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In this paper, the mean square asymptotic stability of stochastic Markovian jump neural networks with different time scales and
randomly occurred nonlinearities is investigated. In terms of linear matrix inequality (LMI) approach and delay-partitioning
projection technique, delay-dependent stability criteria are derived for the considered neural networks for cases with or without the
information of the delay rates via new Lyapunov-Krasovskii functionals. We also obtain that the thinner the delay is partitioned,
the more obviously the conservatism can be reduced. An example with simulation results is given to show the effectiveness of the
proposed approach.

1. Introduction
The human brain is made up of a large amount of neurons
and their interconnections. An artificial neural network is
an information processing system that has certain charac-
teristics in common with biological neural networks. During
the past decades, neural networks have been used for a wide
variety of applications, for example, associative memories,
pattern recognition, signal processing, and the other fields
[1–4]. As is well known, the stability of neural networks
plays an important role in modern control theories for these
applications. However, time delays are often attributed as the
major sources of instability in various engineering systems.
Therefore, how to find sufficient conditions to guarantee the
stability of neural networks with time delays is an important
research topic [5–15].

Markovian jump system is an important class of stochas-
tic models, which can be described by a set of nonlinear
systems with the transitions between models determined by
a Markovian chain in a finite mode set. This kind of system
has been extensively applied to study the stability of neural

networks. In real life, neural networks have a phenomenon
of information latching, and it is recognized that the best
way for modeling this class of neural networks is Markovian
jump system [16–18]. Obviously, the Markovian jump system
is more complex and challenging than the system without
Markovian jump parameters, in which many authors are
interested [12, 19–24].

On the other hand, it should be pointed out that lots
of practical systems are influenced by additive randomly
occurred nonlinear disturbances which are caused by envi-
ronmental circumstances. In today’s networked environment,
such nonlinear disturbances may be subject to random
abrupt changes, which may result from abrupt phenomena,
such as random failures and repairs of the components,
environmental disturbance, and so forth. In other words, the
nonlinear disturbances may occur in a probabilistic way, but
they are randomly changeable in terms of their types and/or
intensity.The stochastic nonlinearities, which are then named
as randomly occurred nonlinearities (RONs), have recently
attracted much attention [25–28].
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Recently, by introducing free-weightingmatrices [29, 30],
model transformation method [31], linear matrix inequality
(LMI) approach [32, 33], and adopting the concept of delay
partitioning [9, 11, 34], stability criteria have been obtained
for some neural networks. Sufficient conditions for the robust
stability of uncertain stochastic system with interval time-
varying delay were derived in [29] by employing the delay
partitioning approach. Delay-dependent conditions onmean
square asymptotic stability of stochastic neural networks with
Markovian jumping parameters are presented by using the
delay partitioningmethodwhich is different from the existing
ones in the literature and convex combination method in
[12]. The RONs model and the sensor failure model were
introduced in [26]. In [9], better delay-dependent stability
criteria for continuous systems with multiple delay compo-
nents were established by utilizing a delay-partitioning pro-
jection approach. On the other hand, it is worth mentioning
that neural networks on time scales have been presented
and studied [35–37], which can unify the continuous and
discrete situations. To the best of the authors’ knowledge, the
delay-partitioning projection approach to stability analysis of
stochastic Markovian jump neural networks with different
time scales and randomly occurred nonlinearities has never
been tackled in the previous literature. This motivates our
research.

In this paper, the problem of stability analysis of stochas-
tic Markovian jump neural networks with different time
scales and RONs is considered. The paper is organised as
follows. Section 2 introduces model description and prelim-
inaries. RONs are introduced to model a class of sector-like
nonlinearities whose occurrence is governed by a Bernoulli
distributed white sequence with a known conditional prob-
ability. In Section 3, we derive the stability results based on
delay-partitioning projection approach for stochasticMarko-
vian jump neural networks with RONs. The results include
two cases, one with a specified delay rates and the other with
arbitrary delay rates. In addition to delay dependence, the
obtained conditions are also dependent on the partitioning
size; we verify that the conservatism of the conditions is
a nonincreasing function of the number of partitions. A
numerical example is presented to illustrate the effectiveness
of the obtained criteria in Section 4. And finally, conclusions
are drawn in Section 5.

