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Under weaker hypothesis, we use the Schauder-Tychonoff theorem to obtain new sufficient condition for the global existence of
oscillatory solutions for forced second order nonlinear delay differential equations with distributed deviating arguments.

1. Introduction

In this paper, we study the existence of oscillatory solutions
for the nonlinear second order delay differential equations
with the perturbed term

[𝑟 (𝑡) Φ (𝑥 (𝑡))]


+ ∫
𝑏

𝑎

𝑝 (𝑡, 𝜏) 𝑓 (𝑥 (𝑡 − 𝜏)) 𝑑𝜏

= 𝑞 (𝑡) , 𝑡 ≥ 𝑡
0
.

(1)

Under the following conditions:

(1) 𝑟 ∈ 𝐶1([𝑡
0
,∞), 𝑅+), 𝑝 ∈ 𝐶([𝑡

0
,∞) × [𝑎, 𝑏], 𝑅), 𝑞 ∈

𝐶([𝑡
0
,∞), 𝑅), 𝑓

𝑖
∈ 𝐶([𝑡

0
,∞), 𝑅);

(2) Φ ∈ 𝐶1(𝑅, 𝑅), Φ(𝑢) is increasing function for all 𝑢 ∈
𝑅, Φ−1(𝑢) satisfies the local Lipischitz condition.

During the past three decades, the investigation of oscilla-
tory theory for delay differential equations and delay dynamic
equations has attracted attention of numerous researchers
due to their significance in theory and applications. We
mention here the monographs of Myshkis [1], Norkin [2],
Shevelo [3], and Agarwal et al. [4]. The oscillation properties
of second order delay differential equations were considered
also inKoplatadze et al. [5], Shmul’yan [6], and Skubachevskii
[7]. Distances between adjacent zeros of oscillating solutions
are estimated in [8, 9] for delay and for neutral second

order equation in [10]. Distances between zero of solution
and zero of its derivative were estimated in [11]. Based on
oscillation properties, asymptotic properties of second order
delay differential equations were studied in [12]. For related
work, we refer the reader to the references [13–24]. However,
to the best of our knowledge, the existence of oscillatory
solutions for differential equation with distributed deviating
arguments has been scarcely investigated. Thus, the research
presents its significance.

As usual, a solution of (1) is a function 𝑥(𝑡) defined on
[𝑡
0
− 𝑏,∞) such that 𝑥(𝑡) and 𝑟(𝑡)Φ(𝑥(𝑡)) are continuously

differentiable on [𝑡
0
− 𝑏,∞) and [𝑡

0
,∞) and (1) holds. Our

attention will be restricted to the solution 𝑥(𝑡) of (1) which
satisfy sup |𝑥(𝑡)| > 0, for 𝑡 ≥ 𝑡

0
− 𝑏. Such a solution is said to

be oscillatory if it has a sequence of zeros tending to infinity.
Otherwise, it is said to be nonoscillatory.

The purpose of this paper is to prove a general result for
(1) on the existence of oscillatory solutions. Throughout this
paper, we will use the following notations. For a constant 𝛾 >
0, 𝜃
𝛾
= max

|𝑥|≤𝛾
|𝑓(𝑥)|, 𝑡 ≥ 𝑡

0
, 𝐿
𝛾
denote the local lipischitz

constants of functionsΦ−1(𝑢).

2. The Main Results

Lemma 1 (see [13]). Let 𝑋 be a locally convex space, 𝐾 ⊂
𝑋 nonempty and convex, 𝑆 ⊂ 𝐾, and 𝑆 compact. Given a
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continuous map 𝐹 : 𝐾 → 𝑆, there exists 𝑥 ∈ 𝑆 such that
𝐹(𝑥) = 𝑥.

