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We investigate the exit times from an interval for a general one-dimensional time-homogeneous diffusion process and their
applications to the dividend problem in risk theory. Specifically, we first use Dynkin’s formula to derive the ordinary differential
equations satisfied by the Laplace transform of the exit times. Then, as some examples, we solve the closed-form expression of the
Laplace transform of the exit times for several popular diffusions, which are commonly used in modelling of finance and insurance
market. Most interestingly, as the applications of the exit times, we create the connect between the dividend value function and the
Laplace transform of the exit times. Both the barrier and threshold dividend value function are clearly expressed in terms of the
Laplace transform of the exit times.

1. Introduction

Diffusion processes have extensive applications in economics,
finance, queueing, mathematical biology, and electric engi-
neering. See, for example, [1–4] and the references therein.
The main tool for studying various properties of diffusion
is the result on exit times from an interval. Motivated by
Yin et al. in [5], who considered the exit problems for
jump processes with applications to dividend problems. In
this paper, we consider the Laplace transforms of some
random variables involving the exit time for the general one-
dimension diffusion processes with applications to dividend
problems.

Let 𝑈 = {𝑈
𝑡
, 𝑡 ≥ 0} be a one-dimensional time-homo-

geneous diffusion process, which is defined by the following
stochastic differential equation:

𝑑𝑈
𝑡
= 𝜇 (𝑈

𝑡
) 𝑑𝑡 + 𝜎 (𝑈

𝑡
) 𝑑𝐵
𝑡
, 𝑈
0
= 𝑢 ∈ (𝑎, 𝑏) , (1)

where 𝐵
𝑡
is a Brownian motion and 𝑎 < 𝑏 are constants. It is

well known that under certain conditions on the coefficients
𝜇(𝑢) and 𝜎(𝑢), the SDE (1) has a unique strong solution for
each starting point. The solution 𝑈

𝑡
is a time-homogeneous

strong Markov process with infinitesimal generator as fol-
lows:

A𝑔 (𝑢) =
1

2
𝜎
2
(𝑢) 𝑔
󸀠󸀠
(𝑢) + 𝜇 (𝑢) 𝑔

󸀠
(𝑢) , 𝑢 ∈ (𝑎, 𝑏) , (2)

for any twice continuously differentiable function 𝑔.
Define

𝜏
−

𝑎
= inf {𝑡 ≥ 0 : 𝑈

𝑡
≤ 𝑎} ,

𝜏
+

𝑏
= inf {𝑡 ≥ 0 : 𝑈

𝑡
≥ 𝑏} ,

(3)

𝜏
𝑎𝑏

= 𝜏
−

𝑎
∧ 𝜏
+

𝑏
. (4)

For 𝛿 > 0, we consider the following Laplace transforms:

𝜑
1
(𝑢) = 𝐸

𝑢
[𝑒
−𝛿𝜏
−

𝑎 , 𝜏
−

𝑎
< 𝜏
+

𝑏
] , (5)

𝜑
2
(𝑢) = 𝐸

𝑢
[𝑒
−𝛿𝜏
+

𝑏 , 𝜏
+

𝑏
< 𝜏
−

𝑎
] , (6)

𝜑 (𝑢) = 𝐸
𝑢
[𝑒
−𝛿𝜏
𝑎𝑏] = 𝜑

1
(𝑢) + 𝜑

2
(𝑢) . (7)

We study the differential equations satisfied by the
Laplace transforms and some applications of the popular
dividend strategy in risk theory.
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The rest of the paper is organized as follows. Section 2
studies the Laplace transforms of exit times and considers
some popular diffusions. Some applications in the calculation
of dividend value functions for the barrier strategy and the
threshold strategy are considered in Section 3.

2. Laplace Transform

In this section, we consider the Laplace transform of the exit
time for the general diffusion process {𝑈

𝑡
; 𝑡 ≥ 0} defined by

(1).

Theorem 1. The function 𝜑
1
(𝑢) defined by (5) satisfies the

following differential equation:
1

2
𝜎
2
(𝑢) 𝜑
󸀠󸀠

1
(𝑢) + 𝜇 (𝑢) 𝜑

󸀠

1
(𝑢) = 𝛿𝜑

1
(𝑢) , 𝑢 ∈ (𝑎, 𝑏) ,

(8)

with the boundary conditions 𝜑
1
(𝑎) = 1, 𝜑

1
(𝑏) = 0.

Proof. We assume that 𝑓(𝑢) is twice continuously differen-
tiable and satisfies the following differential equation:

A𝑓 (𝑢) = 𝛿𝑓 (𝑢) , 𝑢 ∈ (𝑎, 𝑏) , (9)

𝑓 (𝑎) = 1, 𝑓 (𝑏) = 0. (10)

Applying Dynkin’s formula to ℎ(𝑡, 𝑈
𝑡
) = 𝑒
−𝛿𝑡

𝑓(𝑈
𝑡
), we obtain

𝐸
𝑢
[ℎ (𝑡, 𝑈

𝑡
)] = ℎ (0, 𝑢) + 𝐸

𝑢
(∫

𝑡

0

(A − 𝛿) ℎ (𝑠, 𝑈
𝑠
) 𝑑𝑠)

= 𝑓 (𝑢) + 𝐸
𝑢
(∫

𝑡

0

𝑒
−𝛿𝑠

(A − 𝛿) 𝑓 (𝑈
𝑠
) 𝑑𝑠) .

(11)

Since 𝜏
𝑎𝑏

< ∞ is a stopping time, it follows from the optional
sampling theorem that

𝐸
𝑢
[𝑒
−𝛿(𝜏
𝑎𝑏

∧𝑡)
𝑓 (𝑈
(𝜏
𝑎𝑏

∧𝑡)
)]

= 𝑓 (𝑢) + 𝐸
𝑢
(∫

(𝜏
𝑎𝑏

∧𝑡)

0

𝑒
−𝛿𝑠

(A − 𝛿) 𝑓 (𝑈
𝑠
) 𝑑𝑠) ,

(12)

and letting 𝑡 → ∞, we get

𝐸
𝑢
[𝑒
−𝛿𝜏
𝑎𝑏𝑓 (𝑈

𝜏
𝑎𝑏

)]

= 𝑓 (𝑢) + 𝐸
𝑢
(∫

𝜏
𝑎𝑏

0

𝑒
−𝛿𝑠

(A − 𝛿) 𝑓 (𝑈
𝑠
) 𝑑𝑠) .

