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Several interesting and newproperties of weighted pseudo almost periodic functions are established. Firstly, we obtain an equivalent
definition for weighted pseudo almost periodic functions, which shows a close relationship between asymptotically almost periodic
functions and weighted pseudo almost periodic functions; secondly, we prove that the space of asymptotically almost periodic
functions is always a proper subspace of the space of weighted pseudo almost periodic functions; thirdly, we show that under some
cases, the space of weighted pseudo almost periodic functions equals the classical space of pseudo almost periodic functions.

1. Introduction

The notion of weighted pseudo almost periodic function is
introduced by Diagana [1], which is an interesting general-
ization of the classical Bohr almost periodic function as well
as a generalization of the classical pseudo almost periodic
function introduced by Zhang [2].

Since the work of Diagana, it has been of great interest
for many mathematicians to investigate weighted pseudo
almost periodic functions and their applications to evolution
equations. There is a large amount of literature on this topic.
However, due to the influence ofweighted term, the behaviors
of weighted pseudo almost periodic functions aremore tricky
and changeable than those of the classical pseudo almost
periodic functions.

It is needed to note that, recently, several authors have
made interesting and important contributions on weighted
pseudo almost periodic functions. For example, Blot et al.
[3, 4] establishedmany results including completeness, trans-
lation invariance, and composition theorem of weighted
pseudo almost periodic functions in the framework of mea-
sure theory; Diagana [5] investigated the weighted mean for
almost periodic functions; Liang et al. [6] showed that the
decomposition of weighted pseudo almost periodic functions

is not unique, in general, and that translation invariance
implies unique decomposition; Ji andZhang [7] obtained sev-
eral results concerning translation invariance and ergodicity
of an almost periodic function under a weight; Zhang et al.
[8] proved that the space of weighted pseudo almost periodic
functions is complete under a new norm, which is different
from the supremum norm; Ding et al. [9] presented several
basic properties about vector-valued weighted pseudo almost
automorphic functions, including equivalence, completeness,
translation invariance, composition theorem, and convolu-
tion theorem of these functions. In addition, we would like to
refer the reader to [10–13] for some other recent development
on weighted pseudo almost periodic functions and related
topics.

Throughout the rest of this paper, we denote by N the
set of positive integers, by R the set of real numbers, by 𝑋 a
Banach space, by BC(R, 𝑋) the set of all bounded continuous
functions𝑓 : R → 𝑋, and byU the set of functions (weights)
𝜌 : R → [0, +∞), which are locally integrable over R. In
addition, for 𝜌 ∈ U and 𝑟 > 0, we denote

𝜇 (𝑟, 𝜌) := ∫

𝑟

−𝑟

𝜌 (𝑡) 𝑑𝑡,



2 Abstract and Applied Analysis

U
∞
:= {𝜌 ∈ U : lim

𝑟→+∞

𝜇 (𝑟, 𝜌) = +∞} ,

U
𝐵
:= {𝜌 ∈ U

∞
: 𝜌 is bounded with inf

𝑡∈R
𝜌 (𝑡) > 0} .

(1)

Obviously, U
𝐵
⊂ U
∞
⊂ U, with strict inclusions.

Next, let us recall some notions and basic results about
almost periodic functions and pseudo almost periodic func-
tions (for more details, see [14–16]).

Definition 1. A set𝑃 ⊂ R is called relatively dense inR if there
exists a number 𝑙 > 0 such that, for all 𝑎 ∈ R, [𝑎, 𝑎+𝑙]⋂𝑃 ̸=⌀.

Definition 2. A continuous function 𝑓 : R → 𝑋 is called
almost periodic if for every 𝜀 > 0 there exists a relatively dense
set 𝑃(𝜀) such that

sup
𝑡∈R

󵄩󵄩󵄩󵄩𝑓 (𝑡 + 𝜏) − 𝑓 (𝑡)
󵄩󵄩󵄩󵄩 < 𝜀 (2)

for all 𝜏 ∈ 𝑃(𝜀). We denote the set of all such functions by
AP(𝑋).

Definition 3. A continuous function 𝑓 : R → 𝑋 is called
asymptotically almost periodic if it can be expressed as 𝑓 =

𝑔 + ℎ, where 𝑔 ∈ AP(𝑋) and ℎ ∈ 𝐶
0
(𝑋), where

𝐶
0
(𝑋) = {ℎ ∈ BC (R, 𝑋) : lim

|𝑡|→∞

ℎ (𝑡) = 0} . (3)

The set of all such functions will be denoted by AAP(𝑋).

Lemma 4. The following holds true:

(a) if 𝑓 ∈ AAP(𝑋), then 𝑓 is uniformly continuous on R;
(b) a necessary and sufficient condition for a continuous

function 𝑓 : R → 𝑋 belonging to AAP(𝑋) is that
for every 𝜀 > 0 there exist a constant 𝑇(𝜀) > 0 and a
relatively dense set 𝑃(𝜀) such that

󵄩󵄩󵄩󵄩𝑓 (𝑡 + 𝜏) − 𝑓 (𝑡)
󵄩󵄩󵄩󵄩 < 𝜀 (4)

for all 𝑡 ∈ R with |𝑡| ≥ 𝑇(𝜀) and 𝜏 ∈ 𝑃(𝜀) with |𝑡 + 𝜏| ≥
𝑇(𝜀).

Now, let us recall some notions and basic results about
weighted pseudo almost periodic functions. Denote

PAP
0
(𝑋, 𝜌)

:={𝑓 ∈ BC (R, 𝑋) : lim
𝑟→+∞

1

𝜇 (𝑟, 𝜌)
∫

𝑟

−𝑟

󵄩󵄩󵄩󵄩𝑓 (𝑡)
󵄩󵄩󵄩󵄩 𝜌 (𝑡) 𝑑𝑡=0} .

