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We define two sequential transforms on a function space 𝐶
𝑎,𝑏
[0, 𝑇] induced by generalized Brownian motion process. We then

establish the existence of the sequential transforms for functionals in a Banach algebra of functionals on𝐶
𝑎,𝑏
[0, 𝑇].We also establish

that any one of these transforms acts like an inverse transform of the other transform. Finally, we give some remarks about certain
relations between our sequential transforms and other well-known transforms on 𝐶

𝑎,𝑏
[0, 𝑇].

1. Introduction and Preliminaries

Let 𝐶
0
[0, 𝑇] denote one-parameter Wiener space; that is, the

space of all real-valued continuous functions 𝑥(𝑡) on [0, 𝑇]

with 𝑥(0) = 0. The study of the Fourier-Wiener transform of
functionals on𝐶

0
[0, 𝑇]was initiated by Cameron andMartin

[1–3]. This transform and its properties are similar in many
respects to the ordinary Fourier function transform. Since
then, many transforms which were somewhat analogous to
the Fourier-Wiener transform have been defined and devel-
oped in the literature. There are two well-known transforms
on 𝐶
0
[0, 𝑇]. One of them is the analytic Fourier-Feynman

transform [4–6] and the other is the integral transform [7–
10]. Each of the transforms on Wiener space has an inverse
transform. For an elementary survey, see [11].

In [12–16], the authors studied the generalized analytic
Fourier-Feynman transform and the generalized integral
transform for functionals defined on amore general function
space 𝐶

𝑎,𝑏
[0, 𝑇]. The function space 𝐶

𝑎,𝑏
[0, 𝑇], induced by

generalized Brownianmotion process, was introduced by Yeh
[17, 18] and was used extensively by Chang and Chung [19].
TheWiener process used in [1–10] is stationary in time and is
free of drift, while the stochastic process used in this paper, as
well as in [12–17, 19], is nonstationary in time and is subject
to a drift 𝑎(𝑡). In case 𝑎(𝑡) ≡ 0 and 𝑏(𝑡) = 𝑡 on [0, 𝑇],
the general function space 𝐶

𝑎,𝑏
[0, 𝑇] reduces to the Wiener

space 𝐶
0
[0, 𝑇] and so most of the results in [4–6, 9] follow

immediately from the results in [12, 13, 15, 16].

However, the existence of an inverse transform of each
of the two generalized transforms on 𝐶

𝑎,𝑏
[0, 𝑇] has not yet

been established. It is a critical point that the generalized
transforms on 𝐶

𝑎,𝑏
[0, 𝑇] are essentially different from the

transforms on Wiener space 𝐶
0
[0, 𝑇]. The main purpose of

this paper is to define a transform on 𝐶
𝑎,𝑏

[0, 𝑇] which has an
inverse transform.

In this paper, we define two sequential transforms on
the function space 𝐶

𝑎,𝑏
[0, 𝑇]. To do this, we investigate a

representation for sample paths of the generalized Brownian
motion process and introduce the concept of the G-s-
continuity for functionals on 𝐶

𝑎,𝑏
[0, 𝑇]. We then proceed

to establish the existence of the sequential transforms for
functionals in a Banach algebraF∗(𝐶

𝑎,𝑏
[0, 𝑇]) of functionals

on 𝐶
𝑎,𝑏

[0, 𝑇]. Next, we establish that any one of these
transforms acts like an inverse transform of the other trans-
form. Finally, we examine certain aspects of the generalized
analytic Fourier-Feynman transform, the generalized integral
transform, and the sequential transforms.

We briefly list some of the preliminaries from [12, 13, 17]
that we will need in order to establish the results in this paper.

Let 𝑎(𝑡) be an absolutely continuous real-valued function
on [0, 𝑇] with 𝑎(0) = 0, 𝑎(𝑡) ∈ 𝐿

2

[0, 𝑇], and let 𝑏(𝑡) be
a strictly increasing, continuously differentiable real-valued
function with 𝑏(0) = 0 and 𝑏



(𝑡) > 0 for each 𝑡 ∈ [0, 𝑇].
The generalized Brownian motion process 𝑌 determined by
𝑎(𝑡) and 𝑏(𝑡) is a Gaussian process with mean function 𝑎(𝑡)
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and covariance function 𝑟(𝑠, 𝑡) = min{𝑏(𝑠), 𝑏(𝑡)}. For more
details, see [12, 13]. By Theorem 14.2 in [18], the probability
measure 𝜇 induced by 𝑌, taking a separable version, is
supported by 𝐶

𝑎,𝑏
[0, 𝑇] (which is equivalent to the Banach

space of continuous functions𝑥 on [0, 𝑇]with 𝑥(0) = 0 under
the sup norm). Hence, (𝐶

𝑎,𝑏
[0, 𝑇],B(𝐶

𝑎,𝑏
[0, 𝑇]), 𝜇) is the

function space induced by 𝑌whereB(𝐶
𝑎,𝑏

[0, 𝑇]) is the Borel
𝜎-algebra of 𝐶

𝑎,𝑏
[0, 𝑇]. We then complete this function space

to obtain (𝐶
𝑎,𝑏

[0, 𝑇],W(𝐶
𝑎,𝑏

[0, 𝑇]), 𝜇), where W(𝐶
𝑎,𝑏

[0, 𝑇])

is the set of all Wiener measurable subsets of 𝐶
𝑎,𝑏

[0, 𝑇].
A subset 𝐵 of 𝐶

𝑎,𝑏
[0, 𝑇] is said to be scale-invariant

measurable provided 𝜌𝐵 is W(𝐶
𝑎,𝑏

[0, 𝑇])-measurable for all
𝜌 > 0, and a scale-invariant measurable set 𝑁 is said to be a
scale-invariant null set provided 𝜇(𝜌𝑁) = 0 for all 𝜌 > 0.
A property that holds except on a scale-invariant null set
is said to hold scale-invariant almost everywhere (s-a.e.). A
functional𝐹 is said to be scale-invariantmeasurable provided
𝐹 is defined on a scale-invariant measurable set, and 𝐹(𝜌⋅) is
W(𝐶
𝑎,𝑏

[0, 𝑇])-measurable for every 𝜌 > 0. If two functionals
𝐹 and𝐺 defined on𝐶

𝑎,𝑏
[0, 𝑇] are equal s-a.e., we write 𝐹 ≈ 𝐺.

Let 𝐿2
𝑎,𝑏

[0, 𝑇] be the space of functions on [0, 𝑇] which
are Lebesgue measurable and square integrable with respect
to the Lebesgue-Stieltjes measures on [0, 𝑇] induced by 𝑎(⋅)

and 𝑏(⋅); that is,

𝐿
2

𝑎,𝑏
[0, 𝑇]

= {V : ∫

𝑇

0

V2 (𝑠) 𝑑𝑏 (𝑠) < +∞,∫

𝑇

0

V2 (𝑠) 𝑑 |𝑎| (𝑠) < +∞} ,

(1)

where |𝑎|(⋅) is the total variation function of 𝑎(⋅). Then,
(𝐿
2

𝑎,𝑏
[0, 𝑇], ‖ ⋅ ‖

𝑎,𝑏
) is a separable Hilbert space with inner

product defined by

(𝑢, V)
𝑎,𝑏

= ∫

𝑇

0

𝑢 (𝑡) V (𝑡) 𝑑 [𝑏 (𝑡) + |𝑎| (𝑡)] . (2)

Note that ‖𝑢‖
𝑎,𝑏

= √(𝑢, 𝑢)
𝑎,𝑏

= 0 if and only if 𝑢(𝑡) = 0 a.e. on
[0, 𝑇]. Also note that all functions of bounded variation on
[0, 𝑇] are elements of 𝐿2

𝑎,𝑏
[0, 𝑇]. If 𝑎(𝑡) ≡ 0 and 𝑏(𝑡) = 𝑡, then

𝐿
2

𝑎,𝑏
[0, 𝑇] = 𝐿

2

[0, 𝑇]. In fact,

(𝐿
2

𝑎,𝑏
[0, 𝑇] , ‖⋅‖

𝑎,𝑏
) ⊂ (𝐿

2

0,𝑏
[0, 𝑇] , ‖⋅‖

0,𝑏
)

= (𝐿
2

[0, 𝑇] , ‖⋅‖
2
)

(3)

because the norms ‖ ⋅ ‖
0,𝑏

and ‖ ⋅ ‖
2
are equivalent.

Let

𝐶


𝑎,𝑏
[0, 𝑇] = {𝑤 ∈ 𝐶

𝑎,𝑏
[0, 𝑇] : 𝑤 (𝑡)

= ∫

𝑡

0

𝑧 (𝑠) 𝑑𝑏 (𝑠) for some 𝑧 ∈ 𝐿
2

𝑎,𝑏
[0, 𝑇]} .

