
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 616289, 13 pages
http://dx.doi.org/10.1155/2013/616289

Research Article
Synchronization of Coupled Networks with Uncertainties

Yi Zuo1 and Xinsong Yang2

1 Division of Information, Chongqing University of Science and Technology, Chongqing 401331, China
2Department of Mathematics, Chongqing Normal University, Chongqing 401331, China

Correspondence should be addressed to Xinsong Yang; xinsongyang@163.com

Received 25 September 2013; Accepted 5 November 2013

Academic Editor: Qiankun Song

Copyright © 2013 Y. Zuo and X. Yang. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Asymptotic synchronization for a class of coupled networks with nondelayed and delayed couplings is investigated. A distinct
feature of the network is that all the dynamical nodes are affected by uncertain nonlinear nonidentical perturbations. In order
to synchronize the network onto a given isolate trajectory, a novel adaptive controller is designed to overcome the effects of the
nonidentical uncertain nonlinear perturbations. The designed controller has better robustness than classical adaptive controller,
since it can realize the synchronization goal whether the nodes have these perturbations or not. Based on the Lyapunov stability
theory and the Barbalat lemma, sufficient conditions guaranteeing the asymptotic synchronization of the coupled network are
derived. Two examples with numerical simulations are given to illustrate the effectiveness of the theoretical results. Simulations
also demonstrate that our adaptive controller has better robustness than existing ones.

1. Introduction

A coupled network or complex network is a set of intercon-
nected nodes, where each node is a dynamical system. In fact,
many natural and man-made systems, such as the Internet
networks [1], biological networks [2], epidemic spreading
networks [3], collaborative networks [4], and social networks
[5], can be described by coupled networks. Since the seminal
work of Wu and Chua [6], much attention has been payed
to the dynamical behaviors in an array of coupled networks
[7–9]. A coupled network can exhibit complicated dynamical
behaviors or collective behaviors which may be absolutely
different from those of a single node. Hence, investigating
the dynamical behaviors of coupled networks is of great
importance.

One of the important collective behaviors of coupled
networks is synchronization. Actually, many natural phe-
nomena can be well explained by the synchronization of
coupled networks. Moreover, synchronization has potential
applications in many fields such as secure communication
[10, 11] and information processing [12]. Therefore, in recent
years, an increasing number of researchers have been devoted
to the investigation of synchronization in an array of coupled
networks [6, 7, 9, 10, 13–22]. It is well known that sometimes

the coupled networks may not be synchronized when a
controller is not added into the infrastructure of individual
nodes [7]. Thus the controlled synchronization of coupled
networks is believed to be a rather significant topic in both
theoretical research and practical applications. Consequently,
many control methods have been proposed to realize chaos
synchronization of coupled networks, for instance, intermit-
tent control [7], state feedback control [9], and adaptive
control [23]. Particularly, adaptive control technique is an
effective method due to its good robustness.

In the literature, there were many results concerning
synchronization of coupled networks via adaptive control
[14–16, 19–22]. Cao et al. [14] investigated the complete syn-
chronization in an array of linearly stochastically coupled
identical neural networks with delays. In [15], Chen andZhou
studied the synchronization of coupled nondelayed networks
under the adaptive control. By designing a simple adaptive
controller, authors of [20] investigated the locally and globally
adaptive synchronization of an uncertain coupled dynamical
network. Recently, authors of [21] considered the local and
global synchronization of coupled networks without delays
via adaptive pinning control. Authors of [16, 19, 22] inves-
tigated the global synchronization of the coupled networks
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with nondelayed and delayed couplings by utilizing adaptive
control technique.

It should be noted that most of the above results are
valid only for the coupled networks without perturbation.
However, in practice, chaotic systems are inevitably subject
to many types of uncertain or even nonlinear perturbations,
such as unknown parameters, exogenous disturbances, and
artificial factors [23]. For instance, it is reported that the
famous Lorenz system is derived from partial differential
equations after a series of approximations [24]. Therefore,
there usually exist modelling errors between the determinis-
ticmodel and practical system.One can also find that dynam-
ical nodes are difficult to be identical all the time since the
parameters of dynamical nodes may be variant due to some
environmental changes [25]. Another example is the social
network [5], in which a person is a node and the relationship
between persons is the edge. A person’s mood may change
according to the evolution of the time and environments and
hence many uncertainties may interfere with the individual’s
behaviors. Furthermore, in the process of signal transmitting,
the states of subsystems in coupled networks are unavoidably
subject to some uncertain perturbations. Thus, synchroniza-
tion of coupled chaotic systems with uncertain perturbations
is essential and useful in both theoretical research and practi-
cal applications. Although the usual adaptive technique used
in [14–17, 19–22] has good robustness when synchronizing
coupled networks without perturbation, it is not always
effective to synchronize coupled networks with various types
of uncertain nonlinear perturbations. Simulations of this
paper show that the adaptive technique used in [14–17, 19–22]
cannot effectively synchronize coupled dynamical systems
with some uncertain perturbations onto a given trajectory.
Note that the uncertain perturbations of this paper are not
stochastic as those in [7, 9, 19]. A distinct feature of the
uncertain perturbations in this paper is that their effects
cannot disappear even after the synchronization has been
realized.

On the other hand, time delays usually exist in spreading
due to the finite speeds of transmission as well as traffic
congestions. Therefore, it is significant to investigate the
synchronization in an array of coupled dynamical systems
with delayed couplings. In [14, 16, 22], synchronization in an
array of coupled dynamical systems with delayed couplings
was studied. However, to the best of our knowledge, result
on synchronization in an array of coupled systems with
nondelayed and delayed couplings and uncertain nonlinear
perturbations is seldom.

Motivated by the above analysis, in this paper, a general
model of coupled networks with nondelayed and delayed
couplings as well as uncertain nonlinear perturbations is
proposed. Our model is applicable to most of known chaotic
systems with or without uncertainties. The coupling config-
uration matrices are not assumed to be symmetric. Global
asymptotic synchronization of the proposedmodel is studied.
A new simple but robust adaptive controller is designed to
overcome the effects of uncertainties and nonlinear external
perturbations. The designed controller can synchronize the
considered network to a given isolate trajectory. Moreover,
our controller includes controllers used in [14–17, 19–22]

as a special case. The designed adaptive controller can
also synchronize the coupled dynamical network without
any uncertainty and perturbation. Based on the Lyapunov
stability theory and the Barbalat lemma, sufficient conditions
are obtained to guarantee the realization of the synchro-
nization of the coupled network. Numerical simulations
verify the effectiveness of the theoretical results. Simulations
also demonstrate that our adaptive controller has better
robustness than those used in [14–17, 19–22].

The rest of this paper is organized as follows. In Section 2,
a class of general coupled networks with uncertainties is
proposed. Some necessary assumptions and lemmas are also
given in this section. In Section 3, synchronization of the
coupled networks with or without uncertainties is studied.
Then, in Section 4, numerical simulations are given to show
the effectiveness of our results. Section 5 concludes the
investigation and expresses the acknowledgements. Future
research field is also discussed in this section.