(5)

Definition 5 (see [1]). Let 𝜌 ∈ U
∞
. A function 𝑓 ∈ BC(R, 𝑋)

is calledweighted pseudo almost periodic or𝜌-pseudo almost
periodic if it can be expressed as 𝑓 = 𝑔+ℎ, where 𝑔 ∈ AP(𝑋)
and ℎ ∈ PAP

0
(𝑋, 𝜌).The set of such functions will be denoted

by PAP(𝑋, 𝜌).

Remark 6. If 𝜌 ≡ 1, then a 𝜌-pseudo almost periodic function
becomes a classical pseudo almost periodic function. So
PAP(𝑋, 1) is just the space of all pseudo almost periodic
functions. In addition, it is easy to show that PAP(𝑋, 𝜌) =
PAP(𝑋, 1) provided that 𝜌 ∈ U

𝐵
.

Definition 7 (see [7]). Let 𝜌 ∈ U
∞
. A set 𝐶 ⊂ R is said to be a

𝜌-ergodic zero set if

lim
𝑟→+∞

∫
[−𝑟,𝑟]∩𝐶

𝜌 (𝑡) 𝑑𝑡

𝜇 (𝑟, 𝜌)
= 0. (6)

The following lemma is due to [17, Lemma 3.2] (see also
[7]).

Lemma 8. Let 𝑓 ∈ BC(R, 𝑋) and 𝜌 ∈ U
∞
. Then 𝑓 ∈

PAP
0
(𝑋, 𝜌) if and only if, for every 𝜀 > 0,𝑀

𝜀
(𝑓) is a 𝜌-ergodic

zero set, where𝑀
𝜀
(𝑓) := {𝑡 ∈ R : ‖𝑓(𝑡)‖ ≥ 𝜀}.

2. The Relationship between AAP(X) and
PAP(X,𝜌)

In this section, we discuss the relationship between AAP(𝑋)
and PAP(𝑋, 𝜌). Firstly, we will establish an equivalent defini-
tion for weighted pseudo almost periodic functions.

Theorem 9. Let 𝑓 ∈ BC(R, 𝑋) and 𝜌 ∈ U
∞
. Then a necessary

and sufficient condition for 𝑓 ∈ PAP
0
(𝑋, 𝜌) is that there exists

a 𝜌-ergodic zero set 𝐶 ⊂ R such that

lim
|𝑡|→∞

𝑡∈R\𝐶

𝑓 (𝑡) = 0. (7)

Proof. Consider the following.

Sufficiency. It follows from lim |𝑡|→∞
𝑡∈R\𝐶

𝑓(𝑡) = 0 that, for every

𝜀 > 0,

{𝑡 ∈ R \ 𝐶 :
󵄩󵄩󵄩󵄩𝑓 (𝑡)

󵄩󵄩󵄩󵄩 ≥ 𝜀} (8)

is a bounded set. Combining this with the fact that 𝐶 is a 𝜌-
ergodic zero set, we conclude that𝑀

𝜀
(𝑓) = {𝑡 ∈ R : ‖𝑓(𝑡)‖ ≥

𝜀} is a 𝜌-ergodic zero set.Then, by Lemma 8,𝑓 ∈ PAP
0
(𝑋, 𝜌).

Necessity. Let 𝑓 ∈ PAP
0
(𝑋, 𝜌). We denote

𝐶
𝑛
= {𝑡 ∈ R :

󵄩󵄩󵄩󵄩𝑓 (𝑡)
󵄩󵄩󵄩󵄩 >

1

𝑛
} , 𝑛 ∈ N. (9)

Then, by Lemma 8, every 𝐶
𝑛
is a 𝜌-ergodic zero set. Next, we

divide the remaining proof into three steps.

Step 1. There exists an increasing sequence {𝑇
𝑛
}
∞

𝑛=1
⊂ R with

lim
𝑛→∞

𝑇
𝑛
= ∞, satisfying that, for every 𝑛 ∈ N and 𝑟 ≥ 𝑇

𝑛
,

there hold
∫
[−𝑟,𝑟]∩𝐶

𝑛+1

𝜌 (𝑡) 𝑑𝑡

𝜇 (𝑟, 𝜌)
≤
1

𝑛
,

𝑛

∑

𝑖=1

∫
[−𝑇
𝑖
,𝑇
𝑖
]∩𝐶
𝑖

𝜌 (𝑡) 𝑑𝑡

𝜇 (𝑟, 𝜌)
≤
1

𝑛
.

(10)
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In fact, for 𝑛 = 1, since 𝐶
1
and𝐶

2
are both 𝜌-ergodic zero

sets, there exists 𝑇
1
> 1 such that, for all 𝑟 ≥ 𝑇

1
, there hold

∫
[−𝑟,𝑟]∩𝐶

2

𝜌 (𝑡) 𝑑𝑡

𝜇 (𝑟, 𝜌)
≤ 1,

∫
[−𝑇
1
,𝑇
1
]∩𝐶
1

𝜌 (𝑡) 𝑑𝑡

𝜇 (𝑟, 𝜌)
≤

∫
[−𝑟,𝑟]∩𝐶

1

𝜌 (𝑡) 𝑑𝑡

𝜇 (𝑟, 𝜌)
≤ 1.

(11)

For 𝑛 = 2, by using the fact that𝐶
2
and𝐶

3
are both 𝜌-ergodic

zero sets, there exists𝑇
2
> max{𝑇

1
, 2} such that, for all 𝑟 ≥ 𝑇

2
,

there hold

∫
[−𝑟,𝑟]∩𝐶

3

𝜌 (𝑡) 𝑑𝑡

𝜇 (𝑟, 𝜌)
≤
1

2
,

∑
2

𝑖=1
∫
[−𝑇
𝑖
,𝑇
𝑖
]∩𝐶
𝑖

𝜌 (𝑡) 𝑑𝑡

𝜇 (𝑟, 𝜌)

≤

∫
[−𝑇
1
,𝑇
1
]∩𝐶
1

𝜌 (𝑡) 𝑑𝑡 + ∫
[−𝑟,𝑟]∩𝐶

2

𝜌 (𝑡) 𝑑𝑡

𝜇 (𝑟, 𝜌)
≤
1

2
.