(4)

For 𝑤 ∈ 𝐶


𝑎,𝑏
[0, 𝑇], with 𝑤(𝑡) = ∫

𝑡

0

𝑧(𝑠)𝑑𝑏(𝑠) for 𝑡 ∈ [0, 𝑇], let
𝐷 : 𝐶


𝑎,𝑏
[0, 𝑇] → 𝐿

2

𝑎,𝑏
[0, 𝑇] be defined by the formula

𝐷𝑤 (𝑡) = 𝑧 (𝑡) =
𝑤


(𝑡)

𝑏 (𝑡)
. (5)

Then 𝐶


𝑎,𝑏
≡ 𝐶


𝑎,𝑏
[0, 𝑇] with inner product

(𝑤
1
, 𝑤
2
)
𝐶


𝑎,𝑏

= ∫

𝑇

0

𝐷𝑤
1
(𝑡) 𝐷𝑤

2
(𝑡) 𝑑𝑏 (𝑡)

= ∫

𝑇

0

𝑧
1
(𝑡) 𝑧
2
(𝑡) 𝑑𝑏 (𝑡) = (𝑧

1
, 𝑧
2
)
0,𝑏

(6)

is a separable Hilbert space.
Note that the two separable Hilbert spaces 𝐿2

𝑎,𝑏
[0, 𝑇] and

𝐶


𝑎,𝑏
[0, 𝑇] are homeomorphic under the linear operator given

by (5). The inverse operator of𝐷 is given by

(𝐷
−1

𝑧) (𝑡) = ∫

𝑡

0

𝑧 (𝑠) 𝑑𝑏 (𝑠) . (7)

Recall that above, as well as in papers [12–16], we require
that 𝑎 : [0, 𝑇] → R is an absolutely continuous functionwith
𝑎(0) = 0 and with ∫

𝑇

0

|𝑎


(𝑡)|
2

𝑑𝑡 < +∞. Our conditions on
𝑏 : [0, 𝑇] → R imply that𝛿 < 𝑏



(𝑡) < Δ for somepositive real
numbers 𝛿 andΔ, and 𝑏



(𝑡) is continuous on [0, 𝑇]. Hence, we
have

∫

𝑇

0


𝑎


(𝑡)


2

𝑑𝑏 (𝑡) = ∫

𝑇

0


𝑎


(𝑡)


2

𝑏


(𝑡) 𝑑𝑡 < +∞. (8)

But we cannot ensure that

∫

𝑇

0


𝑎


(𝑡)


2

𝑑 |𝑎| (𝑡) < +∞ (9)

under current conditions. Note that the function 𝑎(𝑡) = 𝑡
2/3,

0 ≤ 𝑡 ≤ 𝑇, does not satisfy condition (9) even though its
derivative is an element of 𝐿2[0, 𝑇].

In this paper, we add the requirement (9).Then we obtain
the following lemma.

Lemma 1. The function 𝑎 : [0, 𝑇] → R satisfies the require-
ment (9) if and only if 𝑎 is an element of 𝐶

𝑎,𝑏
[0, 𝑇].

Under the requirement (9), we observe that for each 𝑧 ∈

𝐿
2

𝑎,𝑏
[0, 𝑇],

∫

𝑇

0

𝑧 (𝑡) 𝑑𝑎 (𝑡) = ∫

𝑇

0

𝐷𝑤 (𝑡)𝐷𝑎 (𝑡) 𝑑𝑏 (𝑡) = (𝑤, 𝑎)
𝐶


𝑎,𝑏

, (10)

where 𝑤(𝑡) = ∫
𝑡

0

𝑧(𝑠)𝑑𝑏(𝑠) for 𝑡 ∈ [0, 𝑇].
The following integration formula is used several times in

this paper:

∫
R

exp {−𝛼𝑢
2

+ 𝛽𝑢} 𝑑𝑢 = √
𝜋

𝛼
exp{

𝛽
2

4𝛼
} (11)

for complex numbers 𝛼 and 𝛽 with Re(𝛼) > 0.

2. A Representation for Paths 𝑥 in 𝐶
𝑎,𝑏
[0,𝑇]

In this section, we investigate a representation for paths 𝑥

in 𝐶
𝑎,𝑏

[0, 𝑇]. To do this, we first define a Paley-Wiener-
Zygmund (PWZ) type stochastic integral.
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Let {𝑔
1
, 𝑔
2
, . . .} be a complete orthonormal set of func-

tions in the separable Hilbert space 𝐶


𝑎,𝑏
[0, 𝑇], such that for

each 𝑗 = 1, 2, . . ., 𝐷𝑔
𝑗
(𝑡) = 𝛼

𝑗
(𝑡) is of bounded variation

on [0, 𝑇]. Then, for each 𝑤 ∈ 𝐶


𝑎,𝑏
[0, 𝑇] with 𝐷𝑤 = 𝑧 ∈

𝐿
2

𝑎,𝑏
[0, 𝑇], we can write

𝑤 (𝑡) =

∞

∑

𝑗=1

(𝑤, 𝑔
𝑗
)
𝐶


𝑎,𝑏

𝑔
𝑗
(𝑡) =

∞

∑

𝑗=1

(𝑧, 𝛼
𝑗
)
0,𝑏

𝑔
𝑗
(𝑡) (12)

on [0, 𝑇].
For each 𝑤 = 𝐷

−1

𝑧 ∈ 𝐶


𝑎,𝑏
[0, 𝑇], the PWZ type stochastic

integral (𝑤, 𝑥)
∼

𝐶


𝑎,𝑏

is defined by the formula

(𝑤, 𝑥)
∼

𝐶


𝑎,𝑏

= lim
𝑛→∞

∫

𝑇

0

𝑛

∑

𝑗=1

(𝑤, 𝑔
𝑗
)
𝐶


𝑎,𝑏

𝐷𝑔
𝑗
(𝑡) 𝑑𝑥 (𝑡)

= lim
𝑛→∞

∫

𝑇

0

𝑛

∑

𝑗=1

(𝑧, 𝛼
𝑗
)
0,𝑏

𝛼
𝑗
(𝑡) 𝑑𝑥 (𝑡)

(13)

for all 𝑥 ∈ 𝐶
𝑎,𝑏

[0, 𝑇] for which the limit exists.
The following are some basic properties of the PWZ type

stochastic integral.They are nontrivial, but straightforward to
prove.

(1) For each 𝑤 ∈ 𝐶


𝑎,𝑏
[0, 𝑇], the PWZ type stochastic

integral (𝑤, 𝑥)
∼

𝐶


𝑎,𝑏

exists for 𝜇-a.e. 𝑥 ∈ 𝐶
𝑎,𝑏

[0, 𝑇].

(2) The PWZ type stochastic integral (𝑤, 𝑥)
∼

𝐶


𝑎,𝑏

is essen-
tially independent of the choice of the complete
orthonormal set {𝑔

𝑗
}
∞

𝑗=1
in 𝐶


𝑎,𝑏
[0, 𝑇].

(3) It follows from the definition of the PWZ type
stochastic integral and from Parseval’s equality that if
𝑤 ∈ 𝐶



𝑎,𝑏
[0, 𝑇] and 𝑥 ∈ 𝐶



𝑎,𝑏
[0, 𝑇], then (𝑤, 𝑥)

∼

𝐶


𝑎,𝑏

exists
and we have (𝑤, 𝑥)

∼

𝐶


𝑎,𝑏

= (𝑤, 𝑥)
𝐶


𝑎,𝑏

.

(4) If 𝐷𝑤 = 𝑧 ∈ 𝐿
𝑎,𝑏

[0, 𝑇] is of bounded variation on
[0, 𝑇], then the PWZ type stochastic integral (𝑤, 𝑥)

∼

𝐶


𝑎,𝑏

equals the Riemann-Stieltjes integral ∫𝑇
0

𝑧(𝑡)𝑑𝑥(𝑡) for
𝜇-a.e. 𝑥 ∈ 𝐶

𝑎,𝑏
[0, 𝑇].

(5) The PWZ type stochastic integral has the expected
linearity properties. That is, for any real number 𝑐,
𝑤 ∈ 𝐶



𝑎,𝑏
[0, 𝑇] and 𝑥 ∈ 𝐶

𝑎,𝑏
[0, 𝑇], we have

(𝑤, c𝑥)∼
𝐶


𝑎,𝑏

= 𝑐(𝑤, 𝑥)
∼

𝐶


𝑎,𝑏

= (𝑐𝑤, 𝑥)
∼

𝐶


𝑎,𝑏

. (14)

Thus, the assertions (1) and (4) hold for s-a.e. 𝑥 ∈

𝐶
𝑎,𝑏

[0, 𝑇].
(6) For each 𝑤 ∈ 𝐶



𝑎,𝑏
[0, 𝑇], (𝑤, 𝑥) ̃

𝐶


𝑎,𝑏

is a Gaussian
random variable with mean (𝑤, 𝑎)

𝐶


𝑎,𝑏

and variance
‖𝑤‖
2

𝐶


𝑎,𝑏

. For all 𝑤
1
, 𝑤
2
∈ 𝐶


𝑎,𝑏
[0, 𝑇], we have

∫
𝐶
𝑎,𝑏
[0,𝑇]

(𝑤
1
, 𝑥)
∼

𝐶


𝑎,𝑏

(𝑤
2
, 𝑥)
∼

𝐶


𝑎,𝑏

𝑑𝜇 (𝑥)

= (𝑤
1
, 𝑤
2
)
𝐶


𝑎,𝑏

+ (𝑤
1
, 𝑎)
𝐶


𝑎,𝑏

(𝑤
2
, 𝑎)
𝐶


𝑎,𝑏

.

(15)

Now, we are ready to examine a representation for paths 𝑥
in𝐶
𝑎,𝑏

[0, 𝑇].Throughout the rest of this paper, wewill use the
symbolG for a complete orthonormal set {𝑔

𝑗
}
∞

𝑗=1
in𝐶


𝑎,𝑏
[0, 𝑇],

such that for each 𝑗 = 1, 2, . . ., 𝐷𝑔
𝑗

= 𝛼
𝑗
is of bounded

variation on [0, 𝑇]. Then, for each 𝑗 = 1, 2, . . .,

𝛾
𝑗
(𝑥) ≡ (𝑔

𝑗
, 𝑥)
∼

𝐶


𝑎,𝑏

= ∫

𝑇

0

𝛼
𝑗
(𝑡) 𝑑𝑥 (𝑡) (16)

is a Gaussian random variable with mean

𝐴
𝑗
≡ (𝑔
𝑗
, 𝑎)
𝐶


𝑎,𝑏

= ∫

𝑇

0

𝛼
𝑗
(𝑡) 𝑑𝑎 (𝑡) (17)

and variance


𝑔
𝑗



2

𝐶


𝑎,𝑏

= ∫

𝑇

0

𝛼
2

𝑗
(𝑡) 𝑑𝑏 (𝑡) = 1. (18)

We note that the set {𝛾
1
(𝑥), 𝛾
2
(𝑥), . . .} forms a set of indepen-

dent Gaussian random variables on 𝐶
𝑎,𝑏

[0, 𝑇].
Let G ≡ {𝑔

𝑗
}
∞

𝑗=1
be as above, and let 𝑥 ∈ 𝐶

𝑎,𝑏
[0, 𝑇]. For

each 𝑛 = 1, 2, . . ., define

𝑍
𝑛
(𝑥) (𝑡) ≡

𝑛

∑

𝑗=1

𝛾
𝑗
(𝑥) 𝑔
𝑗
(𝑡) . (19)