Theorem 2. Assume that there exist 𝜂, 𝛾 > 0 such that 𝑟(𝑡) >
𝜂,

1
𝑟 (𝑡)

∫
∞

𝑡

𝑞 (𝑠) 𝑑𝑠 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑏𝑙𝑒 𝑜𝑛 [𝑡
0
,∞) ,

𝜃
𝛾

𝑟 (𝑡)
∫
∞

𝑡

∫
𝑏

𝑎

𝑝 (𝑠, 𝜏) 𝑑𝜏 𝑑𝑠 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑏𝑙𝑒 𝑜𝑛 [𝑡
0
,∞) ;

(2)

moreover, there exist two sequences {𝑡
𝑛
}, {𝑠
𝑛
} with 𝑡

𝑛
→

∞, 𝑠
𝑛
→ ∞ such that

∫
∞

𝑡
𝑛

Φ−1 ( 1
𝑟 (𝑠)

∫
∞

𝑠

(𝑞 (𝑢) + 𝜃
𝛾
∫
𝑏

𝑎

𝑝 (𝑢, 𝜏) 𝑑𝜏)𝑑𝑢)𝑑𝑠 < 0,

∫
∞

𝑠
𝑛

Φ−1 ( 1
𝑟 (𝑠)

∫
∞

𝑠

(𝑞 (𝑢) − 𝜃
𝛾
∫
𝑏

𝑎

𝑝 (𝑢, 𝜏) 𝑑𝜏)𝑑𝑢)𝑑𝑠 > 0.

(3)

Then (1), has an oscillatory solution 𝑥(𝑡) defined on [𝑡
0
,∞)

with |𝑥| ≤ 𝛾, and lim
𝑡→∞

𝑥(𝑡) = 0.

Proof. Theproof is based on an application of the well-known
Schauder-Tychonoff fixed point theorem. From (2), for any
𝛾 > 0, we have to choose a large 𝑇

𝛾
≥ 𝑇 such that for all

𝑡 ≥ 𝑇
𝛾
,

∫
∞

𝑡

Φ−1 ( 1
𝑟 (𝑠)

∫
∞

𝑠

(𝑞 (𝑢) + 𝜃
𝛾
∫
𝑏

𝑎

𝑝 (𝑢, 𝜏) 𝑑𝜏)𝑑𝑢)𝑑𝑠 ≤ 𝛾,

∫
∞

𝑡

Φ−1 ( 1
𝑟 (𝑠)

∫
∞

𝑠

(𝑞 (𝑢) − 𝜃
𝛾
∫
𝑏

𝑎

𝑝 (𝑢, 𝜏) 𝑑𝜏)𝑑𝑢)𝑑𝑠 ≥ −𝛾.

(4)

Let 𝐶[𝑡
0
− 𝑏,∞) denote the locally convex space of all

continuous functions with topology of uniform convergence
on compact subsets of [𝑡

0
− 𝑏,∞). Let 𝑆 = {𝑥 ∈ 𝐶[𝑡

0
−

𝑏,∞), |𝑥(𝑡)| ≤ 𝛾}. Clearly, 𝑆 is a close convex subset of
𝐶[𝑡
0
− 𝑏,∞).
Introduce an operator 𝐹 by

(𝐹𝑥) (𝑡)

=

{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{
{

∫
∞

𝑡

Φ−1 ( 1
𝑟 (𝑠)

× ∫
∞

𝑠

(𝑞 (𝑢)

− ∫
𝑏

𝑎

𝑝 (𝑢, 𝜏)

×𝑓 (𝑥 (𝑡−𝜏)) 𝑑𝜏 1
𝑟 (𝑠)
) 𝑑𝑢)𝑑𝑠,

𝑡 > 𝑇
𝛾
,

(𝐹𝑥) (𝑇
𝛾
) , 𝑡

0
− 𝑏 ≤ 𝑡 ≤ 𝑇

𝛾
.
(5)

It is easy to see that, for any 𝑥 ∈ 𝑆, (𝐹𝑥)(𝑡) is well defined
on [𝑡
0
− 𝑏,∞) continuously.