(12)

For 𝑛 = 𝑘, by using the fact that 𝐶
𝑘
and 𝐶

𝑘+1
are both 𝜌-

ergodic zero, there exists 𝑇
𝑘
> max{𝑇

𝑘−1
, 𝑘} such that, for all

𝑟 ≥ 𝑇
𝑘
, there hold

∫
[−𝑟,𝑟]∩𝐶

𝑘+1

𝜌 (𝑡) 𝑑𝑡

𝜇 (𝑟, 𝜌)
≤
1

𝑘
,

∑
𝑘

𝑖=1
∫
[−𝑇
𝑖
,𝑇
𝑖
]∩𝐶
𝑖

𝜌 (𝑡) 𝑑𝑡

𝜇 (𝑟, 𝜌)

≤

∑
𝑘−1

𝑖=1
∫
[−𝑇
𝑖
,𝑇
𝑖
]∩𝐶
𝑖

𝜌 (𝑡) 𝑑𝑡 + ∫
[−𝑟,𝑟]∩𝐶

𝑘

𝜌 (𝑡) 𝑑𝑡

𝜇 (𝑟, 𝜌)
≤
1

𝑘
.

(13)

Continuing by this way, we can get an increasing sequence
{𝑇
𝑛
}
∞

𝑛=1
, which satisfies lim

𝑛→∞
𝑇
𝑛
= ∞, (10).

Step 2. 𝐶 := ⋃
∞

𝑛=1
𝐶
𝑛
is a 𝜌-ergodic zero set, where

𝐶
1
= [−𝑇

1
, 𝑇
1
] ∩ 𝐶
1
,

𝐶
𝑛
= ([−𝑇

𝑛
, 𝑇
𝑛
] \ [−𝑇

𝑛−1
, 𝑇
𝑛−1
]) ∩ 𝐶

𝑛
,

𝑛 = 2, 3, . . . .

(14)

In fact, for every 𝑟 > 0, there exists 𝑇
𝑛
such that 𝑟 ∈

[𝑇
𝑛
, 𝑇
𝑛+1
). Thus, we have

[−𝑟, 𝑟] ⊂ [−𝑇
1
, 𝑇
1
] ∪ ([−𝑇

2
, 𝑇
2
] \ [−𝑇

1
, 𝑇
1
])

∪ ⋅ ⋅ ⋅ ([−𝑇
𝑛
, 𝑇
𝑛
] \ [−𝑇

𝑛−1
, 𝑇
𝑛−1
])

∪ ([−𝑟, 𝑟] \ [−𝑇
𝑛
, 𝑇
𝑛
]) ,

([−𝑟, 𝑟] ∩ 𝐶) ⊂ 𝐶
1
∪ ⋅ ⋅ ⋅ 𝐶

𝑛
∪ ([−𝑟, 𝑟] ∩ 𝐶

𝑛+1
) .

(15)

Combining this with (10), we conclude that

∫
[−𝑟,𝑟]∩𝐶

𝜌 (𝑡) 𝑑𝑡

𝜇 (𝑟, 𝜌)

≤

∑
𝑛

𝑖=1
∫
𝐶
𝑖

𝜌 (𝑡) 𝑑𝑡

𝜇 (𝑟, 𝜌)
+

∫
[−𝑟,𝑟]∩𝐶

𝑛+1

𝜌 (𝑡) 𝑑𝑡

𝜇 (𝑟, 𝜌)

≤

∑
𝑛

𝑖=1
∫
[−𝑇
𝑖
,𝑇
𝑖
]∩𝐶
𝑖

𝜌 (𝑡) 𝑑𝑡

𝜇 (𝑟, 𝜌)
+

∫
[−𝑟,𝑟]∩𝐶

𝑛+1

𝜌 (𝑡) 𝑑𝑡

𝜇 (𝑟, 𝜌)

≤
2

𝑛
,

(16)

which means that 𝐶 is a 𝜌-ergodic zero set.

Step 3. lim |𝑡|→∞
𝑡∈R\𝐶

𝑓(𝑡) = 0.

In fact, for every 𝑛 ∈ N and 𝑡 ∈ R \ 𝐶 with |𝑡| > 𝑇
𝑛
, there

exists 𝑘 ≥ 𝑛 such that

𝑡 ∈ [−𝑇
𝑘+1
, 𝑇
𝑘+1
] \ [−𝑇

𝑘
, 𝑇
𝑘
] , (17)

which yields that 𝑡 ∉ 𝐶
𝑘+1

, and thus

󵄩󵄩󵄩󵄩𝑓 (𝑡)
󵄩󵄩󵄩󵄩 <

1

𝑘 + 1
<
1

𝑛
. (18)

This completes the proof.

Remark 10. InTheorem 9, we can choose𝐶 to be an open set.
In fact, letting

𝐶 = 𝐶⋃(

∞

⋃

𝑛=1

(𝑇
𝑛
, 𝑇
𝑛
+ 𝛿
𝑛
))⋃(

∞

⋃

𝑛=1

(−𝑇
𝑛
− 𝛿
𝑛
, −𝑇
𝑛
)) ,

(19)

where every 𝛿
𝑛
is a sufficiently small positive constant

satisfying

∫

𝑇
𝑛
+𝛿
𝑛

𝑇
𝑛

𝜌 (𝑡) 𝑑𝑡 + ∫

−𝑇
𝑛

−𝑇
𝑛
−𝛿
𝑛

𝜌 (𝑡) 𝑑𝑡 <
1

2𝑛
, 𝑛 ∈ N, (20)

it is easy to prove that 𝐶 is an open set and a 𝜌-ergodic zero
set. Moreover, obviously, we have lim |𝑡|→∞

𝑡∈R\𝐶

𝑓(𝑡) = 0.