Then, 𝑍
𝑛
(𝑥) is an element of 𝐶

𝑎,𝑏
[0, 𝑇] for all 𝑥 ∈ 𝐶

𝑎,𝑏
[0, 𝑇]

and all 𝑛 = 1, 2, . . ..
For each 𝑡 ∈ [0, 𝑇], let Ψ

𝑡
(𝑠) = ∫

𝑠

0

𝜒
[0,𝑡]

(𝜏)𝑑𝑏(𝜏). Then, we
observe that for each 𝑡 ∈ [0, 𝑇],

𝑥 (𝑡) = ∫

𝑇

0

𝜒
[0,𝑡]

(𝑠) 𝑑𝑥 (𝑠)

= (Ψ
𝑡
, 𝑥)
∼

𝐶


𝑎,𝑏

= lim
𝑛→∞

𝑛

∑

𝑗=1

(Ψ
𝑡
, 𝑔
𝑗
)
𝐶


𝑎,𝑏

∫

𝑇

0

𝛼
𝑗
(𝑠) 𝑑𝑥 (𝑠)

= lim
𝑛→∞

𝑛

∑

𝑗=1

∫

𝑡

0

𝛼
𝑗
(𝑠) 𝑑𝑏 (𝑠) 𝛾

𝑗
(𝑥)

= lim
𝑛→∞

𝑛

∑

𝑗=1

𝛾
𝑗
(𝑥) 𝑔
𝑗
(𝑡)

= lim
𝑛→∞

𝑍
𝑛
(𝑥) (𝑡) .

(20)

By the property of the PWZ type stochastic integral, the last
expression of (20) converges for 𝜇-a.e. 𝑥 ∈ 𝐶

𝑎,𝑏
[0, 𝑇].

Remark 2. By the definition of the PWZ type stochastic
integral, the last expression of (20) is independent of the
choice of the complete orthonormal setG in 𝐶



𝑎,𝑏
[0, 𝑇]. If we

choose the complete orthonormal sine sequenceG ≡ {𝑔
𝑗
}
∞

𝑗=1

in 𝐶


𝑎,𝑏
[0, 𝑇], where

𝑔
𝑗
(𝑡) =

√2𝑏 (𝑇)

(𝑗 − 1/2) 𝜋
sin[

(𝑗 − 1/2) 𝜋𝑏 (𝑡)

𝑏 (𝑇)
] ; (21)
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that is,

𝛼
𝑗
(𝑡) = 𝐷𝑔

𝑗
(𝑡) = √

2

𝑏 (𝑇)
cos[

(𝑗 − 1/2) 𝜋𝑏 (𝑡)

𝑏 (𝑇)
] (22)

for 𝑗 = 1, 2, . . ., then the corresponding𝑍
𝑛
(𝑥)(𝑡) converges to

𝑥(𝑡) uniformly in 𝑡with probability one. For more details, see
[20] and the references therein.

We now state a fundamental integration formula on the
function space 𝐶

𝑎,𝑏
[0, 𝑇]. Let 𝛾

𝑗
(𝑥) and 𝐴

𝑗
be as above, let

ℎ : R𝑛 → C be Lebesgue measurable, and let 𝐻(𝑥) =

ℎ(𝛾
1
(𝑥), . . . , 𝛾

𝑛
(𝑥)). Then

∫
𝐶
𝑎,𝑏
[0,𝑇]

𝐻(𝑥) 𝑑𝜇 (𝑥)

≡ ∫
𝐶
𝑎,𝑏
[0,𝑇]

ℎ (𝛾
1
(𝑥) , . . . , 𝛾

𝑛
(𝑥)) 𝑑𝜇 (𝑥)

= (2𝜋)
−𝑛/2

∫
R𝑛

ℎ (𝑢
1
, . . . , 𝑢

𝑛
)

× exp
{

{

{

−

𝑛

∑

𝑗=1

[𝑢
𝑗
− 𝐴
𝑗
]
2

2

}

}

}

𝑑𝑢
1
. . . 𝑑𝑢

𝑛

(23)

in the sense that if either side of (23) exists, both sides exist
and equality holds.

Let 𝐹 be a functional on 𝐶
𝑎,𝑏

[0, 𝑇] and let G ≡ {𝑔
𝑗
}
∞

𝑗=1
be

a complete orthonormal set in 𝐶


𝑎,𝑏
[0, 𝑇]. Then, we say that 𝐹

isG-continuous at 𝑥 if

lim
𝑛→∞

𝐹 (𝑍
𝑛
(𝑥)) = 𝐹 (𝑥) , (24)

where 𝑍
𝑛
(𝑥) is given by (19).

Example 3. For each 𝑡 ∈ [0, 𝑇], let 𝐹 : 𝐶
𝑎,𝑏

[0, 𝑇] → R be
given by 𝐹(𝑥) = 𝑥(𝑡). Then, using (20) and (14), we see that 𝐹
isG-continuous for s-a.e.𝑥 ∈ 𝐶

𝑎,𝑏
[0, 𝑇] and all𝑥 ∈ 𝐶



𝑎,𝑏
[0, 𝑇].

Example 4. Given 𝑤 = 𝐷
−1

𝑧 ∈ 𝐶


𝑎,𝑏
[0, 𝑇], let 𝐹 :

𝐶
𝑎,𝑏

[0, 𝑇] → R be given by 𝐹(𝑥) = (𝑤, 𝑥)
∼

𝐶


𝑎,𝑏

. Since
(𝑤, 𝑥)

∼

𝐶


𝑎,𝑏

= (𝑤, 𝑥)
𝐶


𝑎,𝑏

for every 𝑥 ∈ 𝐶


𝑎,𝑏
[0, 𝑇], by the

definition of PWZ type stochastic integral, we obtain that

lim
𝑛→∞

𝐹 (𝑍
𝑛
(𝑥)) = lim

𝑛→∞

(𝑤, 𝑍
𝑛
(𝑥))
𝐶


𝑎,𝑏

= lim
𝑛→∞

∫

𝑇

0

𝑧 (𝑡) 𝑑𝑍
𝑛
(𝑥) (𝑡)

= lim
𝑛→∞

∫

𝑇

0

𝑧 (𝑡) 𝑑(

𝑛

∑

𝑗=1

𝛾
𝑗
(𝑥) 𝑔
𝑗
(𝑡))

= lim
𝑛→∞

𝑛

∑

𝑗=1

𝛾
𝑗
(𝑥) ∫

𝑇

0

𝑧 (𝑡) 𝑑𝑔
𝑗
(𝑡)

= lim
𝑛→∞

𝑛

∑

𝑗=1

(𝑧, 𝛼
𝑗
)
0,𝑏

𝛾
𝑗
(𝑥)

= (𝑤, 𝑥)
∼

𝐶


𝑎,𝑏

= 𝐹 (𝑥)

(25)

for s-a.e. 𝑥 ∈ 𝐶
𝑎,𝑏

[0, 𝑇] and all 𝑥 ∈ 𝐶


𝑎,𝑏
[0, 𝑇].

Proposition 5. Let 𝐹 : 𝐶
𝑎,𝑏

[0, 𝑇] → C be 𝜇-integrable.
Assume that 𝐹 isG-continuous for 𝜇-a.e. 𝑥 ∈ 𝐶

𝑎,𝑏
[0, 𝑇]. Then

∫
𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥) 𝑑𝜇 (𝑥)

= lim
𝑛→∞

∫
𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑍
𝑛
(𝑥)) 𝑑𝜇 (𝑥) ,

(26)

where 𝑍
𝑛
(𝑥) is given by (19).

Proof. For each 𝑛 = 1, 2, . . ., let 𝐹
𝑛
(𝑥) = 𝐹(𝑍

𝑛
(𝑥)). Then 𝐹

𝑛
is

𝜇-integrable. By our assumption, we observe that

lim
𝑛→∞

𝐹
𝑛
(𝑥) = lim

𝑛→∞

𝐹 (𝑍
𝑛
(𝑥)) = 𝐹 (𝑥) (27)

for 𝜇-a.e. 𝑥 ∈ 𝐶
𝑎,𝑏

[0, 𝑇]. Thus, by the dominated convergence
theorem, it follows that

lim
𝑛→∞

∫
𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑍
𝑛
(𝑥)) 𝑑𝜇 (𝑥)

= lim
𝑛→∞

∫
𝐶
𝑎,𝑏
[0,𝑇]

𝐹
𝑛
(𝑥) 𝑑𝜇 (𝑥)

= ∫
𝐶
𝑎,𝑏
[0,𝑇]

lim
𝑛→∞

𝐹
𝑛
(𝑥) 𝑑𝜇 (𝑥)

= ∫
𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥) 𝑑𝜇 (𝑥)

(28)

as desired.

3. Sequential Function Space Integrals

In [21], Cameron and Storvick defined the “sequential” Feyn-
man integral by means of finite dimensional approximations
for functionals on Wiener space 𝐶

0
[0, 𝑇]. The sequential

definition for the Feynman integral was intended to interpret
the Feynman’s uniform measure [22] on path space 𝐶

0
[0, 𝑇],

because there is no countably additivemeasurewhichweights
all paths 𝑥 in 𝐶

0
[0, 𝑇] equally in much the same way as

Lebesgue measure weights all points in R equally. Thus, the
Cameron and Storvick’s sequential Feynman integral is a
rigorous mathematical formulation of the Feynman’s path
integral.

The Cameron and Storvick’s sequential Feynman integral
is related by sequential Wiener integral [23]; that is, the
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integral is based on polygonal path approximations. In this
section, we define different kinds of sequential function space
integrals for functionals on the function space 𝐶

𝑎,𝑏
[0, 𝑇].

In Section 4 below, we also adopt sequential approaches
to define our function space transforms on 𝐶

𝑎,𝑏
[0, 𝑇]. The

sequential definition for the Feynman integral in [21] was
defined as the limit of a sequence of finite dimensional
Lebesgue integrals. Essentially, our sequential function space
integrals and transforms are defined in terms of a sequence of
complex measures on the function space 𝐶

𝑎,𝑏
[0, 𝑇].

