐷
(𝛼)

𝑥
𝑓 (𝑥) ,

(7)

𝜕
𝑘𝛼

𝜕𝑥𝑘𝛼
𝑓 (𝑥, 𝑦) =

𝑘 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜕
𝛼

𝜕𝑥𝛼
⋅ ⋅ ⋅

𝜕
𝛼

𝜕𝑥𝛼
𝑓 (𝑥, 𝑦) ,

(8)

respectively.
As inverse of local fractional differential operator, the

local fractional integral operator of 𝑓(𝑥) in the interval [𝑎, 𝑏]
is defined as [29, 30, 36–38]

𝑎
𝐼
(𝛼)

𝑏
𝑓 (𝑥) =

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑓 (𝑡) (𝑑𝑡)
𝛼

=
1

Γ (1 + 𝛼)
lim
Δ𝑡→0

𝑗=𝑁−1

∑

𝑗=0

𝑓 (𝑡
𝑗
) (Δ𝑡
𝑗
)
𝛼

,

(9)

where a partition of the interval [𝑎, 𝑏] is denoted as Δ𝑡
𝑗

=

𝑡
𝑗+1

− 𝑡
𝑗
, Δ𝑡 = max{Δ𝑡

0
, Δ𝑡
1
, Δ𝑡
𝑗
, . . .} and 𝑗 = 0, . . . , 𝑁 − 1,

𝑡
0
= 𝑎, and 𝑡

𝑁
= 𝑏.

The properties are only presented as follows [29, 30, 37]:

𝐷
(𝛼)

𝑥
[𝑓 (𝑥) 𝑔 (𝑥)]

= (𝐷
(𝛼)

𝑥
𝑓 (𝑥)) 𝑔 (𝑥) + 𝑓 (𝑥) (𝐷

(𝛼)

𝑥
𝑔 (𝑥)) ,

𝑎
𝐼
(𝛼)

𝑥
𝑓 (𝑥) 𝑔

(𝛼)

(𝑥)

= [𝑓 (𝑥) 𝑔 (𝑥)]

𝑥

𝑎
−
𝑎
𝐼
(𝛼)

𝑥
𝑓
(𝛼)

(𝑥) 𝑔 (𝑥) ,

𝐷
(𝛼)

𝑥

𝑥
𝑘𝛼

Γ (1 + 𝑘𝛼)
=

𝑥
(𝑘−1)𝛼

Γ [1 + (𝑘 − 1) 𝛼]
,

0
𝐼
(𝛼)

𝑏

𝑥
𝑘𝛼

Γ (1 + 𝑘𝛼)
=

𝑥
(𝑘+1)𝛼

Γ [1 + (𝑘 + 1) 𝛼]
.

(10)

3. Analysis of the Method

Let us rewrite the heat equations with the heat generation
arising in fractal transient conduction in the form

𝐿
(𝛼)

𝑡
𝑢 − 𝐿
(2𝛼)

𝑥𝑥
𝑢 = 𝜙, (11)

subject to the initial and boundary conditions

𝑢 (0, 𝑡) = 𝑓 (𝑡) ,

𝜕
𝛼

𝑢 (0, 𝑡)

𝜕𝑥𝛼
= 𝑔 (𝑡) ,

(12)

where 𝜕𝛼/𝜕𝑡𝛼 and 𝜕
2𝛼

/𝜕𝑥
2𝛼 symbolize 𝐿(𝛼)

𝑡
and 𝐿

(2𝛼)

𝑥𝑥
, respec-

tively.
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By defining the twofold local fractional integral operator
as 𝐿(−2𝛼)
𝑥𝑥

, we have

𝐿
(−2𝛼)

𝑥𝑥
[𝐿
(𝛼)

𝑡
𝑢 − 𝜙] = 𝐿

(−2𝛼)

𝑥𝑥
𝐿
(2𝛼)

𝑥𝑥
𝑢, (13)

so that

𝑢 = 𝐿
(−2𝛼)

𝑥𝑥
𝐿
(𝛼)

𝑡
𝑢 − 𝐿
(−2𝛼)

𝑥𝑥
𝜙 +

𝑥
𝛼

Γ (1 + 𝛼)
𝑔 (𝑡) + 𝑓 (𝑡) . (14)