Next, we present an equivalent definition of weighted
pseudo almost periodic functions, which establishes a close
relationship between asymptotically almost periodic func-
tions and weighted pseudo almost periodic functions.

Theorem 11. Let𝑓 ∈ BC(R, 𝑋) and 𝜌 ∈ U
∞
.Then a necessary

and sufficient condition for 𝑓 ∈ PAP(𝑋, 𝜌) is that there exist
𝑓 ∈ AAP(𝑋) and a 𝜌-ergodic zero set 𝐶 ⊂ R such that

𝑓 (𝑡) = 𝑓 (𝑡) , 𝑡 ∈ R \ 𝐶. (21)

Proof. The sufficiency part is easy to prove. We only give the
proof for the necessity part. Let 𝑓 ∈ PAP(𝑋, 𝜌). Then, there
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exist 𝑔 ∈ AP(𝑋) and ℎ ∈ PAP
0
(𝑋, 𝜌) such that 𝑓 = 𝑔 + ℎ. It

follows fromTheorem 9 that there exists a 𝜌-ergodic zero set
𝐶 ⊂ R such that

lim
|𝑡|→∞

𝑡∈R\𝐶

ℎ (𝑡) = 0. (22)

In addition, by Remark 10, without loss of generality, we can
assume that𝐶 is an open set.Then, we can conclude that there
exists a function ℎ ∈ 𝐶

0
(𝑋) such that ℎ(𝑡) = ℎ(𝑡) for all 𝑡 ∈

R\𝐶. Letting𝑓 = 𝑔+ℎ, we have𝑓 ∈ AAP(𝑋), and𝑓(𝑡) = 𝑓(𝑡)
for all 𝑡 ∈ R \ 𝐶. This completes the proof.

Combining Lemma 4 and Theorem 11, we can get the
following.

Corollary 12. Let 𝜌 ∈ U
∞

and 𝑓 ∈ PAP(𝑋, 𝜌). Then, there
exists a 𝜌-ergodic zero set𝐶 ⊂ R satisfying that, for every 𝜀 > 0,
there are two constants 𝛿(𝜀), 𝑇(𝜀) > 0 and a relatively dense set
𝑃(𝜀) such that

󵄩󵄩󵄩󵄩𝑓 (𝑡 + 𝜏) − 𝑓 (𝑡)
󵄩󵄩󵄩󵄩 < 𝜀,

𝜏 ∈ 𝑃 (𝜀) , 𝑡, 𝑡 + 𝜏 ∉ 𝐶 ∪ [−𝑇 (𝜀) , 𝑇 (𝜀)] ,

󵄩󵄩󵄩󵄩𝑓 (𝑡1) − 𝑓 (𝑡2)
󵄩󵄩󵄩󵄩 < 𝜀, 𝑡

1
, 𝑡
2
∉ 𝐶,

󵄨󵄨󵄨󵄨𝑡1 − 𝑡2
󵄨󵄨󵄨󵄨 < 𝛿 (𝜀) .

(23)

Remark 13. For the case of 𝜌 ≡ 1, Zhang [18] established
a similar result to Corollary 12. But here we use a different
approach, and even for the case of 𝜌 ≡ 1, Corollary 12
improves the “if part” of [18, Theorem 11]. In fact, in [18], for
every 𝜀 > 0, there exists a 1-ergodic zero set 𝐶(𝜀). Here, we
find a common ergodic zero set 𝐶.

In the above, we show that there is a close relation-
ship between asymptotically almost periodic functions and
weighted pseudo almost periodic functions. Next, we will
show that AAP(𝑋) is always a proper subspace of PAP(𝑋, 𝜌).

Theorem 14. Let 𝜌 ∈ U
∞
. Then

AAP (𝑋) ⫋ PAP (𝑋, 𝜌) . (24)

Proof. It is easy to show that AAP(𝑋) ⊂ PAP(𝑋, 𝜌) since
𝐶
0
(𝑋) ⊂ PAP

0
(𝑋, 𝜌). So we only need to show that

AAP(𝑋) ̸=PAP(𝑋, 𝜌). Without loss for generality, we only
give the proof for the case of𝑋 = R. We divide the remaining
proof into three steps.

Step 1. Let 𝐶 = ⋃
∞

𝑛=1
𝐶
𝑛
, where

𝐶
𝑛
:= {𝑡 ∈ (𝑛 − 1, 𝑛) : 𝐹 (𝑡, 𝑛) <

1

𝑛
𝐹 (𝑛 − 1, 𝑛)} , 𝑛 ∈ N,

(25)

where

𝐹 (𝑥, 𝑦) := ∫
𝐴(𝑥,𝑦)

𝜌 (𝑠) 𝑑𝑠, 𝐴 (𝑥, 𝑦) :={𝑠 ∈ R : 𝑥 ≤ |𝑠| ≤ 𝑦}

𝑦 ≥ 𝑥 ≥ 0.

(26)

It is easy to see that every 𝐶
𝑛
is open. Moreover, there are

infinitely many nonempty 𝐶
𝑛
, and thus we can assume that

every 𝐶
𝑛
is nonempty without loss for generality. In addition,

we claim that 𝐶 is a 𝜌-ergodic zero set. In fact, we have the
following two cases.