From (4), we obtain

(𝐹𝑥) (𝑡)

≤ ∫
∞

𝑡

Φ−1 ( 1
𝑟 (𝑠)

∫
∞

𝑠

(𝑞 (𝑢)

+𝜃
𝛾
∫
𝑏

𝑎

𝑝 (𝑢, 𝜏) 𝑑𝜏)𝑑𝑢)𝑑𝑠 ≤ 𝛾,

𝑡 ≥ 𝑡
0
− 𝑏,

(𝐹𝑥) (𝑡)

≥ ∫
∞

𝑡

Φ−1 ( 1
𝑟 (𝑠)

∫
∞

𝑠

(𝑞 (𝑢) − 𝜃
𝛾

×∫
𝑏

𝑎

𝑝 (𝑢, 𝜏) 𝑑𝜏) 𝑑𝑢)𝑑𝑠 ≥ −𝛾,

𝑡 ≥ 𝑡
0
− 𝑏.

(6)

Hence, |(𝐹𝑥)(𝑡)| ≤ 𝛾. Thus, we have 𝐹𝑆 ⊂ 𝑆 and 𝐹𝑥 is
uniformly bounded on 𝑆.

Let {𝑥
𝑛
}∞
𝑛=1

∈ 𝑆 be any sequence and 𝑥
0
∈ 𝑆 with

lim
𝑛→∞

𝑥
𝑛
= 𝑥
0
. Let 𝑇

1
be large constant with 𝑇

1
> 𝑇, for

any 𝜖 > 0 so that

∫
∞

𝑇
1

1
𝑟 (𝑠)

∫
∞

𝑠

(∫
𝑏

𝑎

𝑝 (s, 𝜏) 𝑑𝜏)𝑑𝑢 𝑑𝑠 < 𝜖
3𝜃
𝛾
𝐿
𝛾

. (7)

From the compactness of the domain of 𝑓
𝑖
, there exists a

large𝑁(𝜖) > 0 and a constant 𝛿(𝜖) > 0; let 𝑡 ∈ [𝑡
0
− 𝑏, 𝑇
1
] and

𝑛 ≥ 𝑁 when |𝑥
𝑛
− 𝑥
0
| < 𝛿(𝜖),

max
𝑡
0
−𝑏≤𝑡≤𝑇

1

{𝑓 (𝑥𝑛 (𝑡 − 𝜏)) − 𝑓 (𝑥0 (𝑡 − 𝜏))
} ≤

𝜖
3𝐿
𝛾
𝑀
, (8)

where𝑀 = ∫𝑇1
𝑡
0
−𝑏
(𝑠 − 𝑡
0
+ 𝑏/𝑟(𝑠)) ∫𝑏

𝑎
𝑝(𝑠, 𝜏)𝑑𝜏 𝑑𝑠. By virtue of

(1)–(8), we have that for any 𝑡 ≥ 𝑡
0
− 𝑏 and |𝑥

𝑛
− 𝑥
0
| < 𝛿,

(𝐹𝑥𝑛) (𝑡) − (𝐹𝑥0) (𝑡)


=

∫
∞

𝑡

Φ−1 ( 1
𝑟 (𝑠)

× ∫
∞

𝑠

(𝑞 (𝑢) − ∫
𝑏

𝑎

𝑝 (𝑢, 𝜏)

×𝑓 (𝑥
𝑛
(𝑡 − 𝜏)) 𝑑𝜏)𝑑𝑢)𝑑𝑠

− ∫
∞

𝑡

Φ−1 ( 1
𝑟 (𝑠)

× ∫
∞

𝑠

(𝑞 (𝑢) − ∫
𝑏

𝑎

𝑝 (𝑢, 𝜏)

× 𝑓 (𝑥
0
(𝑡 − 𝜏)) 𝑑𝜏)𝑑𝑢)𝑑𝑠
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≤ ∫
∞