Notations. In the sequel, if not explicitly stated, matrices are
assumed to have compatible dimensions. 𝐼

𝑁
stands for the

identity matrix of𝑁-dimension.R𝑛 is the Euclidean space of
𝑛-dimension and R+ is the set of nonnegative real numbers.
For vector 𝑥 ∈ R𝑛, the Euclidean norm is ‖𝑥‖ = √𝑥𝑇𝑥, where
𝑇 denotes transposition. 𝐴 = (𝑎

𝑖𝑗
)
𝑚×𝑚

denotes a matrix of

𝑚-dimension, ‖𝐴‖ = √𝜆max(𝐴
𝑇𝐴), 𝐴𝑠 = (1/2) (𝐴 + 𝐴

𝑇
).

𝐴 > 0 or 𝐴 < 0 means that the matrix 𝐴 is symmetric and
positive or negative definite matrix. 𝜆min(𝐴) and 𝜆max(𝐴) are
the minimum and maximum eigenvalues of the matrix 𝐴,
respectively.

2. Model Formulation and Preliminaries

The general coupled network consisting of𝑁 identical nodes
with nondelayed and delayed couplings as well as uncertain
nonlinear perturbations is described as follows:

�̇�
𝑖 (𝑡) = 𝑓

1
(𝑥
𝑖 (𝑡)) + 𝑓

2
(𝑥
𝑖 (𝑡 − 𝜏 (𝑡)))

+

𝑁

∑

𝑗=1

𝑢
𝑖𝑗
Φ𝑥
𝑗 (𝑡) +

𝑁

∑

𝑗=1

V
𝑖𝑗
Υ𝑥
𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝜎
𝑖
(𝑡, 𝑥
𝑖 (𝑡) , 𝑥𝑖 (𝑡 − 𝜏 (𝑡))) + 𝑅

𝑖
, 𝑖 = 1, 2, . . . , 𝑁,

(1)

where 𝑥
𝑖
(𝑡) = (𝑥

𝑖1
(𝑡), . . . , 𝑥

𝑖𝑛
(𝑡))
𝑇
∈ R𝑛 represents the state

vector of the 𝑖th node of the network at time 𝑡 and 𝑓
1
(⋅) and

𝑓
2
(⋅) are continuous vector functions. 𝑅

𝑖
∈ R𝑛 is the control

input. 𝜏(𝑡) > 0 is time-varying delay and Φ, Υ ∈ R𝑛×𝑛 are
inner coupling matrices of the network, which describe the
individual coupling between two subsystems. Matrices 𝑈 =

(𝑢
𝑖𝑗
)
𝑁×𝑁

and 𝑉 = (V
𝑖𝑗
)
𝑁×𝑁

are outer couplings of the whole
network satisfying the following diffusive conditions:

𝑢
𝑖𝑗
≥ 0 (𝑖 ̸= 𝑗) , 𝑢

𝑖𝑖
= −

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑢
𝑖𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 𝑁,
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V
𝑖𝑗
≥ 0 (𝑖 ̸= 𝑗) , V

𝑖𝑖
= −

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

V
𝑖𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 𝑁.

(2)

Vector 𝜎
𝑖
(𝑡, 𝑥
𝑖
(𝑡), 𝑥
𝑖
(𝑡 − 𝜏(𝑡))) = (𝜎

𝑖1
(𝑡, 𝑥
𝑖
(𝑡), 𝑥
𝑖
(𝑡 − 𝜏(𝑡))),

. . . , 𝜎
𝑖𝑛
(𝑡, 𝑥
𝑖
(𝑡), 𝑥
𝑖
(𝑡 − 𝜏(𝑡))))

𝑇
∈ R𝑛 describes the uncertain

nonlinear perturbation of 𝑖th node of the coupled systems at
time 𝑡. In this paper, we always assume that the derivative of
𝜏(𝑡) satisfies ̇𝜏(𝑡) ≤ ℎ

𝜏
< 1, where ℎ

𝜏
is constant.

We assume that (1) has a unique continuous solution for
any initial condition in the following form:

𝑥
𝑖 (𝑠) = 𝜑

𝑖 (𝑠) , −𝜏 ≤ 𝑠 ≤ 0, 𝑖 = 1, 2, . . . , 𝑁, (3)

where 𝜏 is the maximum of 𝜏(𝑡). For convenience of writing,
in the sequel, we denote 𝜎

𝑖
(𝑡, 𝑥
𝑖
(𝑡), 𝑥
𝑖
(𝑡 − 𝜏(𝑡))) as 𝜎

𝑖
(𝑡).

The aim of this paper is to synchronize all the states of the
coupled network (1) to the following manifold:

𝑥
1 (𝑡) = 𝑥

2 (𝑡) = ⋅ ⋅ ⋅ = 𝑥
𝑁 (𝑡) = 𝑧 (𝑡) , (4)

where 𝑧(𝑡) is the state of an isolate node system without
perturbation, which is described as follows:

�̇� (𝑡) = 𝑓
1 (𝑧 (𝑡)) + 𝑓

2 (𝑧 (𝑡 − 𝜏 (𝑡))) , (5)

and 𝑧(𝑡) can be any desired state: equilibrium point, a non-
trivial periodic orbit, or even a chaotic orbit.

The following assumptions are needed in this paper.

(H
1
) 𝑓
1
(0) = 𝑓

2
(0) ≡ 0 and there exist positive constants

ℎ
1
and ℎ
2
such that

𝑓1 (𝑢) − 𝑓
1 (V)

 ≤ ℎ
1 ‖𝑢 − V‖ ,

𝑓2 (𝑢) − 𝑓
2 (V)

 ≤ ℎ
2 ‖𝑢 − V‖ ,

for any 𝑢, V ∈ R
𝑛
.

(6)

(H
2
) Solutions of all the nodes in network (1) without
control are bounded; that is, there exists a positive
constant𝐷 such that ‖𝑥

𝑖
(𝑡)‖ ≤ 𝐷, 𝑖 = 1, 2, . . . , 𝑁.

(H
3
) 𝜎
𝑖𝑘
(𝑡, 0, 0) ≡ 0, and for any positive constants 𝐷 and

𝐷
 such that ‖𝑢‖ ≤ 𝐷 and ‖V‖ ≤ 𝐷

, 𝑢, V ∈ R𝑛, there
exists positive constant 𝑀

𝑖𝑘
such that |𝜎

𝑖𝑘
(𝑡, 𝑢, V)| ≤

𝑀
𝑖𝑘
, 𝑖 = 1, 2, . . . , 𝑁, 𝑘 = 1, 2, . . . , 𝑛.

Remark 1. It follows from (H
1
) that system (5) unifies many

well-known chaotic systems with or without delays such as
Chua system [26], Lorenz system [27], Rössler system [28],
Chen system [29], delayed chaotic neural networks [14], and
delayed Chua system [30, 31]. A similar condition to (H

1
) is

also used in [32–34] for neural networks. Hence, results of
this paper are general.