Case I. If 𝑟 ∈ 𝐶, then 𝑟 ∈ 𝐶
[𝑟]+1

, which yields that

∫
[−𝑟,𝑟]∩𝐶

𝜌 (𝑡) 𝑑𝑡

𝜇 (𝑟, 𝜌)

≤

∫
[−𝑟,𝑟]∩𝐶

𝜌 (𝑡) 𝑑𝑡 + ∫
𝐴(𝑟,[𝑟]+1)

𝜌 (𝑡) 𝑑𝑡

∫
[−𝑟,𝑟]

𝜌 (𝑡) 𝑑𝑡 + ∫
𝐴(𝑟,[𝑟]+1)

𝜌 (𝑡) 𝑑𝑡

=

∫
[−𝑟,𝑟]∩𝐶

𝜌 (𝑡) 𝑑𝑡 + 𝐹 (𝑟, [𝑟] + 1)

𝜇 ([𝑟] + 1, 𝜌)

≤

∫
[−𝑟,𝑟]∩𝐶

𝜌 (𝑡) 𝑑𝑡 + (1/ ([𝑟] + 1)) 𝐹 ([𝑟] , [𝑟] + 1)

𝜇 ([𝑟] + 1, 𝜌)

≤

∑
[𝑟]+1

𝑘=1
∫
𝐴(𝑘−1,𝑘)∩𝐶

𝜌 (𝑡) 𝑑𝑡 + (1/ ([𝑟] + 1)) 𝐹 ([𝑟] , [𝑟] + 1)

𝜇 ([𝑟] + 1, 𝜌)

≤

∑
[𝑟]+1

𝑘=1
∫
𝐶
𝑘

𝜌 (𝑡) 𝑑𝑡 + (1/ ([𝑟] + 1)) 𝐹 ([𝑟] , [𝑟] + 1)

𝜇 ([𝑟] + 1, 𝜌)

≤
∑
[𝑟]+1

𝑘=1
(1/𝑘) 𝐹 (𝑘 − 1, 𝑘) + (1/ ([𝑟] + 1)) 𝐹 ([𝑟] , [𝑟] + 1)

𝜇 ([𝑟] + 1, 𝜌)

=
∑
[𝑟]

𝑘=1
(1/𝑘) 𝐹 (𝑘 − 1, 𝑘) + (2/ ([𝑟] + 1)) 𝐹 ([𝑟] , [𝑟] + 1)

𝜇 ([𝑟] + 1, 𝜌)

= (

𝑚

∑

𝑘=1

1

𝑘
𝐹 (𝑘 − 1, 𝑘) +

[𝑟]

∑

𝑘=𝑚+1

1

𝑘
𝐹 (𝑘 − 1, 𝑘)

+
2

[𝑟] + 1
𝐹 ([𝑟] , [𝑟] + 1))

× (𝜇 ([𝑟] + 1, 𝜌))
−1

≤
𝜇 (𝑚, 𝜌) + (2/ (𝑚 + 1)) 𝜇 ([𝑟] + 1, 𝜌)

𝜇 ([𝑟] + 1, 𝜌)

≤
𝜇 (𝑚, 𝜌)

𝜇 ([𝑟] + 1, 𝜌)
+

2

𝑚 + 1
,

(27)

where𝑚 < [𝑟] − 1 is a positive integer. Then, we get

lim
𝑟→+∞

∫
[−𝑟,𝑟]∩𝐶

𝜌 (𝑡) 𝑑𝑡

𝜇 (𝑟, 𝜌)
= 0. (28)
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Case II. If 𝑟 ∉ 𝐶, then ([𝑟], 𝑟] ∩ 𝐶 = 0, which yields that

∫
[−𝑟,𝑟]∩𝐶

𝜌 (𝑡) 𝑑𝑡

𝜇 (𝑟, 𝜌)

≤

∑
[𝑟]

𝑘=1
∫
𝐴(𝑘−1,𝑘)∩𝐶

𝜌 (𝑡) 𝑑𝑡 + ∫
𝐴([𝑟],𝑟)∩𝐶

𝜌 (𝑡) 𝑑𝑡

𝜇 (𝑟, 𝜌)

=

∑
[𝑟]

𝑘=1
∫
𝐴(𝑘−1,𝑘)∩𝐶

𝜌 (𝑡) 𝑑𝑡

𝜇 (𝑟, 𝜌)
.

(29)

Then, similar to Case I, one can also obtain that

lim
𝑟→+∞

∫
[−𝑟,𝑟]∩𝐶

𝜌 (𝑡) 𝑑𝑡

𝜇 (𝑟, 𝜌)
= 0. (30)

Thus, 𝐶 is a 𝜌-ergodic zero set.

Step 2. For every 𝑛 ∈ N, noting that 𝐶
𝑛
is open, there exist

𝑡
𝑛
∈ 𝐶
𝑛
and 𝛿
𝑛
> 0 such that (𝑡

𝑛
− 𝛿
𝑛
, 𝑡
𝑛
+ 𝛿
𝑛
) ⊂ 𝐶
𝑛
. Now, we

construct a bounded and continuous function on R by

𝜑 (𝑡)

=

{{{{{{{{{{{

{{{{{{{{{{{

{

𝑡 − 𝑡
𝑛(𝑛+1)/2

+ 𝛿
𝑛(𝑛+1)/2

𝛿
𝑛(𝑛+1)/2

, 𝑡 ∈ [𝑡
𝑛(𝑛+1)/2

− 𝛿
𝑛(𝑛+1)/2

,

𝑡
𝑛(𝑛+1)/2

] , 𝑛 ∈ N,
𝑡
𝑛(𝑛+1)/2

+ 𝛿
𝑛(𝑛+1)/2

− 𝑡

𝛿
𝑛(𝑛+1)/2

, 𝑡 ∈ [𝑡
𝑛(𝑛+1)/2

, 𝑡
𝑛(𝑛+1)/2

+𝛿
𝑛(𝑛+1)/2

] , 𝑛 ∈ N,

0, otherwise.
(31)

Step 3. 𝜑 ∈ PAP(𝑋, 𝜌) \ AAP(𝑋).
Since {𝑡 ∈ R : 𝜑(𝑡) ̸= 0} ⊂ 𝐶 and 𝐶 is a 𝜌-ergodic zero set,

we have 𝜑 ∈ PAP
0
(𝑋, 𝜌) ⊂ PAP(𝑋, 𝜌). It remains to show that

𝜑 ∉ AAP(𝑋). We prove it by contradiction, assuming that
there exist 𝜑

1
∈ AP(𝑋) and 𝜑

2
∈ 𝐶
0
(𝑋) such that 𝜑 = 𝜑

1
+𝜑
2
.