Notations. Throughout this paper, the notation is fairly
standard. 𝑅𝑛 denotes the 𝑛-dimensional Euclidean space.
𝑅

𝑛×𝑚 stands for realmatrix𝑅 of size 𝑛×𝑚 (simply abbreviated
𝑅

𝑛
when 𝑚 = 𝑛). 𝑃 > (<)0 is used to define a real symme-

tric positive definite (negative definite) matrix. For real
symmetric matrices 𝑋 and 𝑌, the notation 𝑋 ≥ 𝑌 (resp.,
𝑋 > 𝑌) means that the matrix 𝑋 − 𝑌 is positive semidefinite
(resp., positive definite).The symmetric terms in a symmetric
matrix are denoted by ∗ and diag{⋅ ⋅ ⋅ } denotes a block-
diagonal matrix. The superscripts 𝐴𝑇 and 𝐴−1 stand for
the transpose and inverse of matrix 𝐴. (Ω,F, {F

𝑡
}

𝑡≥0
,P)

denotes a complete probability space with a filtration {F
𝑡
}

𝑡≥0
,

whereΩ is a sample space,F is the 𝜎-algebra of subset of the
sample space, and P is the probability measure on F. 𝐸{𝑥}
stands for the expectation of the stochastic variable 𝑥.

2. Model Description and Preliminaries

In this paper, the stochasticMarkovian jump neural networks
with different time scales RONs are considered:

𝜀�̇� (𝑡) = −𝐴 (𝑟 (𝑡)) 𝑥 (𝑡) + 𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝜉 (𝑡) 𝐸𝑓 (𝑥 (𝑡))

+ [𝐶 (𝑟 (𝑡)) 𝑥 (𝑡) + 𝐷 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝜏 (𝑡))]𝑊 (𝑡) ,

𝑥 (𝑡) = 𝜙 (𝑡) , ∀𝑡 ∈ [−𝑑, 0] ,

(1)

where 𝑥(𝑡) ∈ 𝑅𝑛 is the state vector.𝑊(𝑡) is a scalar zero mean
Gaussian white noise process. 𝜙(𝑡) is a real-valued initial
condition. 𝜀 > 0 is the time scale. {𝑟(𝑡)} is a right-conti-
nuous Markov chain on the probability space (Ω,F,P)
taking values in a given finite set 𝑆 = {1, 2, . . . , 𝑁}. The tran-
sition probability matrix of system (1) is given by

𝑃 {𝑟 (𝑡 + Δ𝑡) = 𝑗 | 𝑟 (𝑡) = 𝑖} = {
𝑞

𝑖𝑗
Δ𝑡 + 𝑜 (Δ𝑡) if 𝑖 ̸= 𝑗,

1 + 𝑞
𝑖𝑖
Δ𝑡 + 𝑜 (Δ𝑡) , if 𝑖 = 𝑗,

(2)

where Δ𝑡 > 0 and lim
Δ𝑡 → 0

𝑜(Δ𝑡)/Δ𝑡 = 0, 𝑞
𝑖𝑗
≥ 0 is the transi-

tion rate from mode 𝑖 at time 𝑡 to mode 𝑗 at time 𝑡 + Δ𝑡, and
𝑞

𝑖𝑖
= −∑

𝑖 ̸= 𝑗
𝑞

𝑖𝑗
. 𝐴(𝑟(𝑡)) = diag{𝑎

𝑖1
, 𝑎

𝑖2
, . . . , 𝑎

𝑖𝑛
} is a posi-

tive diagonal matrix. 𝐵(𝑟(𝑡)), 𝐶(𝑟(𝑡)), 𝐷(𝑟(𝑡)), and 𝐸 are
knownmatrices. For the sake of simplicity, in the sequel, each
possible value of 𝑟(𝑡) is denoted by 𝑖, 𝑖 ∈ 𝑆 and𝐴(𝑟(𝑡)),𝐵(𝑟(𝑡)),
𝐶(𝑟(𝑡)),𝐷(𝑟(𝑡)) are abbreviated as 𝐴

𝑖
, 𝐵

𝑖
, 𝐶

𝑖
,𝐷

𝑖
, respectively.