Remark 2. Conditions (H
2
) and (H

3
) are reasonable. We do

not impose the usual condition such as Lipschitz condition
or differentiability on the uncertain perturbation function
𝜎
𝑖
(𝑡, 𝑥
𝑖
(𝑡), 𝑥
𝑖
(𝑡 − 𝜏(𝑡))). It can be discontinuous or even

impulsive function. If the state of each node system in (1)

is an equilibrium point or a nontrivial periodic orbit, the
condition (H

2
) can be easily satisfied. If the state of each node

in system (1) is a chaotic orbit, the condition (H
2
) can also

be satisfied. Since chaotic system has strange attractors, there
exists a bounded region containing all attractors of it such
that every orbit of the system never leaves them. Anyway,
condition (H

2
) can be satisfied for equilibrium point, a

nontrivial periodic orbit, and a chaotic orbit. For such three
cases, all the solutions of (1) are bounded and (H

3
) is satisfied.

Moreover, we shall subsequently prove that, with suitable
robust adaptive controller, the coupled network (1) can be
synchronized to the trajectory of (5) even without knowing
the exact values of ℎ

1
, ℎ
2
, and 𝑀

𝑖𝑘
, 𝑖 = 1, 2, . . . , 𝑁, 𝑘 =

1, 2, . . . , 𝑛. However, examples at the end of this paper show
that the usual adaptive controller used in [14–17, 19–22] is not
sufficient to achieve this goal.

Lemma 3 ([35, Barbalat lemma]). If 𝑓(𝑡) : R → R+ is a
uniformly continuous function for 𝑡 ≥ 0 and if the limit of the
integral

lim
𝑡→∞

∫

𝑡

0

𝑓 (𝑠) d𝑠 (7)

exists and is finite, then lim
𝑡→∞

𝑓(𝑡) = 0.

3. Synchronization with Uncertain
Nonlinear Perturbations

In this section, an adaptive controller is designed such that the
controlled network (1) can be asymptotically synchronized
onto the isolate system (5). Corresponding results are also
given for the network in the two cases: only partial dynamical
nodes are perturbed and none of the dynamical nodes is
perturbed.The advantages of the designed adaptive controller
over those of existing ones are discussed in Remark 7.

Let 𝑒
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑧(𝑡). Subtracting (5) from (1) yields the

following error dynamical system:

̇𝑒
𝑖 (𝑡) = 𝑔

1
(𝑒
𝑖 (𝑡)) + 𝑔

2
(𝑒
𝑖 (𝑡 − 𝜏 (𝑡)))

+

𝑁

∑

𝑗=1

𝑢
𝑖𝑗
Φ𝑒
𝑗 (𝑡) +

𝑁

∑

𝑗=1

V
𝑖𝑗
Υ𝑒
𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝜎
𝑖 (𝑡) + 𝑅

𝑖
, 𝑖 = 1, 2, . . . , 𝑁,

(8)

where 𝑔
1
(𝑒
𝑖
(𝑡)) = 𝑓

1
(𝑥
𝑖
(𝑡)) − 𝑓

1
(𝑧(𝑡)), 𝑔

2
(𝑒
𝑖
(𝑡)) = 𝑓

2
(𝑥
𝑖
(𝑡)) −

𝑓
2
(𝑧(𝑡)).
From (H

1
) and (H

3
) we know that (8) admits a trivial

solution 𝑒
𝑖
(0) ≡ 0, 𝑖 = 1, 2, . . . , 𝑁. Obviously, to reach goal

(4), we only need to prove that the trivial solution of system
(8) is asymptotically stable. Theorem 4 is our main result.
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Theorem 4. Under the assumption conditions (H
1
)–(H
3
), the

trivial solution of the error system (8) is asymptotically stable
with the following adaptive controllers:

𝑅
𝑖
= −𝜀
𝑖 (𝑡) 𝑒𝑖 (𝑡) − 𝜔𝛽

𝑖 (𝑡) sign (𝑒𝑖 (𝑡)) , 𝑖 = 1, 2, . . . , 𝑁,

̇𝜀
𝑖 (𝑡) = 𝑝

𝑖
𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁,

̇𝛽
𝑖 (𝑡) = 𝜉

𝑖

𝑛

∑

𝑘=1

𝑒𝑖𝑘 (𝑡)
 , 𝑖 = 1, 2, . . . , 𝑁,

(9)

where sign(𝑒
𝑖
(𝑡)) = (sign(𝑒

𝑖1
(𝑡)), . . . , sign(𝑒in(𝑡)))

𝑇, 𝜔 > 1,
𝑝
𝑖
> 0, and 𝜉

𝑖
> 0 are arbitrary constants, respectively.

Proof. It follows from (H
2
) that there exists positive constant

𝐷 such that ‖𝑥
𝑖
(𝑡)‖ ≤ 𝐷 for 𝑡 ∈ [−𝜏, +∞) (𝑖 = 1, 2, . . . , 𝑁).

In view of (H
3
), there exists positive constant 𝑀

𝑖𝑘
such

that |𝜎
𝑖𝑘
(𝑡, 𝑥
𝑖
(𝑡), 𝑥
𝑖
(𝑡 − 𝜏(𝑡)))| ≤ 𝑀

𝑖𝑘
(𝑖 = 1, 2, . . . , 𝑁, 𝑘 =

1, 2, . . . , 𝑛). Take 𝑀
𝑖

= max{𝑀
𝑖𝑘
, 𝑘 = 1, 2, . . . , 𝑛} (𝑖 =

1, 2, . . . , 𝑁) and define the Lyapunov function as

𝑉 (𝑡) = 𝑉
1 (𝑡) + 𝑉

2 (𝑡) , (10)

where

𝑉
1 (𝑡) =

1

2

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡) +

1

2

𝑁

∑

𝑖=1

(𝜀
𝑖
(𝑡) − 𝑘

𝑖
)
2

𝑝
𝑖

+
1

2

𝑁

∑

𝑖=1

(𝑀
𝑖
− 𝛽
𝑖
(𝑡))
2

𝜉
𝑖

,

𝑉
2 (𝑡) = ∫

𝑡

𝑡−𝜏(𝑡)

𝜂
𝑇
(𝑠) 𝑄𝜂 (𝑠) d𝑠,

(11)

in which 𝜂(𝑡) = (‖𝑒
1
(𝑡)‖, ‖𝑒

2
(𝑡)‖, . . . , ‖𝑒

𝑁
(𝑡)‖)
𝑇, 𝑄 is symmet-

ric positive definite matrix, 𝑘
𝑖
is positive constant, and 𝑘

𝑖
and

𝑄 are to be determined.
Differentiating𝑉

1
(𝑡) along the solution of (8), one obtains

from (H
1
) and (H

2
) that

�̇�
1 (𝑡) =

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) ̇𝑒
𝑖 (𝑡) +

𝑁

∑

𝑖=1

(𝜀
𝑖 (𝑡) − 𝑘

𝑖
) 𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡)

−

𝑁

∑

𝑖=1

(𝑀
𝑖
− 𝛽
𝑖 (𝑡))

𝑛

∑

𝑘=1

𝑒𝑖𝑘 (𝑡)