Next, we introduce two sequential definitions for certain
function space integrals on 𝐶

𝑎,𝑏
[0, 𝑇]. Throughout the rest of

this paper, let C
+
and C̃

+
denote the set of complex numbers

with positive real part and nonzero complex numbers with
nonnegative real part, respectively. Furthermore, for all 𝜆 ∈

C, 𝜆1/2 is always chosen to have nonnegative real part.
Let G ≡ {𝑔

𝑗
}
∞

𝑗=1
, 𝛾
𝑗
(𝑥), and 𝐴

𝑗
be as in Section 2. For 𝜆 ∈

C
+
, 𝑥 ∈ 𝐶

𝑎,𝑏
[0, 𝑇] and each 𝑛 = 1, 2, . . ., let

𝑊
+

𝑛
(𝜆; 𝑥) ≡ 𝜆

𝑛/2 exp
{

{

{

(
1 − 𝜆

2
)

𝑛

∑

𝑗=1

𝛾
2

𝑗
(𝑥)

+ (𝜆
1/2

− 1)

𝑛

∑

𝑗=1

𝐴
𝑗
𝛾
𝑗
(𝑥)

}

}

}

(29)

and let

𝑊
−

𝑛
(𝜆; 𝑥) ≡ 𝜆

𝑛/2 exp
{

{

{

(
1 − 𝜆

2
)

𝑛

∑

𝑗=1

𝛾
2

𝑗
(𝑥)

+ ((−𝜆)
1/2

− 1)

𝑛

∑

𝑗=1

𝐴
𝑗
𝛾
𝑗
(𝑥) +

𝑛

∑

𝑗=1

𝐴
2

𝑗

}

}

}

.

(30)

Using (23) and (11), we observe that for all 𝜆 ∈ C
+
and

every 𝑛 = 1, 2, . . .,

∫
𝐶
𝑎,𝑏
[0,𝑇]

𝑊
+

𝑛
(𝜆; 𝑥) 𝑑𝜇 (𝑥)

= ∫
𝐶
𝑎,𝑏
[0,𝑇]

𝑊
−

𝑛
(𝜆; 𝑥) 𝑑𝜇 (𝑥) = 1.

(31)

We are now ready to state the definition of the sequential
function space integrals.

Definition 6. Let 𝐹 be a measurable functional on 𝐶
𝑎,𝑏

[0, 𝑇].
Let 𝑞 ̸= 0 be a real number and let {𝜆

𝑛
}
∞

𝑛=1
be a sequence

of complex numbers in C
+
such that 𝜆

𝑛
→ −𝑖𝑞. If the

following limit exists, one calls it the sequential P-function
space integral of 𝐹 with parameter 𝑞, and we write

∫

𝑃
𝑞

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥) 𝑑
se
𝑥

= lim
𝑛→∞

∫
𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑍
𝑛
(𝑥))𝑊

+

𝑛
(𝜆
𝑛
; 𝑥) 𝑑𝜇 (𝑥) .

(32)

We also define the sequential N-function space integral
of 𝐹 with parameter 𝑞 by the formula

∫

𝑁
𝑞

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥) 𝑑
se
𝑥

= lim
𝑛→∞

∫
𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑍
𝑛
(𝑥))𝑊

−

𝑛
(𝜆
𝑛
; 𝑥) 𝑑𝜇 (𝑥)

(33)

if it exists.
Let 𝐹
1
(𝑥) ≡ 1 on 𝐶

𝑎,𝑏
[0, 𝑇] and let

𝐹
2
(𝑥) = {

0, 𝑥 ∈ 𝐶


𝑎,𝑏
[0, 𝑇] ,

1, 𝑥 ∈ 𝐶
𝑎,𝑏

[0, 𝑇] − 𝐶


𝑎,𝑏
[0, 𝑇] .

(34)

Then, since 𝐶


𝑎,𝑏
[0, 𝑇] is a scale invariant null set, we have

𝐹
1
≈ 𝐹
2
. But by the definition of the sequential function space

integrals, we see that

∫

𝑃
𝑞

𝐶
𝑎,𝑏
[0,𝑇]

𝐹
1
(𝑥) 𝑑

se
𝑥 = ∫

𝑁
𝑞

𝐶
𝑎,𝑏
[0,𝑇]

𝐹
1
(𝑥) 𝑑

se
𝑥 = 1,

∫

𝑃
𝑞

𝐶
𝑎,𝑏
[0,𝑇]

𝐹
2
(𝑥) 𝑑

se
𝑥 = ∫

𝑁
𝑞

𝐶
𝑎,𝑏
[0,𝑇]

𝐹
2
(𝑥) 𝑑

se
𝑥 = 0.

(35)

Given two complex-valued measurable functionals 𝐹 and
𝐺 on𝐶

𝑎,𝑏
[0, 𝑇], we will write 𝐹 ≊ 𝐺 if 𝐹 ≈ 𝐺 and furthermore

if 𝐹(𝑥) = 𝐺(𝑥) for all 𝑥 ∈ 𝐶


𝑎,𝑏
[0, 𝑇]. The relation ≊ is clearly

an equivalence relation.

Definition 7. Let 𝐹 be a functional on 𝐶
𝑎,𝑏

[0, 𝑇]. If 𝐹 is G-
continuous for s-a.e. 𝑥 ∈ 𝐶

𝑎,𝑏
[0, 𝑇] and every 𝑥 ∈ 𝐶



𝑎,𝑏
[0, 𝑇],

then one says that 𝐹 isG-s-continuous.
The functionals discussed in Examples 3 and 4 above

are G-s-continuous. Next we introduce a class of functionals
which areG-s-continuous.

LetM(𝐶


𝑎,𝑏
[0, 𝑇]) be the space of complex-valued, count-

ably additive (and hence finite) Borel measures on 𝐶


𝑎,𝑏
[0, 𝑇].

M(𝐶


𝑎,𝑏
[0, 𝑇]) is a Banach algebra under the total variation

norm and with convolution as multiplication.

Definition 8. The Fresnel type class F∗(𝐶
𝑎,𝑏

[0, 𝑇]) is the
space of functionals on 𝐶

𝑎,𝑏
[0, 𝑇] expressible in the form

𝐹 (𝑥) ≊ ∫
𝐶


𝑎,𝑏
[0,𝑇]

exp {𝑖(𝑤, 𝑥)
∼

𝐶


𝑎,𝑏

} 𝑑𝑓 (𝑤) (36)

for s-a.e. 𝑥 ∈ 𝐶
𝑎,𝑏

[0, 𝑇] and every 𝑥 ∈ 𝐶


𝑎,𝑏
[0, 𝑇], where

the associated measure 𝑓 is an element of M(𝐶


𝑎,𝑏
[0, 𝑇]).

More precisely, since we will identify functionals which
coincide under the relation ≊ on 𝐶

𝑎,𝑏
[0, 𝑇], F∗(𝐶

𝑎,𝑏
[0, 𝑇])

can be regarded as the space of all ≊-equivalence classes of
functionals of the form (36).

The Fresnel type classF∗(𝐶
𝑎,𝑏

[0, 𝑇]) is a Banach algebra
with norm

‖𝐹‖ =
𝑓

 = ∫
𝐶


𝑎,𝑏
[0,𝑇]

𝑑
𝑓

 (𝑤) . (37)
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In fact, the correspondence 𝑓 → 𝐹 is injective, carries
convolution into pointwise multiplication, and is a Banach
algebra isomorphism where 𝑓 and 𝐹 are related by (36).

Proposition 9. Let 𝐹 ∈ F∗(𝐶
𝑎,𝑏

[0, 𝑇]). Then 𝐹 is G-s-
continuous.

Proof. Let 𝐹 be given by (36), and for each 𝑛 = 1, 2, . . ., let
𝑍
𝑛
(𝑥) be given by (19).Then substituting𝑍

𝑛
(𝑥) for 𝑥, we have

𝐹 (𝑍
𝑛
(𝑥)) = ∫

𝐶


𝑎,𝑏
[0,𝑇]

exp {𝑖(𝑤, 𝑍
𝑛
(𝑥))
∼

𝐶


𝑎,𝑏

} 𝑑𝑓 (𝑤) . (38)

By Example 4, the exponential in (38) approaches the expo-
nential in equation (36) as 𝑛 → ∞. Note that for each 𝑛 ∈ N,
the exponential in (38) is measurable in (𝑤, 𝑥) on𝐶



𝑎,𝑏
[0, 𝑇]×

𝐶
𝑎,𝑏

[0, 𝑇]. Thus, by the bounded convergence theorem, we
observe 𝐹(𝑍

𝑛
(𝑥)) → 𝐹(𝑥) for s-a.e 𝑥 ∈ 𝐶

𝑎,𝑏
[0, 𝑇] and every

𝑥 ∈ 𝐶


𝑎,𝑏
[0, 𝑇], and the proposition is proved.

The functional 𝐹
2
defined by equation (34) above is not

G-s-continuous. Thus, 𝐹
2
∉ F∗(𝐶

𝑎,𝑏
[0, 𝑇]).

The following lemma plays a key role in the proofs of
Propositions 12 and 13 below.

Lemma 10. For each 𝑛 = 1, 2, . . ., let 𝑍
𝑛
(𝑥) be given by (19)

and let 𝑊+
𝑛
and 𝑊

−

𝑛
be given by (29) and (30), respectively.

Then for all 𝑤 ∈ 𝐶


𝑎,𝑏
[0, 𝑇], all 𝜆 ∈ C

+
, and each 𝑛 = 1, 2, . . .,

the function space integrals

∫
𝐶
𝑎,𝑏
[0,𝑇]

exp {𝑖(𝑤, 𝑍
𝑛
(𝑥))
∼

𝐶


𝑎,𝑏

}𝑊
+

𝑛
(𝜆; 𝑥) 𝑑𝜇 (𝑥) ,

∫
𝐶
𝑎,𝑏
[0,𝑇]

exp {𝑖(𝑤, 𝑍
𝑛
(𝑥))
∼

𝐶


𝑎,𝑏

}𝑊
−

𝑛
(𝜆; 𝑥) 𝑑𝜇 (𝑥)

(39)

exist and are given by (40) and (41) below, respectively.

