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This paper deals with the synchronization problem for a class of cellular neural networkswith pantograph delays. By using Lyapunov
functional theory and inequality technique, some new and useful results are obtained for asymptotical synchronization under
adaptive feedback controller.

1. Introduction

In recent several decades, sinceChua andYang [1, 2] proposed
cellular neural networks in 1988, they have attracted consider-
able attention due to their potential applications in signal pro-
cessing, image processing, and pattern recognition. So, the
dynamical analysis of cellular neural networks is important
and interesting from both theoretical and applied points of
view; many effective research methods and important results
have been presented in [3–13] and references cited therein.

Synchronization, as one of the most important collective
behaviors, has attracted a wide range of research actively.
Recently, synchronization of neural networks delays has been
extensively studied in [11–29]. Several control schemes have
been introduced to realize the network synchronization, for
example, fuzzy control [25, 26], impulsive control [27, 29],
intermittent control [11, 28], and adaptive control [12, 13].

On the other hand, time delays are unavoidablely encoun-
tered in the signal transmission among the neurons due to
the finite switching speed of neurons and amplifiers, which
will affect the stability of the neural networks andmay lead to
some complex dynamic behaviors, such as instability, chaos,
oscillation, and other performance of the neural network.
Therefore, it is a very important research on the delayed
neural networks. In view of the significance of the control
for delayed neural networks, in recent years, there were many
good results [3, 4, 6–11, 13, 15–24, 28, 30–32]. As we know,

pantograph delays are playing more and more important
role in some fields. For example, pantograph delay is usually
required in Web Quality of Service (QoS) routing decision.
However, few authors have taken care of neural networkswith
pantograph delays.

In [8], Ding studied the synchronization of delayed fuzzy
cellular neural networks with impulses by using a nonim-
pulsive system to replace the impulsive system and some
synchronization criteria were obtained by the well-known
Lasalle invariant principle. In [11], the authors studied the lag
synchronization for delayed fuzzy cellular neural networks
via periodically intermittent control.The synchronization for
a class of delayed fuzzy cellular neural networks with the
parameters unknown was investigated (see [13]), by means of
the Lasalle invariant principle of functional equations and the
adaptive controlmethod. In [30], the synchronization control
of stochastic neural networks with time-varying delays is
discussed by the Lyapunov functional method and linear
inequality approach.

To the best of our knowledge, the adaptive synchroniza-
tion results on neural networks with delays are usually based
on Lasalle invariant principle, and there are few or even
no results with regard to the adaptive synchronization for
cellular neural networks with pantograph delays by applying
adaptive feedback control. Based on the above analysis, in
this paper, we will investigate the adaptive synchronization
for cellular neural networks with pantograph delays by
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using Lyapunov functional theory, inequality technique, and
Barbalat lemma, some new and useful criteria are derived.

This paper is organized as follows. In Section 2, model
description and preliminaries are given. Some synchroniza-
tion criteria are obtained in Section 3 under the adaptive
feedback controller we assumed. In Section 4, the effective-
ness and feasibility of the developed methods are shown by a
numerical example.

2. Preliminaries

Motivated by the analysis in the above section, in this paper,
we consider a class of cellular neural networks with panto-
graph delays, which is described by the following model:

𝑥̇

𝑖 (
𝑡) = −𝑎

𝑖
𝑥

𝑖 (
𝑡) +

𝑛

∑

𝑗=1

𝑏

𝑖𝑗
𝑓

𝑗
(𝑥

𝑗 (
𝑡))

+

𝑛

∑

𝑗=1

𝑐

𝑖𝑗
𝑓

𝑗
(𝑥

𝑗
(𝑞

𝑗
𝑡)) + 𝐼

𝑖 (
𝑡) , 𝑖 ∈ I,

(1)

for 𝑡 > 0, where 𝑖, 𝑗 ∈ I = {1, 2, . . . , 𝑛}; 𝑥
𝑖
(𝑡) denotes the

state of the 𝑖th neuron at the time 𝑡; 𝑎
𝑖
> 0 represents the

rate with which the 𝑖th neuron will reset its potential to the
resting state in isolationwhendisconnected from the network
and external input; 𝑏