Hence, we get

𝑢 (𝑥, 𝑡) = 𝑢
0
(𝑥, 𝑡) + 𝐿

(−2𝛼)

𝑥𝑥
[𝐿
(𝛼)

𝑡
𝑢 (𝑥, 𝑡)] , (15)

where

𝑢
0
(𝑥, 𝑡) = −𝐿

(−2𝛼)

𝑥𝑥
𝜙 +

𝑥
𝛼

Γ (1 + 𝛼)
𝑔 (𝑡) + 𝑓 (𝑡) . (16)

So, from (15) we have iterative formula as follows:

𝑢
𝑛+1

(𝑥, 𝑡) = 𝐿
(−2𝛼)

𝑥𝑥
[𝐿
(𝛼)

𝑡
𝑢
𝑛
(𝑥, 𝑡)] , 𝑛 ≥ 0, (17)

where 𝑢
0
(𝑥, 𝑡) = −𝐿

(−2𝛼)

𝑥𝑥
𝜙 + (𝑥

𝛼

/Γ(1 + 𝛼))𝑔(𝑡) + 𝑓(𝑡).
Finally, the exact solution can be constructed as follows:

𝑢 (𝑥, 𝑡) = lim
𝑛→∞

𝑛

∑

𝑖=1

𝑢
𝑖
(𝑥, 𝑡) . (18)

4. Illustrative Examples

Example 1. In view of (3), we consider 𝜙(𝑥, 𝑡) = 1, 𝑓(𝑡) =

𝑡
𝛼

/Γ(1 + 𝛼), and 𝑔(𝑡) = 𝑡
𝛼

/Γ(1 + 𝛼).
We have

𝜕
𝛼

𝑢 (𝑥, 𝑡)

𝜕𝑡𝛼
−

𝜕
2𝛼

𝑢 (𝑥, 𝑡)

𝜕𝑥2𝛼
= 1, (19)

subject to the initial value condition

𝑢
0
(𝑥, 𝑡) = −

𝑥
2𝛼

Γ (1 + 2𝛼)
+

𝑥
𝛼

Γ (1 + 𝛼)

𝑡
𝛼

Γ (1 + 𝛼)
+

𝑡
𝛼

Γ (1 + 𝛼)
.

(20)

From (19) we have the following recursive relations:

𝑢
𝑛+1

(𝑥, 𝑡) = 𝐿
(−2𝛼)

𝑥𝑥
[𝐿
(𝛼)

𝑡
𝑢
𝑛
(𝑥, 𝑡)] . (21)

In view of (21), the first few terms of the decomposition series
read

𝑢
0
(𝑥, 𝑡) = −

𝑥
2𝛼

Γ (1 + 2𝛼)
+

𝑥
𝛼

Γ (1 + 𝛼)

𝑡
𝛼

Γ (1 + 𝛼)
+

𝑡
𝛼

Γ (1 + 𝛼)
,

𝑢
1
(𝑥, 𝑡) =

𝑥
3𝛼

Γ (1 + 3𝛼)
+

𝑥
2𝛼

Γ (1 + 2𝛼)
.

(22)

From (25) we get

𝑢
2
(𝑥, 𝑡) = 𝑢

3
(𝑥, 𝑡) = ⋅ ⋅ ⋅ = 𝑢

𝑛
(𝑥, 𝑡) = 0. (23)
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Figure 1: Solution for the one-dimensional heat equations with a
fixed value 𝛼 = ln 2/ ln 3.

Therefore, the exact solution of (19) can be written as

𝑢 (𝑥, 𝑡) =
𝑥
3𝛼

Γ (1 + 3𝛼)
+

𝑥
𝛼

Γ (1 + 𝛼)

𝑡
𝛼

Γ (1 + 𝛼)
+

𝑡
𝛼

Γ (1 + 𝛼)
.

(24)

The value of the fractal-dimension order 𝛼 = ln 2/ ln 3 of the
behavior of the solution is shown in Figure 1.