Proof. Using (19), (29), (23), the Fubini theorem, and (11), we
obtain

∫
𝐶
𝑎,𝑏
[0,𝑇]

exp {𝑖(𝑤, 𝑍
𝑛
(𝑥))
∼

𝐶


𝑎,𝑏

}𝑊
+

𝑛
(𝜆; 𝑥) 𝑑𝜇 (𝑥)

= (
𝜆

2𝜋
)

𝑛/2

∫
R𝑛

exp
{

{

{

−
𝜆

2

𝑛

∑

𝑗=1

𝑢
2

𝑗

+

𝑛

∑

𝑗=1

(𝑖(𝑤, 𝑔
𝑗
)
𝐶


𝑎,𝑏

+ 𝜆
1/2

𝐴
𝑗
) 𝑢
𝑗

−
1

2

𝑛

∑

𝑗=1

𝐴
2

𝑗

}

}

}

𝑑𝑢
1
. . . 𝑑𝑢

𝑛

= exp
{

{

{

−
1

2𝜆

𝑛

∑

𝑗=1

(𝑤, 𝑔
𝑗
)
2

𝐶


𝑎,𝑏

+ 𝑖𝜆
−1/2

𝑛

∑

𝑗=1

(𝑤, 𝑔
𝑗
)
𝐶


𝑎,𝑏

𝐴
𝑗

}

}

}

.

(40)

Also, using (19), (30), (23), the Fubini theorem, and (11),
we obtain

∫
𝐶
𝑎,𝑏
[0,𝑇]

exp {𝑖(𝑤, 𝑍
𝑛
(𝑥)) ̃
𝐶


𝑎,𝑏

}𝑊
−

𝑛
(𝜆; 𝑥) 𝑑𝜇 (𝑥)

= exp
{

{

{

−
1

2𝜆

𝑛

∑

𝑗=1

(𝑤, 𝑔
𝑗
)
2

𝐶


𝑎,𝑏

− 𝑖(−𝜆)
−1/2

𝑛

∑

𝑗=1

(𝑤, 𝑔
𝑗
)
𝐶


𝑎,𝑏

𝐴
𝑗

}

}

}

.

(41)

Let 𝐹 be given by (36). Proceeding formally using (36),
(40), and (41), we see that the sequential function space
integrals ∫𝑃𝑞

𝐶
𝑎,𝑏
[0,𝑇]

𝐹(𝑥)𝑑
se
𝑥 and ∫

𝑁
𝑞

𝐶
𝑎,𝑏
[0,𝑇]

𝐹(𝑥)𝑑
se
𝑥 are given by

the formulas

∫

𝑃
𝑞

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥) 𝑑
se
𝑥

= ∫
𝐶


𝑎,𝑏
[0,𝑇]

exp{ −
𝑖

2𝑞
‖𝑤‖
2

𝐶


𝑎,𝑏

+ 𝑖(−𝑖𝑞)
−1/2

(𝑤, 𝑎)
𝐶


𝑎,𝑏

}𝑑𝑓 (𝑤) ,

∫

𝑁
𝑞

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥) 𝑑
se
𝑥

= ∫
𝐶


𝑎,𝑏
[0,𝑇]

exp{−
𝑖

2𝑞
‖𝑤‖
2

𝐶


𝑎,𝑏

− 𝑖(𝑖𝑞)
−1/2

(𝑤, 𝑎)
𝐶


𝑎,𝑏

}𝑑𝑓 (𝑤) ,

(42)

respectively.
For 𝜆 ∈ C̃

+
and 𝑤 ∈ 𝐶



𝑎,𝑏
[0, 𝑇], let

𝜓
𝑃
(𝜆; 𝑤) ≡ exp {−

1

2𝜆
‖𝑤‖
2

𝐶


𝑎,𝑏

+ 𝑖𝜆
−1/2

(𝑤, 𝑎)
𝐶


𝑎,𝑏

} , (43)

𝜓
𝑁
(𝜆; 𝑤) ≡ exp {−

1

2𝜆
‖𝑤‖
2

𝐶


𝑎,𝑏

− 𝑖(−𝜆)
−1/2

(𝑤, 𝑎)
𝐶


𝑎,𝑏

} . (44)

Then, for each 𝜆 ∈ C̃
+
, |𝜓
𝑃
(𝜆; 𝑤)| and |𝜓

𝑁
(𝜆; 𝑤)| are

unbounded functions of 𝑤. Hence, ∫
𝑃
𝑞

𝐶
𝑎,𝑏
[0,𝑇]

𝐹(𝑥)𝑑
se
𝑥 and

∫
𝑁
𝑞

𝐶
𝑎,𝑏
[0,𝑇]

𝐹(𝑥)𝑑
se
𝑥 might not exist. From this observation, we
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clearly need to impose additional restrictions, such as (45)
below, on the functionals𝐹 inF∗(𝐶

𝑎,𝑏
[0, 𝑇]) for the existence

of the sequentialP andN-function space integrals of 𝐹.
Let 𝑞
0
be a positive real number. We define a subclass

F∗
𝑞
0

≡ F∗
𝑞
0

(𝐶
𝑎,𝑏

[0, 𝑇]) of F∗(𝐶
𝑎,𝑏

[0, 𝑇]) by 𝐹 ∈ F∗
𝑞
0

if and
only if

∫
𝐶


𝑎,𝑏
[0,𝑇]

exp{
1

√2𝑞
0

‖𝑤‖
𝐶


𝑎,𝑏

‖𝑎‖
𝐶


𝑎,𝑏

}𝑑
𝑓

 (𝑤) < +∞, (45)

where 𝑓 and 𝐹 are related by (36).
The following example suggests the necessity of the

condition (45) to ensure the existence of the sequential
function space integrals of functionals inF∗(𝐶

𝑎,𝑏
[0, 𝑇]).

For each 𝑛 ∈ N, let 𝑤
𝑛
(𝑡) = 𝑛𝑏(𝑡) = ∫

𝑡

0

𝑛𝑑𝑏(𝑠) for
𝑡 ∈ [0, 𝑇]. Consider a measure 𝜂 on 𝐶



𝑎,𝑏
[0, 𝑇] which is

concentrated on the set {𝑤
𝑛
: 𝑛 ∈ N} and 𝜂({𝑤

𝑛
}) = 1/(𝑛

2

)

for each 𝑛 ∈ N. Then, 𝜂 is an element ofM(𝐶


𝑎,𝑏
[0, 𝑇]) and it

follows that

∫
𝐶


𝑎,𝑏
[0,𝑇]

exp{
1

√2𝑞
0

‖𝑤‖
𝐶


𝑎,𝑏

‖𝑎‖
𝐶


𝑎,𝑏

}𝑑
𝜂
 (𝑤)

=

∞

∑

𝑛=1

exp{
1

√2𝑞
0

𝑤𝑛
𝐶
𝑎,𝑏

‖𝑎‖
𝐶


𝑎,𝑏

}
1

𝑛2

=

∞

∑

𝑛=1

exp
{

{

{

√𝑏 (𝑇)‖𝑎‖
𝐶


𝑎,𝑏

√2𝑞
0

𝑛
}

}

}

1

𝑛2

≥

∞

∑

𝑛=1

√𝑏 (𝑇)‖𝑎‖
𝐶


𝑎,𝑏

√2𝑞
0

1

𝑛
= +∞.

(46)

Using the same method, we can find an example for the
functional in F∗(𝐶

𝑎,𝑏
[0, 𝑇]) that the sequential integrals do

not exist.
Given a positive real number 𝑞

0
, let

Γ
𝑞
0

= {𝜆 ∈ C̃
+
| 𝜆 = 𝛼 + 𝑖𝛽,


Im (𝜆

−1/2

)

<

1

√2𝑞
0

} . (47)

Let 𝑞 be a real number with |𝑞| > 𝑞
0
. Then, since

(−𝑖𝑞)
−1/2

=
1

√2
𝑞


+ 𝑖
sign (𝑞)

√2
𝑞


,

(𝑖𝑞)
−1/2

=
1

√2
𝑞


− 𝑖
sign (𝑞)

√2
𝑞


,

(48)

we can see that−𝑖𝑞 and 𝑖𝑞 are elements of the domain Int(Γ
𝑞
0

).
We also need the following lemma to obtain Propositions

12 and 13.

Lemma 11. LetG ≡ {𝑔
𝑗
}
∞

𝑗=1
and 𝐴

𝑗
be as in Section 2, and let

𝑞
0
be a positive real number. Let {𝜆

𝑛
}
∞

𝑛=1
be a sequence in C

+

such that 𝜆 → −𝑖𝑞, where 𝑞 is a real number with |𝑞| > 𝑞
0
.

Then there exists a sufficiently large 𝐾 ∈ N such that for all
𝑛 ≥ 𝐾,

exp
{

{

{


Im (𝜆

−1/2

𝑛
)




𝑛

∑

𝑗=1

(𝑔
𝑗
, 𝑤)
𝐶


𝑎,𝑏

𝐴
𝑗



}

}

}

< exp{
1

√2𝑞
0

‖𝑤‖
𝐶


𝑎,𝑏

‖𝑎‖
𝐶


𝑎,𝑏

} ,

(49)

exp
{

{

{


Im ((−𝜆

𝑛
)
−1/2

)




𝑛

∑

𝑗=1

(𝑔
𝑗
, 𝑤)
𝐶


𝑎,𝑏

𝐴
𝑗



}

}

}

< exp{
1

√2𝑞
0

‖𝑤‖
𝐶


𝑎,𝑏

‖𝑎‖
𝐶


𝑎,𝑏

} .

(50)

Proof. Let {𝜆
𝑛
}
∞

𝑛=1
= {𝛼
𝑛
+ 𝑖𝛽
𝑛
}
∞

𝑛=1
be a sequence in C

+
such

that 𝜆
𝑛
→ −𝑖𝑞, and let Γ

𝑞
0

be given by (47).Then, we observe
that for each 𝑛 ∈ N,

Im (𝜆
−1/2

𝑛
) = − sign (𝛽

𝑛
)
√

√𝛼2
𝑛
+ 𝛽2
𝑛
− 𝛼
𝑛

2 (𝛼2
𝑛
+ 𝛽2
𝑛
)

,

Im ((−𝜆
𝑛
)
−1/2

) = sign (𝛽
𝑛
)
√

√𝛼2
𝑛
+ 𝛽2
𝑛
+ 𝛼
𝑛

2 (𝛼2
𝑛
+ 𝛽2
𝑛
)

.