𝑖𝑗
denotes the strength of the 𝑗th neuron

on the 𝑖th neuron at the time 𝑡; 𝑐
𝑖𝑗
denotes the strength

of the 𝑗th neuron on the 𝑖th neuron at the time 𝑞
𝑗
𝑡; 𝑓
𝑗
(⋅)

corresponds to the output of the 𝑗th neuron; and 𝑞

𝑗
(𝑗 ∈

I) is constant and satisfies 0 < 𝑞

𝑗
< 1, 𝑞

𝑗
𝑡 = 𝑡 − (1 − 𝑞

𝑗
)𝑡, in

which (1−𝑞

𝑗
)𝑡 denotes the pantograph delays along the axon

of the 𝑗th node and 𝐼

𝑖
(𝑡) corresponds to the external bias on

the 𝑖th neuron.
System (1) is supplemented with initial value given by

𝑥

𝑖 (
0) = 𝑥

𝑖0
, 𝑖 ∈ I. (2)

In order to observe the synchronization behavior of
system (1), the slaver system is designed as follows:

̇𝑦

𝑖 (
𝑡) = −𝑎

𝑖
𝑦

𝑖 (
𝑡) +

𝑛

∑
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𝑏

𝑖𝑗
𝑓

𝑗
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𝑗 (
𝑡))

+

𝑛

∑

𝑗=1

𝑐

𝑖𝑗
𝑓

𝑗
(𝑦

𝑗
(𝑞

𝑗
𝑡)) + 𝐼

𝑖 (
𝑡) + 𝐾𝑖 (

𝑡) , 𝑖 ∈ I,

(3)

for 𝑡 > 0, where 𝑦
𝑖
(𝑡) denotes the state of the slave system,

the rest of the notations are the same as in system (1),
and 𝐾

𝑖
(𝑡) is a control input to be designed.

The initial value of system (3) is given by

𝑦

𝑖 (
0) = 𝑦

𝑖0
, 𝑖 ∈ I. (4)

Assume that 𝑥(𝑡) = (𝑥

1
(𝑡), . . . , 𝑥

𝑛
(𝑡))

𝑇 and 𝑦(𝑡) =

(𝑦

1
(𝑡), . . . , 𝑦

𝑛
(𝑡))

𝑇 are solutions of systems (1) and (3) with
different initial values 𝑥

𝑖
(0) = 𝑥

𝑖0
and 𝑦

𝑖
(0) = 𝑦

𝑖0
at the time

𝑡 = 0. Let 𝑒
𝑖
(𝑡) = 𝑦

𝑖
(𝑡) − 𝑥

𝑖
(𝑡) be the synchronization error

between the states of the drive system (1) and response system
(3); subtracting (1) from (3) yields the following error system:

̇𝑒

𝑖 (
𝑡) = −𝑎

𝑖
𝑒

𝑖 (
𝑡) +

𝑛

∑
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𝑏

𝑖𝑗
[𝑓

𝑗
(𝑦

𝑗 (
𝑡)) − 𝑓𝑗

(𝑥

𝑗 (
𝑡))]

+

𝑛

∑

𝑗=1

𝑐

𝑖𝑗
[𝑓

𝑗
(𝑦

𝑗
(𝑞

𝑗
𝑡)) − 𝑓

𝑗
(𝑥

𝑗
(𝑞

𝑗
𝑡))] + 𝐾

𝑖 (
𝑡) ,

𝑖 ∈ I,

(5)

where the adaptive feedback controller 𝐾
𝑖
(𝑡) is designed by

𝐾

𝑖 (
𝑡) = 𝜀

𝑖 (
𝑡) 𝑒𝑖 (

𝑡) . (6)

The feedback strength 𝜀(𝑡) = (𝜀

1
(𝑡), . . . , 𝜀

𝑛
(𝑡))

𝑇 is adapted by
the following law:

̇𝜀

𝑖 (
𝑡) = −𝜆

𝑖
𝑒

2

𝑖
(𝑡) , (7)

where 𝜆
𝑖
> 0 (𝑖 = 1, 2, . . . , 𝑛).