(13)

By the definitions of 𝜏
𝑎𝑏
, we get

𝐸
𝑢
[𝑒
−𝛿𝜏
𝑎𝑏𝑓 (𝑈

𝜏
𝑎𝑏

)] = 𝑓 (𝑎) 𝐸
𝑢
[𝑒
−𝛿𝜏
−

𝑎 ; 𝜏
−

𝑎
< 𝜏
+

𝑏
]

+ 𝑓 (𝑏) 𝐸
𝑢
[𝑒
−𝛿𝜏
+

𝑏 ; 𝜏
+

𝑏
< 𝜏
−

𝑎
] .

(14)

Substituting (9) and (10) into (13) and (14), we get

𝑓 (𝑢) = 𝐸
𝑢
[𝑒
−𝛿𝜏
−

𝑎 ; 𝜏
−

𝑎
< 𝜏
+

𝑏
] = 𝜑
1
(𝑢) . (15)

This completes the proof.

Theorem 2. The function 𝜑
2
(𝑢) = 𝐸

𝑢
[𝑒
−𝛿𝜏
+

𝑏 ; 𝜏
+

𝑏
< 𝜏
−

𝑎
] satisfies

the following differential equation:

1

2
𝜎
2
(𝑢) 𝜑
󸀠󸀠

2
(𝑢) + 𝜇 (𝑢) 𝜑

󸀠

2
(𝑢) = 𝛿𝜑

2
(𝑢) , 𝑢 ∈ (𝑎, 𝑏) ,

(16)

with the boundary conditions 𝜑
2
(𝑎) = 0, 𝜑

2
(𝑏) = 1.

Proof. The proof of this theorem is similar to that of
Theorem 1. We first assume that 𝑓(𝑢) is twice continuously
differentiable and satisfies the following differential equation:

A𝑓 (𝑢) = 𝛿𝑓 (𝑢) , 𝑢 ∈ (𝑎, 𝑏) ,

𝑓 (𝑎) = 0, 𝑓 (𝑏) = 1.

(17)

Applying Dynkin’s formula to 𝑒
−𝛿𝑡

𝑓(𝑈
𝑡
), and after the same

discussion as of Theorem 1, we also can obtain (13) and (14).
Substituting (17) into (13) and (14), we get

𝑓 (𝑢) = 𝐸
𝑢
[𝑒
−𝛿𝜏
+

𝑏 ; 𝜏
+

𝑏
< 𝜏
−

𝑎
] = 𝜑
2
(𝑢) . (18)

This completes the proof.

According to the definition of (7), we can lead to the
following theorem fromTheorems 1 and 2.

Theorem 3. The function 𝜑(𝑢) = 𝐸
𝑢
[𝑒
−𝛿𝜏
𝑎𝑏] satisfies the

following differential equation:

1

2
𝜎
2
(𝑢) 𝜑
󸀠󸀠
(𝑢) + 𝜇 (𝑢) 𝜑

󸀠
(𝑢) = 𝛿𝜑 (𝑢) , 𝑢 ∈ (𝑎, 𝑏) ,

(19)

with the boundary conditions 𝜑(𝑎) = 1, 𝜑(𝑏) = 1.

Now, we consider some examples.

Example 4. TheBessel process: 𝑑𝑈
𝑡
= ((𝑑−1)/2𝑈

𝑡
)𝑑𝑡 + 𝑑𝐵

𝑡
,

where 𝑑 > 1 is a real number. We assume that 𝑏 > 𝑎 > 0 in
this process.

First, we consider the following differential equation:

1

2
𝑓
󸀠󸀠
(𝑢) +

𝑑 − 1

2𝑢
𝑓
󸀠
(𝑢) = 𝛿𝑓 (𝑢) . (20)

It is well known that the increasing and decreasing solutions
are, respectively, as follows:

𝑓
+
(𝑢) = 𝑢

−V
𝐼V (

√2𝛿𝑢) , 𝑓
−
(𝑢) = 𝑢

−V
𝐾V (

√2𝛿𝑢) ,

(21)

where V = (𝑑−2)/2, and 𝐼V(⋅) and𝐾V(⋅) are the usual modified
Bessel functions.

Then, fromTheorem 1, we can give 𝜑
1
(𝑢) as follows:

𝜑
1
(𝑢) = 𝐶

1
𝑓
+
(𝑢) + 𝐶

2
𝑓
−
(𝑢) ,

𝜑
1
(𝑎) = 1, 𝜑

1
(𝑏) = 0,

(22)
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where the constants 𝐶
1
and 𝐶

2
are to be determined. From

the boundary conditions (22), we can obtain the expression
of the constants 𝐶

1
and 𝐶

2
as follows:

𝐶
1
=

𝑎
V
𝐾V (√2𝛿𝑏)

𝐼V (√2𝛿𝑎)𝐾V (√2𝛿𝑏) − 𝐼V (√2𝛿𝑏)𝐾V (√2𝛿𝑎)

,

𝐶
2
=

𝑎
V
𝐼V (√2𝛿𝑏)

𝐼V (√2𝛿𝑏)𝐾V (√2𝛿𝑎) − 𝐼V (√2𝛿𝑎)𝐾V (√2𝛿𝑏)

.

(23)

So, we get

𝜑
1
(𝑢)

= (
𝑎

𝑢
)

V𝐾V (√2𝛿𝑏) 𝐼V (√2𝛿𝑢) − 𝐼V (√2𝛿𝑏)𝐾V (√2𝛿𝑢)

𝐼V (√2𝛿𝑎)𝐾V (√2𝛿𝑏) − 𝐼V (√2𝛿𝑏)𝐾V (√2𝛿𝑎)

.

(24)

According to Theorem 2 and (21), we can give 𝜑
2
(𝑢) as

follows:

𝜑
2
(𝑢) = 𝐶

3
𝑓
+
(𝑢) + 𝐶

4
𝑓
−
(𝑢) ,

𝜑
2
(𝑎) = 0, 𝜑

2
(𝑏) = 1,

(25)

where the constants𝐶
3
and𝐶

4
are to be determined. From the

boundary conditions (25), we can determine the constants
and obtain the expression of 𝜑

2
(𝑢) as follows:

𝜑
2
(𝑢)

= (
𝑏

𝑢
)

V𝐾V (√2𝛿𝑎) 𝐼V (√2𝛿𝑢) − 𝐼V (√2𝛿𝑎)𝐾V (√2𝛿𝑢)

𝐼V (√2𝛿𝑏)𝐾V (√2𝛿𝑎) − 𝐼V (√2𝛿𝑎)𝐾V (√2𝛿𝑏)

.