𝑡


Φ−1 ( 1

𝑟 (𝑠)

× ∫
∞

𝑠

(𝑞 (𝑢) − ∫
𝑏

𝑎

𝑝 (𝑢, 𝜏)

×𝑓 (𝑥
𝑛
(𝑡 − 𝜏)) 𝑑𝜏)𝑑𝑢)𝑑𝑠

− Φ−1 ( 1
𝑟 (𝑠)

× ∫
∞

𝑠

(𝑞 (𝑢) − ∫
𝑏

𝑎

𝑝 (𝑢, 𝜏)

×𝑓 (𝑥
0
(𝑡 − 𝜏)) 𝑑𝜏)𝑑𝑢)𝑑𝑠


𝑑𝑠

≤ 𝐿
𝛾
∫
∞

𝑡

( 1
𝑟 (𝑠)

× ∫
∞

𝑠

(

∫
𝑏

𝑎

𝑝 (𝑢, 𝜏)


× 𝑓 (𝑥𝑛 (𝑢 − 𝜏))

−𝑓 (𝑥
0
(𝑢 − 𝜏)) 𝑑𝜏)𝑑𝑢)𝑑𝑠

≤ 𝐿
𝛾
∫
𝑇
1

𝑡
0
−𝑏

( 1
𝑟 (𝑠)

× ∫
∞

𝑠

(

∫
𝑏

𝑎

𝑝 (𝑢, 𝜏)


× 𝑓 (𝑥𝑛 (𝑢 − 𝜏))

−𝑓 (𝑥
0
(𝑢 − 𝜏)) 𝑑𝜏)𝑑𝑢)𝑑𝑠

+ 𝐿
𝛾
∫
∞

𝑇
1

( 1
𝑟 (𝑠)

× ∫
∞

𝑠

(

∫
𝑏

𝑎

𝑝 (𝑢, 𝜏)


× 𝑓 (𝑥𝑛 (𝑢 − 𝜏))

−𝑓 (𝑥
0
(𝑢 − 𝜏)) 𝑑𝜏) 𝑑𝑢)𝑑𝑠

≤ 𝐿
𝛾
∫
𝑇
1

𝑡
0
−𝑏

( 1
𝑟 (𝑠)

(𝑠 − 𝑡
0
+ 𝑏)

× (

∫
𝑏

𝑎

𝑝 (𝑠, 𝜏)


× 𝑓 (𝑥𝑛 (𝑠 − 𝜏))

−𝑓 (𝑥
0
(𝑠 − 𝜏)) 𝑑𝜏))𝑑𝑠

+ 2𝜃
𝛾
𝐿
𝛾
∫
∞

𝑇
1

1
𝑟 (s)

∫
∞

𝑠

(∫
𝑏

𝑎

𝑝 (𝑢, 𝜏) 𝑑𝜏) 𝑑𝑢)𝑑𝑠

< 𝜖
3
+ 2𝜖
3
= 𝜖.

(9)

The continuity of 𝐹 on 𝑆 is proved.
Moreover, for all 𝑡

2
, 𝑡
1
> 𝑡
0
− 𝑏,

(𝐹𝑥) (𝑡
2
) − (𝐹𝑥) (𝑡

1
)

= ∫
𝑡
2

𝑡
1

Φ−1 ( 1
𝑟 (𝑠)

× ∫
∞

𝑠

(𝑞 (𝑢) − ∫
𝑏

𝑎

𝑝 (𝑢, 𝜏)

×𝑓 (𝑥 (𝑡 − 𝜏)) 𝑑𝜏)𝑑𝑢)𝑑𝑠

≤ ∫
𝑡
2

𝑡
1

Φ−1 ( 1
𝑟 (𝑠)