In order to further study systems (1) and (3) and obtain
the main results, the following assumptions are necessary.

Assumption 1. We assume that there exist positive constants
𝑀

𝑖
(𝑖 ∈ I) such that activation function 𝑓

𝑖
(⋅) satisfies the

following condition:
󵄨

󵄨

󵄨

󵄨

𝑓

𝑖 (
𝑥)

󵄨

󵄨

󵄨

󵄨

≤ 𝑀

𝑖
, 𝑖 ∈ I. (8)

Assumption 2. For each 𝑖 ∈ I, we assume activation
function 𝑓

𝑖
(⋅) satisfies the Lipschitz condition; that is, there

exists constant 𝐿
𝑖
such that

󵄨

󵄨

󵄨

󵄨

𝑓

𝑖 (
𝑥) − 𝑓𝑖

(𝑦)

󵄨

󵄨

󵄨

󵄨

≤ 𝐿

𝑖

󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

, ∀𝑥, 𝑦 ∈ 𝑅, 𝑖 ∈ I. (9)

On the synchronization of drive-response system (1) and
(3), we have the following definition.

Definition 3. The master system (1) and the response system
(3) are said to be synchronized, if for any solution 𝑥(𝑡) =

(𝑥

1
(𝑡), . . . , 𝑥

𝑛
(𝑡))

𝑇 of system (1) and any solution 𝑦(𝑡) =

(𝑦

1
(𝑡), . . . , 𝑦

𝑛
(𝑡))

𝑇 of system (3), we have

lim
𝑡→∞

(𝑥

𝑖 (
𝑡) − 𝑦𝑖 (

𝑡)) = 0. (10)

In addition, the following lemma is essential in establishing
our main results.

Lemma 4 (Barbalat Lemma). Function 𝑓(𝑥) defined
on interval [0, +∞); if 𝑓(𝑥) is uniformly continuous
and ∫

+∞

0
𝑓(𝑥) 𝑑𝑥 < +∞ is satisfied. Then lim

𝑥→+∞
𝑓(𝑥) = 0.

3. Adaptive Synchronization

In this section, we will use Lyapunov functional theory,
inequality technique, and Barbalat lemma to study the error
system (5) realize globally asymptotical stable under adaptive
feedback controller (6), that is, to realize the adaptive syn-
chronization of drive system (1) and response system (3).

The following theorem is given to guarantee the synchro-
nization of system (1) and (3).
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Theorem 5. Assume that Assumptions 1 and 2 hold, and the
feedback strength 𝜀

𝑖
(𝑡) is adapted by (7); then the error system

(5) is globally asymptotical stable; that is, the drive system
(1) and response system (3) are synchronized under adaptive
feedback controller (6).

Proof . In order to establish the result of Theorem 5, we
introduce the following Lyapunov functional:

𝑉 (𝑡) =

𝑛
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𝑖=1

󵄨

󵄨

󵄨

󵄨

𝑒

𝑖 (
𝑡)

󵄨

󵄨

󵄨

󵄨

2
+

1

4

𝑛

∑

𝑖=1

1

𝜆

𝑖

(2𝜀

𝑖 (
𝑡) + ℎ)

2
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1
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2
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(𝑠) 𝑑𝑠,

(11)

where ℎ is a constant and 𝑞 = min
𝑖∈I{𝑞𝑗}, which will be

given in the following.
From (5) and Assumption 2, we have

𝐷

+ 󵄨
󵄨
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(12)

