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Chaotic systems are always influenced by some uncertainties and external disturbances. This paper investigates the problem of
practical synchronization of fractional-order chaotic systems with Gaussian fluctuation. A fractional integral (FI) sliding surface
is proposed for synchronizing the uncertain fractional-order system, and then the sliding mode control technique is carried out to
realize the synchronization of the given systems. One theorem about slidingmode controller is presented to prove that the proposed
controller can make the system achieve synchronization. As a case study, the presented method is applied to the fractional-order
Chen-Lü system, and simulation results show that the proposed control approach is capable to go against Gaussian noise well.

1. Introduction

Synchronization, which means “things occur at the same
time or operate in unison,” has received a great deal of
interest among scientists from various fields in the last few
years, especially in fractional-order chaotic systems [1–4]. It
has been recognized that many systems in interdisciplinary
fields can be elegantly described by fractional-order differ-
ential equations, such as viscoelastic materials [5], electrical
circuits [6], population models [7], and financial systems
[8]. Meanwhile, most of precious studies have shown that
some fractional-order systems exhibit chaotic behavior [9–
14]. In particular, fractional-order chaotic behavior has wide
promising applications in information encryption, image
processing, secure communication, and so forth [15–18].
Therefore, synchronization of fractional chaotic systems
starts to attract increasing attentions because it has a wide
range of applications like the traditional (integer order)
chaotic synchronization, which has been used in secure
communication [19], complex dynamical network [20], and
so on.

A basic configuration for chaos synchronization is the
drive-response pattern, where the response of chaotic system
must track the drive chaotic trajectory. Some approaches
based on this configuration have been attained to achieve

chaos synchronization in fractional-order chaotic systems,
such as Pecora and Carroll (PC) control [21], active control
[22], adaptive control [23, 24], sliding mode control (SMC)
[25], and a scalar transmitted signal method [26], in which
the sliding mode controller has some attractive advantages,
including: (i) fast dynamic responses and good transient
performance; (ii) external disturbance rejection; and (iii)
insensitivity to parameter variations andmodel uncertainties
[27, 28]. In addition, SMCmethod plays an important role in
the application to practical problems. For example, in [29],
Tavazoei and Haeri proposed a controller based on active
sliding mode theory to synchronize fractional-order chaotic
systems inmaster-slave structure. In [2], the problemofmod-
ified projective synchronization of fractional-order chaotic
system was considered, and finite-time synchronization of
nonautonomous fractional-order uncertain chaotic systems
was investigated in [30].

All of the methods mentioned above have been used
to synchronize the deterministic fractional-order chaotic
systems. However, noise-induced synchronization in chaotic
systems is a practical phenomenon due to the fact that noises
are ubiquitous in natural and synthetic systems, and up till
now, it has been studied by many investigators from different
areas [31–34]. What is more is that chaotic systems with
fractional-order model influenced by random noise will be
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more challenging and difficult. In this investigation, our aim
is to synchronize two fractional-order chaotic systems with
uncertain environment. To achieve this goal, we propose
fractional integral (FI) sliding mode surface which combines
the property of fractional-order equation with sliding mode
control method. Theoretical analysis about sliding mode
controller is presented via series expansion and properties of
Gaussian distribution to prove that the proposed controller
can make the system synchronize well. Then a numerical
example is given to verify the effectiveness of the mentioned
method, and the good agreements are also found between the
theoretical and the numerical results.

This paper is organized as follows. In Section 2, fractional-
order chaotic systems with random factors and problem
formulation are presented. In Section 3, we investigate the
design method of sliding mode controller, and one theorem
is obtained to prove the effectiveness of proposed controller.
One example is presented to carry out the numerical simula-
tions in Section 4. Finally, conclusions are presented to end
this paper.