Example 2. When 𝜙(𝑥, 𝑡) = 1, 𝑓(𝑡) = 𝑡
𝛼

/Γ(1 + 𝛼), and 𝑔(𝑡) =

0, we get

𝜕
𝛼

𝑢 (𝑥, 𝑡)

𝜕𝑡𝛼
−

𝜕
2𝛼

𝑢 (𝑥, 𝑡)

𝜕𝑥2𝛼
= 1. (25)

We give the initial value condition as follows:

𝑢
0
(𝑥, 𝑡) = −

𝑥
2𝛼

Γ (1 + 2𝛼)
+

𝑡
𝛼

Γ (1 + 𝛼)
. (26)

From (19) we have the following recursive relations:

𝑢
𝑛+1

(𝑥, 𝑡) = 𝐿
(−2𝛼)

𝑥𝑥
[𝐿
(𝛼)

𝑡
𝑢
𝑛
(𝑥, 𝑡)] . (27)

From (27), we have the first few terms of the decomposition
series as follows:

𝑢
0
(𝑥, 𝑡) = −

𝑥
2𝛼

Γ (1 + 2𝛼)
+

𝑡
𝛼

Γ (1 + 𝛼)
,

𝑢
1
(𝑥, 𝑡) =

𝑥
2𝛼

Γ (1 + 2𝛼)
.

(28)

Hence, we get

𝑢
2
(𝑥, 𝑡) = 𝑢

3
(𝑥, 𝑡) = ⋅ ⋅ ⋅ = 𝑢

𝑛
(𝑥, 𝑡) = 0. (29)

So, the exact solution of (19) reads

𝑢 (𝑥, 𝑡) =
𝑡
𝛼

Γ (1 + 𝛼)
. (30)

The solution with fractal-dimension order 𝛼 = ln 2/ ln 3 is
shown in Figure 2.
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Figure 2: Solution for the one-dimensional heat equations with a
fixed value 𝛼 = ln 2/ ln 3.

Example 3. When 𝜙(𝑥, 𝑡) = 1, 𝑓(𝑡) = 0, and 𝑔(𝑡) = 𝑡
𝛼

/Γ(1 +

𝛼), we get

𝜕
𝛼

𝑢 (𝑥, 𝑡)

𝜕𝑡𝛼
−

𝜕
2𝛼

𝑢 (𝑥, 𝑡)

𝜕𝑥2𝛼
= 1. (31)

The initial value condition is presented as follows:

𝑢
0
(𝑥, 𝑡) = −

𝑥
2𝛼

Γ (1 + 2𝛼)
+

𝑥
𝛼

Γ (1 + 𝛼)

𝑡
𝛼

Γ (1 + 𝛼)
. (32)

From (19) the recursive relations follow

𝑢
𝑛+1

(𝑥, 𝑡) = 𝐿
(−2𝛼)

𝑥𝑥
[𝐿
(𝛼)

𝑡
𝑢
𝑛
(𝑥, 𝑡)] . (33)

In view of (27), we get the few terms of the series; namely,

𝑢
0
(𝑥, 𝑡) = −

𝑥
2𝛼

Γ (1 + 2𝛼)
+

𝑥
𝛼

Γ (1 + 𝛼)

𝑡
𝛼

Γ (1 + 𝛼)
,

𝑢
1
(𝑥, 𝑡) =

𝑥
3𝛼

Γ (1 + 3𝛼)
.

(34)

Hence, we get

𝑢
2
(𝑥, 𝑡) = 𝑢

3
(𝑥, 𝑡) = ⋅ ⋅ ⋅ = 𝑢

𝑛
(𝑥, 𝑡) = 0. (35)

So, the exact solution of (19) reads

𝑢 (𝑥, 𝑡) =
𝑥
3𝛼

Γ (1 + 3𝛼)
−

𝑥
2𝛼

Γ (1 + 2𝛼)
+

𝑥
𝛼

Γ (1 + 𝛼)

𝑡
𝛼

Γ (1 + 𝛼)
.

(36)

Figure 3 shows the exact solution when 𝛼 = ln 2/ ln 3.

5. Conclusions

In this work, analytical solutions for the one-dimensional
heat equationswith the heat generation arising in fractal tran-
sient conduction associated with local fractional derivative
operators were discussed. The obtained solutions are nondif-
ferentiable functions, which are Cantor functions and they
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Figure 3: The surface shows the exact solution 𝑢(𝑥, 𝑡) with a fixed
value 𝛼 = ln 2/ ln 3.

discontinuously depend on the local fractional derivative. It
is shown that the local fractional Adomian decomposition
method is an efficient and simple tool for solving local
fractional differential equations.
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