In the following, we calculate the upper right derivative
of 𝑉(𝑡) along the solution of error system (5). From (11) and
(12), we have

𝐷

+
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𝑖
(𝑡) +

1

𝑞

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑐

𝑖𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑗
[𝑒

2

𝑗
(𝑡) − 𝑞𝑗

𝑒

2

𝑗
(𝑞

𝑗
𝑡)]

= −

𝑛

∑

𝑖=1

2𝑎

𝑖
𝑒

2

𝑖
(𝑡) +

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

2

󵄨

󵄨

󵄨

󵄨

󵄨

𝑏

𝑖𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑗

󵄨

󵄨

󵄨

󵄨

𝑒

𝑖 (
𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑒

𝑗 (
𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

2

󵄨

󵄨

󵄨

󵄨

󵄨

𝑐

𝑖𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑗

󵄨

󵄨

󵄨

󵄨

𝑒

𝑖 (
𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑒

𝑗
(𝑞

𝑗
𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

−

𝑛

∑

𝑖=1

ℎ𝑒

2

𝑖
(𝑡) +

1

𝑞

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑐

𝑖𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑗
[𝑒

2

𝑗
(𝑡) − 𝑞𝑗

𝑒

2

𝑗
(𝑞

𝑗
𝑡)]

≤ −

𝑛

∑

𝑖=1

2𝑎

𝑖
𝑒

2

𝑖
(𝑡) +

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑏

𝑖𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑗
(𝑒

2

𝑖
(𝑡) + 𝑒

2

𝑗
(𝑡))

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑐

𝑖𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑗
(𝑒

2

𝑖
(𝑡) + 𝑒

2

𝑗
(𝑞

𝑗
𝑡))

−

𝑛

∑

𝑖=1

ℎ𝑒

2

𝑖
(𝑡) +

1

𝑞

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑐

𝑖𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑗
(𝑒

2

𝑗
(𝑡) − 𝑞𝑗

𝑒

2

𝑗
(𝑞

𝑗
𝑡))

= −

𝑛

∑

𝑖=1

(2𝑎

𝑖
+ ℎ) 𝑒

2

𝑖
(𝑡) +

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

(

󵄨

󵄨

󵄨

󵄨

󵄨

𝑏

𝑖𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑗
+

󵄨

󵄨

󵄨

󵄨

󵄨

𝑏

𝑗𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑖
) 𝑒

2

𝑖
(𝑡)

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

(

󵄨

󵄨

󵄨

󵄨

󵄨

𝑐

𝑖𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑗
+

1

𝑞

󵄨

󵄨

󵄨

󵄨

󵄨

𝑐

𝑗𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑖
)𝑒

2

𝑖
(𝑡)

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑐

𝑖𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑗
(1 −

𝑞

𝑗

𝑞

)

≤ −

𝑛

∑

𝑖=1

(2𝑎

𝑖
+ ℎ) 𝑒

2

𝑖
(𝑡) +

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

(

󵄨

󵄨

󵄨

󵄨

󵄨

𝑏

𝑖𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑗
+

󵄨

󵄨

󵄨

󵄨

󵄨

𝑏

𝑗𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑖
) 𝑒

2

𝑖
(𝑡)
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+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

(

󵄨

󵄨

󵄨

󵄨

󵄨

𝑐

𝑖𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑗
+

1

𝑞

󵄨

󵄨

󵄨

󵄨

󵄨

𝑐

𝑗𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑖
)𝑒

2

𝑖
(𝑡)

= −

𝑛

∑

𝑖=1

[

[

2𝑎

𝑖
+ ℎ −

𝑛

∑

𝑗=1

(

󵄨

󵄨

󵄨

󵄨

󵄨

𝑏

𝑖𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑗
+

󵄨

󵄨

󵄨

󵄨

󵄨

𝑏

𝑗𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑖
)

−

𝑛

∑

𝑗=1

(

󵄨

󵄨

󵄨

󵄨

󵄨

𝑐

𝑖𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑗
+

1

𝑞

󵄨

󵄨

󵄨

󵄨

󵄨

𝑐

𝑗𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑖
)

]

]

𝑒

2

𝑖
(𝑡) .

