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The main purpose of this paper is to establish a Hörmander multiplier theorem for Herz-type Hardy spaces associated with the
Dunkl transform.

1. Introduction

Let𝑇
𝑚
(𝑓) be amultiplier operator defined in terms of Fourier

transforms by 𝑇
𝑚
(𝑓) = F−1

(𝑚F(𝑓)) for suitable functions
𝑓.Themultiplier theorem of Hörmander [1] gives a sufficient
condition on𝑚 for the operator 𝑇

𝑚
to be bounded on 𝐿𝑝(R𝑛

)

whenever 1 < 𝑝 < ∞, namely, that 𝑚 is a bounded 𝐶
ℓ-

function on R𝑛

\ {0} satisfying the Hörmander condition
𝑀(2, ℓ) as follows:

(∫

2𝑅

𝑅


𝑚

(𝑠)

(𝜉)


2

𝑑𝜉)

1/2

≤ 𝐶𝑅
(𝑛+1)/2−𝑠

, ∀𝑅 > 0, (1)

where ℓ is the least integer greater than 𝑛/2 and 𝑠 = 0, 1, . . . , ℓ.
In [2], the authors proved that if 𝑚 satisfies the Hörmander
condition with ℓ > 𝑛 (1/𝑝 − 1/2), then 𝑇

𝑚
is bounded on the

Hardy spaces𝐻𝑝

(R𝑛

) with 0 < 𝑝 ≤ 1.
In [3], the authors considered the following multiplier

operator which is associated with the Dunkl transform:

𝑇
𝛼

𝑚
(𝑓) = F

−1

𝛼
(𝑚F

𝛼
(𝑓)) , (2)

where F
𝛼
designs the Dunkl transform and using Hörman-

der’s technique proved the following theorem.

Theorem 1. Let ℓ be the least integer greater than 𝛼 + 1 and
let 𝑚 be a bounded 𝐶ℓ-function on R \ {0} which satisfies the
Hörmander condition𝑀

𝛼
(2, ℓ) as follows:

(∫

2𝑅

𝑅


𝑚

(𝑠)

(𝜉)


2

𝑑𝜇
𝛼
(𝜉))

1/2

≤ 𝐶𝑅
𝛼+1−𝑠

, ∀𝑅 > 0, (3)

where 𝐶 is a constant independent of 𝑅 and 𝑠 = 0, 1, . . . , ℓ.
Then, the multiplier operator associated with the Dunkl trans-
form can be extended to a bounded operator from 𝐿

𝑝

(𝜇
𝛼
) into

itself for 1 < 𝑝 < ∞, where 𝐿𝑝(𝜇
𝛼
) is the Lebesgue space on R

with respect to the following measure:

𝜇
𝛼
(𝑥) = (2

𝛼+1

Γ (𝛼 + 1))
−1

|𝑥|
2𝛼+1

, (𝛼 > −
1

2
) . (4)

The Hardy spaces associated with Herz spaces can be
regarded as the local version at the origin of the classical
Hardy spaces 𝐻

𝑝 and they are good substitutes for 𝐻
𝑝

when we study the boundedness of nontranslation invariant
operators. To establish the boundedness of operators in
hardy-type spaces on R𝑛, one usually appeals to the atomic
decomposition characterization of these spaces. In [4, 5],
the authors studied the Herz-type Hardy spaces 𝐻�̇�𝛽,𝑝

𝛼,2
for

the Dunkl operator in one-dimension and gave an atomic
decomposition characterization of these spaces. The aim of
this work is to prove the following Hörmander multiplier
theorem on the spaces𝐻�̇�

𝛽,𝑝

𝛼,2
.

Theorem 2. Let 0 < 𝑝 ≤ 1, 𝛽 = (1/𝑝) − (1/2), and ℓ be
an integer greater than 2(𝛼+1)𝛽. If𝑚 satisfies the Hörmander
condition𝑀

𝛼
(2, ℓ), then the operator𝑇𝛼

𝑚
is bounded on𝐻�̇�

𝛽,𝑝

𝛼,2
.

The paper is organized as follows. In Section 2, we recall
some results about harmonic analysis and Herz-type Hardy
spaces associated with the Dunkl operator onR. In Section 3,
we give the proof of the main result of this work. Then, as
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an application, we obtain the boundedness of the generalized
Hilbert transform on𝐻�̇�

𝛽,𝑝

𝛼,2
.

Throughout this paper, let 𝑆(R) be the usual Schwartz
space and let E(R) be the space of 𝐶∞-functions on R. We
always use𝐶 to denote a positive constant that is independent
of the main parameters involved but whose value may differ
from line to line. We use the shorter notation ‖𝑓‖

𝑝,𝛼
instead

of ‖𝑓‖
𝐿
𝑝
(𝜇𝛼)

.

2. Preliminaries

In this section, we recapitulate some results about harmonic
analysis on Dunkl hypergroups and the Herz-type Hardy
space and its atomic decomposition which will be used later.
For details, the reader is referred to [6–8].

Let 𝛼 > −1/2. We consider the differential-difference
operator introduced in [9] as follows:

Λ
𝛼
(𝑓) (𝑥) =

𝑑𝑓

𝑑𝑥
(𝑥) +

2𝛼 + 1

𝑥

⋅
𝑓 (𝑥) − 𝑓 (−𝑥)

2
, 𝑓 ∈ E (R) ,

(5)

and call it the Dunkl operator.
For 𝜆 ∈ C, the following initial value problem:

Λ
𝛼
(𝑓) (𝑥) = 𝜆𝑓 (𝑥) , 𝑓 (0) = 1, 𝑥 ∈ R, (6)

has a unique solution 𝐸
𝛼
(𝜆 ⋅) (called the Dunkl kernel) given

by

𝐸
𝛼
(𝑧) = 𝑗

𝛼
(𝑖𝑧) +

𝑧

2 (𝛼 + 1)
𝑗
𝛼+1

(𝑖𝑧) , 𝑧 ∈ C, (7)

where 𝑗
𝛼
is the normalized Bessel function of the first kind

(with order 𝛼) defined on C by

𝑗
𝛼
(𝑧) = Γ (𝛼 + 1)

∞

∑

𝑛=0

(−1)
𝑛 (𝑧/2)

2𝑛

𝑛!Γ (𝑛 + 𝛼 + 1)
. (8)

The integral representation of 𝐸
𝛼
is given by

𝐸
𝛼
(𝑖𝜆𝑥)=

Γ (𝛼 + 1)

√𝜋Γ (𝛼 + (1/2))
∫

1

−1

(1 − 𝑡) (1 − 𝑡
2

)
𝛼−(1/2)

𝑒
−𝑖𝜆𝑥𝑡

𝑑𝑡.