∫
∞

𝑠

(𝑞 (𝑢) + 𝜃
𝛾
∫
𝑏

𝑎

𝑝 (𝑢, 𝜏) 𝑑𝜏)𝑑𝑢)𝑑𝑠

≤ 𝛼 (𝑡
2
− 𝑡
1
) ,

(10)

where 𝛼 = sup
𝑡≥𝑡
0

Φ−1(1/𝑟(𝑠) ∫∞
𝑡
(𝑞(𝑢) + 𝜃

𝛾
∫𝑏
𝑎
𝑝(𝑢, 𝜏)𝑑𝜏)𝑑𝑢);

(𝐹𝑥) (𝑡
2
) − (𝐹𝑥) (𝑡

1
)

= ∫
𝑡
2

𝑡
1

Φ−1 ( 1
𝑟 (𝑠)

× ∫
∞

𝑠

(𝑞 (𝑢) + ∫
𝑏

𝑎

𝑝 (𝑢, 𝜏)

×𝑓 (𝑥 (𝑡 − 𝜏)) 𝑑𝜏)𝑑𝑢)𝑑𝑠

≥ ∫
𝑡
2

𝑡
1

Φ−1 ( 1
𝑟 (𝑠)

∫
∞

𝑠

(𝑞 (𝑢) − 𝜃
𝛾
∫
𝑏

𝑎

𝑝 (𝑢, 𝜏) 𝑑𝜏)𝑑𝑢)𝑑𝑠

≥ 𝛽 (𝑡
2
− 𝑡
1
) ,

(11)

where 𝛽 = inf
𝑡≥𝑡
0

Φ−1(1/𝑟(𝑠) ∫∞
𝑡
(𝑞(𝑢) − 𝜃

𝛾
∫𝑏
𝑎
𝑝(𝑢, 𝜏)𝑑𝜏)𝑑𝑢).

Thus,

(𝐹𝑥) (𝑡2) − (𝐹𝑥) (𝑡1)
 ≤ 𝑀

𝑡2 − 𝑡1
 , (12)

where𝑀 = max{|𝛼|, |𝛽|}. This implies that 𝐹𝑥 is equicontin-
uous. Hence, by the Ascoli-Arzela Theorem, the operator is
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completely continuous on 𝑆. By Lemma 1, there exists 𝑥 ∈ 𝑆
satisfying

𝑥 (𝑡) = (𝐹𝑥) (𝑡)

=

{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{
{

∫
∞

𝑡

Φ−1 ( 1
𝑟 (𝑠)

× ∫
∞

𝑠

(𝑞 (𝑢)

− ∫
𝑏

𝑎

𝑝 (𝑢, 𝜏)

×𝑓 (𝑥 (𝑡 − 𝜏)) 𝑑𝜏) 𝑑𝑢)𝑑𝑠,

𝑡 ≥ 𝑇,
(𝐹𝑥) (𝑇) , 𝑡

0
− 𝑏 ≤ 𝑡 < 𝑇.

(13)

On the other hand, from (3), we find

𝑥 (𝑡
𝑛
)

≤ ∫
∞

𝑡
𝑛

Φ−1

× ( 1
𝑟 (𝑠)

∫
∞

𝑠

(𝑞 (𝑢) + 𝜃
𝛾
∫
𝑏

𝑎

𝑝 (𝑢, 𝜏) 𝑑𝜏)𝑑𝑢)𝑑𝑠 < 0,

𝑥 (𝑠
𝑛
)

≥ ∫
∞

𝑠
𝑛

Φ−1

× ( 1
𝑟 (𝑠)

∫
∞

𝑠

(𝑞 (𝑢) − 𝜃
𝛾
∫
𝑏

𝑎

𝑝 (𝑢, 𝜏) 𝑑𝜏)𝑑𝑢)𝑑𝑠 > 0,

(14)

which implies that 𝑥(𝑡) is a bounded oscillatory solution of
(1) and lim

𝑡→∞
𝑥(𝑡) = 0. The proof is complete.