𝑑(𝑡) denotes the time-varying delay satisfying

0 ≤ 𝑑 (𝑡) ≤ 𝑑, ̇𝑑 (𝑡) ≤ 𝜇, (3)

where 𝑑 and 𝜇 are constant real numbers.
Finally, 𝑓(𝑥(𝑡)) stands for the mismatched external non-

linearity. The stochastic variable 𝜉(𝑡) ∈ 𝑅, which accounts
for the phenomena of RONs, is a Bernoulli distributed white
noise sequence specified by the following distribution laws:

Prob {𝜉 (𝑡) = 1} = 𝐸 {𝜉 (𝑡)} = 𝜉,

Prob {𝜉 (𝑡) = 0} = 1 − 𝐸 {𝜉 (𝑡)} = 1 − 𝜉.
(4)

Furthermore, we can show that

𝐸 {𝜉 (𝑡) − 𝜉} = 0, 𝐸 {(𝜉 (𝑡) − 𝜉)
2

} = 𝜉 (1 − 𝜉) , (5)

where 𝜉 ∈ [0, 1] is a constant.
Before proceeding, we make the following assumption.

Assumption 1. For all 𝑥 ∈ 𝑅𝑛, the nonlinear function 𝑓(𝑥) is
assumed to satisfy the following sector-bounded condition:

[𝑓(𝑥) − 𝐾
1
𝑥]

𝑇

[𝑓 (𝑥) − 𝐾
2
𝑥] ≤ 0, (6)

where 𝐾
1
and 𝐾

2
are known real matrices of appropriate

dimensions and𝐾
1
− 𝐾

2
≥ 0.
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Remark 2. The nonlinear function 𝑓(𝑥) satisfying (6) is
customarily said to belong to sector [𝐾

1
, 𝐾

2
]. Because such

a nonlinear condition is quite general which includes the
usual Lipschitz condition as a special case, the systems with
sector-bounded nonlinearities have been intensively studied
in [25, 26].

Recall that the time derivative of a Wiener process is
a white noise [27, 28]. We establish 𝑑𝑤(𝑡) = 𝑊(𝑡)𝑑𝑡,
where 𝑤(𝑡) is a scalar Wiener process on a probability space
(Ω,F, {F

𝑡
}

𝑡≥0
,P), which is independent from the Markov

chain {𝑟(𝑡), 𝑡 ≥ 0}. It is further assumed that 𝑤(𝑡) and the
stochastic variable 𝜉(𝑡) are mutually independent. Besides,
𝑤(𝑡) satisfies

𝐸 {𝑑𝑤 (𝑡)} = 0, 𝐸 {𝑑𝑤
2

(𝑡)} = 𝑑𝑡. (7)

Hence, the network (1) is rewritten as the following stochastic
differential equations:

𝑑𝑥 (𝑡) = 𝜀
−1

[ − 𝐴 (𝑟 (𝑡)) 𝑥 (𝑡) + 𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝜉 (𝑡) 𝐸𝑓 (𝑥 (𝑡))] 𝑑𝑡

+ 𝜀
−1

[𝐶 (𝑟 (𝑡)) 𝑥 (𝑡) + 𝐷 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝜏 (𝑡))] 𝑑𝑤 (𝑡) ,

𝑥 (𝑡) = 𝜙 (𝑡) , ∀𝑡 ∈ [−𝑑, 0] .

(8)

Remark 3. The stochastic Markovian neural network with
different time scales and RONs (8) is general enough to
include many models as its special cases. For example, if
we do not consider the RONs, time scales and remove the
noise perturbations, then (8) is reduced to those studied in
[9, 23, 38–41], whereas the authors in [9, 38–41] ignore the
Markovian jump parameters. If we do not consider the RONs
and time scales, then (8) is discussed in [29] and its references.
If we do not take the noise perturbations and time scales into
account and let Prob{𝜉(𝑡) = 1} = 1, 𝐵(𝑟(𝑡)) = 0, (8) is just the
one in [42]. If we do not consider the RONs, the Markovian
jump parameters, and the noise perturbations, then (8) is
studied in [37]. Furthermore, if we remove the time scales, (8)
is the one in [43]. Thus, our model generalizes and improves
greatly many previous works and is therefore very significant.

Remark 4. In [44], the delay-partitioning approach was
introduced to study the discrete-time recurrent neural net-
works. As an extension of the approach, we use two different
partitions to deal with the continuous Markovian jump
neural networks with different time scales in this paper.