(51)

Since 𝛼
𝑛

→ 0, there exists a sufficiently large 𝐾
1
∈ N such

that for every 𝑛 ≥ 𝐾
1
, 𝜆
𝑛
∈ Int(Γ

𝑞
0

) and

𝛿 (𝑞) = sup({

Im (𝜆

−1/2

𝑛
)

: 𝑛 ≥ 𝐾

1
}

∪ {

Im ((−𝜆

𝑛
)
−1/2

)

:𝑛 ≥ 𝐾

1
}∪

{{

{{

{

1

√2
𝑞


}}

}}

}

)

<
1

√2𝑞
0

.

(52)

Also, there exists a positive real number 𝜀
0

> 1 such that
𝛿(𝑞) < 1/(𝜀

0
√2𝑞
0
).

Let G ≡ {𝑔
𝑗
}
∞

𝑗=1
and 𝐴

𝑗
be as in Section 2 above. Using

Parseval’s identity, we observe

(𝑤, 𝑎)
𝐶


𝑎,𝑏

=

∞

∑

𝑗=1

(𝑤, 𝑔
𝑗
)
𝐶


𝑎,𝑏

(𝑔
𝑗
, 𝑎)
𝐶


𝑎,𝑏

=

∞

∑

𝑗=1

(𝑤, 𝑔
𝑗
)
𝐶


𝑎,𝑏

𝐴
𝑗

(53)

for 𝑤 ∈ 𝐶


𝑎,𝑏
[0, 𝑇]. Also, using the Cauchy-Schwartz inequal-

ity, we have

−𝜀
0
‖𝑤‖
𝐶


𝑎,𝑏

‖𝑎‖
𝐶


𝑎,𝑏

< (𝑤, 𝑎)
𝐶


𝑎,𝑏

< 𝜀
0
‖𝑤‖
𝐶


𝑎,𝑏

‖𝑎‖
𝐶


𝑎,𝑏

. (54)
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Thus, there exists a sufficiently large 𝐾
2

∈ N such that for
every 𝑛 ≥ 𝐾

2
,


𝑛

∑

𝑗=1

(𝑔
𝑗
, 𝑤)
𝐶


𝑎,𝑏

𝐴
𝑗



< 𝜀
0
‖𝑤‖
𝐶


𝑎,𝑏

‖𝑎‖
𝐶


𝑎,𝑏

. (55)

Using these facts, we obtain the inequality (49) and (50).

Proposition 12. Let 𝑞
0
be a positive real number and let 𝐹 ∈

F∗
𝑞
0

be given by (36). Then for all real 𝑞 with |𝑞| > 𝑞
0
, the

sequential P-function space integral ∫𝑃𝑞
𝐶
𝑎,𝑏
[0,𝑇]

𝐹(𝑥)𝑑
se
𝑥 exists

and is given by the formula

∫

𝑃
𝑞

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥) 𝑑
se
𝑥 = ∫
𝐶


𝑎,𝑏
[0,𝑇]

𝜓
𝑃
(−𝑖𝑞; 𝑤) 𝑑𝑓 (𝑤) , (56)

where 𝜓
𝑃
is given by (43) above.

Proof. Let 𝐹 be given by (36). First note that the equality in
(36) holds for all 𝑥 ∈ 𝐶



𝑎,𝑏
[0, 𝑇]. Let 𝑞 be a real number with

|𝑞| > 𝑞
0
, and let {𝜆

𝑛
}
∞

𝑛=1
be a sequence inC

+
which converges

to −𝑖𝑞. Using (36), (19), (29), and the Fubini theorem, we
obtain that for each 𝑛 = 1, 2, . . .,

∫
𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑍
𝑛
(𝑥))𝑊

+

𝑛
(𝜆
𝑛
; 𝑥) 𝑑𝜇 (𝑥)

= ∫
𝐶


𝑎,𝑏
[0,𝑇]

∫
𝐶
𝑎,𝑏
[0,𝑇]

exp {𝑖(𝑤, 𝑍
𝑛
(𝑥))
∼

𝐶


𝑎,𝑏

}

× 𝑊
+

𝑛
(𝜆
𝑛
; 𝑥) 𝑑𝜇 (𝑥) 𝑑𝑓 (𝑤) .

(57)

But, by (40) and (49), we know that the right hand side of (57)
is dominated by (45) for all but a finite number of values of 𝑛.
Next, using (57), (40) with 𝜆 replaced with 𝜆

𝑛
, the dominated

convergence theorem, Parseval’s relation, and (43), we obtain

lim
𝑛→∞

∫
𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑍
𝑛
(𝑥))𝑊

+

𝑛
(𝜆
𝑛
; 𝑥) 𝑑𝜇 (𝑥)

= ∫
𝐶


𝑎,𝑏
[0,𝑇]

lim
𝑛→∞

exp
{

{

{

−
1

2𝜆
𝑛

𝑛

∑

𝑗=1

(𝑤, 𝑔
𝑗
)
2

𝐶


𝑎,𝑏

+ 𝑖𝜆
−1/2

𝑛

𝑛

∑

𝑗=1

(𝑤, 𝑔
𝑗
)
𝐶


𝑎,𝑏

𝐴
𝑗

}

}

}

𝑑𝑓 (𝑤)

= ∫
𝐶


𝑎,𝑏
[0,𝑇]

exp{−
𝑖

2𝑞
‖𝑤‖
2

𝐶


𝑎,𝑏

+ 𝑖(−𝑖𝑞)
−1/2

(𝑤, 𝑎)
𝐶


𝑎,𝑏

}𝑑𝑓 (𝑤) ,

(58)

which concludes the proof of Proposition 12.

We establish our next proposition after careful exam-
ination of the proof of Proposition 12, and by using (30),
(41), (44), and (50) instead of (29), (40), (43), and (49),
respectively.

Proposition 13. Let 𝑞
0
and 𝐹 ∈ F∗

𝑞
0

be as in Proposition 12.
Then for all real 𝑞 with |𝑞| > 𝑞

0
, the sequential N-function

space integral ∫
𝑁
𝑞

𝐶
𝑎,𝑏
[0,𝑇]

𝐹(𝑥)𝑑
𝑠𝑒

𝑥 exists and is given by the
formula

∫

𝑁
𝑞

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥) 𝑑
se
𝑥 = ∫
𝐶


𝑎,𝑏
[0,𝑇]

𝜓
𝑁
(−𝑖𝑞; 𝑤) 𝑑𝑓 (𝑤) , (59)

where 𝜓
𝑁
is given by (44).

4. Sequential Function Space Transforms

In this section, we introduce two sequential transforms on
the function space 𝐶

𝑎,𝑏
[0, 𝑇]. We then establish that each of

these transforms acts like an inverse transform of the other
transform. Our definitions of the sequential transforms are
based on the sequential function space integrals defined in
Section 3 above.

Definition 14. Let 𝑞 be a nonzero real number. For 𝑦 ∈

𝐶
𝑎,𝑏

[0, 𝑇], we define the sequential P-function space trans-
formP

𝑞
(𝐹) of 𝐹 with parameter 𝑞 by the formula

P
𝑞
(𝐹) (𝑦) = ∫

𝑃
𝑞

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑦 + 𝑥) 𝑑
se
𝑥 (60)

if it exists. Also, we define the sequential N-function space
transformN

𝑞
(𝐹) of 𝐹 with parameter 𝑞 by the formula

N
𝑞
(𝐹) (𝑦) = ∫

𝑁
𝑞

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑦 + 𝑥) 𝑑
se
𝑥 (61)

if it exists.
In Theorem 15 below, we establish the existence of the

sequential P-function space transform of functionals in
F∗(𝐶

𝑎,𝑏
[0, 𝑇]).

Theorem 15. Let 𝑞
0
and 𝐹 ∈ F∗

𝑞
0

be as in Proposition 12.
Then for all real 𝑞 with |𝑞| > 𝑞

0
, the sequential P-function

space transform of 𝐹, P
𝑞
(𝐹) exists and is an element of

F∗(𝐶
𝑎,𝑏

[0, 𝑇]) with associated measure 𝑓𝑃
𝑞
defined by

𝑓
𝑃

𝑞
(𝐸) = ∫

𝐸

𝜓
𝑃
(−𝑖𝑞; 𝑤) 𝑑𝑓 (𝑤) , 𝐸 ∈ B (𝐶



𝑎,𝑏
[0, 𝑇]) ,

(62)

where 𝜓
𝑃
is given by (43),B(𝐶



𝑎,𝑏
[0, 𝑇]) is the Borel 𝜎-algebra,

and 𝑓 is the associated measure of 𝐹 by (36). Furthermore, one
sees that for s-a.e. 𝑦 ∈ 𝐶

𝑎,𝑏
[0, 𝑇] and all 𝑦 ∈ 𝐶



𝑎,𝑏
[0, 𝑇],

P
𝑞
(𝐹) (𝑦)

= ∫
𝐶


𝑎,𝑏
[0,𝑇]

exp {𝑖(𝑤, 𝑦)
∼

𝐶


𝑎,𝑏

}𝜓
𝑃
(−𝑖𝑞; 𝑤) 𝑑𝑓 (𝑤)

= ∫
𝐶


𝑎,𝑏
[0,𝑇]

exp {𝑖(𝑤, 𝑦)
∼

𝐶


𝑎,𝑏

} 𝑑𝑓
𝑃

𝑞
(𝑤) ,

(63)
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with


𝑓
𝑃

𝑞


< ∫
𝐶


𝑎,𝑏
[0,𝑇]

exp{
1

√2𝑞
0

‖𝑤‖
𝐶


𝑎,𝑏

‖𝑎‖
𝐶


𝑎,𝑏

}𝑑
𝑓

 (𝑤)

< +∞.