=

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) [

[

𝑔
1
(𝑒
𝑖 (𝑡)) + 𝑔

2
(𝑒
𝑖 (𝑡 − 𝜏 (𝑡)))

+

𝑁

∑

𝑗=1

𝑢
𝑖𝑗
Φ𝑒
𝑗 (𝑡) +

𝑁

∑

𝑗=1

V
𝑖𝑗
Υ𝑒
𝑗 (𝑡 − 𝜏 (𝑡))]

]

+

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝜎𝑖 (𝑡) −

𝑁

∑

𝑖=1

𝑘
𝑖
𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡)

− 𝜔

𝑁

∑

𝑖=1

𝑛

∑

𝑘=1

𝛽
𝑖 (𝑡)

𝑒𝑖𝑘 (𝑡)
 −

𝑁

∑

𝑖=1

𝑛

∑

𝑘=1

(𝑀
𝑖
− 𝛽
𝑖 (𝑡))

𝑒𝑖𝑘 (𝑡)


≤

𝑁

∑

𝑖=1

ℎ
1

𝑒𝑖 (𝑡)


2
+

𝑁

∑

𝑖=1

ℎ
2

𝑒𝑖 (𝑡)


𝑒𝑖 (𝑡 − 𝜏 (𝑡))


−

𝑁

∑

𝑖=1

𝑘
𝑖

𝑒𝑖 (𝑡)


2
+

𝑁

∑

𝑖=1

𝜆min (Φ
𝑠
) 𝑢
𝑖𝑖

𝑒𝑖 (𝑡)


2

+

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑢
𝑖𝑗 ‖Φ‖

𝑒𝑖 (𝑡)



𝑒
𝑗 (𝑡)



+

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1


V
𝑖𝑗


‖Υ‖

𝑒𝑖 (𝑡)



𝑒
𝑗 (𝑡 − 𝜏 (𝑡))



= 𝜂
𝑇
(𝑡) (ℎ1𝐼𝑁 + ‖Φ‖ �̂�

𝑠
− 𝐾) 𝜂 (𝑡)

+ 𝜂
𝑇
(𝑡) (ℎ2𝐼𝑁 + ‖Υ‖ |𝑉|) 𝜂 (𝑡 − 𝜏 (𝑡))

≤ 𝜂
𝑇
(𝑡) [(ℎ1 +

1

2
) 𝐼
𝑁
+ ‖Φ‖ �̂�

𝑠
− 𝐾] 𝜂 (𝑡)

+ 𝜂
𝑇
(𝑡 − 𝜏 (𝑡)) 𝑃

𝑇
𝑃𝜂 (𝑡 − 𝜏 (𝑡)) ,

(12)

where 𝐾 = diag(𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑁
), �̂� = (�̂�

𝑖𝑗
)
𝑁×𝑁

, �̂�
𝑖𝑗
= 𝑢
𝑖𝑗
, 𝑖 ̸= 𝑗,

�̂�
𝑖𝑖
= (𝜆min(Φ

𝑠
)/‖Φ‖)𝑢

𝑖𝑖
, 𝑃 = ℎ

2
𝐼
𝑁
+ ‖Υ‖|𝑉|, |𝑉| = (|V

𝑖𝑗
|)
𝑁×𝑁

,
and we have used the following deduction:

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝜎𝑖 (𝑡) − 𝜔

𝑁

∑

𝑖=1

𝑛

∑

𝑘=1

𝛽
𝑖 (𝑡)

𝑒𝑖𝑘 (𝑡)


−

𝑁

∑

𝑖=1

𝑛

∑

𝑘=1

[𝑀
𝑖
− 𝛽
𝑖 (𝑡)]

𝑒𝑖𝑘 (𝑡)


≤

𝑁

∑

𝑖=1

𝑛

∑

𝑘=1

[
𝑒𝑖𝑘 (𝑡)

𝑀𝑖𝑘 −𝑀
𝑖

𝑒𝑖𝑘 (𝑡)
 − (𝜔 − 1) 𝛽𝑖 (𝑡)

𝑒𝑖𝑘 (𝑡)
]

≤ −

𝑁

∑

𝑖=1

𝑛

∑

𝑘=1

(𝜔 − 1) 𝛽𝑖 (𝑡)
𝑒𝑖𝑘

 ≤ 0.

(13)

Differentiating 𝑉
2
(𝑡), one has

�̇�
2 (𝑡) = 𝜂

𝑇
(𝑡) 𝑄𝜂 (𝑡) − (1 − ̇𝜏 (𝑡)) 𝜂

𝑇
(𝑡 − 𝜏 (𝑡)) 𝑄𝜂 (𝑡 − 𝜏 (𝑡))

≤ 𝜂
𝑇
(𝑡) 𝑄𝜂 (𝑡) − (1 − ℎ

𝜏
) 𝜂
𝑇
(𝑡 − 𝜏 (𝑡)) 𝑄𝜂 (𝑡 − 𝜏 (𝑡)) .

(14)
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Taking𝑄 = (1/(1 − ℎ
𝜏
))𝑃
𝑇
𝑃, one gets from the definition

of 𝑉(𝑡) that

�̇� (𝑡)

≤ 𝜂
𝑇
(𝑡) [(ℎ1 +

1

2
) 𝐼
𝑁
+ ‖Φ‖ �̂�

𝑠
+

1

1 − ℎ
𝜏

𝑃
𝑇
𝑃 − 𝐾] 𝜂 (𝑡) .

(15)

Take 𝑘
𝑖
= 𝜆max[(ℎ1 + 1/2)𝐼

𝑁
+ ‖Φ‖�̂�

𝑠
+ (1/(1 − ℎ

𝜏
))𝑃
𝑇
𝑃] + 1.

Then, one can easily derive from the above inequality that

�̇� (𝑡) ≤ −𝜂
𝑇
(𝑡) 𝜂 (𝑡) . (16)

Integrating both sides of the above equation from 0 to 𝑡

yields

𝑉 (0) ≥ 𝑉 (𝑡) +

𝑁

∑

𝑖=1

∫

𝑡

0

𝑒𝑖(𝑠)


2d𝑠 ≥
𝑁

∑

𝑖=1

∫

𝑡

0

𝑒𝑖(𝑠)


2d𝑠. (17)

Therefore,

lim
𝑡→∞

𝑁

∑

𝑖=1

∫

𝑡

0

𝑒𝑖(𝑠)


2d𝑠 ≤ 𝑉 (0) . (18)

It is obvious that 𝑒
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑁) is uniformly con-

tinuous for 𝑡 ≥ 0; hence∑𝑁
𝑖=1

‖𝑒
𝑖
(𝑡)‖
2 is uniformly continuous

for 𝑡 ≥ 0 according to the continuity of norm. Moreover, the
above inequality means that lim

𝑡→∞
∑
𝑁

𝑖=1
∫
𝑡

0
‖𝑒
𝑖
(𝑠)‖
2d𝑠 exists

and is finite. In view of Lemma 3, one can easily get

lim
𝑡→∞

𝑁

∑

𝑖=1

𝑒𝑖(𝑡)


2
= 0, (19)

which in turn means

lim
𝑡→∞

𝑒𝑖 (𝑡)
 = 0, 𝑖 = 1, 2, . . . , 𝑁. (20)

Therefore, the trivial solution of the error system (8) is
asymptotically stable. This completes the proof.