(9)

From which, we get
𝜕

𝑛

𝑥
𝐸
𝛼
(𝑖𝜆𝑥)

 ≤ |𝜆|
𝑛

, 𝜆, 𝑥 ∈ R, 𝑛 ∈ N. (10)

The Dunkl transform F
𝛼
, which was introduced by [10]

and studied in [11], is defined for 𝑓 ∈ 𝐿
1

(𝜇
𝛼
) by

F
𝛼
(𝑓) (𝑥) = ∫

R

𝐸
𝛼
(−𝑖𝑥𝑦) 𝑓 (𝑦) 𝑑𝜇

𝛼
(𝑦) , 𝑥 ∈ R. (11)

This transform satisfies the following properties.

(i) For all 𝑓 ∈ 𝐿
1

(𝜇
𝛼
), we have

F𝛼
(𝑓)

∞,𝛼
≤
𝑓
1,𝛼. (12)

(ii) For all 𝑓 ∈ 𝐿
1

(𝜇
𝛼
) such thatF

𝛼
(𝑓) ∈ 𝐿

1

(𝜇
𝛼
), we have

the following inversion formula:

F
−1

𝛼
(𝑓) (𝑥) = F

𝛼
(𝑓) (−𝑥) , a.e. 𝑥 ∈ R. (13)

(iii) For all 𝑓 ∈ S(R),

F
𝛼
(Λ

𝛼
𝑓) (𝑥) = 𝑖𝑥F

𝛼
(𝑓) (𝑥) . (14)

(iv) F
𝛼
is a topological isomorphism from S(R) into

itself.
(v) F

𝛼
is an isometric isomorphism of 𝐿2(𝜇

𝛼
), and we

have the following Parseval formula:

∫
R

𝑓 (𝑥) 𝑔(𝑥)𝑑𝜇
𝛼
(𝑥) = ∫

R

F
𝛼
(𝑓) (𝑥)F

𝛼
(𝑔)(𝑥)𝑑𝜇

𝛼
(𝑥) ,

F𝛼
(𝑓)

2,𝛼 =
𝑓
2,𝛼.

(15)

The following lemma can be proved, similar to Lemma
7.25, page 343, in [12].

Lemma 3. Let ℓ be the least integer greater than 𝛼 + 1. If
𝑚 satisfies the Hörmander condition𝑀

𝛼
(2, ℓ), then there is a

constant𝐶 independent of𝑚, such that if 𝑞 = 1 or 𝑠−ℓ+𝛼+1 <
(𝛼 + 1)/𝑞 ≤ 𝛼 + 1, the following inequality holds:

∫

2𝑅

𝑅


𝑚

(𝑠)

(𝜉)


2𝑞

𝑑𝜇
𝛼
(𝜉) ≤ 𝐶𝑅

2(𝛼+1)−2𝑞𝑠

, ∀𝑅 > 0. (16)

Furthermore, in case 𝑠 − ℓ + 𝛼 + 1 < 0, then |𝑥|𝑠|𝑚(𝑠)

(𝑥)| ≤ 𝐶

and𝑚(𝑠) is continuous on R \ {0}.

Notation. For all 𝑥, 𝑦, 𝑧 ∈ R, we put

𝑊
𝛼
(𝑥, 𝑦, 𝑧) = [1 − 𝜎

𝑥,𝑦,𝑧
+ 𝜎

𝑧,𝑥,𝑦
+ 𝜎

𝑧,𝑦,𝑥
] Δ

𝛼
(|𝑥| ,

𝑦
 , |𝑧|) ,

(17)

where

𝜎
𝑥,𝑦,𝑧

=

{{

{{

{

𝑥
2

+ 𝑦
2

− 𝑧
2

2𝑥𝑦
, if 𝑥, 𝑦 ∈ R \ {0} ,

0, otherwise,

Δ
𝛼
(|𝑥| ,

𝑦
 , |𝑧|)

=

{{{{{

{{{{{

{

𝑑
𝛼

[((|𝑥| +
𝑦
)
2

− 𝑧
2

) (𝑧
2

− (|𝑥| −
𝑦
)
2

)]
𝛼−1/2

𝑥𝑦𝑧


2𝛼
,

if |𝑧| ∈ 𝐴
𝑥,𝑦
,

0, otherwise,

𝑑
𝛼
=
2
1−𝛼

(Γ (𝛼 + 1))
2

√𝜋 Γ (𝛼 + 1/2)
,

𝐴
𝑥,𝑦

= [
|𝑥| −

𝑦

 , |𝑥| +

𝑦
] .

(18)
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The Dunkl translation operator 𝜏
𝑥
, 𝑥 ∈ R is defined for a

continuous function 𝑓 on R by

𝜏
𝑥
𝑓 (𝑦) = ∫

R

𝑓 (𝑧) 𝑑𝛾
𝑥,𝑦

(𝑧) , 𝑦 ∈ R, (19)

where 𝛾
𝑥,𝑦

is the signed measures given by

𝑑𝛾
𝑥,𝑦

(𝑧) =

{{

{{

{

𝑊
𝛼
(𝑥, 𝑦, 𝑧) 𝑑𝜇

𝛼
(𝑧) , if 𝑥, 𝑦 ∈ R \ {0} ,

𝑑𝛿
𝑥
(𝑧) , if 𝑦 = 0,

𝑑𝛿
𝑦
(𝑧) , if 𝑥 = 0.