For sufficiently large 𝑛, since 𝜑
1
∈ AP(𝑋), we can choose

𝜏
𝑛
∈ [

𝑛 (𝑛 + 1)

2
− 𝑡
𝑛(𝑛+1)/2

,
(𝑛 + 1) (𝑛 + 2)

2
− 1 − 𝑡

𝑛(𝑛+1)/2
]

(32)

such that
󵄨󵄨󵄨󵄨𝜑1 (𝑡𝑛(𝑛+1)/2 + 𝜏𝑛) − 𝜑1 (𝑡𝑛(𝑛+1)/2)

󵄨󵄨󵄨󵄨 <
1

2
. (33)

Moreover, since 𝜑
2
∈ 𝐶
0
(𝑋), for sufficiently large 𝑛, we also

have
󵄨󵄨󵄨󵄨𝜑2 (𝑡𝑛(𝑛+1)/2 + 𝜏𝑛) − 𝜑2 (𝑡𝑛(𝑛+1)/2)

󵄨󵄨󵄨󵄨 <
1

2
. (34)

So, we get
󵄨󵄨󵄨󵄨𝜑 (𝑡𝑛(𝑛+1)/2 + 𝜏𝑛) − 𝜑 (𝑡𝑛(𝑛+1)/2)

󵄨󵄨󵄨󵄨 < 1, (35)

which contradicts the fact that

𝜑 (𝑡
𝑛(𝑛+1)/2

) = 1, 𝜑 (𝑡
𝑛(𝑛+1)/2

+ 𝜏
𝑛
) = 0. (36)

This completes the proof.

3. Equivalence

Just as noted in Remark 6, we know that PAP(𝑋, 𝜌) =

PAP(𝑋, 1) provided that 𝜌 ∈ U
𝐵
. Then, there is a natural

question:
Does PAP(𝑋, 𝜌) = PAP(𝑋, 1) imply that 𝜌 ∈ U

𝐵
?

In fact, the above question has a negative answer. For
example, recently, it is proved in [7] and [9] (by a different
method) that

PAP (𝑋, |⋅|𝑛) = PAP (𝑋, 1) , 𝑛 ∈ N. (37)

In this section, we will make further study on this
question.We will prove that for some other 𝜌 ∉ U

𝐵
, there still

holds PAP(𝑋, 𝜌) = PAP(𝑋, 1). Firstly, we recall a theorem,
which is due to [7, Theorem 4.3].

Theorem 15. Let 𝜌
1
, 𝜌
2
∈ U
∞

and

{𝐶 ⊂ R : 𝐶 is a 𝜌
1
-ergodic zero set}

= {𝐶 ⊂ R : 𝐶 is a 𝜌
2
-ergodic zero set} .

(38)

Then PAP
0
(𝑋, 𝜌
1
) = PAP

0
(𝑋, 𝜌
2
).

Theorem 16. Let 𝜌 ∈ U
∞
be a periodic function with 𝜌(𝑡) > 0

almost everywhere on R. Then PAP
0
(𝑋, 𝜌) = PAP

0
(𝑋, 1), and

thus PAP(𝑋, 𝜌) = PAP(𝑋, 1).

Proof. It suffices to prove that PAP
0
(𝑋, 𝜌) = PAP

0
(𝑋, 1). We

divide the remaining proof into two steps.

Step 1. Every 𝜌-ergodic zero set is a 1-ergodic zero set.
Let 𝐶 be a 𝜌-ergodic zero set. Then, we have

lim
𝑟→+∞

∫
[−𝑟,𝑟]∩𝐶

𝜌 (𝑡) 𝑑𝑡

𝜇 (𝑟, 𝜌)
= 0. (39)

Assuming that

lim
𝑟→+∞

mes ([−𝑟, 𝑟] ∩ 𝐶)
2𝑟

̸= 0, (40)

then there exist 𝜀
0
> 0 and a sequence of positive numbers

{𝑇
𝑛
}
∞

𝑛=1
, which satisfies lim

𝑛→∞
𝑇
𝑛
= ∞, and

mes ([−𝑇
𝑛
, 𝑇
𝑛
] ∩ 𝐶) >

2𝑇
𝑛

𝜔
⋅ 𝜀
0
, (41)

where 𝜔 is a positive periodic of 𝜌. On the other hand, since
𝜌(𝑡) > 0 almost everywhere on R, by Lusin’s Theorem, there
exists a closed set 𝐹 ⊂ [0, 𝜔]withmes([0, 𝜔]−𝐹) < 𝜀

0
/2, such

that 𝜌 is continuous on 𝐹 and 𝜌(𝑡) > 0 for all 𝑡 ∈ 𝐹. Let

𝑚
0
:= inf
𝑡∈𝐹

𝜌 (𝑡) . (42)

Then𝑚
0
> 0. Then, we have

mes {𝑡 ∈ [0, 𝜔] : 𝜌 (𝑡) < 𝑚
0
} <

𝜀
0

2
, (43)
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which yields that

mes {𝑡 ∈ [−𝑇
𝑛
, 𝑇
𝑛
] : 𝜌 (𝑡) < 𝑚

0
} < ([

2𝑇
𝑛

𝜔
] + 1) ⋅

𝜀
0

2
. (44)

Combining this with (41), we get

∫
[−𝑇
𝑛
,𝑇
𝑛
]∩𝐶

𝜌 (𝑡) 𝑑𝑡

𝜇 (𝑇
𝑛
, 𝜌)