If some nodes are effected by uncertain perturbations
while others are not perturbed, the trivial solution of the
error system (8) can also be asymptotically stabilized by the
adaptive controllers (9). Without loss of generality, rearrange
the order of the nodes in the network, and let the first 𝑙 nodes
have uncertainties; that is, 𝜎

𝑖
(𝑡) ̸= 0, 𝑖 = 1, 2, . . . , 𝑙, 𝜎

𝑖
(𝑡) ≡

0, 𝑖 = 𝑙 + 1, 𝑙 + 2, . . . , 𝑁. We haveTheorem 5.

Theorem 5. Suppose 𝜎
𝑖
(𝑡) ̸= 0, 𝑖 = 1, 2, . . . , 𝑙, 𝜎

𝑖
(𝑡) ≡ 0, 𝑖 =

𝑙 + 1, 𝑙 + 2, . . . , 𝑁. Then, under the assumption conditions
(H
1
)–(H
3
), the trivial solution of the error system (8) is

asymptotically stable with the adaptive controllers (9).

Proof. Define the Lyapunov function as

𝑉 (𝑡) = 𝑉
1 (𝑡) + 𝑉

2 (𝑡) , (21)

where

𝑉
1 (𝑡) =

1

2

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡) +

1

2

𝑁

∑

𝑖=1

(𝜀
𝑖
(𝑡) − 𝑘

𝑖
)
2

𝑝
𝑖

+
1

2

𝑙

∑

𝑖=1

(𝑀
𝑖
− 𝛽
𝑖
(𝑡))
2

𝜉
𝑖

,

(22)

𝑉
2
(𝑡) is defined as that in the proof of Theorem 4.
Differentiating 𝑉(𝑡) along the solution of (8) and noting

that the following inequality holds
𝑙

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝜎𝑖 (𝑡) − 𝜔

𝑙

∑

𝑖=1

𝑛

∑

𝑘=1

𝛽
𝑖 (𝑡)

𝑒𝑖𝑘 (𝑡)


−

𝑙

∑

𝑖=1

𝑛

∑

𝑘=1

[𝑀
𝑖
− 𝛽
𝑖 (𝑡)]

𝑒𝑖𝑘 (𝑡)
 − 𝜔

𝑁

∑

𝑖=𝑙+1

𝑛

∑

𝑘=1

𝛽
𝑖 (𝑡)

𝑒𝑖𝑘 (𝑡)


≤

𝑙

∑

𝑖=1

𝑛

∑

𝑘=1

[
𝑒𝑖𝑘 (𝑡)

𝑀𝑖𝑘 −𝑀
𝑖

𝑒𝑖𝑘 (𝑡)
 − (𝜔 − 1) 𝛽𝑖 (𝑡)

𝑒𝑖𝑘 (𝑡)
]

− 𝜔

𝑁

∑

𝑖=𝑙+1

𝑛

∑

𝑘=1

𝛽
𝑖 (𝑡)

𝑒𝑖𝑘 (𝑡)


≤ −

𝑙

∑

𝑖=1

𝑛

∑

𝑘=1

(𝜔 − 1) 𝛽𝑖 (𝑡)
𝑒𝑖𝑘 (𝑡)



− 𝜔

𝑁

∑

𝑖=𝑙+1

𝑛

∑

𝑘=1

𝛽
𝑖 (𝑡)

𝑒𝑖𝑘 (𝑡)
 ≤ 0,

(23)

by the same procedure of the proof of Theorem 4, one can
easily finish the proof. This completes the proof.

A special case of Theorem 5 is that none of the nodes is
perturbed. In this case, the designed adaptive controller (9)
can obviously realize the synchronization goal. Moreover, we
have more general result than the adaptive controllers [14–
16, 19–22], which is presented in Corollary 6 and Remark 7.

Corollary 6. Suppose 𝜎
𝑖
(𝑡) ≡ 0, 𝑖 = 1, 2, . . . , 𝑁, and the

assumption condition (H
1
) holds. Then the trivial solution of

the error system (8) is asymptotically stable with the adaptive
controller (9). Moreover, the scalar 𝜔 can be relaxed to any
nonnegative constant.

Proof. Define the Lyapunov function as

�̃� (𝑡) = �̃�
1 (𝑡) + 𝑉

2 (𝑡) , (24)

where 𝑉
2
(𝑡) is defined as that in the proof of Theorem 4:

�̃�
1 (𝑡) =

1

2

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡) +

1

2

𝑁

∑

𝑖=1

(𝜀
𝑖
(𝑡) − 𝑘

𝑖
)
2

𝑝
𝑖

. (25)

Differentiating �̃�(𝑡) along the solution of (8) and noting
that −𝜔∑

𝑁

𝑖=1
∑
𝑛

𝑘=1
𝛽
𝑖
(𝑡)|𝑒
𝑖𝑘
(𝑡)| ≤ 0, by the same procedure of

the proof of Theorem 4, one can easily finish the proof. This
completes the proof.
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Figure 1: Chaotic trajectory of system (28).

Remark 7. The new adaptive controller of this paper has
better property of robustness than that used in [14–16, 19–22],
which is

𝑅
𝑖
= −𝜀
𝑖 (𝑡) 𝑒𝑖 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁,

̇𝜀
𝑖 (𝑡) = 𝑝

𝑖
𝑒
𝑖(𝑡)
𝑇
𝑒
𝑖 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁.

(26)

The adaptive controller (26) is a special case of (9) when 𝜔 =

0. Although controller (26) has robustness, it is not sufficient
to synchronize networks with nonlinear perturbations. From
Corollary 6, one sees that both adaptive controller (9) and
(26) can synchronize a coupled network without any external
perturbation to a given isolate system. Since uncertain pertur-
bations to coupled networks are unavoidable in practice, our
adaptive controller (9) is more practical than (26). Numerical
simulations of this paper verify that new adaptive controller
(9) has better robustness than (26).

Remark 8. Note that controller (9) are discontinuous and the
phenomenon of chattering will appear [36, 37]. In order to
eliminate the chattering, controller (9) can be modified as

𝑅
𝑖
= −𝜀
𝑖 (𝑡) 𝑒𝑖 (𝑡) − 𝜔𝛽

𝑖 (𝑡) 𝑆𝑖, 𝑖 = 1, 2, . . . , 𝑁,

̇𝜀
𝑖 (𝑡) = 𝑝

𝑖
𝑒
𝑖(𝑡)
𝑇
𝑒
𝑖 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁,

̇𝛽
𝑖 (𝑡) = 𝜉

𝑖

𝑛

∑

𝑘=1

𝑒𝑖𝑘 (𝑡)
 , 𝑖 = 1, 2, . . . , 𝑁,

(27)

where 𝑆
𝑖
= ((𝑒
𝑖1
(𝑡)/(|𝑒

𝑖1
(𝑡)| + 𝜁

𝑖
)), . . . , (𝑒

𝑖𝑛
(𝑡)/(|𝑒

𝑖𝑛
(𝑡)| + 𝜁

𝑖
)))
𝑇,

𝜁
𝑖
, 𝑖 = 1, 2, . . . , 𝑁, are sufficiently small positive constants and

𝜔 > 1, 𝑝
𝑖
> 0, and 𝜉

𝑖
> 0, are arbitrary constants, respectively.