(20)

The operator 𝜏
𝑥
has the following properties.

(i) For 𝑥, 𝑦 ∈ R and a continuous function 𝑓 on R, we
have

𝜏
𝑥
(𝑓) (𝑦) = 𝜏

𝑦
(𝑓) (𝑥) . (21)

(ii) For all 𝑥 ∈ R, the operator 𝜏
𝑥
can be extended to

𝐿
𝑝

(𝜇
𝛼
) (𝑝 ≥ 1), and for 𝑓 ∈ 𝐿

𝑝

(𝜇
𝛼
), we have

𝜏𝑥 (𝑓)
𝑝,𝛼 ≤ 3

𝑓
𝑝,𝛼. (22)

(iii) For all 𝑥, 𝜆 ∈ R and 𝑓 ∈ 𝐿
1

(𝜇
𝛼
), we have

F
𝛼
(𝜏

𝑥
(𝑓)) (𝜆) = 𝐸

𝛼
(𝑖𝜆𝑥)F

𝛼
(𝑓) (𝜆) . (23)

Let 𝑝, 𝑞, 𝑟 ∈ [1,∞] such that 1/𝑝 + 1/𝑞 = 1/𝑟 + 1. The
convolution product of 𝑓 ∈ 𝐿

𝑝

(𝜇
𝛼
) and 𝑔 ∈ 𝐿

𝑞

(𝜇
𝛼
) is defined

by

𝑓∗
𝛼
𝑔 (𝑥) = ∫

R

𝜏
𝑥
(𝑓) (−𝑦) 𝑔 (𝑦) 𝑑𝜇

𝛼
(𝑦) , a.e. 𝑥, (24)

and we have
𝑓∗𝛼 𝑔

𝑟,𝛼 ≤ 3
𝑓
𝑝,𝛼

𝑔
𝑞,𝛼. (25)

If 𝑓, 𝑔 ∈ 𝐿
1

(𝜇
𝛼
), then

F
𝛼
(𝑓∗

𝛼
𝑔) = F

𝛼
(𝑓)F

𝛼
(𝑔) . (26)

Now, let us recall the definition of the Herz-type Hardy
space and its atomic decomposition. For 𝑁 ∈ N being suffi-
ciently large, we denote by 𝐹

𝑁
the subset of 𝑆(R) constituted

by all those 𝜙 ∈ 𝑆(R) such that supp(𝜙) ⊂ [−1, 1] and for all
𝑚, 𝑛 ∈ N such that𝑚, 𝑛 ≤ 𝑁, we have

𝜌
𝑚,𝑛

(𝜙) = sup
𝑥∈R

(1 + |𝑥|)
𝑚 Λ

𝑛

𝛼
𝜙 (𝑥)

 ≤ 1. (27)

Moreover, the system of seminorms {𝜌
𝑚,𝑛

}
𝑚,𝑛∈N generates the

topology of 𝑆(R).
Let 𝑓 ∈ 𝑆



(R). We define the 𝛼-grand maximal function
𝐺
𝛼
(𝑓) of 𝑓 by

𝐺
𝛼
(𝑓) (𝑥) = sup

𝑡>0,𝜙∈𝐹𝑁

𝜙𝑡∗𝛼𝑓 (𝑥)
 , 𝑥 ∈ R, (28)

where 𝜙
𝑡
is the dilation of 𝜙 given by

𝜙
𝑡
(𝑥) = 𝑡

−2(𝛼+1)

𝜙(
𝑥

𝑡
) , 𝑥 ∈ R. (29)

Definition 4. Let 𝛽 ∈ R, 𝑝 ∈ ]0,∞[, and 𝑞 ∈ [1,∞].

(i) The homogeneous weighted Herz space �̇�𝛽,𝑝

𝛼,𝑞
is the

space constituted by all functions 𝑓 ∈ 𝐿
𝑞

loc(𝜇𝛼), such
that

𝑓
�̇�
𝛽,𝑝

𝛼,𝑞

= [

∞

∑

𝑘=−∞

2
2(𝛼+1)𝛽𝑘𝑝𝑓𝜒𝑘



𝑝

𝑞,𝛼
]

1/𝑝

< ∞, (30)

where 𝜒
𝑘
is the characteristic function of 𝐴

𝑘
= {𝑥 ∈

R/2𝑘−1 ≤ |𝑥| ≤ 2
𝑘

}.

(ii) The nonhomogeneous weighted Herz space 𝐾𝛽,𝑝

𝛼,𝑞
is

defined, as usual, by𝐾𝛽,𝑝

𝛼,𝑞
= 𝐿

𝑞

(𝜇
𝛼
) ∩ �̇�

𝛽,𝑝

𝛼,𝑞
. Moreover,

‖𝑓‖
𝐾
𝛽,𝑝

𝑞,𝛼

= ‖𝑓‖
𝑞,𝛼

+ ‖𝑓‖
�̇�
𝛽,𝑝

𝛼,𝑞

.

Note that �̇�0,𝑞

𝛼,𝑞
= 𝐾

0,𝑞

𝛼,𝑞
= 𝐿

𝑞

(𝜇
𝛼
).

Definition 5. Let 𝛽 ∈ R, 𝑝 ∈ ]0,∞], and 𝑞 ∈ ]1,∞]. The
Herz-type Hardy space 𝐻�̇�

𝛽,𝑝

𝛼,𝑞
is the space of distributions

𝑓 ∈ 𝑆


(R) such that 𝐺
𝛼
(𝑓) ∈ �̇�

𝛽,𝑝

𝛼,𝑞
. Moreover, we define

𝑓
𝐻�̇�
𝛽,𝑝

𝛼,𝑞

=
𝐺𝛼

(𝑓)
�̇�
𝛽,𝑝

𝛼,𝑞

. (31)

In the same way, we define the space 𝐻𝐾𝛽,𝑝

𝛼,𝑞
for the non-

homogeneous case.