(64)

Proof. Let 𝐹 be given by (36), and for a real 𝑞 with |𝑞| >

𝑞
0
, let {𝜆

𝑛
}
∞

𝑛=1
be a sequence in C

+
which converges to −𝑖𝑞.

Proceeding as in the proof of Proposition 12, we obtain that
for s-a.e. 𝑦 ∈ 𝐶

𝑎,𝑏
[0, 𝑇] and all 𝑦 ∈ 𝐶



𝑎,𝑏
[0, 𝑇],

P
𝑞
(𝐹) (𝑦)

= lim
𝑛→∞

∫
𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑦 + 𝑍
𝑛
(𝑥))𝑊

+

𝑛
(𝜆
𝑛
; 𝑥) 𝑑𝜇 (𝑥)

= ∫
𝐶


𝑎,𝑏
[0,𝑇]

exp {𝑖(𝑤, 𝑦)
∼

𝐶


𝑎,𝑏

}

× lim
𝑛→∞

exp
{

{

{

−
1

2𝜆
𝑛

𝑛

∑

𝑗=1

(𝑤, 𝑔
𝑗
)
2

𝐶


𝑎,𝑏

+ 𝑖𝜆
−1/2

𝑛

𝑛

∑

𝑗=1

(𝑤, 𝑔
𝑗
)
𝐶


𝑎,𝑏

𝐴
𝑗

}

}

}

𝑑𝑓 (𝑤)

= ∫
𝐶


𝑎,𝑏
[0,𝑇]

exp {𝑖(𝑤, 𝑦)
∼

𝐶


𝑎,𝑏

}𝜓
𝑃
(−𝑖𝑞; 𝑤) 𝑑𝑓 (𝑤) .

(65)

Given 𝑞 with |𝑞| > 𝑞
0
, let the set function 𝑓

𝑃

𝑞
:

B(𝐶


𝑎,𝑏
[0, 𝑇]) → C be given by (62). Then, by the definition

of the class F∗
𝑞
0

, the inequality (64) holds. From this, we
see that 𝑓

𝑃

𝑞
belongs to M(𝐶



𝑎,𝑏
[0, 𝑇]) and that P

𝑞
(𝐹) can

be expressed as the third expression of (63) for s-a.e. 𝑦 ∈

𝐶
𝑎,𝑏

[0, 𝑇] and all 𝑦 ∈ 𝐶


𝑎,𝑏
[0, 𝑇]. Thus, we conclude the proof

of Theorem 15.

In Theorem 16 below, we also establish the existence of
the sequentialN-function space transform of functionals in
F∗(𝐶

𝑎,𝑏
[0, 𝑇]).

Theorem 16. Let 𝑞
0
and 𝐹 ∈ F∗

𝑞
0

be as in Proposition 12.
Then for all real 𝑞 with |𝑞| > 𝑞

0
, the sequential N-function

space transform of 𝐹, N
𝑞
(𝐹) exists and is an element of

F∗(𝐶
𝑎,𝑏

[0, 𝑇]) with associated measure 𝑓𝑁
𝑞

defined by

𝑓
𝑁

𝑞
(𝐸) = ∫

𝐸

𝜓
𝑁
(−𝑖𝑞; 𝑤) 𝑑𝑓 (𝑤) , 𝐸 ∈ B (𝐶



𝑎,𝑏
[0, 𝑇]) ,

(66)

where 𝜓
𝑁
is given by (44) and 𝑓 is the associated measure of

𝐹 by (36). Furthermore, one sees that for s-a.e. 𝑦 ∈ 𝐶
𝑎,𝑏

[0, 𝑇]

and all 𝑦 ∈ 𝐶


𝑎,𝑏
[0, 𝑇],

N
𝑞
(𝐹) (𝑦)

= ∫
𝐶


𝑎,𝑏
[0,𝑇]

exp {𝑖(𝑤, 𝑦)
∼

𝐶


𝑎,𝑏

}𝜓
𝑁
(−𝑖𝑞; 𝑤) 𝑑𝑓 (𝑤)

= ∫
𝐶


𝑎,𝑏
[0,𝑇]

exp {𝑖(𝑤, 𝑦)
∼

𝐶


𝑎,𝑏

} 𝑑𝑓
𝑁

𝑞
(𝑤)

(67)

with


𝑓
𝑁

𝑞


< ∫
𝐶


𝑎,𝑏
[0,𝑇]

exp{
1

√2𝑞
0

‖𝑤‖
𝐶


𝑎,𝑏

‖𝑎‖
𝐶


𝑎,𝑏

}𝑑
𝑓

 (𝑤)

< +∞.

(68)

In view of Theorems 15 and 16, we obtain the following
assertion.

Theorem 17. Let 𝑞
0
be a positive real number and let 𝐹 ∈

F∗
𝑞
0
/4
be given by (36). Then

(i) for all real 𝑞 with |𝑞| > 𝑞
0
, P
𝑞
(𝐹) and P

−𝑞
(𝐹) are

elements ofF∗
𝑞
0

, and one has

N
−𝑞

(P
𝑞
(𝐹)) ≊ 𝐹 ≊ N

𝑞
(P
−𝑞

(𝐹)) ; (69)

and
(ii) for all real 𝑞 with |𝑞| > 𝑞

0
, N
𝑞
(𝐹) and N

−𝑞
(𝐹) are

elements ofF∗
𝑞
0

, and one has

P
−𝑞

(N
𝑞
(𝐹)) ≊ 𝐹 ≊ P

𝑞
(N
−𝑞

(𝐹)) . (70)

We finish this section with some examples to apply our
results. Let M(R) be the class of complex-valued, countably
additive Borel measures on B(R), the Borel class of R. For
𝜏 ∈ M(R), the Fourier transform 𝜏 of 𝜏 is a complex-valued
function defined on R by the formula

𝜏 (𝑢) = ∫
R

exp {𝑖𝑢V} 𝑑𝜏 (V) . (71)

Let ℎ ∈ 𝐶


𝑎,𝑏
[0, 𝑇] and let 𝜏 ∈ M(R). Define 𝐹

ℎ,𝜏
:

𝐶
𝑎,𝑏

[0, 𝑇] → C by

𝐹
ℎ,𝜏

(𝑥) = 𝜏 ((ℎ, 𝑥)
∼

𝐶


𝑎,𝑏

) . (72)

Define a function 𝜙 : R → 𝐶


𝑎,𝑏
[0, 𝑇] by 𝜙(V) = Vℎ and let

𝑓 = 𝜏 ∘ 𝜙
−1. It is quite clear that 𝑓 is in M(𝐶



𝑎,𝑏
[0, 𝑇]) and is

supported by [ℎ], the subspace of 𝐶
𝑎,𝑏

[0, 𝑇] spanned by {ℎ}.
Now, for s-a.e. 𝑥 ∈ 𝐶

𝑎,𝑏
[0, 𝑇] and all 𝑥 ∈ 𝐶



𝑎,𝑏
[0, 𝑇],

𝐹
ℎ,𝜏

(𝑥) = ∫
R

exp {𝑖(ℎ, 𝑥)
∼

𝐶


𝑎,𝑏

V} 𝑑𝜏 (V)

= ∫
R

exp {𝑖(𝜙 (V) , 𝑥)
∼

𝐶


𝑎,𝑏

} 𝑑𝜏 (V)

= ∫
𝐶


𝑎,𝑏
[0,𝑇]

exp {𝑖(𝑤, 𝑥)
∼

𝐶


𝑎,𝑏

} 𝑑 (𝜏 ∘ 𝜙
−1

) (𝑤)

= ∫
𝐶


𝑎,𝑏
[0,𝑇]

exp {𝑖(𝑤, 𝑥)
∼

𝐶


𝑎,𝑏

} 𝑑𝑓 (𝑤) .

(73)

Thus, 𝐹
ℎ,𝜏

is an element ofF∗(𝐶
𝑎,𝑏

[0, 𝑇]).
Suppose that for a fixed positive real number 𝑞

0
> 0,

∫
R

exp {(2𝑞
0
)
−1/2

‖ℎ‖
𝐶


𝑎,𝑏

‖𝑎‖
𝐶


𝑎,𝑏

|V|} 𝑑 |𝜏| (V) < +∞. (74)
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It is easy to show that condition (74) is equivalent to condition
(45) above.Thus, applyingTheorems 15 and 16, the sequential
function space transformsP

𝑞
(𝐹
ℎ,𝜏

) andN
𝑞
(𝐹
ℎ,𝜏

) of 𝐹
ℎ,𝜏

exist
for all 𝑞 ∈ R with |𝑞| > 𝑞

0
if the complex measure 𝜏

corresponding to 𝐹
ℎ,𝜏

satisfies condition (74).
Next, we present functionals𝐹

ℎ,𝜏
inF∗(𝐶

𝑎,𝑏
[0, 𝑇])whose

associated measures satisfy the condition (74).

Example 18. Let 𝑆 : 𝐶


𝑎,𝑏
[0, 𝑇] → 𝐶



𝑎,𝑏
[0, 𝑇] be the linear

operator defined by 𝑆𝑤(𝑡) = ∫
𝑡

0

𝑤(𝑠)𝑑𝑏(𝑠). Then, the adjoint
operator 𝑆∗ of 𝑆 is given by 𝑆

∗

𝑤(𝑡) = ∫
𝑡

0

(𝑤(𝑇) − 𝑤(𝑠))𝑑𝑏(𝑠).
Using an integration by parts formula, we have

(𝑆
∗

𝑏, 𝑥)
∼

𝐶


𝑎,𝑏

= ∫

𝑇

0

𝑥 (𝑡) 𝑑𝑏 (𝑡) . (75)

Given real numbers𝑚 and 𝜎
2 with 𝜎

2

> 0, let 𝜏
𝑚,𝜎
2 be the

Gaussian measure given by

𝜏
𝑚,𝜎
2 (𝐵) = (2𝜋𝜎

2

)
−1/2

∫
𝐵

exp{−
(V − 𝑚)

2

2𝜎2
}𝑑V,

𝐵 ∈ B (R) .