Corollary 3. Assume that (2) of Theorem 2 holds, and spe-
cially Φ(𝑢) = 𝑢𝛼, 𝛼 ≥ 1 is the ratio of two positive odd
integers, there exist two increasing divergent sequences {𝑡

𝑛
} and

{𝑠
𝑛
}, 𝑡
𝑛
, 𝑠
𝑛
such that

∫
∞

𝑡
𝑛

( 1
𝑟 (𝑠)

∫
∞

𝑠

(𝑞 (𝑢) + 𝜃
𝛾
∫
𝑏

𝑎

𝑝 (𝑢, 𝜏) 𝑑𝜏)𝑑𝑢)
1/𝛼

𝑑𝑠 < 0,

∫
∞

𝑠
𝑛

( 1
𝑟 (𝑠)

∫
∞

𝑠

(𝑞 (𝑢) − 𝜃
𝛾
∫
𝑏

𝑎

𝑝 (𝑢, 𝜏) 𝑑𝜏)𝑑𝑢)
1/𝛼

𝑑𝑠 > 0.

(15)

Then, (1) has an oscillatory solution 𝑥(𝑡) defined on [𝑡
0
,∞)

with |𝑥| ≤ 𝛾, and lim
𝑡→∞

𝑥(𝑡) = 0.

3. Remark

When 𝑟(𝑡) ≡ 1, Φ(𝑢) = 𝑢, 𝑓(V) = V, and 𝑞(𝑡) = 0. Let 𝑠 = 𝑡−𝜏,
(1) becomes

𝑥 (𝑡) − ∫
𝑡−𝑎

𝑡−𝑏

𝑘 (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠 = 0. (16)

According to the results of this paper, ∫∞
𝑡
∫𝑏
𝑎
𝑘(𝑢, 𝑢 −

𝜏)𝑑𝜏 𝑑𝑢 is integrable on [𝑡
0
,∞), and there exist two sequences

{𝑡
𝑛
}, {𝑠
𝑛
} with 𝑡

𝑛
→ ∞, 𝑠

𝑛
→ ∞ such that

∫
∞

𝑡
𝑛

(∫
∞

𝑠

∫
𝑏

𝑎

𝑘 (𝑢, 𝑢 − 𝜏) 𝑑𝜏𝑑𝑢)𝑑𝑠 < 0,

∫
∞

𝑠
𝑛

(∫
∞

𝑠

∫
𝑏

𝑎

𝑘 (𝑢, 𝑢 − 𝜏) 𝑑𝜏𝑑𝑢)𝑑𝑠 > 0.

(17)

Equation (16) has oscillatory solution.
In paper [14], it was demonstrated that the inequality 𝑏(𝑏−

𝑎)max
0≤𝑠≤𝑡<∞

𝑘(𝑡, 𝑠) ≤ 2/𝑒 implied the existence of positive
solutions. Neither of the two conditions can be deduced from
each other. Moreover, when 𝑘(𝑡, 𝑠) = 𝑠/1 + 𝑡2(𝑠 = 𝑡 − 𝜏) is
bounded, but ∫∞

𝑡
∫𝑏
𝑎
𝑘(𝑢, 𝑢 − 𝜏)𝑑𝜏 𝑑𝑢 cannot exist. Likewise,

when 𝑘(𝑡, 𝑠) = 5/1+𝑡2 and 𝑏(𝑏−𝑎) ≥ 2/𝑒 claim,∫∞
𝑡
∫𝑏
𝑎
𝑘(𝑢, 𝑢−

𝜏)𝑑𝜏 𝑑𝑢 can exist, but 𝑏(𝑏− 𝑎)max
0≤𝑠≤𝑡<∞

𝑘(𝑡, 𝑠) ≤ 2/𝑒 cannot
be hold.