Definition 6. Let 𝑞 ∈ ]1,∞] and 𝛽 ≥ 1 − 1/𝑞. A measurable
function 𝑎 onR is called a (central) (𝛽, 𝑞, 𝑠)-atom if it satisfies
the following:

(i) supp (𝑎) ⊂ [−𝑟, 𝑟], for some 𝑟 > 0,

(ii) ‖𝑎‖
𝑞,𝛼

≤ 𝑟
−2(𝛼+1)𝛽,

(iii) ∫
R
𝑎(𝑥)𝑥

𝑘

𝑑𝜇
𝛼
(𝑥) = 0, 𝑘 = 0, 1, . . . , 𝑠, where 𝑠 =

[2(𝛼+1)(𝛽−1+1/𝑞)] and [⋅] denotes the integer part
function.

The following theorem is shown in [4].

Theorem 7. Let 0 < 𝑝 ≤ 1 < 𝑞 ≤ ∞ and 𝛽 ≥ 1 − 1/𝑞 .
Then, 𝑓 ∈ 𝐻�̇�

𝛽,𝑝

𝛼,𝑞
if and only if, for all 𝑗 ∈ N \ {0}, there exist

a (𝛽, 𝑞, 𝑠)-atom 𝑎
𝑗
and 𝜆

𝑗
∈ C, such that ∑∞

𝑗=1
|𝜆

𝑗
|
𝑝

< ∞ and
𝑓 = ∑

∞

𝑗=1
𝜆
𝑗
𝑎
𝑗
. Moreover,

𝑓
𝐻�̇�
𝛽,𝑝

𝛼,𝑞

∼ inf (
∞

∑

𝑗=1


𝜆
𝑗



𝑝

)

1/𝑝

, (32)

where the infimum is taking over all atomic decompositions of
𝑓.

In the sequel, fix 𝑞 = 2 and 𝛽 = 1/𝑝 − 1/2.
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Definition 8. For 0 < 𝑝 ≤ 1. Set 𝑠 ≥ [2(𝛼 + 1)(1/𝑝 − 1)], 𝜀 >
𝑠/2(𝛼 + 1), 𝑎 = 1 −

1

𝑝
+ 𝜀, and 𝑏 = 1/2 + 𝜀. A central (𝑝, 𝑠, 𝜀)-

molecule is a function𝑀 ∈ 𝐿
2

(𝜇
𝛼
) satisfying the following:

(i) 𝑀(𝑥)|𝑥|
2(𝛼+1)𝑏

∈ 𝐿
2

(𝜇
𝛼
),

(ii) ‖𝑀‖
𝑎/𝑏

2,𝛼
‖𝑀(𝑥)|𝑥|

2(𝛼+1)𝑏

‖
1−𝑎/𝑏

2,𝛼
≡ 𝑁(𝑀) < ∞,

(iii) ∫
R
𝑀(𝑥)𝑥

𝑘

𝑑𝜇
𝛼
(𝑥) = 0, 𝑘 = 0, 1, . . . , 𝑠.

Proposition 9. Let (𝑝, 𝑠, 𝜀) be the triple cited in the previous
definition. Every central (𝑝, 𝑠, 𝜀)-molecule𝑀 belongs to𝐻�̇�𝛽,𝑝

𝛼,2

and ‖𝑀‖
𝐻�̇�
𝛽,𝑝

𝛼,2

≤ 𝐶𝑁(𝑀), where the constant 𝐶 is independent
of𝑀.

Proof. Let𝑀 be a central (𝑝, 𝑠, 𝜀)-molecule and suppose that
‖𝑀‖

𝐻�̇�
𝛽,𝑝

𝛼,2

= 1. In the general case, letting �̃� = 𝑀/‖𝑀‖
𝐻�̇�
𝛽,𝑝

𝛼,2

,
we have ‖�̃�‖

𝐻�̇�
𝛽,𝑝

𝛼,2

= 1.

Let 𝐸
0
= {|𝑥| ≤ 1}, 𝐸

𝑘
= {2

𝑘−1

< |𝑥| ≤ 2
𝑘

}, and 𝑀
𝑘
=

𝑀𝜒
𝑘
, 𝑘 = 1, 2, 3, . . ., where 𝜒

𝑘
is the characteristic function of

𝐸
𝑘
. For each 𝑘, there exists a unique polynomial𝑄

𝑘
, of degree

at most 𝑠, such that if 𝑃
𝑘
= 𝑄

𝑘
𝜒
𝑘
; then

∫
R

(𝑀
𝑘
− 𝑃

𝑘
) 𝑥

𝑗

𝑑𝜇
𝛼
(𝑥) = 0, 𝑗 = 0, 1, . . . , 𝑠. (33)

Using some ideas in [2], we can show that each (𝑀
𝑘
−

𝑃
𝑘
) is a multiple of a central (𝛽, 2, 𝑠)-atom with a sequence of

coefficients in 𝑙𝑝. We also show that the sum ∑
+∞

𝑘=0
𝑃
𝑘
can be

written as an infinite linear combination of central (𝛽,∞, 𝑠)-
atom with a sequence of coefficients in 𝑙𝑝. Since a (𝛽,∞, 𝑠)-
atom is also (𝛽, 2, 𝑠)-atom, hence,

𝑀 =

+∞

∑

𝑘=0

𝑀
𝑘
=

+∞

∑

𝑘=0

(𝑀
𝑘
− 𝑃

𝑘
) +

+∞

∑

𝑘=0

𝑃
𝑘
=

+∞

∑

𝑖=0

𝜆
𝑖
𝑎
𝑖
, (34)

where 𝑎
𝑖
is a central (𝛽, 2, 𝑠)-atom and ∑

+∞

𝑘=0
|𝜆

𝑖
|
𝑝

< ∞. It
follows from Theorem 7 that 𝑀 ∈ 𝐻�̇�

𝛽,𝑝

𝛼,2
and ‖𝑀‖

𝐻�̇�
𝛽,𝑝

𝛼,2

≤

𝐶𝑁(𝑀).