2. System Description and
Problem Formulation

Consider the following class of fractional-order chaotic sys-
tem excited by Gaussian white noise, which is described by

𝐷
𝛼x = A

1
x + f
1
(x) + h (x, 𝑡)W (𝑡) , (1)

where x = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
]
𝑇

∈ 𝑅
𝑛 denotes the state vector,

A
1

∈ 𝑅
𝑛×𝑛 is a constant matrix, f

1
: 𝑅
𝑛

→ 𝑅
𝑛 is

nonlinear vector function, h is noise intensity function which
is sufficient smooth and bounded, that is, |h(x, 𝑡)| ≤ 𝐻 (𝐻 is
a positive constant), and W(𝑡) = [𝑊

1
(𝑡),𝑊

2
(𝑡), . . . ,𝑊
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(𝑡)]
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is 𝑛-dimensional Brownian motion. Accordingly, Ẇ(𝑡) =

[𝑊̇
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, 𝑊̇
2
, . . . , 𝑊̇

𝑛
]
𝑇 is a 𝑛-dimensional Gaussian white noise

vector, in which every two noises are statistical independent.
And 𝛼 = [𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑛
]
𝑇. 𝐷𝛼 denotes the Caputo derivative,

which is defined as

𝐷
𝛼

𝑓 (𝑡) =
1
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∫
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(2)

with Γ(𝑧) = ∫
∞

0
𝑒
−𝑡
𝑡
𝑧−1

𝑑𝑡, the Euler’s Gamma function.
Let system (1) be the driving system; then response system

with a controller u(𝑡) = [𝑢
1
(𝑡), 𝑢
2
(𝑡), . . . , 𝑢

𝑛
(𝑡)]
𝑇 is given by

𝐷
𝛼y = A

2
y + f
2
(y) + u (𝑡) , (3)

where y = [𝑦
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, 𝑦
2
, . . . , 𝑦

𝑛
]
𝑇

∈ 𝑅
𝑛 is state vector, A

2
∈ 𝑅
𝑛×𝑛 is

a coefficient matrix, and f
2
: 𝑅
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→ 𝑅
𝑛 is vector function. Let
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1
, 𝑒
2
, . . . , 𝑒

𝑛
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𝑇

= y−x be the error of systems (1) and (3).
Then, from system (1) and (3), one has the error dynamics:

𝐷
𝛼e = A

2
y + f
2
(y) + u (𝑡) − A

1
x − f
1
(x) − h (x, 𝑡) Ẇ

= A
2
e + F (x, y) − h (x, 𝑡) Ẇ + u (𝑡) ,

(4)

where F(x, y) = f
2
(y) − f

1
(x) + (A

2
− A
1
)x.

Thus, the control problem considered in this study is that,
for chaotic driving system (1) and response system (3), they
are to be synchronized by designing an appropriate controller
u(𝑡) satisfying

lim
𝑡→∞

‖e‖ = lim
𝑡→∞

󵄩󵄩󵄩󵄩y − x󵄩󵄩󵄩󵄩 = 0, (5)

where ‖ ⋅ ‖ is defined as ‖e(𝑡)‖ = (𝐸[e(𝑡)𝑇e(𝑡)])1/2 and 𝐸[⋅] is
the expected value function.

3. Sliding Mode Controller
Design and Analysis

In the following context, we will design sliding mode con-
troller to establish synchronization between driving system
(1) and response system (3).

3.1. Sliding Mode Controller Design Process. Now, the control
input vector u(𝑡) is defined to eliminate the nonlinear part of
the error dynamics:

u (𝑡) = H (𝑡) − F (x, y) , (6)

where H(𝑡) = Kw(𝑡), K is a constant gain matrix, and w(𝑡) ∈

𝑅
𝑛 is the control input that satisfies

w (𝑡) = {
w+ (𝑡) S (e) ≥ 0,

w− (𝑡) S (e) < 0,
(7)

in which S = S(e) is a switching surface to prescribe the
desired sliding mode dynamics.

So the error system (4) is rewritten as

𝐷
𝛼e = A

2
e + H (𝑡) − h (x, 𝑡) Ẇ. (8)

Here, a new fractional integral (FI) switching surface is given
as follows:

S = 𝐷
𝛼−1e − ∫

𝑡

0

(K + A
2
) e (𝜏) 𝑑𝜏, (9)

where S = [𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑛
]
𝑇 and K + A

2
should be stable;

namely, the eigenvalues 𝜆
𝑖
(𝑖 = 1, 2, . . . , 𝑛) of matrix K + A

2

are negative (𝜆
𝑖
< 0).