Remark 9. If only some nodes of (1) are effected by uncertain
nonlinear perturbations and matrix 𝑈 is irreducible, we can
also consider adaptive pinning control scheme (see [16, 21,
22]) with the new adaptive controller to synchronize coupled
networks (1). Moreover, we can also consider stochastic
perturbations [14] and the Markovian jump (see [18, 38]) in
(1) to get more general results.This is our next research topic.

4. Numerical Examples

In this section, we first consider a network composed of
three Lorenz systems with uncertain perturbations.Then one

WS small-world model with partially perturbed nodes, in
which the node systems are delayed neural networks, is given.
Numerical simulations demonstrating better robustness of
the designed adaptive controller than existing one are also
given.

Example 1. The Lorenz system is described as [23, 27]

�̇� (𝑡) = 𝑓
1 (𝑧 (𝑡)) = 𝐶𝑧 (𝑡) + 𝑓 (𝑧 (𝑡)) , (28)

where 𝑧(𝑡) = (𝑧
1
(𝑡), 𝑧
2
(𝑡), 𝑧
3
(𝑡))
𝑇, 𝑓(𝑧(𝑡)) = (0, −𝑧

1
(𝑡)𝑧
3
(𝑡),

𝑧
1
(𝑡)𝑧
2
(𝑡))
𝑇, and

𝐶 = (

−10 10 0

28 −1 0

0 0 −
8

3

) . (29)

When initial values are taken as 𝑧
1
(0) = 0.8, 𝑧

2
(0) = 2, and

𝑧
3
(0) = 2.5, chaotic trajectory of (28) can be seen in Figure 1.
Now consider the following controlled network with

nondelayed coupling, where each node system is the above
Lorenz system with uncertainties:

�̇�
𝑖 (𝑡) = 𝑓

1
(𝑥
𝑖 (𝑡)) + 𝛼

3

∑

𝑗=1

𝑢
𝑖𝑗
Φ𝑥
𝑗 (𝑡) + 𝜎

𝑖 (𝑡) + 𝑅
𝑖
, 𝑖 = 1, 2, 3,

(30)

where 𝛼 = 0.5, Φ = 𝐼
3
, 𝜎
1
(𝑡) = [0.1𝑥

2

11
(𝑡), 0.2𝑥

12
(𝑡),

0.2𝑥
13
(𝑡)]
𝑇, 𝜎
2
(𝑡) = [0.1𝑥

21
(𝑡), 0.05𝑥

2

22
(𝑡), sin𝑥

23
(𝑡)]
𝑇, 𝜎
3
(𝑡) =

[0.1𝑥
31
(𝑡), (sin𝑥

32
(𝑡))
2
, sin𝑥

33
(𝑡)]
𝑇, and

𝑈 = [

[

−1 1 0

1 −1 0

1 1 −2

]

]

. (31)

Numerical simulations show that the states of (30) without
control are bounded; see Figure 2.Therefore, (H

2
) is satisfied.

It is obvious that 𝑓
1
(0) = 0. Let 𝑒

𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑧(𝑡) =

(𝑒
𝑖1
(𝑡), 𝑒
𝑖2
(𝑡), 𝑒
𝑖3
(𝑡))
𝑇; then

𝑓1 (𝑥𝑖 (𝑡)) − 𝑓
1 (𝑧 (𝑡))



=
𝐶𝑒𝑖 (𝑡) + 𝑓 (𝑥

𝑖 (𝑡)) − 𝑓 (𝑧 (𝑡))


≤ ‖𝐶‖
𝑒𝑖 (𝑡)

 +
𝑓 (𝑥
𝑖 (𝑡)) − 𝑓 (𝑧 (𝑡))

 .

(32)

On the other hand, one can easily get

(𝑓 (𝑥
𝑖 (𝑡)) − 𝑓 (𝑧 (𝑡)))

𝑇
(𝑓 (𝑥
𝑖 (𝑡)) − 𝑓 (𝑧 (𝑡)))

= (𝑥
𝑖1
𝑒
𝑖3
+ 𝑧
3
𝑒
𝑖1
)
2
+ (𝑥
𝑖1
𝑒
𝑖2
+ 𝑧
2
𝑒
𝑖1
)
2

≤ 𝑎𝑒
2

𝑖1
(𝑡) + 𝑏𝑒

2

𝑖2
(𝑡) + 𝑐𝑒

2

𝑖3
(𝑡) ,

(33)

where 𝑎 = 𝑧
2

3
(𝑡) + 𝑧

2

2
(𝑡) + |𝑥

𝑖1
(𝑡)𝑧
3
(𝑡)| + |𝑥

𝑖1
(𝑡)𝑧
2
(𝑡)|, 𝑏 =

𝑥
2

𝑖1
(𝑡) + |𝑥

𝑖1
(𝑡)𝑧
2
(𝑡)|, and 𝑐 = 𝑥

2

𝑖1
(𝑡) + |𝑥

𝑖1
(𝑡)𝑧
3
(𝑡)|. From

Figures 1 and 2, it is obvious that 𝑥
𝑖𝑗
(𝑡), 𝑖, 𝑗 = 1, 2, 3, and

𝑧
𝑗
(𝑡), 𝑗 = 1, 2, 3, are all bounded; hence 𝑎, 𝑏, and 𝑐 are all

bounded. Take 𝑑 = max{𝑎, 𝑏, 𝑐}; then
𝑓 (𝑥
𝑖 (𝑡)) − 𝑓 (𝑧 (𝑡))

 ≤ 𝑑
1/2 𝑒𝑖 (𝑡)

 .
(34)
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Figure 2: State trajectories of (30) without control: (a) 𝑥
𝑖1
(𝑡), 1 ≤ 𝑖 ≤ 3; (b) 𝑥

𝑖2
(𝑡), 1 ≤ 𝑖 ≤ 3; (c) 𝑥

𝑖3
(𝑡), 1 ≤ 𝑖 ≤ 3.
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Figure 3: Synchronization errors between (30) and (28) with adaptive controllers (9).

One gets from (32) and (34) that

𝑓 (𝑥
𝑖 (𝑡)) − 𝑓 (𝑧 (𝑡))

 ≤ (‖𝐶‖ + 𝑑
1/2

)
𝑒𝑖 (𝑡)

 .
(35)

Take ℎ
1
= ‖𝐶‖+𝑑

1/2; then (H
1
) is satisfied. Since 𝑥

𝑖𝑗
(𝑡), 𝑖, 𝑗 =

1, 2, 3, are bounded, every component of 𝜎
𝑖
(𝑡), 𝑖 = 1, 2, 3,

is bounded, and (H
3
) is satisfied. According to Theorem 4,

the coupled network (30) can be asymptotically synchronized
onto (28) with adaptive controller (9).