(26)

According to Theorem 3, the expression of 𝜑(𝑢) can be
obtained from solving the following differential equation:

1

2
𝜑
󸀠󸀠
(𝑢) +

𝑑 − 1

2𝑢
𝜑
󸀠
(𝑢) = 𝛿𝜑 (𝑢) ,

𝜑 (𝑎) = 1, 𝜑 (𝑏) = 1.

(27)

Furthermore, from the definition of 𝜑(𝑢) = 𝜑
1
(𝑢) +𝜑

2
(𝑢), we

also can get the expression of 𝜑(𝑢).The twomethods can lead
to the same results as follows:

𝜑 (𝑢) = (
1

𝑢
)

V

× ( [𝑎
V
𝐾V (

√2𝛿𝑏) − 𝑏
V
𝐾V (

√2𝛿𝑎)] 𝐼V (
√2𝛿𝑢)

+ [𝑏
V
𝐼V (

√2𝛿𝑎) − 𝑎
V
𝐼V (

√2𝛿𝑏)]𝐾V (
√2𝛿𝑢))

× (𝐼V (
√2𝛿𝑎)𝐾V (

√2𝛿𝑏) − 𝐼V (
√2𝛿𝑏)𝐾V (

√2𝛿𝑎))
−1

.

(28)

Example 5 (the square root process (see [6])).

𝑑𝑈
𝑡
= V (𝑘 − 𝑈

𝑡
) 𝑑𝑡 + 𝜎√𝑈

𝑡
𝑑𝐵
𝑡
, V, 𝜎 > 0, 𝑘 ∈ [𝑎, 𝑏] .

(29)

We assume that 𝑏 > 𝑎 > 0 and consider the following
differential equation:

1

2
𝜎
2
𝑢
2
𝑓
󸀠󸀠
(𝑢) + (V𝑘 − V𝑢) 𝑓󸀠 (𝑢) = 𝛿𝑓 (𝑢) , 𝛿 > 0. (30)

We assume that (2]/𝜎2)𝑘 is not an integer, the two linear
independent solutions are

𝑓
+
(𝑢) = 𝑀(

𝛿

V
,
2V
𝜎2

𝑘,
2V
𝜎2

𝑢) ,

𝑓
−
(𝑢) = 𝑈(

𝛿

V
,
2V
𝜎2

𝑘,
2V
𝜎2

𝑢) ,

(31)

where 𝑀 and 𝑈 are the confluent hypergeometric functions
of the first and second kinds, respectively.Then, as the way at
used in Example 4, and from Theorems 1 and 2, we get that
the expressions of 𝜑

1
(𝑢) and 𝜑

2
(𝑢) are as follows:

𝜑
1
(𝑢) =

𝑔 (𝑏, 𝑢) − 𝑔 (𝑢, 𝑏)

𝑔 (𝑏, 𝑎) − 𝑔 (𝑎, 𝑏)
,

𝜑
2
(𝑢) =

𝑔 (𝑎, 𝑢) − 𝑔 (𝑢, 𝑎)

𝑔 (𝑎, 𝑏) − 𝑔 (𝑏, 𝑎)
,

(32)

where

𝑔 (𝑥, 𝑦) = 𝑈(
𝛿

V
,
2V
𝜎2

𝑘,
2V
𝜎2

𝑥)𝑀(
𝛿

V
,
2V
𝜎2

𝑘,
2V
𝜎2

𝑦) . (33)

So, we can get

𝜑 (𝑢) =
𝑔 (𝑎, 𝑢) − 𝑔 (𝑏, 𝑢) + 𝑔 (𝑢, 𝑏) − 𝑔 (𝑢, 𝑎)

𝑔 (𝑎, 𝑏) − 𝑔 (𝑏, 𝑎)
. (34)

Example 6 (the Ornstein-Uhlenbeck process (see [7])).

𝑑𝑈
𝑡
= V (𝑘 − 𝑈

𝑡
) 𝑑𝑡 + 𝜎𝑑𝐵

𝑡
, V, 𝜎 > 0, 𝑘 ∈ [𝑎, 𝑏] . (35)

The Ornstein-Uhlenbeck process above is the only process
that is simultaneously Gaussian, Markov, and stationary, and
has been discussed extensively, see, for example [2–4, 8].

We consider the following differential equation:

1

2
𝜎
2
𝑓
󸀠󸀠
(𝑢) + V (𝑘 − 𝑢) 𝑓

󸀠
(𝑢) = 𝛿𝑓 (𝑢) . (36)

In the case of 𝑘 = 0, 𝜎 = 1, the two independent solutions
to

1

2
𝑓
󸀠󸀠
(𝑢) − V𝑢𝑓󸀠 (𝑢) = 𝛿𝑓 (𝑢) (37)

are

𝑓
+
(𝑢) = 𝐻

−𝛿/V (−√V𝑢) = 2
−𝛿/2V

𝑒
(1/2)V𝑢2

𝐷
−𝛿/V (−√2V𝑢) ,

𝑓
−
(𝑢) = 𝐻

−𝛿/V (√V𝑢) = 2
−𝛿/2V

𝑒
(1/2)V𝑢2

𝐷
−𝛿/V (√2V𝑢) ,

(38)
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where 𝐻V(⋅) and 𝐷V(⋅) are, respectively, the Hermite and
parabolic functions. We obtain the expressions of 𝜑

1
(𝑢) and

𝜑
2
(𝑢) as follows:

𝜑
1
(𝑢) = 𝑒

(1/2)V(𝑢2−𝑎2) ℎ (𝑢, 𝑏) − ℎ (𝑏, 𝑢)

ℎ (𝑎, 𝑏) − ℎ (𝑏, 𝑎)
,

𝜑
2
(𝑢) = 𝑒

(1/2)V(𝑢2−𝑏2) ℎ (𝑎, 𝑢) − ℎ (𝑢, 𝑎)

ℎ (𝑎, 𝑏) − ℎ (𝑏, 𝑎)
,

(39)

where

ℎ (𝑥, 𝑦) = 𝐷
−𝛿/V (−√2V𝑥)𝐷

−𝛿/V (√2V𝑦) . (40)

By the definition of 𝜑(𝑢), we get

𝜑 (𝑢) = (𝑒
(1/2)V(𝑢2−𝑎2)

(ℎ (𝑢, 𝑏) − ℎ (𝑏, 𝑢))

+ 𝑒
(1/2)V(𝑢2−𝑏2)

(ℎ (𝑎, 𝑢) − ℎ (𝑢, 𝑎)))

× (ℎ (𝑎, 𝑏) − ℎ (𝑏, 𝑎) )

−1

.