(13)

We choose

ℎ =

𝑛

∑

𝑗=1

(

󵄨

󵄨

󵄨

󵄨

󵄨

𝑏

𝑖𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑗
+

󵄨

󵄨

󵄨

󵄨

󵄨

𝑏

𝑗𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑖
)

+

𝑛

∑

𝑗=1

(

󵄨

󵄨

󵄨

󵄨

󵄨

𝑐

𝑖𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑗
+

1

𝑞

󵄨

󵄨

󵄨

󵄨

󵄨

𝑐

𝑗𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

𝑖
) − 2𝑎

𝑖
+ 1.

(14)

Then, we finally obtain

𝐷

+
𝑉 (𝑡) ≤ −

𝑛

∑

𝑖=1

𝑒

2

𝑖
(𝑡) , (15)

For 𝑡 ≥ 0, integrating both sides of inequality (15) over [0, 𝑡],
we get

𝑉 (𝑡) − 𝑉 (0) ≤ −∫

𝑡

0

𝑛

∑

𝑖=1

𝑒

2

𝑖
(𝑠) 𝑑𝑠. (16)

Then

𝑉 (𝑡) + ∫

𝑡

0

𝑛

∑

𝑖=1

𝑒

2

𝑖
(𝑠) 𝑑𝑠 ≤ 𝑉 (0) , (17)

In view of 𝑉(0) > 0,

lim
𝑡→∞

sup∫
𝑡

0

𝑛

∑

𝑖=1

𝑒

2

𝑖
(𝑠) 𝑑𝑠 ≤ 𝑉 (0) < +∞. (18)

From (11) and (17), we have

𝑛

∑

𝑖=1

󵄨

󵄨

󵄨

󵄨

𝑒

𝑖 (
𝑡)

󵄨

󵄨

󵄨

󵄨

2
≤ 𝑉 (𝑡) ≤ 𝑉 (0) . (19)

Therefore, 𝑒
𝑖
(𝑡) is bounded on [0, +∞). From (12), we get

that ̇𝑒

𝑖
(𝑡) is bounded on [0, +∞). On the other hand, in view

of (18), applying Lemma 4, we have

lim
𝑡→∞

𝑒

𝑖 (
𝑡) = 0, (20)

which implies that the error system (5) is globally asymptot-
ically stable; that is, the drive-response systems (1) and (3)
are synchronized under adaptive feedback controller (6).The
proof of Theorem 5 is completed.

The following results are easily obtained fromTheorem 5.

Corollary 6. Under Assumptions 1 and 2, the master-
response system (1) and (3) can be synchronized under the
adaptive feedback controller (6) and (7), if there exists a
constant ℎ satisfying the following condition.

Assumption 7. ∑𝑛
𝑗=1
(|𝑏

𝑖𝑗
|𝐿

𝑗
+ |𝑏

𝑗𝑖
|𝐿

𝑖
) + ∑

𝑛

𝑗=1
(|𝑐

𝑖𝑗
|𝐿

𝑗
+

(1/𝑞)|𝑐

𝑗𝑖
|𝐿

𝑖
) − 2𝑎

𝑖
− ℎ < 0, where 𝑞 = min

𝑖∈I{𝑞𝑖}.
In particular, when 𝑞

𝑗
= 𝑞 (0 < 𝑞 < 1), the master-

response systems (1) and (3) have the following special case:

𝑥̇

𝑖 (
𝑡) = −𝑎

𝑖
𝑥

𝑖 (
𝑡) +

𝑛

∑

𝑗=1

𝑏

𝑖𝑗
𝑓

𝑗
(𝑥

𝑗 (
𝑡))

+

𝑛

∑

𝑗=1

𝑐

𝑖𝑗
𝑓

𝑗
(𝑥

𝑗
(𝑞𝑡)) + 𝐼

𝑖 (
𝑡) , 𝑖 ∈ I,

(21)