The following Lemmaplays an important role in the proof
of the main result of this work.

Lemma 10. Let 𝑎 be a (𝛽, 2, 𝑠)-atom. For all integer 0 ≤ 𝑘 ≤ 𝑠

and every 1 ≤ 𝑢 ≤ ∞, there exists a constant 𝐶 independent of
𝑎, such that

(i)

(F

𝛼
(𝑎))

(𝑘)

(𝑦)

≤ 𝐶

𝑦


𝑠+1−𝑘

‖𝑎‖
𝐴

2,𝛼
,

𝐴 = 1 −
1

𝛽
(
1

2
+

𝑠 + 1

2 (𝛼 + 1)
) 𝑦 ∈ R,

(ii)

((F

𝛼
(𝑎))

(𝑘)

(𝑦))

2𝑢 ,𝛼
≤ 𝐶‖𝑎‖

2−(1/𝛽)((𝑘/𝛼+1)+(1/𝑢))

2,𝛼
,

1

𝑢
+
1

𝑢
= 1 𝑦 ∈ R.

(35)

Proof. (i) Let 𝑎 be a (𝛽, 2, 𝑠)-atom. Consider that 𝑟 > 0 such
that supp(𝑎) ⊂ [−𝑟, 𝑟] and that ‖𝑎‖

2,𝛼
≤ 𝑟

−2(𝛼+1)𝛽. From (9),
(iii) of Definition (19), and the estimate for the remainder in
Taylors’ formula, it follows that

(F
𝛼
(𝑎))

(𝑘)

(𝑦)

= 𝐶
𝛼
∫

1

−1

((1 − 𝑡) (1 − 𝑡
2

)
𝛼−1/2

𝑡
𝑘

× ∫

𝑟

−𝑟

(𝑖𝑥)
𝑘

[exp (𝑖𝑥𝑦𝑡) −
𝑠−𝑘

∑

𝑛=0

(𝑖𝑥𝑦𝑡)
𝑛

𝑛!
]

× 𝑎 (𝑥) 𝑑𝜇
𝛼
(𝑥) ) 𝑑𝑡

≤ 𝐶
𝑦


𝑠+1−𝑘

∫

𝑟

−𝑟

|𝑥|
𝑠+1

|𝑎 (𝑥)| 𝑑𝜇
𝛼
(𝑥)

≤ 𝐶
𝑦


𝑠+1−𝑘

‖𝑎‖
2,𝛼
[∫

𝑟

−𝑟

|𝑥|
2(𝑠+1)

𝑑𝜇
𝛼
(𝑥)]

1/2

≤ 𝐶
𝑦


𝑠+1−𝑘

‖𝑎‖
2,𝛼
𝑟
𝑠+𝛼+2

.

(36)

From (ii) of Definition (19), we obtain

(F

𝛼
(𝑎))

(𝑘)

(𝑦)

≤ 𝐶

𝑦


𝑠+1−𝑘

‖𝑎‖
𝐴

2,𝛼
,

𝐴 = 1 −
1

𝛽
(
1

2
+

𝑠 + 1

2 (𝛼 + 1)
) .

(37)

(ii) For 𝑢 = 1,

(F
𝛼
(𝑎))

(𝑘)

(𝑦) = ∫

𝑟

−𝑟

𝜕
𝑘

𝑦
𝐸
𝛼
(−𝑖𝑦𝑥) 𝑎 (𝑥) 𝑑𝜇

𝛼
(𝑥) . (38)

Using (10), we get the following for all 𝑦 ∈ R:

(F

𝛼
(𝑎))

(𝑘)

(𝑦)

≤ 𝐶∫

𝑟

−𝑟

|𝑥|
𝑘

|𝑎 (𝑥)| 𝑑𝜇
𝛼
(𝑥)

≤ 𝐶(∫

𝑟

−𝑟

|𝑎 (𝑥)|
2

𝑑𝜇
𝛼
(𝑥))

1/2

× (∫

𝑟

−𝑟

|𝑥|
2𝑘

𝑑𝜇
𝛼
(𝑥))

1/2

≤ 𝐶‖𝑎‖
2,𝛼
𝑟
𝑘+𝛼+1

.

(39)

From (ii) of Definition (19), we obtain the following for all
𝑦 ∈ R:


(F

𝛼
(𝑎))

(𝑘)

(𝑦)


2

≤ 𝐶‖𝑎‖
2−(1/𝛽)(𝑘/(𝛼+1)+1)

2,𝛼
. (40)

For 𝑢 = ∞,

∫
R


(F

𝛼
(𝑎))

(𝑘)

(𝑥)


2

𝑑𝜇
𝛼
(𝑥) ≤ 𝐶∫

𝑟

−𝑟

|𝑥|
2𝑘

|𝑎 (𝑥)|
2

𝑑𝜇
𝛼
(𝑥)

≤ 𝐶𝑟
2𝑘

‖𝑎‖
2

2,𝛼

≤ 𝐶‖𝑎‖
2−(1/𝛽)(𝑘/(𝛼+1))

2,𝛼
.

(41)
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For 1 < 𝑢 < ∞,

∫
R


(F

𝛼
(𝑎))

(𝑘)

(𝑦)


2𝑢


𝑑𝜇
𝛼
(𝑥)

= ∫
R


(F

𝛼
(𝑎))

(𝑘)

(𝑦)


2
(F

𝛼
(𝑎))

(𝑘)

(𝑦)


2𝑢

−2

𝑑𝜇
𝛼
(𝑥)

≤ 𝐶‖𝑎‖
(𝑢

−1)(2−(1/𝛽)(𝑘/(𝛼+1))

2,𝛼
∫
R


(F

𝛼
(𝑎))

(𝑘)

(𝑥)


2

𝑑𝜇
𝛼
(𝑥)

≤ 𝐶‖𝑎‖
𝑢

(2−(1/𝛽)(𝑘/(𝛼+1)+(1/𝑢


))

2,𝛼
.