(41)

For the general 𝑘 and 𝜎, the two independent solutions of
(36) are, respectively, as follows:

𝑓
+
(𝑢) = 𝐻

−𝛿/V (−
√V
𝜎

(𝑢 − 𝑘))

= 2
−𝛿/2V

𝑒
(1/2)(V/𝜎2)(𝑢−𝑘)2

𝐷
−𝛿/V (−

√2V
𝜎

(𝑢 − 𝑘)) ,

𝑓
−
(𝑢) = 𝐻

−𝛿/V (
√V
𝜎

(𝑢 − 𝑘))

= 2
−𝛿/2V

𝑒
(1/2)(V/𝜎2)(𝑢−𝑘)2

𝐷
−𝛿/V (

√2V
𝜎

(𝑢 − 𝑘)) .

(42)

Then, we obtain the expressions of 𝜑
1
(𝑢) and 𝜑

2
(𝑢) as follows:

𝜑
1
(𝑢) = 𝑒

(1/2)(V/𝜎2)[(𝑢−𝑘)2−(𝑎−𝑘)2] ℎ0 (𝑢, 𝑏) − ℎ
0
(𝑏, 𝑢)

ℎ
0
(𝑎, 𝑏) − ℎ

0
(𝑏, 𝑎)

,

𝜑
2
(𝑢) = 𝑒

(1/2)(V/𝜎2)[(𝑢−𝑘)2−(𝑏−𝑘)2] ℎ0 (𝑎, 𝑢) − ℎ
0
(𝑢, 𝑎)

ℎ
0
(𝑎, 𝑏) − ℎ

0
(𝑏, 𝑎)

,

(43)

where

ℎ
0
(𝑥, 𝑦) = 𝐷

−𝛿/V (−
√2V
𝜎

(𝑥 − 𝑘))𝐷
−𝛿/V (

√2V
𝜎

(𝑦 − 𝑘)) .

(44)

Finally, we get

𝜑 (𝑢) = 𝑒
(1/2)(V/𝜎2)[(𝑢−𝑘)2−(𝑎−𝑘)2] ℎ0 (𝑢, 𝑏) − ℎ

0
(𝑏, 𝑢)

ℎ
0
(𝑎, 𝑏) − ℎ

0
(𝑏, 𝑎)

+ 𝑒
(1/2)(V/𝜎2)[(𝑢−𝑘)2−(𝑏−𝑘)2] ℎ0 (𝑎, 𝑢) − ℎ

0
(𝑢, 𝑎)

ℎ
0
(𝑎, 𝑏) − ℎ

0
(𝑏, 𝑎)

.

(45)

Example 7 (the Gompertz Brownian motion process (see
[9])).

𝑑𝑈
𝑡
= V𝑈
𝑡
(ln 𝑘 − ln𝑈

𝑡
) 𝑑𝑡 + 𝜎𝑈

𝑡
𝑑𝐵
𝑡
, V, 𝜎 > 0, 𝑘 ∈ [𝑎, 𝑏] .

(46)

We assume that 𝑏 > 𝑎 > 0.

Now, consider the differential equation

1

2
𝜎
2
𝑢
2
𝑓
󸀠󸀠
(𝑢) + V𝑢 (ln 𝑘 − ln𝑈

𝑡
) 𝑓
󸀠
(𝑢) = 𝛿𝑓 (𝑢) , 𝛿 > 0.

(47)

It is well known that the increasing and decreasing solutions
are, respectively, as follows:

𝑓
+
(𝑢) = 𝑀(

𝛿

2V
,
1

2
,
V
𝜎2

(ln 𝑢

𝑘
+

𝜎
2

2V
)

2

) ,

𝑓
−
(𝑢) = 𝑈(

𝛿

2V
,
1

2
,
V
𝜎2

(ln 𝑢

𝑘
+

𝜎
2

2V
)

2

) ,

(48)

where 𝑀 and 𝑈, as in Example 5, are the first and second
Kummer’s function, respectively. From the boundary condi-
tions 𝜑

1
(𝑎) = 1 and 𝜑

1
(𝑏) = 0, we get

𝜑
1
(𝑢) =

𝑔
0
(𝑏, 𝑢) − 𝑔

0
(𝑢, 𝑏)

𝑔
0
(𝑏, 𝑎) − 𝑔

0
(𝑎, 𝑏)

, (49)

where

𝑔
0
(𝑥, 𝑦) = 𝑈(

𝛿

2V
,
1

2
,
V
𝜎2

(ln 𝑥

𝑘
+

𝜎
2

2V
)

2

)

× 𝑀(
𝛿

2V
,
1

2
,
V
𝜎2

(ln
𝑦

𝑘
+

𝜎
2

2V
)

2

) .

(50)

From the boundary conditions 𝜑
2
(𝑎) = 0 and 𝜑

2
(𝑏) = 1, we

get

𝜑
2
(𝑢) =

𝑔
0
(𝑢, 𝑎) − 𝑔

0
(𝑎, 𝑢)

𝑔
0
(𝑏, 𝑎) − 𝑔

0
(𝑎, 𝑏)

. (51)

Then, we obtain

𝜑 (𝑢) =
𝑔
0
(𝑏, 𝑢) − 𝑔

0
(𝑎, 𝑢) + 𝑔

0
(𝑢, 𝑎) − 𝑔

0
(𝑢, 𝑏)

𝑔
0
(𝑏, 𝑎) − 𝑔

0
(𝑎, 𝑏)

. (52)

3. Applications to Dividend Value Function

3.1. Barrier Strategy. In this subsection, we consider the
barrier strategy for dividend payments which are discussed
in various model, see, for example, [10–13]. More specifically,
we assume that the company pays dividends according to the
following strategy governed by parameter 𝑏 > 0. Whenever
the surplus is above the level 𝑏, the excess will be paid
as dividends, and when the surplus is below 𝑏 nothing is
paid out. We denote the aggregate dividends paid in the
time interval [0, 𝑡] by 𝐷

𝑟
(𝑡), the modified risk process by
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𝑈
𝑟
(𝑡) = 𝑈

𝑡
− 𝐷
𝑟
(𝑡), the ruin time by 𝑇

𝑟
= inf{𝑡 ≥ 0 :