In the simulations, the forward Euler method is used
to simulate in Matlab (math works). The initial conditions
of the numerical simulations are as follows: step = 0.0005,
𝑥
1
(0) = (−2, −1, 0)

𝑇, 𝑥
2
(0) = (1, 2, 3)

𝑇, 𝑥
3
(0) = (4, 5, 6)

𝑇,
𝜔 = 4, 𝜀

𝑖
(0) = 1, 𝛽

𝑖
(0) = 1, 𝑝

𝑖
= 𝜉
𝑖

= 0.05, 𝑖 =

1, 2, 3. Figure 3 describes the synchronization errors 𝑒
𝑖𝑗
(𝑡) =

𝑥
𝑖𝑗
(𝑡) − 𝑧

𝑗
(𝑡) (𝑖, 𝑗 = 1, 2, 3) between (30) and (28) by

using controllers (9), from which one can see that the
synchronization errors quickly turn to zero as time goes.
Figure 4 presents the time response of the feedback gain
parameters 𝜀

𝑖
(𝑡) and 𝛽

𝑖
(𝑡), 1 ≤ 𝑖 ≤ 3, which reach constants

eventually. Numerical simulations show that when all nodes
are perturbed by uncertainties, the new adaptive controller
(9) can synchronize the coupled networks onto a given
trajectory, which verify the effectiveness of Theorem 4.

In order to show the better robustness and advantage of
our new controller, we now control (30) with the adaptive

controller (26), where all the values of parameters are the
same as those above. Figure 5 describes the trajectories
of synchronization errors between (30) and (28) by using
adaptive controller (26), from which one can see that 𝑒

𝑖𝑗
(𝑡) =

𝑥
𝑖𝑗
(𝑡) − 𝑧

𝑗
(𝑡) (𝑖, 𝑗 = 1, 2, 3) do not turn to zero as time

goes. Hence, controllers (26) cannot synchronize (30) onto
the trajectory of (28).

Example 2. In [39], Watts and Strogatz proposed a small-
word network (WS small-world) model, which is described
as follows.

(1) Initialization. Starting with a regular ring lattice of𝑁
nodes, each node is connected to 𝐾 (even number)
nearest neighbors by undirected links.

(2) Rewiring. Randomly rewire each link of the net-
work with probability 𝑝 such that self-connected and
duplicated links are excluded. Here, rewiring means
reconnecting one end of a selected link to another
randomly chosen node.

The delayed neural network is described as [14]

�̇� (𝑡) = 𝑓
1 (𝑧 (𝑡)) + 𝑓

2 (𝑧 (𝑡 − 𝜏 (𝑡))) , (36)

where 𝑧(𝑡) = (𝑧
1
(𝑡), 𝑧
2
(𝑡))
𝑇, 𝑓
1
(𝑧(𝑡)) = 𝐶𝑧(𝑡) +

𝐴𝑓(𝑧(𝑡)), 𝑓
2
(𝑧(𝑡 − 𝜏(𝑡))) = 𝐵𝑔(𝑧(𝑡 − 𝜏(𝑡))), 𝑓(𝑧(𝑡)) =



8 Abstract and Applied Analysis

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

t

𝜀 i
(t
),
1
≤
i
≤
3

(a) 𝜀𝑖(𝑡), 1 ≤ 𝑖 ≤ 3

0 0.5 1 1.5 2 2.5

2.5

3 3.5

3.5

4 4.5

4.5

5
2

3

4

5

5.5

𝛽
i(
t)
,1

≤
i
≤
3

t

(b) 𝛽𝑖(𝑡), 1 ≤ 𝑖 ≤ 3

Figure 4: Feedback gain parameters 𝜀
𝑖
(𝑡) (a) and 𝛽

𝑖
(𝑡) (b) (1 ≤ 𝑖 ≤ 3) of (30) with adaptive controller (9).
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Figure 5: Synchronization errors between (30) and (28) by using adaptive controllers (26).
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Figure 6: Trajectory of the delayed neural network (36).
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Figure 7: The structure of WS small-world network with𝑁 = 30, 𝐾 = 4, and 𝑝 = 0.2.
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Figure 8: State trajectories of (39) without control: (a) 𝑥
𝑖1
(𝑡) (1 ≤ 𝑖 ≤ 30), (b) 𝑥

𝑖2
(𝑡) (1 ≤ 𝑖 ≤ 30).

(tanh(𝑧
1
(𝑡)), tanh(𝑧

2
(𝑡)))
𝑇, 𝑔(𝑧(𝑡 − 𝜏(𝑡))) = (tanh(𝑧

1
(𝑡 −

𝜏(𝑡))), tanh(𝑧
2
(𝑡 − 𝜏(𝑡))))

𝑇, 𝜏(𝑡) = 1,

𝐶 = (
−1 0

0 −1
) , 𝐴 = (

2 −0.1

−5 4.5
) ,

𝐵 = (
−1.5 −0.1

−0.2 −4
) .

(37)

When the initial values are taken as 𝑧(𝑠) = (0.4, 0.6)
𝑇, ∀𝑠 ∈

[−1, 0], system (36) is chaotic as shown in Figure 6.
It can be easily verified that 𝑓

1
(0) = 𝑓

2
(0) = 0, ‖𝐶‖ =

1, ‖𝐴‖ = 6.9099, ‖𝐵‖ = 4.0094, and ‖𝑓(𝑥) − 𝑓(𝑦)‖ ≤ ‖𝑥 − 𝑦‖

for any 𝑥, 𝑦 ∈ R2. Hence
𝑓1 (𝑥) − 𝑓

1
(𝑦)

 ≤ (‖𝐶‖ + ‖𝐴‖)
𝑥 − 𝑦



= 7.9099
𝑥 − 𝑦

 ,

𝑓2 (𝑥) − 𝑓
2
(𝑦)

 ≤ ‖𝐵‖
𝑥 − 𝑦

 = 4.0094
𝑥 − 𝑦

 .

(38)

Therefore, (H
1
) is satisfied with ℎ

1
= 7.9099 and ℎ

2
= 4.0094.