4. Examples

Example 1. Consider second order delay differential equa-
tions

(𝑒−𝑡𝑥 (𝑡))


+ 2
𝑒2𝜋 + 𝑒𝜋

∫
2𝜋

𝜋

𝑒−2𝑡𝑥 (𝑡 − 𝜏) 𝑑𝜏

= 𝑒−2𝑡 (sin 𝑡 − 3 cos 𝑡) + 𝑒−3𝑡 (cos 𝑡 + sin 𝑡) .
(18)

Here, 𝑟(𝑡) = 𝑒−𝑡, Φ(𝑢) = 𝑢, 𝑓(V) = V, 𝑝(𝑡, 𝜏) = 2/((𝑒2𝜋 +
𝑒𝜋)𝑒−2𝑡), 𝑎 = 𝜋, 𝑏 = 2𝜋, and 𝑞(𝑡) = 𝑒−2𝑡(sin 𝑡 − 3 cos 𝑡) +
𝑒−3𝑡(cos 𝑡 + sin 𝑡).

It is easy to see that 𝑟(𝑡) ≥ 𝜂 > 0.
We have

𝑄 (𝑡)

:= ∫
∞

𝑡

Φ−1

× ( 1
𝑟 (𝑠)

∫
∞

𝑠

(𝑞 (𝑢) +
2𝛾

𝑒2𝜋 + 𝑒𝜋
∫
2𝜋

𝜋

𝑒−2𝑢𝑑𝜏)𝑑𝑢)𝑑𝑠

= ∫
∞

𝑡

𝑒𝑠 ∫
∞

𝑠

(𝑒−2𝑢 (sin 𝑢 − 3 cos 𝑢) + 𝑒−3𝑢 (cos 𝑢 + sin 𝑢)

+
2𝜋𝛾
𝑒2𝜋 + 𝑒𝜋

𝑒−2𝑢)𝑑𝑢 𝑑𝑠

= 𝑒−𝑡 sin 𝑡 + 4
25
𝑒−2𝑡 (cos 𝑡 + 3

4
sin 𝑡) −

𝜋𝛾
𝑒2𝜋 + 𝑒𝜋

𝑒−𝑡,
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𝑃 (𝑡)

:= ∫
∞

𝑡

Φ−1

× ( 1
𝑟 (𝑠)

∫
∞

𝑠

(𝑞 (𝑢) −
2𝛾

𝑒2𝜋 + 𝑒𝜋
∫
2𝜋

𝜋

𝑒−2𝑢𝑑𝜏)𝑑𝑢)𝑑𝑠

= ∫
∞

𝑡

𝑒𝑠 ∫
∞

𝑠

(𝑒−2𝑢 (sin 𝑢 − 3 cos 𝑢) + 𝑒−3𝑢 (cos 𝑢 + sin 𝑢)

−
2𝜋𝛾
𝑒2𝜋 + 𝑒𝜋

𝑒−2𝑢) 𝑑𝑢 𝑑𝑠

= 𝑒−𝑡 sin 𝑡 + 4
25
𝑒−2𝑡 (cos 𝑡 + 3

4
sin 𝑡) +

𝜋𝛾
𝑒2𝜋 + 𝑒𝜋

𝑒−𝑡. (19)

Let 𝑡
𝑛
= (2𝑛 − 1)𝜋, 𝑠

𝑛
= (2𝑛 + 1)𝜋, 𝑛 = 1, 2, . . .,

𝑄 (𝑡
𝑛
) = −𝑒−𝑡𝑛 ( 4

25
𝑒−𝑡𝑛 +

𝜋𝛾
𝑒2𝜋 + 𝑒𝜋

) < 0,

𝑃 (𝑠
𝑛
) = 𝑒−𝑠𝑛 ( 4

25
𝑒−𝑠𝑛 +

𝜋𝛾
𝑒2𝜋 + 𝑒𝜋

) > 0.
(20)

It is easy to see from (19) that there exists a 𝑁 = 1 such
that for all 𝑛 ≥ 𝑁, 𝑄(𝑡

𝑛
) < 0 and 𝑃(𝑡

𝑛
) > 0. Thus, by

Theorem 2, (18) has an oscillatory solution𝑥(𝑡)on [𝑡
0
,∞) and

lim
𝑡→∞

𝑥(𝑡) = 0. It is not difficult to check that (18) has the
oscillatory solution 𝑥(𝑡) = 𝑒−𝑡 sin 𝑡.