(42)

Finally, we get the following for all 𝑦 ∈ R:

((F

𝛼
(𝑎))

(𝑘)

(𝑦))
2
𝑢 ,𝛼

≤ 𝐶‖𝑎‖
2−(1/𝛽)(𝑘/(𝛼+1)+(1/𝑢))

2,𝛼
. (43)

3. Proof of Theorem 2

Let 0 < 𝑝 ≤ 1 and ℓ be an integer greater than 2(𝛼 + 1)𝛽. Set
𝑠 = [2(𝛼+1)(1/𝑝−1)], 𝜖 = ℓ/2(𝛼+1)−(1/2), 𝑎 = 1−(1/𝑝)+

𝜖, and 𝑏 = 𝜖 + (1/2).
We have ℓ − 1 ≥ 𝑠; then, according to Proposition 9 to

prove Theorem 2 it suffices to prove that, for any (𝛽, 2, ℓ)-
atom 𝑓, 𝑇𝛼

𝑚
𝑓 is a central (𝑝, 𝑠, 𝜖)-molecule with𝑁(𝑇𝛼

𝑚
𝑓) < 𝐶

for some constant 𝐶 independent of 𝑓. In other words, we
need to check that

(i) 𝑇𝛼

𝑚
𝑓 (𝜉) , 𝑇

𝛼

𝑚
𝑓 (𝜉)

𝜉


ℓ

∈ 𝐿
2

(𝜇
𝛼
) ,

(ii) 𝑇
𝛼

𝑚
𝑓


𝑎/𝑏

2,𝛼


𝑇
𝛼

𝑚
𝑓(𝜉)

𝜉


ℓ


1−𝑎/𝑏

2,𝛼

≡ 𝑁 (𝑇
𝛼

𝑚
𝑓) < 𝐶,

(iii) ∫
R

𝑇
𝛼

𝑚
𝑓 (𝜉) 𝜉

𝑗

𝑑𝜇
𝛼
(𝜉) = 0 ∀𝑗 = 0, 1, . . . , 𝑠.

(44)

Firstly, we prove (i) and (ii).
𝑚 satisfies the Hörmander condition 𝑀

𝛼
(2, ℓ); then, by

Theorem 1, there exists a constant 𝐶 independent of 𝑓, such
that

𝑇
𝛼

𝑚
𝑓
2,𝛼 ≤ 𝐶

𝑓
2,𝛼. (45)

From (14) and (13), we have

Λ
ℓ

𝛼
(F

𝛼
(𝑇

𝛼

𝑚
𝑓)) (𝜉) = F

𝛼
((−𝑖𝑥)

ℓ

𝑇
𝛼

𝑚
𝑓 (𝑥)) (𝜉) . (46)

Then, by Plancherel theorem to estimate ‖𝑇𝛼

𝑚
𝑓(𝜉)|𝜉|

ℓ

‖
2,𝛼
, it

suffices to estimate ‖Λ
ℓ

𝛼
(𝑚F

𝛼
(𝑓))‖

2,𝛼
, which turns out to

prove that

Λ
ℓ

𝛼
(𝑚F

𝛼
(𝑓))

2,𝛼
≤ 𝐶

𝑓


1−(ℓ/2(𝛼+1)𝛽)

2,𝛼
. (47)

By induction, we have

Λ
ℓ

𝛼
(𝑚F

𝛼
(𝑓)) (𝜉) =

𝑙

∑

𝑟=0

𝑎
𝑟
𝜉
𝑟−ℓ

(𝑚F
𝛼
(𝑓))

(𝑟)

(𝜉)

+

𝑙

∑

𝑟=0

𝑏
𝑟
𝜉
𝑟−ℓ

(𝑚F
𝛼
(𝑓))

(𝑟)

(−𝜉) ,

(48)

where 𝑎
𝑟
and 𝑏

𝑟
are constants.

But, using Leibniz formula, we have the following for 𝑟 ∈
{0, 1, . . . , ℓ}:

(𝑚F
𝛼
(𝑓))

(𝑟)

(𝜉) =

𝑟

∑

𝑘=0

𝐶
𝑘

𝑟
(F

𝛼
(𝑓))

(𝑘)

(𝜉) (𝑚)
(𝑟−𝑘)

(𝜉) . (49)

So, to establish (47), it suffices to claim that

𝜉
𝑟−ℓ

(F
𝛼
(𝑓))

(𝑘)

(𝜉)(𝑚)
(𝑟−𝑘)

(𝜉)
2,𝛼

≤ 𝐶
𝑓


1−(ℓ/2(𝛼+1)𝛽)

2,𝛼
for all integers 0 ≤ 𝑘 ≤ 𝑟 ≤ ℓ.

(50)

For the case 𝑘 = ℓ, we use Lemma 10 (ii) with 𝑢 = ∞ and
Lemma 3 to get the following:

𝜉
𝑟−ℓ

(F
𝛼
(𝑓))

(𝑘)

(𝜉)(𝑚)
(𝑟−𝑘)

(𝜉)
2,𝛼

≤ 𝐶

(F

𝛼
(𝑓))

(𝑘)
2,𝛼

≤ 𝐶
𝑓


1−(ℓ/2(𝛼+1)𝛽)

2,𝛼
.