Next, consider the following coupled network subject to
uncertainties and control inputs:

�̇�
𝑖 (𝑡) = 𝐶𝑥

𝑖 (𝑡) + 𝐴𝑓 (𝑥
𝑖 (𝑡)) + 𝐵𝑔 (𝑥

𝑖 (𝑡 − 𝜏 (𝑡)))

+ 𝑐
1

𝑁

∑

𝑗=1

𝑢
𝑖𝑗
Φ𝑥
𝑗 (𝑡) + 𝑐

2

𝑁

∑

𝑗=1

V
𝑖𝑗
Υ𝑥
𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝜎
𝑖
(𝑡, 𝑥
𝑖 (𝑡) , 𝑥𝑖 (𝑡 − 𝜏 (𝑡))) + 𝑅

𝑖
, 𝑖 = 1, 2, . . . , 𝑁,

(39)

where Φ = Υ = 𝐼
2
, 𝑐
1
= 0.05, and 𝑐

2
= 0.005. Suppose that

the network is connected in a small-world topology. If there is
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Figure 9: Synchronization errors between (39) and (36) with adaptive controllers (9).
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Figure 10: Feedback gain parameters 𝜀
𝑖
(𝑡) (a) and 𝛽

𝑖
(𝑡) (b) (1 ≤ 𝑖 ≤ 30) of (39) with controller (9).

a connection between nodes 𝑖 and 𝑗 (𝑗 ̸= 𝑖), then 𝑢
𝑖𝑗
= V
𝑖𝑗
= 1;

otherwise, 𝑢
𝑖𝑗
= V
𝑖𝑗
= 0. Taking𝑁 = 30,𝐾 = 4, and 𝑝 = 0.2,

we get structure of WS small world shown in Figure 7.
Suppose the uncertain perturbations of the nodes

𝑖 = 1, 2, . . . , 10 are 𝜎
𝑖
(𝑡, 𝑥
𝑖
(𝑡), 𝑥
𝑖
(𝑡 − 𝜏(𝑡))) = (−0.1𝑥

𝑖1
(𝑡),

0.2𝑥
𝑖2
(𝑡))
𝑇
(1 ≤ 𝑖 ≤ 10), the uncertain perturbations of

the nodes 𝑖 = 11, 12, . . . , 20 are 𝜎
𝑖
(𝑡, 𝑥
𝑖
(𝑡), 𝑥
𝑖
(𝑡 − 𝜏(𝑡))) =

(0.05(𝑥
𝑖1
(𝑡 − 𝜏(𝑡)))

2
, 0.2𝑥
𝑖2
(𝑡))
𝑇
(11 ≤ 𝑖 ≤ 20), and the

nodes 𝑖 = 21, 22, . . . , 30 have no perturbation. The state
trajectories 𝑥

𝑖1
(𝑡) and 𝑥

𝑖2
(𝑡) (1 ≤ 𝑖 ≤ 30) of the perturbed

network (39) without control are shown in Figure 8, from
which one can see that 𝑥

𝑖1
(𝑡) and 𝑥

𝑖2
(𝑡) (1 ≤ 𝑖 ≤ 30) are

all bounded. Obviously, conditions (H
2
) and (H

3
) are also

satisfied. According to Theorem 5, the coupled network (39)
can be synchronized to (36) with adaptive controller (9).

Again, the forward Euler method is used to simulate
in Matlab. The initial conditions of the numerical simula-
tions are as follows: step = 0.0001, the initial values of
𝑥
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 30) are arbitrary in [−2, 2], 𝜔 = 1.5,

𝜀
𝑖
(𝑡) = 𝛽

𝑖
(𝑡) = 1, 𝑡 ∈ [−1, 0], and 𝑝

𝑖
= 𝜉
𝑖

=

0.5 (𝑖 = 1, 2, . . . , 30). Figure 9 describes the synchronization
errors 𝑒

𝑖𝑗
(𝑡) = 𝑥

𝑖𝑗
(𝑡) − 𝑧

𝑗
(𝑡) (𝑖 = 1, 2, . . . , 30, 𝑗 = 1, 2, 3)

between (39) and (36) by using adaptive controller (9). One
can see from Figure 9 that synchronization errors quickly
turn to zero as time goes. Figure 10 shows the feedback
gain parameters 𝜀

𝑖
(𝑡) and 𝛽

𝑖
(𝑡) (1 ≤ 𝑖 ≤ 30), which all

reach constants eventually. Numerical simulations show that
when only partial nodes are perturbed by uncertainties,
the new adaptive controller (9) can also synchronize the
coupled networks onto a given trajectory, which verify the
effectiveness of Theorem 5.
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Figure 11: Synchronization errors between (39) and (36) by using adaptive controllers (26).
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(b) Trajectory of system (40) with 𝜎(𝑡, 𝑧(𝑡), 𝑧(𝑡 − 𝜏(𝑡))) = (0.05(𝑧(𝑡 −
𝜏(𝑡)))
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Figure 12: Trajectories of system (40) under different perturbations.

However, with the same parameter values, controller (26)
cannot synchronize (39) to the trajectory of (36). The syn-
chronization errors between (39) and (36) by using adaptive
controller (26) are shown in Figure 11.

Remark 10. Figure 11(a) shows that the usual adaptive con-
troller has robustness; however, one can see from Figure 11(b)
that its robustness is limited. Nevertheless, by comparing
Figures 5 and 11 with Figures 3 and 9, respectively, one can
easily see that the new adaptive controller (9) has better
robustness than the usual one (26). Therefore, the new
adaptive controller proposed in this paper is more effective
and more robust than that in [14–16, 19–22] for coupled
networks with uncertain perturbations.

Remark 11. Since uncertain perturbations to coupled net-
works in real life are unavoidable, the new adaptive controller
(9) is important. Actually, external uncertain perturbations
may have key effects on the dynamics of node system. For
example, consider the system (36) with perturbation:

�̇� (𝑡) = 𝑓
1 (𝑧 (𝑡)) + 𝑓

2 (𝑧 (𝑡 − 𝜏 (𝑡)))

+ 𝜎 (𝑡, 𝑧 (𝑡) , 𝑧 (𝑡 − 𝜏 (𝑡))) .

(40)

Take the same initial values as those in Figure 6; that is, 𝑧(𝑠) =
(0.4, 0.6)

𝑇, ∀𝑠 ∈ [−1, 0]. Figure 12 presents the different
trajectories of system (40) under different perturbations,
which are completely different from those of system (36); see
Figure 6. However, under these perturbations, the coupled



12 Abstract and Applied Analysis

network (39) can still be synchronized onto trajectory of (36)
by the designed controller (9).

5. Conclusion

Uncertainties for systems are unavoidable in practice. There-
fore, in this paper, we introduced a class of coupled networks
with delays and uncertain nonlinear perturbations. A simple
but robust adaptive controller is designed to synchronize
the coupled networks onto an isolate node even without
knowing priori the bounds of such perturbations. Results
of this paper are also applicable to complex networks with
asymmetric coupling configuration matrix. The designed
controller enhances the robustness and reduces fragility of
coupled networks; hence, it has great practical significance.
Two types of coupled network model with uncertain pertur-
bations, asymmetric coupled Lorenz network and WS small-
world type of complex network with delayed neural network
as node system, are employed to verify the effectiveness of
the theoretical results. Numerical simulations also show that
the designed adaptive controller is more robust and more
effective in synchronizing a coupled network than the usual
adaptive controller used in the references.

Obviously, it is optimal to synchronize complex networks
with delays and uncertain perturbations in finite time. How-
ever, the existing controllers cannot synchronize a delayed
complex network in finite time. Therefore, our next research
is to design simple and effective controllers to realize finite-
time synchronization of complex networks with delays and
uncertain perturbations, which is challenging.
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