̇𝑦

𝑖 (
𝑡) = −𝑎

𝑖
𝑦

𝑖 (
𝑡) +

𝑛

∑

𝑗=1

𝑏

𝑖𝑗
𝑓

𝑗
(𝑦

𝑗 (
𝑡))

+

𝑛

∑

𝑗=1

𝑐

𝑖𝑗
𝑓

𝑗
(𝑦

𝑗
(𝑞𝑡)) + 𝐼

𝑖 (
𝑡) + 𝐾𝑖 (

𝑡) , 𝑖 ∈ I.

(22)

FromTheorem 5, we have the following corollary as a special
case of Theorem 5.

Corollary 8. Assume Assumptions 1 and 2 hold, the master
system (21) and response system (22) can be adaptively syn-
chronized under the adaptive feedback controller (6) and (7), if
there exists a constant ℎ satisfying the following condition.

Assumption 9. ∑𝑛
𝑗=1
(|𝑏

𝑖𝑗
|𝐿

𝑗
+ |𝑏

𝑗𝑖
|𝐿

𝑖
) + ∑

𝑛

𝑗=1
(|𝑐

𝑖𝑗
|𝐿

𝑗
+

(1/𝑞)|𝑐

𝑗𝑖
|𝐿

𝑖
) − 2𝑎

𝑖
− ℎ < 0.

If the feedback strength 𝜀(𝑡) = (𝛼(𝑡), . . . , 𝛼(𝑡))

𝑇, then the
response system (3) has the special case as follows:

̇𝑦

𝑖 (
𝑡) = −𝑎

𝑖
𝑦

𝑖 (
𝑡) +

𝑛

∑

𝑗=1

𝑏

𝑖𝑗
𝑓

𝑗
(𝑦

𝑗 (
𝑡))

+

𝑛

∑

𝑗=1

𝑐

𝑖𝑗
𝑓

𝑗
(𝑦

𝑗
(𝑞

𝑗
𝑡)) + 𝐼

𝑖 (
𝑡) + 𝛼 (𝑡) 𝑒𝑖 (

𝑡) , 𝑖 ∈ I.

(23)

Thus,we obtain the following corollary as another special case
of Theorem 5.

Corollary 10. Under Assumptions 1 and 2, the master-
response system (1) and (23) can be synchronized under the
adaptive feedback controller (6), if there exists a constant 𝜆 >

0 such that feedback strength 𝛼(𝑡) is adapted duly according to
the following updated law:

𝛼̇ (𝑡) = −𝜆𝑒

2

𝑖
(𝑡) . (24)

Remark 11. In [13], based on Lasalle invariant principle of
functional differential equations and the adaptive feedback
control technique, the adaptive synchronization behavior for
the delayed fuzzy cellular neural networks was obtained. In
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this paper, by applying Lyapunov functional theory, inequal-
ity technique, and Barbalat lemma, some useful results are
derived for asymptotical synchronization under adaptive
feedback controller.

Remark 12. Recently, research on synchronization problem
for chaotic systems, authors have considered constant delay,
time-varying delays, distributed delays, mixed time-varying
delays, and so on. However, to the best of our knowledge,
there are few results concerning pantographdelays for chaotic
systems. So, in this paper, the adaptive synchronization of a
class of cellular neural networks with pantograph delays was
derived.

Remark 13. As far as we know, the synchronization of chaotic
systems has been intensively investigated and many good
results have been obtained by using control schemes such
as adaptive control, pinning control, fuzzy control, impulsive
control, intermittent control, and so on. However, to the
best of our knowledge, there are few results concerning the
synchronization for a class of unautonomous cellular neural
networks with pantograph delays based on intermittent
feedback control. Therefore, this is another interesting open
problem that we should study in the future.

4. Numerical Simulations

In this section, one chaotic network is given to show the
effectiveness of our results obtained in this paper.