Note that it is easy to prove that there exists at least
one equilibrium point for (8) by employing the well-known
Brouwer’s fixed point theorem. To end this section, the
lemmas which are necessary for the proof of our main results
are introduced as follows.

Lemma 5. For any constant matrix 𝑅 > 0, any scalars 𝑎 and
𝑏 with 𝑎 < 𝑏, and a vector function 𝑥(𝑡) : [𝑎, 𝑏] → 𝑅

𝑛 such

that the integrations concerned are well defined, the following
inequality holds:

[∫

𝑏

𝑎

𝑥(𝑠)𝑑𝑠]

𝑇

𝑅[∫

𝑏

𝑎

𝑥 (𝑠) 𝑑𝑠] ≤ (𝑏 − 𝑎) ∫

𝑏

𝑎

𝑥
𝑇

(𝑠) 𝑅𝑥 (𝑠) 𝑑𝑠.

(9)

Lemma 6 (see [9]). Let 𝑍 ∈ 𝑅𝑛×𝑛 and the bidiagonal upper
triangular block matrix

𝐽
𝐾
(𝑍) = (

𝐼
𝑛
−𝑍 0

d d
d −𝑍

0 𝐼
𝑛

) ∈ 𝑅
𝐾
𝑛
×𝐾
𝑛 . (10)

If 𝑌 = (𝐽
𝐾
(𝑍)𝐹) ∈ 𝑅

𝐾
𝑛
×(𝐾
𝑛
+𝑚) with 𝐹 = (

𝐹
1

...
𝐹
𝑘

) ∈ 𝑅
𝐾
𝑛
×𝑚,

𝐹
𝑗
∈ 𝑅

𝑛×𝑚

(𝑗 = 1, . . . , 𝐾), then

𝑌
⊥

= col
{

{

{

−

𝐾

∑

𝑗=1

𝑍
𝑗−1

𝐹
𝑗
, −

𝐾

∑

𝑗=2

𝑍
𝑗−2

𝐹
𝑗
, . . . , −𝐹

𝐾
, 𝐼

𝑚

}

}

}

. (11)

Lemma 7 (Finsler’s lemma). Suppose that 𝑥 ∈ 𝑅𝑛,𝑀 = 𝑀
𝑇

∈

𝑅
𝑛×𝑛 and 𝐵 ∈ 𝑅𝑚×𝑛 such that 𝐵 has full row rank. Then, the

following statements are equivalent:

(1) there exists a vector 𝑥 ∈ 𝑅𝑛 such that 𝑥𝑇

𝑀𝑥 < 0 and
𝐵𝑥 = 0,

(2) there exists a scalar 𝜇 ∈ 𝑅 such that 𝜇𝐵𝑇

𝐵 −𝑀 > 0,

(3) ∃𝑋 ∈ 𝑅𝑛×𝑚 such that𝑀+𝑋𝐵 + 𝐵𝑇

𝑋
𝑇

< 0,
(4) 𝐵⊥𝑇

𝑀𝐵
⊥

< 0, where 𝐵⊥ is the orthogonal complement
of 𝐵.

Remark 8. It should be pointed out that various problems
in control theory have been solved by combing Lyapunov
control approach with Finsler’s lemma. In lots of applica-
tions, Finsler’s lemma is referred to Elimination lemma,
which devotes to eliminate the redundant variables in matrix
inequalities [45].

3. Main Results

In this section, we will give the mean square asymptotic
stability for the system (8) in terms of LMI approach. The
main results are stated as follows.

Theorem 9. For given constants 𝑑 and 𝜇, and two positive
integers 𝑚 and 𝑀, the stochastic system (8) is mean square
asymptotically stable if there exist matrices 𝑃

𝑖
> 0,𝑄

𝑘
> 0 (𝑘 =

1, . . . , 𝑚), 𝑅 > 0,𝑋
1
> 0,𝑋

2
> 0 and

𝑊 = 𝑊
𝑇

= (

𝑊
11
⋅ ⋅ ⋅ 𝑊

1𝑀

... d
...