(76)

Then 𝜏
𝑚,𝜎
2 ∈ M(R) and

𝜏
𝑚,𝜎
2 (𝑢) = ∫

R

exp {𝑖𝑢V} 𝑑𝜏
𝑚,𝜎
2 (V)

= exp {−
1

2
𝜎
2

𝑢
2

+ 𝑖𝑚𝑢} , 𝑢 ∈ R.

(77)

The complex measure 𝜏
𝑚,𝜎
2 given by (76) satisfies condition

(74) for all real 𝑞
0

> 0. Thus, we can apply the results in
Section 4 to the functional of the form

𝐹
ℎ,𝜏
𝑚,𝜎
2
(𝑥)

= 𝜏
𝑚,𝜎
2 ((ℎ, 𝑥)

∼

𝐶


𝑎,𝑏

)

= exp {−
1

2
𝜎
2

[(ℎ, 𝑥)
∼

𝐶


𝑎,𝑏

]
2

+ 𝑖𝑚(ℎ, 𝑥)
∼

𝐶


𝑎,𝑏

} .

(78)

We note that 𝐹
ℎ,𝜏
𝑚,𝜎
2

∈ ∪
𝑞
0
>0
F∗
𝑞
0

and so that for every
𝑞 ∈ R − {0}, the sequential transforms of 𝐹

ℎ,𝜏
𝑚,𝜎
2
,P
𝑞
(𝐹
ℎ,𝜏
𝑚,𝜎
2
),

and N
𝑞
(𝐹
ℎ,𝜏
𝑚,𝜎
2
) exist and are elements of F(𝐶

𝑎,𝑏
[0, 𝑇]) by

Theorems 15 and 16 above. Furthermore, we have that

N
−𝑞

(P
𝑞
(𝐹
ℎ,𝜏
𝑚,𝜎
2
)) ≊ 𝐹

ℎ,𝜏
𝑚,𝜎
2

(79)

for all real 𝑞 ∈ R − {0} by Theorem 17. In fact, by a simple
calculation, we obtain that for all 𝑞 ∈ R − {0},

P
𝑞
(𝐹
ℎ,𝜏
𝑚,𝜎
2
) (𝑦)

= ∫
R

exp{𝑖(ℎ, 𝑦)
∼

𝐶


𝑎,𝑏

V −
𝑖

2𝑞
‖ℎ‖
2

𝐶


𝑎,𝑏

V2

+ 𝑖(−𝑖𝑞)
−1/2

(ℎ, 𝑎)
𝐶


𝑎,𝑏

V}𝑑𝜏
𝑚,𝜎
2 (V) ,

N
−𝑞

(𝐹
ℎ,𝜏
𝑚,𝜎
2
) (𝑦)

= ∫
R

exp{𝑖(ℎ, 𝑦)
∼

𝐶


𝑎,𝑏

V +
𝑖

2𝑞
‖ℎ‖
2

𝐶


𝑎,𝑏

V2

− 𝑖(−𝑖𝑞)
−1/2

(ℎ, 𝑎)
𝐶


𝑎,𝑏

V} 𝑑𝜏
𝑚,𝜎
2 (V)

(80)

for s-a.e. 𝑦 ∈ 𝐶
𝑎,𝑏

[0, 𝑇] and all 𝑦 ∈ 𝐶


𝑎,𝑏
[0, 𝑇].

In particular, if we choose ℎ = 𝑆
∗

𝑏, 𝑚 = 0, and 𝜎
2

= 2 in
(78), we have

𝐹
𝑆
∗
𝑏,𝜏
0,2

(𝑥) = exp{−(∫

𝑇

0

𝑥 (𝑡) 𝑑𝑏 (𝑡))

2

} . (81)

Example 19. The functional

𝐹
𝛿
𝑆
∗
𝑏

(𝑥) = exp{𝑖 ∫

𝑇

0

𝑥 (𝑡) 𝑑𝑏 (𝑡)} , 𝑥 ∈ 𝐶
𝑎,𝑏

[0, 𝑇] (82)

also is a functional under our consideration because

𝐹
𝛿
𝑆
∗
𝑏

(𝑥) = exp {𝑖(𝑆
∗

𝑏, 𝑥)
∼

𝐶


𝑎,𝑏

}

= ∫
𝐶


𝑎,𝑏
[0,𝑇]

exp {𝑖(𝑤, 𝑥)
∼

𝐶


𝑎,𝑏

} 𝑑𝛿
𝑆
∗
𝑏
(𝑤) ,

(83)

where 𝛿
𝛿
𝑆
∗
𝑏

is the Dirac measure concentrated at 𝑆
∗

𝑏 in
𝐶


𝑎,𝑏
[0, 𝑇]. The Dirac measure 𝛿

𝛿
𝑆
∗
𝑏

also satisfies condition
(45) for all real 𝑞

0
> 0; that is, 𝐹

𝛿
𝑆
∗
𝑏

∈ ∪
𝑞
0
>0
F∗
𝑞
0

.

5. Concluding Remarks

In this section, we examine certain aspects among the
generalized analytic Fourier-Feynman transform [12, 13], the
generalized integral transform [15, 16], and the sequential
transforms for functionals on 𝐶

𝑎,𝑏
[0, 𝑇]. As possible, we

adopt the definitions and notation of [11–13, 15, 16] for the
(generalized) analytic Fourier-Feynman transform and the
(generalized) integral transform.

A major goal of the authors in [12, 13, 15, 16] was to
generalize the concepts of the analytic Fourier-Feynman
transform and the integral transform of the functionals of
paths for the generalized Brownian motion process.

In [5, 6], the authors obtained the existence of the
𝐿
2
analytic Fourier-Feynman transform 𝑇

(2)

𝑞
(𝐹) for several

large classes of functionals 𝐹 on Wiener space 𝐶
0
[0, 𝑇]. In

particular, they showed that for all real 𝑞 ̸= 0,

𝑇
(2)

−𝑞
(𝑇
(2)

𝑞
(𝐹)) (𝑦) = 𝐹 (𝑦) (84)

for s-a.e. 𝑦 ∈ 𝐶
0
[0, 𝑇]. Thus, 𝐿

2
analytic Fourier-Feynman

transform “𝑇(2)
𝑞
” with parameter 𝑞 has the inverse transform

“𝑇(2)
−𝑞
”. However, in view of the results in [12, 13], (84)

does not hold for functionals 𝐹 on 𝐶
𝑎,𝑏

[0, 𝑇]. As men-
tioned in Section 1, the existence of an inverse generalized
Fourier-Feynman transform on 𝐶

𝑎,𝑏
[0, 𝑇] has not yet been
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established. It is not easy to verify the existence of the
inverse generalized Fourier-Feynman transform because the
generalized Brownian motion process has a drift term 𝑎(𝑡).

In [9, 10], the authors studied the integral transform of
functionals 𝐹 in 𝐿

2
(𝐶
0
[0, 𝑇]). They showed that for 𝐹 ∈

𝐿
2
(𝐶
0
[0, 𝑇]) and nonzero complex numbers 𝛼 and 𝛽 with

|𝛽| ≤ 1, 𝛽 ̸= ± 1, Re(1 − 𝛽
2

) > 0, 𝛼 = √1 − 𝛽2, and
−𝜋/4 < arg(𝛼) < 𝜋/4,

F
𝛼

,1/𝛽

F
𝛼,𝛽

𝐹 (𝑦) = 𝐹 (𝑦) , 𝑦 ∈ 𝐶
0
[0, 𝑇] , (85)

where 𝛼


= √1 − 1/𝛽2. That is to say, “F−1
𝛼,𝛽

” is given
by “F

𝑖𝛼/𝛽,1/𝛽
”. In [16], Chang et al. presented a version of

inverse transform of the generalized integral transformF
𝛼,𝛽

as follows: for appropriate functionals 𝐹 on 𝐾
𝑎,𝑏

[0, 𝑇], the
complexification of 𝐶

𝑎,𝑏
[0, 𝑇],

F
−𝑖𝛼,1

F
𝑖𝛼,1

F
−𝛼/𝛽,1/𝛽

F
𝛼,𝛽

𝐹 (𝑦) = 𝐹 (𝑦) (86)

for 𝑦 ∈ 𝐾
𝑎,𝑏

[0, 𝑇]; that is,

F
−1

𝛼,𝛽
= F
−𝑖𝛼,1

F
𝑖𝛼,1

F
−𝛼/𝛽,1/𝛽

. (87)

But they pointed out that for any nonzero complex
numbers 𝛼

1
, 𝛼
2
, 𝛽
1
and 𝛽

2
, there are no nonzero complex

numbers 𝛼, and 𝛽
 such that

F
𝛼
1
,𝛽
1

F
𝛼
2
,𝛽
2

= F
𝛼

,𝛽
 . (88)

Hence, the inverse generalized integral transform, F−1
𝛼,𝛽

,
cannot be expressed as a simple integral transform.

Let us return to the singular integral transforms discussed
in this paper. Theorem 17 tells us that the sequential function
space transformsP

𝑞
andN

𝑞
have inverse transformsP−1

𝑞
=

N
−𝑞

andN−1
𝑞

= P
−𝑞
, respectively. By choosing 𝑎(𝑡) ≡ 0 and

𝑏(𝑡) = 𝑡 on [0, 𝑇], the function space 𝐶
𝑎,𝑏

[0, 𝑇] reduces to the
Wiener space 𝐶

0
[0, 𝑇] and the sequential transformsP

𝑞
and

N
𝑞
coincide.
Let 𝐹 be as in Theorem 15. Then, by the definition of the

𝐿
2
generalized analytic Fourier-Feynman transform, we can

see that 𝑇(2)
𝑞

(𝐹) of 𝐹 exists and

𝑇
(2)

𝑞
(𝐹) (𝑦) = P

𝑞
(𝐹) (𝑦) (89)

for s-a.e. 𝑦 ∈ 𝐶
𝑎,𝑏

[0, 𝑇] and all 𝑦 ∈ 𝐶


𝑎,𝑏
[0, 𝑇]. This fact tells

us that the sequentialN-function space transformN
−𝑞

plays
a prominent role as an inverse transform of the generalized
analytic Fourier-Feynman transform 𝑇

(2)

𝑞
.
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