𝑈
𝑟
(𝑡) = 0}, and the present value of all dividends until ruin

𝑇
𝑟
by 𝐷
𝑟
= ∫
𝑇
𝑟

0
𝑒
−𝛿𝑡

𝑑𝐷
𝑟
(𝑡), here, 𝛿 > 0 is the discount factor,

and the expectation of 𝐷
𝑟
by

𝑉
𝑟
(𝑢, 𝑏) = 𝐸

𝑢
[𝐷
𝑟
] . (53)

Now,wewant to derive the dividend value function by the
Laplace transform of exit time. We denote

𝜏
−

0
= inf {𝑡 ≥ 0 : 𝑈

𝑡
≤ 0} , (54)

𝜏
0𝑏

= 𝜏
−

0
∧ 𝜏
+

𝑏
, (55)

𝜓
2
(𝑢) = 𝐸 [𝑒

−𝛿𝜏
+

𝑏 ; 𝜏
+

𝑏
< 𝜏
−

0
] , (56)

where 𝜏
+

𝑏
is defined by (3). Let 𝑎 = 0 in the function 𝜑

2
(𝑢) be

defined by (6), we get the definition of 𝜓
2
(𝑢). So, we get the

following lemma fromTheorem 2.

Lemma 8. The function 𝜓
2
(𝑢) defined by (56) satisfies the

following differential equation:

1

2
𝜎
2
(𝑢) 𝜓
󸀠󸀠

2
(𝑢) + 𝜇 (𝑢) 𝜓

󸀠

2
(𝑢) = 𝛿𝜓

2
(𝑢) , 𝑢 ∈ (0, 𝑏) ,

(57)

with the boundary conditions 𝜓
2
(0) = 0, 𝜓

2
(𝑏) = 1.

Then, we have the following theorem.

Theorem 9. For 0 ≤ 𝑢 ≤ 𝑏, one has

𝑉
𝑟
(𝑢, 𝑏) =

𝜓
2
(𝑢)

𝜓
󸀠

2
(𝑏)

, (58)

where 𝜓
2
(𝑢) is defined by (56).

Proof. The one-dimensional diffusion model defined by (1)
is a time-homogeneous strong Markov process. Then, when
0 < 𝑢 < 𝑏, we have

𝑉
𝑟
(𝑢, 𝑏) = 𝐸

𝑢
(∫

𝑇
𝑟

0

𝑒
−𝛿𝑡

𝑑𝐷
𝑟
(𝑡))

= 𝐸
𝑢
(∫

𝜏
0𝑏

0

𝑒
−𝛿𝑡

𝑑𝐷
𝑟
(𝑡) + ∫

𝑇
𝑟

𝜏
0𝑏

𝑒
−𝛿𝑡

𝑑𝐷
𝑟
(𝑡))

= 𝐸
𝑢
(∫

𝑇
𝑟

𝜏
0𝑏

𝑒
−𝛿𝑡

𝑑𝐷
𝑟
(𝑡))

= 𝐸
𝑢
[𝑒
−𝛿𝜏
0𝑏 (∫

𝑇
𝑟

0

𝑒
−𝛿𝑡

𝑑𝐷
𝑟
(𝑡) ∘ 𝜃

𝜏
0𝑏

)]

= 𝐸
𝑢
[𝑒
−𝛿𝜏
0𝑏𝐸
𝑈
𝜏

0𝑏

(∫

𝑇
𝑟

0

𝑒
−𝛿𝑡

𝑑𝐷
𝑟
(𝑡))]

= 𝐸
𝑢
[𝑒
−𝛿𝜏
0𝑏𝑉
𝑟
(𝑈
𝜏
0𝑏

, 𝑏)] ,

(59)

where 𝜃𝜏
0𝑏
is the shift operator. By the definition of 𝜏

0𝑏
, we get

𝐸
𝑢
[𝑒
𝜏
0𝑏𝑉
𝑟
(𝑈
𝜏
0𝑏

, 𝑏)] = 𝑉
𝑟
(0, 𝑏) 𝐸

𝑢
[𝑒
−𝛿𝜏
−

0 ; 𝜏
−

0
< 𝜏
+

𝑏
]

+ 𝑉
𝑟
(𝑏, 𝑏) 𝐸

𝑢
[𝑒
−𝛿𝜏
+

𝑏 ; 𝜏
+

𝑏
< 𝜏
−

0
]

= 𝑉
𝑟
(𝑏, 𝑏) 𝜓

2
(𝑢) .

(60)

From (59) and (60), we obtain

𝑉
𝑟
(𝑢, 𝑏) = 𝑉

𝑟
(𝑏, 𝑏) 𝜓

2
(𝑢) , (61)

where 𝜓
2
(𝑢) can be determined from Lemma 8. From [11],

for the barrier strategy, we have the following boundary
condition:

𝜕𝑉(𝑢, 𝑏)

𝜕𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑢=𝑏

= 1. (62)

Then, we have

𝑉
𝑟
(𝑏, 𝑏) =

1

𝜓
󸀠

2
(𝑏)

. (63)

So, we get the result. This completes the proof.

Now, we consider the examples discussed in Section 2.

Example 10. The Bessel process discussed in Example 4.
Reference [14] gives the following helpful formulas:

𝐼
0
(𝑢) ≈ 1,

𝐼V (𝑢) ≈
(𝑢/2)
2

Γ (1 + V)
(V ̸= − 1, −2, . . .) ,

𝐾
0
(𝑢) ≈ − ln 𝑢,

𝐾V (𝑢) ≈
Γ (V)
2

(
𝑢

2
)

−V
(Re (V) > 0) .