Example 1. Consider the following cellular neural networks
with pantograph delays described by

𝑥̇

𝑖 (
𝑡) = −𝑎

𝑖
𝑥

𝑖 (
𝑡) +

𝑛

∑

𝑗=1

𝑏

𝑖𝑗
𝑓

𝑗
(𝑥

𝑗 (
𝑡))

+

𝑛

∑

𝑗=1

𝑐

𝑖𝑗
𝑓

𝑗
(𝑥

𝑗
(𝑞

𝑗
𝑡)) + 𝐼

𝑖 (
𝑡) , 𝑖 = 1, 2,

(25)

where 𝑖 = 1, 2, 𝑓
1
(𝑥) = 𝑓

2
(𝑥) = (1/2)(|𝑥 + 1| − |𝑥 − 1|),

𝑎

1
= 𝑎

2
= 1, 𝑏

11
= 2.3, 𝑏

12
= 3.0, 𝑏

21
= −5.0, 𝑏

22
= −0.1,

𝑐

11
= −1.5, 𝑐

12
= 0.1, 𝑐

21
= 1.0, 𝑐

22
= 2.4, and 𝑞

1
= 𝑞

2
= 0.1.

The numerical simulation of system (25) is represented in
Figure 1, which shows that system (25) has a chaotic attractor.

In the following, we consider the adaptive synchroniza-
tion of drive system (25) and response system described by

̇𝑦

𝑖 (
𝑡) = −𝑎

𝑖
𝑦

𝑖 (
𝑡) +

𝑛

∑

𝑗=1

𝑏

𝑖𝑗
𝑓

𝑗
(𝑦

𝑗 (
𝑡))

+

𝑛

∑

𝑗=1

𝑐

𝑖𝑗
𝑓

𝑗
(𝑦

𝑗
(𝑞

𝑗
𝑡)) + 𝐼

𝑖 (
𝑡) + 𝜀𝑖 (

𝑡) 𝑒𝑖 (
𝑡) , 𝑖 = 1, 2,

(26)

where 𝑖 = 1, 2; the parameters 𝑎
𝑖
, 𝑏
𝑖𝑗
, and 𝑐

𝑖𝑗
are defined as in

system (25); and

̇𝜀

𝑖 (
𝑡) = −𝜆

𝑖
𝑒

2

𝑖
(𝑡) , 𝑖 = 1, 2. (27)

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−5
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−1

0
1
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x
1
(t)

x
2
(
t
)

Figure 1: The chaotic behavior of system (25) with the initial
values 𝑥

1
(𝑠) = 0.3, 𝑥

2
(𝑠) = −0.5, for 𝑠 ∈ [−1, 0].
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t

−1.5
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e
1
(
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)

Figure 2: Synchronization errors of system (25) and system (26).

We choose the following initial condition associated with
response system (26):

𝑦

1 (
𝑠) = 0.5 − 0.1𝑘, 𝑦

2 (
𝑠) = −0.7 + 0.1𝑘,

𝑘 = −1, 0, 1, ∀𝑠 ∈ [−1, 0] .

(28)

Furthermore, we choose in error system (27) the initial
conditions 𝜀

𝑖
(0) = 0 (𝑖 = 1, 2) and 𝜆

1
= 0.3, 𝜆

2
= 0.2. By

numerical simulation, we can see that the simulation results
of master system (25) synchronize with response system (26)
as shown in Figures 2, 3, 4, and 5.

5. Conclusions

In this paper, an adaptive controller has been proposed to
investigate the adaptive synchronization for a class of cellular
neural networks with pantograph delays by utilizing Lya-
punov functional theory, inequality technique, and Barbalat
lemma; some sufficient and useful conditions have been
derived. Our synchronization criteria are easily verified and
do not apply linear matrix inequality and the traditional
Lasalle invariant principle. Finally, an example is given
to verify the effectiveness and feasibility of the developed
methods.
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