(51)

For 0 ≤ 𝑘 < ℓ, we have

𝜉
𝑟−ℓ

(F
𝛼
(𝑓))

(𝑘)

(𝜉) (𝑚)
(𝑟−𝑘)

(𝜉)


2

2,𝛼

= ∑

𝑗∈Z

∫
2
𝑗
<|𝜉|<2

𝑗+1

𝜉


2(𝑟−ℓ)

(F

𝛼
(𝑓))

(𝑘)

(𝜉)


2

×

(𝑚)

(𝑟−𝑘)

(𝜉)


2

𝑑𝜇
𝛼
(𝜉)

= 𝑆
1
+ 𝑆

2
,

(52)

where

𝑆
1
=

𝑗0

∑

𝑗=−∞

∫
2
𝑗
<|𝜉|<2

𝑗+1

𝜉


2(𝑟−ℓ)

(F

𝛼
(𝑓))

(𝑘)

(𝜉)


2

×

(𝑚)

(𝑟−𝑘)

(𝜉)


2

𝑑𝜇
𝛼
(𝜉) ,

𝑆
2
=

+∞

∑

𝑗=𝑗0+1

∫
2
𝑗
<|𝜉|<2

𝑗+1

𝜉


2(𝑟−ℓ)

(F

𝛼
(𝑓))

(𝑘)

(𝜉)


2

×

(𝑚)

(𝑟−𝑘)

(𝜉)


2

𝑑𝜇
𝛼
(𝜉) ,

(53)

and 𝑗
0
is the integer, such that

2
2(𝛼+1)𝑗0 <

𝑓


1/𝛽

2,𝛼
≤ 2

2(𝛼+1)(𝑗0+1). (54)

Firstly, we estimate 𝑆
1
.

Using (i) of Lemma 10 and the fact that 𝑚 satisfies the
Hörmander condition𝑀

𝛼
(2, ℓ), we get

∫
2
𝑗
<|𝜉|<2

𝑗+1

𝜉


2(𝑟−ℓ)

(F

𝛼
(𝑓))

(𝑘)

(𝜉)


2
(𝑚)

(𝑟−𝑘)

(𝜉)


2

𝑑𝜇
𝛼
(𝜉)

≤ 𝐶
𝑓


2−(1/𝛽)(ℓ/(𝛼+1)+1)

2,𝛼

× ∫
2
𝑗
<|𝜉|<2

𝑗+1

𝜉


2(𝑟+1−𝑘)
(𝑚)

(𝑟−𝑘)

(𝜉)


2

𝑑𝜇
𝛼
(𝜉)

≤ 𝐶
𝑓


2−(1/𝛽)(ℓ/(𝛼+1)+1)

2,𝛼
2
2(𝛼+1)𝑗

.

(55)
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By (54), we obtain

𝑆
1
≤ 𝐶

𝑓


2−(1/𝛽)(ℓ/(𝛼+1)+1)

2,𝛼
2
2(𝛼+1)𝑗0 ≤ 𝐶

𝑓


2−(ℓ/(𝛼+1)𝛽)

2,𝛼
.

(56)
Now, we estimate 𝑆

2
. By Holder’s inequality, we have

∫
2
𝑗
<|𝜉|<2

𝑗+1

𝜉


2(𝑟−ℓ)

(F

𝛼
(𝑓))

(𝑘)

(𝜉)


2
(𝑚)

(𝑟−𝑘)

(𝜉)


2

𝑑𝜇
𝛼
(𝜉)

≤ 2
2𝑗(𝑟−ℓ)

(∫
2
𝑗
<|𝜉|<2

𝑗+1


(F

𝛼
(𝑓))

(𝑘)

(𝜉)


2𝑢


𝑑𝜇
𝛼
(𝜉))

1/𝑢


× (∫
2
𝑗
<|𝜉|<2

𝑗+1


(𝑚)

(𝑟−𝑘)

(𝜉)


2𝑢

𝑑𝜇
𝛼
(𝜉))

1/𝑢

.

(57)
Using (ii) of Lemmas 10 and 3, we get

𝑆
2
≤ 𝐶

𝑓


2−(1/𝛽)((𝑘/(𝛼+1))+(1/𝑢))

2,𝛼

+∞

∑

𝑗=𝑗0+1

(2
(2(𝛼+1)/𝑢)−2(ℓ−𝑘)

)
𝑗

.

(58)
To guarantee the convergence of this summation, we choose
the pair (𝑘, 𝑢) as follows:

(a) if 𝑙 − 𝑘 > 𝛼 + 1, we choose 𝑢 = 1;
(b) if 0 < 𝑙 − 𝑘 ≤ 𝛼 + 1 and 𝑘 > 𝛼 + 1, we choose 𝑢 = ∞;
(c) if 0 < 𝑙−𝑘 ≤ 𝛼+1 and 𝑘 ≤ 𝛼+1, we choose 0 < 𝑢 < ∞

such that 𝑘 > (𝛼 + 1)(1 − (1/𝑢)).
Furthermore, by (54), we get

𝑆
2
≤ 𝐶

𝑓


2−(1/𝛽)(𝑘/(𝛼+1)+(1/𝑢))

2,𝛼
(2

(2(𝛼+1)/𝑢)−2(ℓ−𝑘)

)
𝑗0+1

≤ 𝐶
𝑓


2−(ℓ/(𝛼+1)𝛽)

2,𝛼
.

(59)

Finally, combining (56) and (59), we obtain (47). (i) and
(ii) are hence proved.

To prove (iii), it suffices to prove that 𝑇𝛼

𝑚
𝑓(𝜉)𝜉

𝑗

∈ 𝐿
1

(𝜇
𝛼
)

for all integer 0 ≤ 𝑗 ≤ 𝑠 and Λ
𝑗

𝛼
(𝑚F

𝛼
(𝑓))(0) = 0: indeed

if 𝑇𝛼

𝑚
𝑓(𝜉)𝜉

𝑗

∈ 𝐿
1

(𝜇
𝛼
) according to (14), which we have

Λ
𝑗

𝛼
(F

𝛼
(𝑇

𝛼

𝑚
𝑓))(𝑥) = 𝐶F

𝛼
(𝑇

𝛼

𝑚
𝑓(𝜉)𝜉

𝑗

)(𝑥) is continuous, and
hence ∫

R
𝑇
𝛼

𝑚
𝑓(𝜉)𝜉

𝑗

𝑑𝜇
𝛼
(𝜉) = 𝐶Λ

𝑗

𝛼
(𝑚F

𝛼
(𝑓))(0).