(64)

Letting 𝑎 = 0 in Example 4, we get 𝜓
2
(𝑢) from 𝜑

2
(𝑢) as

follows:

𝜓
2
(𝑢) = (

𝑏

𝑢
)

V 𝐼V (√2𝛿𝑢)

𝐼V (√2𝛿𝑏)

. (65)

Using the following formula:

𝐼
󸀠

V (𝑢) =
V
𝑢
𝐼V (𝑢) + 𝐼V+1 (𝑢) , (66)

we have

𝜓
󸀠

2
(𝑏) = (

𝑏

𝑢
)

V√2𝛿𝐼V+1 (√2𝛿𝑏)

𝐼V (√2𝛿𝑏)

. (67)

Then, fromTheorem 9, and substituting𝜓
2
(𝑢) and 𝜓

󸀠

2
(𝑏) into

(58), we obtain

𝑉
𝑟
(𝑢, 𝑏) =

𝐼V (√2𝛿𝑢)

√2𝛿𝐼V+1 (√2𝛿𝑏)

. (68)
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Example 11. We consider the square root process discussed in
Example 5. Let 𝑎 = 0 in Example 5, according to𝑀(𝑥, 𝑦, 0) =

1, we obtain

𝜓
2
(𝑢) =

1

𝐶
[𝑈(

𝛿

V
,
2V
𝜎2

𝑘, 0)𝑀(
𝛿

V
,
2V
𝜎2

𝑘,
2V
𝜎2

𝑢)

−𝑈(
𝛿

V
,
2V
𝜎2

𝑘,
2V
𝜎2

𝑢)] ,

(69)

where

𝐶 = 𝑈(
𝛿

V
,
2V
𝜎2

𝑘, 0)𝑀(
𝛿

V
,
2V
𝜎2

𝑘,
2V
𝜎2

𝑏) − 𝑈(
𝛿

V
,
2V
𝜎2

𝑘,
2V
𝜎2

𝑏) .

(70)

Using the following helpful formulas (see [14]):

𝜕𝑀(𝑐
1
, 𝑐
2
, 𝑢)

𝜕𝑢
=

𝑐
1

𝑐
2

𝑀(𝑐
1
+ 1, 𝑐
2
+ 1, 𝑢) ,

𝜕𝑈 (𝑐
1
, 𝑐
2
, 𝑢)

𝜕𝑢
= −𝑐
1
𝑈 (𝑐
1
+ 1, 𝑐
2
+ 1, 𝑢) ,

(71)

we get

𝜓
󸀠

2
(𝑏) =

1

𝐶
[

𝛿

V𝑘
𝑈(

𝛿

V
,
2V
𝜎2

𝑘, 0)𝑀(
𝛿

V
+ 1,

2V
𝜎2

𝑘 + 1,
2V
𝜎2

𝑏)

+
2𝛿

𝜎2
𝑈(

𝛿

V
+ 1,

2V
𝜎2

𝑘 + 1,
2V
𝜎2

𝑏)] .

(72)

Finally, we have

𝑉
𝑟
(𝑢, 𝑏) = [𝑈(

𝛿

V
,
2V
𝜎2

𝑘, 0)𝑀(
𝛿

V
,
2V
𝜎2

𝑘,
2V
𝜎2

𝑢)

−𝑈(
𝛿

V
,
2V
𝜎2

𝑘,
2V
𝜎2

𝑢)]

× [
𝛿

V𝑘
𝑈(

𝛿

V
,
2V
𝜎2

𝑘, 0)𝑀(
𝛿

V
+ 1,

2V
𝜎2

𝑘 + 1,
2V
𝜎2

𝑏)

+
2𝛿

𝜎2
𝑈(

𝛿

V
+ 1,

2V
𝜎2

𝑘 + 1,
2V
𝜎2

𝑏)]

−1

.

(73)

Example 12. We consider the Ornstein-Uhlenbeck process
considered in Example 6, and let 𝑎 = 0 in Example 6. From
[14], we have the following formulas:

𝐷V (0) =
2
V/2

√𝜋

Γ ((1/2) − (V/2))
,

𝐷
󸀠

V (𝑢) = −
𝑢

2
𝐷V (𝑢) + V𝐷V−1 (𝑢) ,

(74)

where Γ(𝑥) is the gamma function.

In the case of 𝑘 = 0, 𝜎 = 1, we have

𝜓
2
(𝑢) = 𝑒

(V/2)(𝑢2−𝑏2)𝐷−𝛿/V (
√2V𝑢) − 𝐷

−𝛿/V (−√2V𝑢)

𝐷
−𝛿/V (√2V𝑏) − 𝐷

−𝛿/V (−√2V𝑏)
,

𝜓
󸀠

2
(𝑏) = 𝛿√

2

V

𝐷
(−𝛿/V)−1 (√2V𝑏) + 𝐷

(−𝛿/V)−1 (−√2V𝑏)

𝐷
−𝛿/V (−√2V𝑏) − 𝐷

−𝛿/V (√2V𝑏)
.

(75)

Then, we get

𝑉
𝑟
(𝑢, 𝑏) =

1

𝛿
√
V
2
𝑒
(V/2)(𝑢2−𝑏2)

×

𝐷
−𝛿/V (−√2V𝑢) − 𝐷

−𝛿/V (√2V𝑢)

𝐷
(−𝛿/V)−1 (√2V𝑏) + 𝐷

(−𝛿/V)−1 (−√2V𝑏)
.

(76)

For the general 𝑘, 𝜎, we have

𝜓
2
(𝑢) =

1

𝐺
𝑒
(V/2𝜎2)((𝑢−𝑘)2−(𝑏−𝑘)2)

× [𝐷
−𝛿/V ((

√2V
𝜎

)𝑘)𝐷
−𝛿/V ((

√2V
𝜎

) (𝑢 − 𝑘))

− 𝐷
−𝛿/V (−(

√2V
𝜎

)𝑘)

×𝐷
−𝛿/V ((−

√2V
𝜎

) (𝑢 − 𝑘))] ,

(77)

where

𝐺 = 𝐷
−𝛿/V ((

√2V
𝜎

)𝑘)𝐷
−𝛿/V ((

√2V
𝜎

) (𝑏 − 𝑘))

− 𝐷
−𝛿/V (−(

√2V
𝜎

)𝑘)𝐷
−𝛿/V (−(

√2V
𝜎

) (𝑢 − 𝑘)) .

(78)

We can get

𝜓
󸀠

2
(𝑏) = −

1

𝐺

𝛿

𝜎

√
2

V

× [𝐷
−𝛿/V ((

√2V
𝜎

)𝑘)𝐷
(−𝛿/V)−1 ((

√2V
𝜎

) (𝑏 − 𝑘))

+ 𝐷
−𝛿/V (−(

√2V
𝜎

)𝑘)

×𝐷
(−𝛿/V)−1 (−(

√2V
𝜎

) (𝑏 − 𝑘))] .