𝑊
𝑇

1𝑀
⋅ ⋅ ⋅ 𝑊

𝑀𝑀

) > 0, (12)
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and positive scalar 𝑙 > 0 such that the following LMI holds:

𝐵
⊥𝑇

(
Ξ

1
+ Ξ

2
+ Ξ

3
0

∗ Ξ
4

)𝐵
⊥

< 0, (13)

where 𝐵⊥

∈ 𝑅
(2𝑚+2𝑀+3)𝑛×(𝑚+𝑀+3)𝑛 is all arbitrary but fixed

matrix whose columns form a basis of the kernel space of
𝐵

(𝑚+𝑀)𝑛×(2𝑚+2𝑀+3)𝑛
= (𝐽

𝑚+𝑀
(𝐼

𝑛
)𝐹),

𝐹 = (

0 0 0 −𝐼
𝑛
0 ⋅ ⋅ ⋅ 0

...
...

... d d
...

0 0 0 d d 0

−𝐼
𝑛
0 0 0 ⋅ ⋅ ⋅ 0 −𝐼

𝑛

) ∈ 𝑅
(𝑚+𝑀)𝑛×(𝑚+𝑀+3)𝑛

,

Ξ
1
=

(
(
(
(
(
(
(
(
(
(

(

Ω
1
0 ⋅ ⋅ ⋅ 𝜀

−1

𝑃
𝑖
𝐵

𝑖
0 𝑊

1𝑀
⋅ ⋅ ⋅ 𝑊

12
Δ

1

∗ Ω
2
⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0

...
... d

...
...

... d
...

...
∗ ∗ . . . Ω

𝑚+1
0 0 ⋅ ⋅ ⋅ 0 0

∗ ∗ . . . ∗ Γ
𝑀+1

−𝑊
𝑇

(𝑀−1)𝑀
⋅ ⋅ ⋅ −𝑊

𝑇

1𝑀
0

∗ ∗ . . . ∗ ∗ Γ
𝑀

⋅ ⋅ ⋅ 𝑊
𝑇

2𝑀
−𝑊

𝑇

1(𝑀−1)
0

...
... d

...
...

... d
...

...
∗ ∗ . . . ∗ ∗ ∗ ⋅ ⋅ ⋅ Γ

2
0

∗ ∗ . . . ∗ ∗ ∗ ⋅ ⋅ ⋅ ∗ Δ
2

)
)
)
)
)
)
)
)
)
)

)

,

Ω
1
= −2𝜀

−1

𝑃
𝑖
𝐴

𝑖
+

𝑁

∑

𝑗=1

𝑞
𝑖𝑗
𝑃

𝑗
+𝑊

11
+

𝑚

∑

𝑖=1

𝑄
𝑖
− 𝑙�̃�

1
,

Δ
1
= −𝑙�̃�

2
+ 𝜉𝜀

−1

𝑃
𝑖
𝐸, Δ

2
= −𝑙𝐼 + 𝑅 + 𝐸

𝑇

(𝜀
−2

(𝜉 − 𝜉
2

) ℎ (𝑑 − ℎ)𝑋
1
+ 𝜀

−2

(𝜉 − 𝜉
2

) 𝑑𝜎𝑋
2
)𝐸,

Ω
𝑘
= (
(𝑘 − 1) 𝜇

𝑚 − 1
)𝑄

𝑘−1
, (𝑘 = 2, . . . , 𝑚 + 1) ,

Γ
𝑘
= 𝑊

𝑘𝑘
−𝑊

(𝑘−1)(𝑘−1)
, 𝑊

(𝑀+1)(𝑀+1)
= 0, (𝑘 = 2, . . . ,𝑀 + 1) ,

Ξ
2
= (−𝐴

𝑖
0 ⋅ ⋅ ⋅ 0 𝐵

𝑖
0 ⋅ ⋅ ⋅ 0 𝜉𝐸)

𝑇

(𝜀
−2

ℎ (𝑑 − ℎ)𝑋
1
+ 𝜀

−2

𝑑𝜎𝑋
2
) (−𝐴

𝑖
0 ⋅ ⋅ ⋅ 0 𝐵

𝑖
0 ⋅ ⋅ ⋅ 0 𝜉𝐸) ,

Ξ
3
= (𝐶

𝑖
0 ⋅ ⋅ ⋅ 0 𝐷

𝑖
0 ⋅ ⋅ ⋅ 0)