As we all know, when the system is controllable in
the sliding mode, the switching surface should satisfy the
following conditions:

S (e) = 0, (10a)

together with

Ṡ (e) = 0. (10b)

Substituting (8) and (9) into (10b), one obtains

Ṡ = 𝐷
𝛼e − (K + A

2
) e (𝑡)

= A
2
e + kw (𝑡) − h (x, 𝑡) Ẇ − (K + A

2
) e (𝑡)

= Kw (𝑡) − h (x, 𝑡) Ẇ − Ke (𝑡)

= 0.

(11)
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Therefore, the equivalent control law is obtained by

weq (𝑡) = e (𝑡) + K−1h (x, 𝑡) Ẇ. (12)

In real-world applications, the Gaussian white noise Ẇ is
uncertain.Therefore, the equivalent control input is modified
to

weq (𝑡) = e (𝑡) . (13)

To design the sliding mode controller, we consider the
constant plus proportional rate reaching law [35, 36]; that, is

Ṡ = −𝑟S − 𝜌 sgn (S) , (14)

where sgn(S) = [sgn(𝑠
1
), sgn(𝑠

2
), . . . , sgn(𝑠

𝑛
)]
𝑇, 𝑟 and 𝜌 are all

positive numbers, and sgn(𝑥) represents sign function; that is

sgn (𝑥) =

{{

{{

{

1, 𝑥 > 0,

0, 𝑥 = 0,

−1, 𝑥 < 0.

(15)

So, we can get the controller

w (𝑡) = K−1 (Ke − 𝑟S − 𝜌 sgn (S)) . (16)

Further, according to the control law and the updated law, the
controller is given by

u (𝑡) = Ke − 𝑟S − 𝜌 sgn (S) − f
2
(y) + f

1
(x) − (A

2
− A
1
) x.
(17)

And the error system can be rewritten in the following
differential form:

𝐷
𝛼e = (K + A

2
) e (𝑡) − h (x, 𝑡) Ẇ − 𝑟S − 𝜌 sgn (S) . (18)

3.2. Synchronization Analysis

Theorem 1. If the controller is selected as (17), with suitably
selected 𝑟 and 𝜌, then the synchronization of fractional-order
chaotic systems between driving system (1) and response system
(3) can be achieved (i.e., the synchronization error converges to
zero in the mean square norm).

Proof. Consider a Lyapunov function constructed by the
mean square norm of S(𝑡) and its differential form [37]:

V =
1

2
‖S(𝑡)‖2 = 1

2
𝐸 [S2 (𝑡)] ,

𝑑V =
1

2
𝐸 [𝑑 (S2 (𝑡))] .

(19)

According to the definition of derivative, it is found that

𝑑 (S2 (𝑡)) = (S (𝑡) + 𝑑S (𝑡))
2
− S2 (𝑡)

= 2S (𝑡) 𝑑S (𝑡) + 𝑑S (𝑡) 𝑑S (𝑡) ,

(20)

While, from (11) and (16), one gets

𝑑S (𝑡) = (−𝑟S − 𝜌 sgn (S)) 𝑑𝑡 − h (x, 𝑡) 𝑑W. (21)

Substituting (21) into (20) results in

𝑑 (S2 (𝑡)) = 2S (𝑡) ((−𝑟S − 𝜌 sgn (S)) 𝑑𝑡 − h (x, 𝑡) 𝑑W)

+ h2 (x, 𝑡) 𝑑𝑡.
(22)

Taking expectations to (22) and using the properties of
Brownian motion, we have

𝑑V = 𝐸 [S (𝑡) ((−𝑟S − 𝜌 sgn (S)) 𝑑𝑡 − h (x, 𝑡) 𝑑W)

+
1

2
h2 (x, 𝑡) 𝑑𝑡]

= 𝐸 [S (𝑡) ((−𝑟S − 𝜌 sgn (S)) 𝑑𝑡) +
1

2
h2 (x, 𝑡) 𝑑𝑡] .

(23)

Therefore

V̇ = 𝐸 [S (𝑡) (−𝑟S − 𝜌 sgn (S)) +
1

2
h2 (x, 𝑡)]

≤ −𝑟𝐸 [S2] − 𝜌𝐸 [|S|] +
1

2
𝐻
2
.