(79)
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Finally, we obtain

𝑉
𝑟
(𝑢, 𝑏) =

1

𝐺
𝑒
(V/2𝜎2)((𝑢−𝑘)2−(𝑏−𝑘)2)𝜎

𝛿
√
V
2

× [𝐷
−𝛿/V (−(

√2V
𝜎

)𝑘)

× 𝐷
−𝛿/V (−(

√2V
𝜎

) (𝑢 − 𝑘))

− 𝐷
−𝛿/V ((

√2V
𝜎

)𝑘)

×𝐷
−𝛿/V ((

√2V
𝜎

) (𝑢 − 𝑘))]

× [𝐷
−𝛿/V ((

√2V
𝜎

)𝑘)

× 𝐷
(−𝛿/V)−1 ((

√2V
𝜎

) (𝑏 − 𝑘))

+ 𝐷
−𝛿/V (−(

√2V
𝜎

)𝑘)

×𝐷
(−𝛿/V)−1 (−(

√2V
𝜎

) (𝑏 − 𝑘))]

−1

.

(80)

Example 13. We consider the Gompertz Brownian motion
process discussed in Example 7. In [15], the authors point out
as 𝑢 → +∞,

𝑈(𝑐
1
, 𝑐
2
, 𝑢) = 𝑢

−𝑐
1 [1 + 𝑜 (|𝑢|

−1
)] ,

𝑀 (𝑐
1
, 𝑐
2
, 𝑢) =

Γ (𝑐
2
)

Γ (𝑐
1
)
𝑒
𝑢
𝑢
𝑐
1

−𝑐
2 [1 + 𝑜 (|𝑢|

−1
)] .

(81)

Letting 𝑎 = 0 in Example 7, and using (81), we lead to the
expression of 𝜓

2
(𝑢) as follows:

𝜓
2
(𝑢) = 𝑈(

𝛿

2V
,
1

2
,
V
𝜎2

(ln 𝑢

𝑘
+

𝜎
2

2V
)

2

)

× [𝑈(
𝛿

2V
,
1

2
,
V
𝜎2

(ln 𝑏

𝑘
+

𝜎
2

2V
)

2

)]

−1

.

(82)

Using (71), we get

𝜓
󸀠

2
(𝑏) = −

𝛿

𝜎2𝑏𝑘
ln(

𝑏

𝑘
+

𝜎
2

2V
)

× 𝑈(
𝛿

2V
+ 1,

1

2
+ 1,

V
𝜎2

(ln 𝑏

𝑘
+

𝜎
2

2V
)

2

)

× [𝑈(
𝛿

2V
,
1

2
,
V
𝜎2

(ln 𝑏

𝑘
+

𝜎
2

2V
)

2

)]

−1

.

(83)

Then, fromTheorem 9, we have

𝑉
𝑟
(𝑢, 𝑏) = −

𝜎
2
𝑏𝑘

𝛿
𝑈(

𝛿

2V
,
1

2
,
V
𝜎2

(ln 𝑢

𝑘
+

𝜎
2

2V
)

2

)

× [ ln(
𝑏

𝑘
+

𝜎
2

2V
)

×𝑈(
𝛿

2V
+ 1,

1

2
+ 1,

V
𝜎2

(ln 𝑏

𝑘
+

𝜎
2

2V
)

2

)] .

(84)

3.2. Threshold Strategy. We consider the company pays div-
idends according to the threshold dividend strategy; that
is, dividends are paid at a constant rate 𝛼 whenever the
modified surplus is above the threshold 𝑏, and no dividends
are paid whenever the modified surplus is below 𝑏. For recent
publications on threshold strategy, see, for example, [3, 16, 17].
We define the modified risk process by

𝑈
𝑑
(𝑡) = 𝑈

𝑡
− 𝐷
𝑑
(𝑡) , (85)

where𝐷
𝑑
(𝑡) = 𝛼 ∫

𝑡

0
𝐼(𝑈
𝑑
(𝑠) > 𝑏)𝑑𝑠. Let𝐷

𝑑
denote the present

value of all dividends until ruin as follows:

𝐷
𝑑
= 𝛼∫

𝑇
𝑑

0

𝑒
−𝛿𝑠

𝐼 (𝑈
𝑑
(𝑠) > 𝑏) 𝑑𝑠, (86)

where 𝑇
𝑑
= inf{𝑡 ≥ 0 : 𝑈

𝑑
(𝑡) = 0}. We denote by 𝑉

𝑑
(𝑢, 𝑏) the

expected discounted value of dividend payments; that is,

𝑉
𝑑
(𝑢, 𝑏) = 𝐸

𝑢
[𝐷
𝑑
] . (87)

We denote
𝜏
−

𝑏
= inf {𝑡 : 𝑈

𝑑
(𝑡) ≤ 𝑏} ,

𝜑
3
(𝑢) = 𝐸 [𝑒

−𝛿𝜏
−

𝑏 ] .

(88)

We can mimic the discussion of Theorem 1 to give the
differential equation and the boundary conditions satisfied by
𝜑
3
(𝑢).

Lemma 14. The function 𝜑
3
(𝑢) defined by (88) satisfies the

following differential equation:
1

2
𝜎
2
(𝑢) 𝜑
󸀠󸀠

3
(𝑢) + (𝜇 (𝑢) − 𝛼) 𝜑

󸀠

3
(𝑢) = 𝛿𝜑

3
(𝑢) , 𝑢 ≥ 𝑏,

(89)

with the boundary conditions 𝜑
3
(𝑏) = 1, 𝜑

3
(∞) = 0.

We have the following theorem.

Theorem 15. For 𝑢 ∈ [0, 𝑏], one has

𝑉
𝑑
(𝑢; 𝑏) =

𝛼

𝛿

𝜑
󸀠

3
(𝑏) 𝜓
2
(𝑢)

𝜑
󸀠

3
(𝑏) − 𝜓

󸀠

2
(𝑏)

, (90)

and, for 𝑢 > 𝑏, one has

𝑉
𝑑
(𝑢; 𝑏) =

𝛼

𝛿
+

𝛼

𝛿

𝜓
󸀠

2
(𝑏) 𝜑
3
(𝑢)

𝜑
󸀠

3
(𝑏) − 𝜓

󸀠

2
(𝑏)

. (91)
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Proof. When 𝑢 ∈ [0, 𝑏], in view of the strong Markov prop-
erty, we obtain

𝑉
𝑑
(𝑢; 𝑏) = 𝑉

𝑑
(𝑏; 𝑏) 𝜓

2
(𝑢) . (92)

When 𝑢 > 𝑏, since 𝜏
−

𝑏
is a stopping time, it follows from the

strong Markov property of 𝑈
𝑑
(𝑢) that

𝑉
𝑑
(𝑢, 𝑏) = 𝐸

𝑢
(∫

𝜏
−

𝑏

0

𝛼𝑒
−𝛿𝑡

𝑑𝑡)

+ 𝐸
𝑢
(∫

𝑇
𝑑

𝜏
−

𝑏

𝛼𝑒
−𝛿𝑡

𝐼 (𝑈
𝑑
(𝑡) > 𝑏) 𝑑𝑡)

=
𝛼

𝛿
(1 − 𝐸

𝑢
𝑒
−𝛿𝜏
−

𝑏 )

+ 𝐸
𝑢
[𝑒
−𝛿𝜏
−

𝑏 𝐸
𝑈
𝜏

−

𝑏

(∫

𝑇
𝑑

0

𝑒
−𝛿𝑡

𝑑𝐷
𝑑
(𝑡))]

=
𝛼

𝛿
+ (𝑉
𝑑
(𝑏, 𝑏) −

𝛼

𝛿
)𝜑
3
(𝑢) .