𝑇

(𝜀
−2

(𝑑 − ℎ)𝑋
1
+ 𝜀

−2

𝑑𝑋
2
+ 𝜀

−2

𝑃
𝑖
) (𝐶

𝑖
0 ⋅ ⋅ ⋅ 0 𝐷

𝑖
0 ⋅ ⋅ ⋅ 0) ,

Ξ
4
= diag {(𝜇 − 1) 𝑅, −𝑋

2
, . . . , −𝑋

2
, −𝑚

−1

𝑋
2
, −𝑋

1
, . . . , −𝑋

1
} ,

�̃�
1
=

(𝐾
𝑇

1
𝐾

2
+ 𝐾

𝑇

2
𝐾

1
)

2
, �̃�

2
= −

(𝐾
𝑇

1
+ 𝐾

𝑇

2
)

2
.

(14)

Proof. For presentation convenience, in the following, we
denote

𝑦 (𝑡) = −𝐴 (𝑟 (𝑡)) 𝑥 (𝑡) + 𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝑑 (𝑡))

+ 𝜉 (𝑡) 𝐸𝑓 (𝑥 (𝑡)) ,

𝑚 (𝑡) = 𝐶 (𝑟 (𝑡)) 𝑥 (𝑡) + 𝐷 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝑑 (𝑡)) ,

(15)

then, the system (8) becomes

𝑑𝑥 (𝑡) = 𝑦 (𝑡) 𝑑𝑡 + 𝑚 (𝑡) 𝑑𝑤 (𝑡) . (16)

By employing the idea of delay partitioning approach to
the time-delay 𝑑(𝑡), we choose the following Lyapunov-
Krasovskii functional candidate:

𝑉 (𝑥 (𝑡) , 𝑡, 𝑖) = 𝑥
𝑇

(𝑡) 𝑃
𝑖
𝑥 (𝑡)

+

𝑚

∑

𝑘=1

∫

𝑡

𝑡−𝛼
𝑘
(𝑡)

𝑥
𝑇

(𝑠) 𝑄
𝑘
𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−ℎ

𝛾
𝑇

(𝑠)𝑊𝛾 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝑑(𝑡)

𝑓
𝑇

(𝑥 (𝑠)) 𝑅𝑓 (𝑥 (𝑠)) 𝑑𝑠
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+ ℎ∫

−ℎ

−𝑑

∫

𝑡

𝑡+𝜃

𝑦
𝑇

(𝑠)𝑋
1
𝑦 (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

−ℎ

−𝑑

∫

𝑡

𝑡+𝜃

𝑚
𝑇

(𝑠)𝑋
1
𝑚(𝑠) 𝑑𝑠 𝑑𝜃

+ 𝜎∫

0

−𝑑

∫

𝑡

𝑡+𝜃

𝑦
𝑇

(𝑠)𝑋
2
𝑦 (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

0

−𝑑

∫

𝑡

𝑡+𝜃

𝑚
𝑇

(𝑠)𝑋
2
𝑚(𝑠) 𝑑𝑠 𝑑𝜃,

(17)

where

𝛾
𝑇

(𝑡) = (𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 − ℎ) ⋅ ⋅ ⋅ 𝑥
𝑇

(𝑡 − (𝑀 − 1) ℎ)) ,

𝜎 (𝑡) =
𝑑 (𝑡)

𝑚
, ℎ =

𝑑

𝑀
, 𝜎 =

𝑑

𝑚
,

𝛼
𝑘
(𝑡) = 𝑘𝜎 (𝑡) , (𝑘 = 1, . . . , 𝑚) .

(18)

Let L be the weak infinitesimal generator of the random
process {𝑥(𝑡), 𝑟(𝑡), 𝑡 ≥ 0} along the trajectory of the system
(8). Then, by Itô differential formula, we have

L𝑉 (𝑥 (𝑡) , 𝑡, 𝑖)

= 2𝑥
𝑇

(𝑡) 𝑃
𝑖
𝑦 (𝑡) + 𝑥

𝑇

(𝑡)

𝑁

∑

𝑗=1

𝑞
𝑖𝑗
𝑃

𝑗
𝑥 (𝑡) + 𝑚

𝑇

(𝑡) 𝑃
𝑖
𝑚(𝑡)