Example 2. Consider second order delay differential equa-
tions

(𝑒−𝑡(𝑥 (𝑡))
1/3

)


+ 6
7𝛾3
∫
2

1

𝜏2𝑒−2𝑡𝑥3 (𝑡 − 𝜏) 𝑑𝜏

= 𝑒−2𝑡 (cos 𝑡 − 2 sin 𝑡) .

(21)

Here, 𝑟(𝑡) = 𝑒−𝑡, Φ(𝑢) = 𝑢1/3, 𝑝(𝑡, 𝜏) = (6/7𝛾3)𝜏2𝑒−2𝑡𝑓(V) =
V3, 𝑎 = 1, 𝑏 = 2, and 𝑞(𝑡) = 𝑒−2𝑡(cos 𝑡 − 2 sin 𝑡). It is easy to see
that 𝑟(𝑡) ≥ 𝜂 > 0,

𝑄 (𝑡)

:= ∫
∞

𝑡

Φ−1 ( 1
𝑟 (𝑠)

∫
∞

𝑠

(𝑞 (𝑢) + 6
7
∫
2

1

𝜏2𝑒−2𝑢𝑑𝜏)𝑑𝑢)𝑑𝑠

= ∫
∞

𝑡

(𝑒𝑠 ∫
∞

𝑠

𝑒−2𝑢 (cos 𝑢 − 2 sin 𝑢) + 2𝑒−2𝑢𝑑𝑢)
3

𝑑𝑠

= 1
6
𝑒−3𝑡sin2𝑡 (− sin 𝑡 − cos 𝑡) + 𝑒−3𝑡 (−3 sin 𝑡 − cos 𝑡)

− 3
13
𝑒−3𝑡 sin 𝑡 (−3 sin 𝑡 − 2 cos 𝑡) + 19

39
𝑒−3𝑡,

𝑃 (𝑡)

:= ∫
∞

𝑡

Φ−1 ( 1
𝑟 (𝑠)

∫
∞

𝑠

(𝑞 (𝑢) + 6
7
∫
2

1

𝜏2𝑒−2𝑢𝑑𝜏)𝑑𝑢)𝑑𝑠

= ∫
∞

𝑡

(𝑒𝑠 ∫
∞

𝑠

𝑒−2𝑢 (cos 𝑢 − 2 sin 𝑢) − 2𝑒−2𝑢𝑑𝑢)
3

𝑑𝑠

= 1
6
𝑒−3𝑡sin2𝑡 (− sin 𝑡 − cos 𝑡) + 𝑒−3𝑡 (−3 sin 𝑡 − cos 𝑡)

+ 3
13
𝑒−3𝑡 sin 𝑡 (−3 sin 𝑡 − 2 cos 𝑡) + 7

39
𝑒−3𝑡. (22)

Let 𝑡
𝑛
= 2𝑛𝜋, 𝑠

𝑛
= (2𝑛 + 1)𝜋, 𝑛 = 1, 2, . . .,

𝑄 (𝑡
𝑛
) = −20

39
𝑒−3𝑡𝑛 , 𝑃 (𝑠

𝑛
) = 46
39
𝑒−3𝑠𝑛 . (23)

It is easy to see from (22) that there exists a 𝑁 = 1 such
that for all 𝑛 ≥ 𝑁, 𝑄(𝑡

𝑛
) < 0 and 𝑃(𝑠

𝑛
) > 0. Thus, by

Theorem 2, (21) has an oscillatory solution𝑥(𝑡)on [𝑡
0
,∞) and

lim
𝑡→∞

𝑥(𝑡) = 0.
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