≥
𝑚
0
⋅ {(2𝑇

𝑛
/𝜔) ⋅ 𝜀

0
− ([2𝑇

𝑛
/𝜔] + 1) ⋅ (𝜀

0
/2)}

∫
[−𝑇
𝑛
,𝑇
𝑛
]

𝜌 (𝑡) 𝑑𝑡

≥
𝑚
0
⋅ {(2𝑇

𝑛
/𝜔) ⋅ 𝜀

0
− ([2𝑇

𝑛
/𝜔] + 1) ⋅ (𝜀

0
/2)}

([2𝑇
𝑛
/𝜔] + 1) ⋅ ∫

𝜔

0

𝜌 (𝑡) 𝑑𝑡

󳨀→
𝑚
0
⋅ (𝜀
0
/2)

∫
𝜔

0

𝜌 (𝑡) 𝑑𝑡

, 𝑛 󳨀→ ∞,

(45)

which contradicts (39). Therefore, 𝐶 is a 1-ergodic zero set.

Step 2. Every 1-ergodic zero set is a 𝜌-ergodic zero set.
Let 𝐶 be a 1-ergodic zero set. For every 𝜀 > 0, there exists

𝛿 > 0 such that, for all set 𝐸 ⊂ [0, 𝜔] with mes 𝐸 < 𝛿, there
holds

∫
𝐸

𝜌 (𝑡) 𝑑𝑡 < 𝜀. (46)

In addition, again by Lusin’s Theorem, for the above 𝛿 > 0,
there exists a closed set 𝐹

𝛿
⊂ [0, 𝜔] with mes([0, 𝜔] − 𝐹

𝛿
) < 𝛿,

such that 𝜌 is continuous on 𝐹
𝛿
. Let

𝑀
𝛿
= sup
𝑡∈𝐹
𝛿

𝜌 (𝑡) . (47)

Then𝑀
𝛿
∈ (0, +∞). Recalling that 𝐶 is a 1-ergodic zero set,

for the above 𝜀 and𝑀
𝛿
, there exists 𝑟

𝜀
> 0 such that

lim
𝑟→+∞

mes ([−𝑟, 𝑟] ∩ 𝐶) + 2𝜔
2𝑟

<
𝜀

𝑀
𝛿

, 𝑟 ≥ 𝑟
𝜀
. (48)

Combining (46) and (48), by using the periodicity of 𝜌, we
conclude that, for all 𝑟 ≥ 𝑟

𝜀
, there holds

∫
[−𝑟,𝑟]∩𝐶

𝜌 (𝑡) 𝑑𝑡 ≤

[𝑟/𝜔]

∑

𝑘=0

∫
[𝑘𝜔,𝑘𝜔+𝜔]∩𝐶

𝜌 (𝑡) 𝑑𝑡

+

[𝑟/𝜔]

∑

𝑘=0

∫
[−𝑘𝜔−𝜔,−𝑘𝜔]∩𝐶

𝜌 (𝑡) 𝑑𝑡

≤ ([
𝑟

𝜔
] + 1) ⋅ 2𝜀

+𝑀
𝛿
⋅ (mes ([−𝑟, 𝑟] ∩ 𝐶) + 2𝜔)

≤ ([
𝑟

𝜔
] + 1) ⋅ 2𝜀 + 2𝑟𝜀,

(49)

where
[𝑟/𝜔]

∑

𝑘=0

∫
[𝑘𝜔,𝑘𝜔+𝜔]∩𝐶

𝜌 (𝑡) 𝑑𝑡

≤

[𝑟/𝜔]

∑

𝑘=0

∫
[[𝑘𝜔,𝑘𝜔+𝜔]−(𝐹

𝛿
+𝑘𝜔)]∩𝐶

𝜌 (𝑡) 𝑑𝑡

+

[𝑟/𝜔]

∑

𝑘=0

∫
[[𝑘𝜔,𝑘𝜔+𝜔]∩(𝐹

𝛿
+𝑘𝜔)]∩𝐶

𝜌 (𝑡) 𝑑𝑡

≤

[𝑟/𝜔]

∑

𝑘=0

∫
[𝑘𝜔,𝑘𝜔+𝜔]−(𝐹

𝛿
+𝑘𝜔)

𝜌 (𝑡) 𝑑𝑡

+

[𝑟/𝜔]

∑

𝑘=0

𝑀
𝛿
⋅mes ([𝑘𝜔, 𝑘𝜔 + 𝜔] ∩ 𝐶)

≤

[𝑟/𝜔]

∑

𝑘=0

∫
[0,𝜔]−𝐹

𝛿

𝜌 (𝑡) 𝑑𝑡

+ 𝑀
𝛿
⋅ (mes ([0, 𝑟] ∩ 𝐶) + 𝜔)

≤ ([
𝑟

𝜔
] + 1) ⋅ 𝜀 + 𝑀

𝛿
⋅ (mes ([0, 𝑟] ∩ 𝐶) + 𝜔) ,

(50)

And, similarly,

[𝑟/𝜔]

∑

𝑘=0

∫
[−𝑘𝜔−𝜔,−𝑘𝜔]∩𝐶

𝜌 (𝑡) 𝑑𝑡

≤ ([
𝑟

𝜔
] + 1) ⋅ 𝜀 + 𝑀

𝛿
⋅ (mes ([−𝑟, 0] ∩ 𝐶) + 𝜔) .

(51)

Noting that

∫

𝑟

−𝑟

𝜌 (𝑡) 𝑑𝑡 ≥ 2 [
𝑟

𝜔
] ⋅ ∫

𝜔

0

𝜌 (𝑡) , (52)

we get

∫
[−𝑟,𝑟]∩𝐶

𝜌 (𝑡) 𝑑𝑡

∫
𝑟

−𝑟

𝜌 (𝑡) 𝑑𝑡

≤
([𝑟/𝜔] + 1) ⋅ 2𝜀 + 2𝑟𝜀

2 [𝑟/𝜔] ⋅ ∫
𝜔

0

𝜌 (𝑡) 𝑑𝑡

󳨀→
𝜔 + 1

∫
𝜔

0

𝜌 (𝑡) 𝑑𝑡

⋅ 𝜀, 𝑟 󳨀→ +∞.