+

𝑚

∑

𝑖=1

𝑥
𝑇

(𝑡) 𝑄
𝑖
𝑥 (𝑡)

−

𝑚

∑

𝑖=1

(1 − �̇�
𝑖
(𝑡)) 𝑥

𝑇

(𝑡 − 𝛼
𝑖
(𝑡)) 𝑄

𝑖
𝑥 (𝑡 − 𝛼

𝑖
(𝑡))

+ 𝛾
𝑇

(𝑡)𝑊𝛾 (𝑡) − 𝛾
𝑇

(𝑡 − ℎ)𝑊𝛾 (𝑡 − ℎ)

+ 𝑓
𝑇

(𝑥 (𝑡)) 𝑅𝑓 (𝑥 (𝑡))

− (1 − ̇𝑑 (𝑡)) 𝑓
𝑇

(𝑥 (𝑡 − 𝑑 (𝑡))) 𝑅𝑓 (𝑥 (𝑡 − 𝑑 (𝑡)))

+ ℎ (𝑑 − ℎ) 𝑦
𝑇

(𝑡) 𝑋
1
𝑦 (𝑡)

− ℎ

𝑀

∑

𝑘=2

∫

𝑡−(𝑘−1)ℎ

𝑡−𝑘ℎ

𝑦
𝑇

(𝑠)𝑋
1
𝑦 (𝑠) 𝑑𝑠

+ (𝑑 − ℎ)𝑚
𝑇

(𝑡) 𝑋
1
𝑚(𝑡)

−

𝑀

∑

𝑘=2

∫

𝑡−(𝑘−1)ℎ

𝑡−𝑘ℎ

𝑚
𝑇

(𝑠)𝑋
1
𝑚(𝑠) 𝑑𝑠

+ 𝜎𝑑𝑦
𝑇

(𝑡) 𝑋
2
𝑦 (𝑡)

− 𝜎

𝑚

∑

𝑖=1

∫

𝑡−𝛼
𝑖−1

(𝑡)

𝑡−𝛼
𝑖
(𝑡)

𝑦
𝑇

(𝑠)𝑋
2
𝑦 (𝑠) 𝑑𝑠

− 𝜎∫

𝑡−𝑑(𝑡)

𝑡−𝑑

𝑦
𝑇

(𝑠)𝑋
2
𝑦 (𝑠) 𝑑𝑠 + 𝑑𝑚

𝑇

(𝑡) 𝑋
2
𝑚(𝑡)

−

𝑚

∑

𝑖=1

∫

𝑡−𝛼
𝑖−1

(𝑡)

𝑡−𝛼
𝑖
(𝑡)

𝑚
𝑇

(𝑠)𝑋
2
𝑚(𝑠) 𝑑𝑠

− ∫

𝑡−𝑑(𝑡)

𝑡−𝑑

𝑚
𝑇

(𝑠)𝑋
2
𝑚(𝑠) 𝑑𝑠.

(19)

By virtue of (3), (7), and (9), it can be verified that

𝐸 {L𝑉 (𝑥 (𝑡) , 𝑡, 𝑖)}

≤ 𝐸
{

{

{

2𝑥
𝑇

(𝑡) 𝑃
𝑖
𝑦 (𝑡) + 𝑥

𝑇

(𝑡)

𝑁

∑

𝑗=1

𝑞
𝑖𝑗
𝑃

𝑗
𝑥 (𝑡) + 𝑚

𝑇

(𝑡) 𝑃
𝑖
𝑚(𝑡)

−

𝑚

∑

𝑖=1

(1 −
𝑖

𝑚
𝜇)𝑥

𝑇

(𝑡 − 𝛼
𝑖
(𝑡)) 𝑄

𝑖
𝑥 (𝑡 − 𝛼

𝑖
(𝑡))

+

𝑚

∑

𝑖=1

𝑥
𝑇

(𝑡) 𝑄
𝑖
𝑥 (𝑡) + 𝛾

𝑇

(𝑡)𝑊𝛾 (𝑡)

− 𝛾
𝑇

(𝑡 − ℎ)𝑊𝛾 (𝑡 − ℎ) + 𝑓
𝑇

(𝑥 (𝑡)) 𝑅𝑓 (𝑥 (𝑡))