(93)

Using the continuity of the function 𝑉
󸀠

𝑑
(𝑢; 𝑏) at 𝑢 = 𝑏, we get

𝑉
𝑑
(𝑏; 𝑏) 𝜓

󸀠

2
(𝑏) = (𝑉

𝑑
(𝑏, 𝑏) −

𝛼

𝛿
)𝜑
󸀠

3
(𝑏) . (94)

So, we get

𝑉
𝑑
(𝑏; 𝑏) =

𝛼

𝛿

𝜑
󸀠

3
(𝑏)

𝜑
󸀠

3
(𝑏) − 𝜓

󸀠

2
(𝑏)

. (95)

Substituting the above expression into (92) and (93), we can
get the results (90) and (91). This completes the proof.

We just consider the square root process.

Example 16. Weconsider the square root process discussed in
Example 11.We first solve the differential equation satisfied by
𝜑
3
(𝑢) as follows

1

2
𝜎
2
𝑢
2
𝜑
󸀠󸀠

3
(𝑢) + (V𝑘 − V𝑢 − 𝛼) 𝜑

󸀠

3
(𝑢) = 𝛿𝜑

3
(𝑢) , 𝛿 > 0.

(96)

We assume that 2((V𝑘−𝛼)/𝜎
2
) is not an integer, the two linear

independent solutions are

𝜑
+
(𝑢) = 𝑀(

𝛿

V
,
2 (V𝑘 − 𝛼)

𝜎2
,
2V
𝜎2

𝑢) ,

𝜑
−
(𝑢) = 𝑈(

𝛿

V
,
2 (V𝑘 − 𝛼)

𝜎2
,
2V
𝜎2

𝑢) .

(97)

Using (81), and from the boundary conditions 𝜑
3
(𝑏) = 1,

𝜑
3
(∞) = 0, we get

𝜑
3
(𝑢) = [𝑈(

𝛿

V
,
2 (V𝑘 − 𝛼)

𝜎2
,
2V
𝜎2

𝑢)]

× [𝑈(
𝛿

V
,
2(V𝑘 − 𝛼)

𝜎2
,
2V
𝜎2

𝑏)]

−1

.

(98)

From (71), we have

𝜑
󸀠

3
(𝑏) = −

2𝛿

𝜎2
[𝑈(

𝛿

V
+ 1,

2 (V𝑘 − 𝛼)

𝜎2
+ 1,

2V
𝜎2

𝑏)]

× [𝑈(
𝛿

V
,
2(V𝑘 − 𝛼)

𝜎2
,
2V
𝜎2

𝑏)]

−1

.

(99)

Furthermore,𝜓
2
(𝑢) and𝜓

󸀠

2
(𝑏) have been given in Example 11.

FromTheorem 15, we obtain

𝑉
𝑑
(𝑢, 𝑏) =

𝛼

𝛿
𝑈(

𝛿

V
+ 1,

2 (V𝑘 − 𝛼)

𝜎2
+ 1,

2V
𝜎2

𝑏)

× [𝑈(
𝛿

V
,
2V
𝜎2

𝑘, 0)𝑀(
𝛿

V
,
2V
𝜎2

𝑘,
2V
𝜎2

𝑢)

−𝑈(
𝛿

V
,
2V
𝜎2

𝑘,
2V
𝜎2

𝑢)]

× {𝐶𝑈(
𝛿

V
+ 1,

2 (V𝑘 − 𝛼)

𝜎2
+ 1,

2V
𝜎2

𝑏)

+ 𝑈(
𝛿

V
,
2 (V𝑘 − 𝛼)

𝜎2
,
2V
𝜎2

𝑏)

× [
𝜎
2

2V𝑘
𝑈(

𝛿

V
,
2V
𝜎2

𝑘, 0)

× 𝑀(
𝛿

V
+ 1,

2V
𝜎2

𝑘 + 1,
2V
𝜎2

𝑏)

+𝑈(
𝛿

V
+ 1,

2V
𝜎2

𝑘 + 1,
2V
𝜎2

𝑏)]}

−1

,

𝑢 ∈ [0, 𝑏] ,

(100)

and for 𝑢 > 𝑏, we get

𝑉
𝑑
(𝑢, 𝑏) =

𝛼

𝛿
−

𝛼

𝛿
𝑈(

𝛿

V
,
2 (V𝑘 − 𝛼)

𝜎2
,
2V
𝜎2

𝑢)

× [
𝜎
2

2V𝑘
𝑈(

𝛿

V
,
2V
𝜎2

𝑘, 0)

× 𝑀(
𝛿

V
+ 1,

2V
𝜎2

𝑘 + 1,
2V
𝜎2

𝑏)

+𝑈(
𝛿

V
+ 1,

2V
𝜎2

𝑘 + 1,
2V
𝜎2

𝑏)]

× {𝐶𝑈(
𝛿

V
+ 1,

2 (V𝑘 − 𝛼)

𝜎2
+ 1,

2V
𝜎2

𝑏)

+ 𝑈(
𝛿

V
,
2 (V𝑘 − 𝛼)

𝜎2
,
2V
𝜎2

𝑏)
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× [
𝜎
2

2V𝑘
𝑈(

𝛿

V
,
2V
𝜎2

𝑘, 0)

× 𝑀(
𝛿

V
+ 1,

2V
𝜎2

𝑘 + 1,
2V
𝜎2

𝑏)

+𝑈(
𝛿

V
+ 1,

2V
𝜎2

𝑘 + 1,
2V
𝜎2

𝑏)]}

−1

,

(101)

where 𝐶 is defined in Example 11.
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