(24)

Equation (24) implies that as long as suitable 𝑟 and 𝜌 which
satisfy (1/2)𝐻

2
≤ 𝑟𝐸[S2] + 𝜌𝐸[|S|] is selected, namely, V̇ ≤ 0,

according to Barbalat’ Lemma [38], system (1) and system (3)
can achieve synchronization under the controller law in (17).

This completes the proof.

4. Simulation

In this part, to confirm the validity of proposed method,
we numerically examine the synchronization between
fractional-order Chen system [39] and fractional-order
Lü system [40]. In the simulation, step-by-step method is
performed to receive numerical solution, and the detailed
descriptions of this algorithm are available in [41, 42].

Here, we assume that the Chen system drives the Lü sys-
tem. Hence, the driving system (fractional-order Lü system)
is described as

𝐷
𝛼
𝑥
1
= 𝑎
1
(𝑥
2
− 𝑥
1
) + ℎ
1
(x, 𝑡) 𝑊̇

1
,

𝐷
𝛼
𝑥
2
= −𝑥
1
𝑥
3
+ 𝑐
1
𝑥
2
+ ℎ
2
(x, 𝑡) 𝑊̇

2
,

𝐷
𝛼
𝑥
3
= 𝑥
1
𝑥
2
− 𝑏
1
𝑥
3
+ ℎ
3
(x, 𝑡) 𝑊̇

3

(25)

which can also be written as

𝐷
𝛼x = 𝐴

1
x + f
1
(x) + h (𝑡, x) Ẇ, (26)
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Figure 1: (a) The state trajectories of the system (26) and system (31) with the sliding mode control method. (Signals 𝑥
1
; 𝑦
1
). (b) The state

trajectories of the system (26) and system (31) with the sliding mode control method. (Signals 𝑥
2
; 𝑦
2
). (c) The state trajectories of the system

(26) and system (31) with the sliding mode control method. (Signals 𝑥
3
; 𝑦
3
).

in which,

x = (

𝑥
1

𝑥
2

𝑥
3

) , 𝐴
1
= [

[

−𝑎
1

𝑎
1

0

0 𝑐
1

0

0 0 −𝑏
1

]

]

,

f
1
(x) = (

0

−𝑥
1
𝑥
3

𝑥
1
𝑥
2

) , h (𝑡, x) = (

ℎ
1
(𝑡, x)

ℎ
2
(𝑡, x)

ℎ
3
(𝑡, x)

) ,

Ẇ = (

𝑊̇
1

𝑊̇
2

𝑊̇
3

) .

(27)

It has been shown that the fractional-order Lü system can
demonstrate chaotic behavior [24] when 𝑎

1
= 35, 𝑏

1
= 3,

𝑐
1
= 28, and 𝛼 = 0.9.
The response system (fractional-order Chen system) is

given as follows:

𝐷
𝛼
𝑦
1
= 𝑎
2
(𝑦
2
− 𝑦
1
) ,

𝐷
𝛼
𝑦
2
= (𝑐
2
− 𝑎
2
) 𝑦
1
− 𝑦
1
𝑦
3
+ 𝑐
2
𝑦
2
,

𝐷
𝛼
𝑦
3
= 𝑦
1
𝑦
2
− 𝑏
2
𝑦
3
,

(28)

which can be written in the following form:

𝐷
𝛼y = 𝐴

2
y + f
2
(y) , (29)
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Figure 2: (a) The time evolution of synchronization error 𝑒
1
of the drive system (26) and response system (31). (b) The time evolution of

synchronization error 𝑒
2
of the drive system (26) and response system (31). (c) The time evolution of synchronization error 𝑒

3
of the drive

system (26) and response system (31).

where

y = (

𝑦
1

𝑦
2

𝑦
3

) , 𝐴
2
= [

[

−𝑎
2

𝑎
2

0

𝑐
2
− 𝑎
2

𝑐
2

0

0 0 −𝑏
2

]

]

,

f
2
(y) = (

0

−𝑦
1
𝑦
3

𝑦
1
𝑦
2

) ,

(30)

in which system will exhibit chaotic behavior [24] when 𝑎
2
=

35, 𝑏
2
= 3, 𝑐
2
= 28, and𝛼 = 0.9. According to (3), the response

system with controller can be described as follows:

𝐷
𝛼y = 𝐴

2
y + f
2
(y) + u (𝑡) , (31)

where u(𝑡) = [𝑢
1
, 𝑢
2
, 𝑢
3
]
𝑇 is the control vector.