(53)

Then, by the arbitrariness of 𝜀, we conclude that

lim
𝑟→+∞

∫
[−𝑟,𝑟]∩𝐶

𝜌 (𝑡) 𝑑𝑡

∫
𝑟

−𝑟

𝜌 (𝑡) 𝑑𝑡

= 0; (54)

that is, 𝐶 is a 𝜌-ergodic zero set.

Example 17. Let 𝜌(𝑡) = cos2𝑛(𝑡), where 𝑛 ∈ N. Then by
Theorem 16, PAP(𝑋, 𝜌) = PAP(𝑋, 1).

Except for the case in Theorem 16, there is some other 𝜌,
which satisfies that PAP

0
(𝑋, 𝜌) = PAP

0
(𝑋, 1). For example,

we have the following.
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Theorem 18. Let

𝜌 (𝑡) = {
ln |𝑡| , |𝑡| > 1,

0, |𝑡| ≤ 1.
(55)

Then PAP
0
(𝑋, 𝜌) = PAP

0
(𝑋, 1).

Proof. We first show that every 1-ergodic zero set is a 𝜌-
ergodic zero set. Let𝐶 be a 1-ergodic zero set. For every 𝜀 > 0,
there exists 𝑅 > 0 such that, for all 𝑟 > 𝑅,

mes ([−𝑟, 𝑟] ∩ 𝐶) < 2𝑟 ⋅ 𝜀. (56)

Combining this with the fact that 𝜌 is even and increasing on
[0, +∞), we get

𝜇 ([−𝑟, 𝑟] ∩ 𝐶, 𝜌)

𝜇 ([−𝑟, 𝑟] , 𝜌)
⩽

2𝑟 ln 𝑟 ⋅ 𝜀
2 (𝑟 ln 𝑟 − 𝑟 + 1)

, 𝑟 > 𝑅, (57)

which yields that

lim sup
𝑟→+∞

𝜇 ([−𝑟, 𝑟] ∩ 𝐶, 𝜌)

𝜇 ([−𝑟, 𝑟] , 𝜌)
≤ 𝜀. (58)

Then, by the arbitrariness of 𝜀, we know that

lim
𝑟→+∞

𝜇 ([−𝑟, 𝑟] ∩ 𝐶, 𝜌)

𝜇 ([−𝑟, 𝑟] , 𝜌)
= 0; (59)

that is, 𝐶 is a 𝜌-ergodic zero set.
Next, let us show that every 𝜌-ergodic zero set is a 1-

ergodic zero set. Let 𝐶 be a 𝜌-ergodic zero set. Assuming that

lim
𝑟→+∞

mes ([−𝑟, 𝑟] ∩ 𝐶)
2𝑟

̸= 0 (60)

then there exist 𝜀
0
> 0 and a sequence of positive numbers

{𝑇
𝑛
}
∞

𝑛=1
, which satisfies lim

𝑛→∞
𝑇
𝑛
= ∞, and

mes ([−𝑇
𝑛
, 𝑇
𝑛
] ∩ 𝐶) > 2𝑇

𝑛
𝜀
0
. (61)

By (61) and the fact that 𝜌 is even and increasing on [0, +∞),
we conclude that

𝜇 ([−𝑇
𝑛
, 𝑇
𝑛
] ∩ 𝐶, 𝜌)

𝜇 ([−𝑇
𝑛
, 𝑇
𝑛
] , 𝜌)

⩾
𝜇 ([−𝑇

𝑛
𝜀
0
, 𝑇
𝑛
𝜀
0
] , 𝜌)

𝜇 ([−𝑇
𝑛
, 𝑇
𝑛
] , 𝜌)

=
𝜀
0
(𝑇
𝑛
ln (𝜀
0
𝑇
𝑛
) − 𝑇
𝑛
) + 1

𝑇
𝑛
ln𝑇
𝑛
− 𝑇
𝑛
+ 1

=
𝜀
0
(𝑇
𝑛
ln𝑇
𝑛
− 𝑇
𝑛
) + 𝑇
𝑛
𝜀
0
ln 𝜀
0
+ 1

𝑇
𝑛
ln𝑇
𝑛
− 𝑇
𝑛
+ 1

.

(62)

Letting 𝑛 → ∞, we get

lim inf
𝑛→∞

𝜇 ([−𝑇
𝑛
, 𝑇
𝑛
] ∩ 𝐶, 𝜌)

𝜇 ([−𝑇
𝑛
, 𝑇
𝑛
] , 𝜌)

≥ 𝜀
0
, (63)

which contradicts the fact that𝐶 is a 𝜌-ergodic zero set.Thus,
𝐶 is a 1-ergodic zero set. This completes the proof.
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26, no. 2, pp. 427–443, 2013.

[13] H.-S. Ding, J. Liang, and T.-J. Xiao, “Weighted pseudo almost
periodic functions and applications to evolution equations with



8 Abstract and Applied Analysis

delay,” Applied Mathematics and Computation, vol. 219, no. 17,
pp. 8949–8958, 2013.

[14] C. Corduneanu, Almost Periodic Functions, Chelsea, New York,
NY, USA, 2nd edition, 1989.

[15] T. Diagana, Pseudo Almost Periodic Functions in Banach Spaces,
Nova Science, New York, NY, USA, 2007.

[16] C. Zhang, Almost Periodic Type Functions and Ergodicity,
Science Press, Beijing, China, 2003.

[17] H.-S. Ding, W. Long, and G. M. N’Guérékata, “A composition
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