Now, we check 𝑇
𝛼

𝑚
𝑓(𝜉)𝜉

𝑗

∈ 𝐿
1

(𝜇
𝛼
). We write

∫
R
|𝑇

𝛼

𝑚
𝑓(𝜉)𝜉

𝑗

|𝑑𝜇
𝛼
(𝜉) = 𝐼

1
+ 𝐼

2
, where

𝐼
1
= ∫

|𝜉|≤1


𝑇
𝛼

𝑚
𝑓 (𝜉) 𝜉

𝑗

𝑑𝜇

𝛼
(𝜉) ,

𝐼
2
= ∫

|𝜉|>1


𝑇
𝛼

𝑚
𝑓 (𝜉) 𝜉

𝑗

𝑑𝜇

𝛼
(𝜉) .

(60)

Using the fact that𝑇𝛼

𝑚
𝑓 ∈ 𝐿

2

(𝜇
𝛼
) and Schwarz’s inequality, we

get

𝐼
1
≤ ∫

|𝜉|≤1

𝑇
𝛼

𝑚
𝑓 (𝜉)

 𝑑𝜇𝛼 (𝜉)

≤ (∫
|𝜉|≤1

𝑇
𝛼

𝑚
𝑓 (𝜉)



2

𝑑𝜇
𝛼
(𝜉))

1/2

(∫
|𝜉|≤1

𝑑𝜇
𝛼
(𝜉))

1/2

≤ 𝐶
𝑇

𝛼

𝑚
𝑓
2,𝛼 ≤ ∞.

(61)

For 0 ≤ 𝑗 ≤ 𝑠, we have

𝐼
2
≤ ∫

|𝜉|>1

𝑇
𝛼

𝑚
𝑓 (𝜉) 𝜉

𝑠 𝑑𝜇𝛼 (𝜉)

≤ (∫
|𝜉|>1

𝑇
𝛼

𝑚
𝑓 (𝜉)



2 
𝜉
2ℓ

𝑑𝜇

𝛼
(𝜉))

1/2

× (∫
|𝜉|>1


𝜉
2(𝑠−ℓ)


𝑑𝜇

𝛼
(𝜉))

1/2

=

𝑇
𝛼

𝑚
𝑓 (𝜉)

𝜉


𝑙
2,𝛼

(∫
|𝜉|>1


𝜉
2(𝑠−ℓ)


𝑑𝜇

𝛼
(𝜉))

1/2

.

(62)

Using the fact that 𝑠 − ℓ < 𝛼 + 1, we get 𝐼
2
≤ 𝐶.

Finally, we check

Λ
𝑗

𝛼
(𝑚F

𝛼
(𝑓)) (0) = 0, 0 ≤ 𝑗 ≤ 𝑠. (63)

We have

Λ
𝑗

𝛼
(𝑚F

𝛼
(𝑓)) (ℎ) =

𝑗

∑

𝑟=0

𝑎
𝑟
ℎ
𝑟−𝑗

(𝑚F
𝛼
(𝑓))

(𝑟)

(ℎ)

+

𝑗

∑

𝑟=0

𝑏
𝑟
ℎ
𝑟−𝑗

(𝑚F
𝛼
(𝑓))

(𝑟)

(−ℎ) ,

(64)

where 𝑎
𝑟
and 𝑏

𝑟
are constants. Then, to prove (63), it suffices

to prove that

lim
ℎ→0


ℎ
𝑟−𝑗

𝑚
(𝑟−𝑘)

(ℎ) (F
𝛼
(𝑓))

(𝑘)

(ℎ)

= 0,

for all integers 0 ≤ 𝑘 ≤ 𝑟 ≤ 𝑗 ≤ 𝑠.

(65)

By (i) of Lemma 10, we have

ℎ
𝑟−𝑗

𝑚
(𝑟−𝑘)

(ℎ) (F
𝛼
(𝑓))

(𝑘)

(ℎ)


≤ 𝐶|ℎ|
𝑠+1−𝑗

|ℎ|
𝑟−𝑘


𝑚

(𝑟−𝑘)

(ℎ)


𝑓


𝐴

2,𝛼
.

(66)

According to Lemma 3, we have |ℎ|𝑟−𝑘|𝑚(𝑟−𝑘)

(ℎ)| ≤ 𝐶; indeed
2(𝑟 − 𝑘 − ℓ) + 𝛼 + 1 < 0; then, we obtain

lim
ℎ→0


ℎ
𝑟−𝑗

𝑚
(𝑟−𝑘)

(ℎ) (F
𝛼
(𝑓))

(𝑘)

(ℎ)

≤ 𝐶 lim

ℎ→0

|ℎ|
𝑠+1−𝑗

= 0,

(67)

where (63) is hence proved. This finishes the proof of
Theorem 2.

Corollary 11. Let 0 < 𝑝 ≤ 1. Then, the generalized Hilbert
transform𝐻

𝛼
defined by

𝐻
𝛼
(𝑓) =

Γ (𝛼 + (3/2))

√𝜋Γ (𝛼 + 1)
lim
𝜀→0

∫
|𝑦|>𝜀

𝜏
𝑥
(𝑓) (−𝑦)

𝑦
𝑑𝑦, (68)

where 𝜏
𝑥
is given by (19), is bounded on𝐻�̇�

𝛽,𝑝

𝛼,2
.

Proof. From Proposition 3.6 in [3], the generalized Hilbert
transform 𝐻

𝛼
is a multiplier operator 𝑇

𝛼

𝑚
with 𝑚(𝜉) =

− sign(𝜉); then the proof of the corollary follows from
Theorem 2.
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