Now, we apply the proposed sliding control approach to
finish synchronization between fractional-order Lü system

driven by Gaussian white noise and fractional-order Chen
system. Here, we define the error states as

𝑒
𝑖
= 𝑦
𝑖
− 𝑥
𝑖 (32)

and the sliding mode surface as

S = 𝐷
𝛼−1e − ∫

𝑡

0

(𝐾 + 𝐴
2
) e (𝜏) 𝑑𝜏, (33)

The control law is given by

u (𝑡) = 𝐾e − 𝑟S − 𝜌 sgn (S) − f
2
(y) + f

1
(x) − (𝐴

2
− 𝐴
1
) x.
(34)

In the numerical simulations, the initial conditions are
set as (𝑥

1
(0), 𝑥
2
(0), 𝑥
3
(0)) = (7, −4, 4), (𝑦

1
(0), 𝑦
2
(0), 𝑦
3
(0)) =

(1, 3, −1). The noise intensity matrices are presumably given
in the form of (ℎ

1
(𝑡, x), ℎ

2
(𝑡, x), ℎ

3
(𝑡, x)) = (0.3, 0.4, sin 𝑡).
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system (26) and system (31) using the sliding mode method.

In fact, controller parameters can be chosen as 𝑟 = 5, 𝜌 = 0.5,
and 𝐾 = [

34 −35 0

7 −29 0

0 0 2

]. The time step size is ℎ = 0.0005. Then
the simulation results are summarized in Figures 1–4. The
state trajectories of the system (26) and system (31) under the
slidingmode controlmethod are shown in Figure 1(a) (signals
𝑥
1
; 𝑦
1
), Figure 1(b) (signals 𝑥

2
; 𝑦
2
), and Figure 1(c) (signals

𝑥
3
; 𝑦
3
), respectively. Note that the driving system is shown by

solid line whereas response system is shown by dashed line.
As one can see, the designed controller is effectively capa-
ble achieving the synchronization of fractional-order Chen
chaotic system; that is, the state variables (𝑦

1
, 𝑦
2
, 𝑦
3
) follow

the trail of (𝑥
1
, 𝑥
2
, 𝑥
3
) well. Then the synchronization errors

between the uncertain fractional-order chaotic Lü system
and fractional-order chaotic Chen system are depicted in
Figure 2(a) (signal 𝑒

1
), and Figure 2(b) (signal 𝑒

2
), Figure 2(c)

(signal 𝑒
3
). As it is expected, the synchronization errors (32)

close to zero. Further, the expectation and variance of error

vectors 𝑒
1
, 𝑒
2
and 𝑒
3
converge to zero, as displayed in Figures

3 and 4, which all indicate that the chaos synchronization
between uncertain fractional-order chaotic Lü and Chen
systems are indeed realized.

From the simulation results, it can be concluded that
the obtained theoretic results are efficient and feasible for
synchronizing fractional uncertain dynamical systems, and
the proposed controller guarantees the convergence of the
error system.

5. Conclusions

In this paper, we focus on the problem of synchroniza-
tion between fractional-order chaotic systems with Gaussian
fluctuation by the method of fractional-order sliding mode
control. A fractional sliding surface is introduced, and the
sliding mode controller is proposed for synchronization.
Furthermore, convergence property has been analyzed for
the error dynamics after adding proposed controllers. It
has been shown that the fractional-order chaotic systems
under uncertain environment can achieve synchronization
by proper choice of control parameters (𝑟 and 𝜌). Finally, to
further illustrate the effectiveness of the proposed controllers,
one applies the presented algorithm to the fractional-order
Chen and fractional-order Lü systems through numerical
simulations. From the simulation results, it is obvious that a
satisfying control performance can be achieved by using the
proposed method.
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[42] T. Škovránek, I. Podlubny, and I. Petráš, “Modeling of the
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