− (1 − 𝜇) 𝑓
𝑇

(𝑥 (𝑡 − 𝑑 (𝑡)))

× 𝑅𝑓 (𝑥 (𝑡 − 𝑑 (𝑡)))

+ ℎ (𝑑 − ℎ) 𝑦
𝑇

(𝑡) 𝑋
1
𝑦 (𝑡)

+ (𝑑 − ℎ)𝑚
𝑇

(𝑡) 𝑋
1
𝑚(𝑡)

+ 𝜎𝑑𝑦
𝑇

(𝑡) 𝑋
2
𝑦 (𝑡) + 𝑑𝑚

𝑇

(𝑡) 𝑋
2
𝑚(𝑡)

−

𝑀

∑

𝑘=2

(∫

𝑡−(𝑘−1)ℎ

𝑡−𝑘ℎ

𝑦 (𝑠) 𝑑𝑠)

𝑇

𝑋
1

× (∫

𝑡−(𝑘−1)ℎ

𝑡−𝑘ℎ

𝑦 (𝑠) 𝑑𝑠)

−

𝑀

∑

𝑘=2

(∫

𝑡−(𝑘−1)ℎ

𝑡−𝑘ℎ

𝑚(𝑠) 𝑑𝜔 (𝑠))

𝑇

𝑋
1

× (∫

𝑡−(𝑘−1)ℎ

𝑡−𝑘ℎ

𝑚(𝑠) 𝑑𝜔 (𝑠))

−

𝑚

∑

𝑖=1

(∫

𝑡−𝛼
𝑖−1

(𝑡)

𝑡−𝛼
𝑖
(𝑡)

𝑦 (𝑠) 𝑑𝑠)

𝑇

𝑋
2



6 Abstract and Applied Analysis

× (∫

𝑡−𝛼
𝑖−1

(𝑡)

𝑡−𝛼
𝑖
(𝑡)

𝑦 (𝑠) 𝑑𝑠)

−
1

𝑚
(∫

𝑡−𝑑(𝑡)

𝑡−𝑑

𝑦 (𝑠) 𝑑𝑠)

𝑇

𝑋
2

× (∫

𝑡−𝑑(𝑡)

𝑡−𝑑

𝑦 (𝑠) 𝑑𝑠)

−

𝑚

∑

𝑖=1

(∫

𝑡−𝛼
𝑖−1

(𝑡)

𝑡−𝛼
𝑖
(𝑡)

𝑚(𝑠) 𝑑𝜔 (𝑠))

𝑇

𝑋
2

× (∫

𝑡−𝛼
𝑖−1

(𝑡)

𝑡−𝛼
𝑖
(𝑡)

𝑚(𝑠) 𝑑𝜔 (𝑠))

−
1

𝑚
(∫

𝑡−𝑑(𝑡)

𝑡−𝑑

𝑚(𝑠) 𝑑𝜔 (𝑠))

𝑇

𝑋
2

×(∫

𝑡−𝑑(𝑡)

𝑡−𝑑

𝑚(𝑠) 𝑑𝜔 (𝑠))} .

(20)

On the other hand, note that (6) is equivalent to

(
𝑥

𝑓 (𝑥)
)

𝑇

(
�̃�

1
�̃�

2

∗ 𝐼
)(

𝑥

𝑓 (𝑥)
) ≤ 0, (21)

which implies

− 𝑙 [𝑓
𝑇

(𝑥 (𝑡)) 𝑓 (𝑥 (𝑡)) + 𝑓
𝑇

(𝑥 (𝑡)) �̃�
𝑇

2
𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) �̃�
2
𝑓 (𝑥 (𝑡)) + 𝑥

𝑇

(𝑡) �̃�
1
𝑥 (𝑡)] ≥ 0,

(22)

where 𝑙 is a positive constant.
Substituting (5), (7), (15), and (22) into (20), we can obtain

𝐸 {L𝑉 (𝑥 (𝑡) , 𝑡, 𝑖)}

≤ 𝐸{2𝑥
𝑇

(𝑡) 𝑃
𝑖
(−𝐴

𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑥 (𝑡 − 𝑑 (𝑡)))

− 𝑙𝑥
𝑇

(𝑡) �̃�
1
𝑥 (𝑡) + 2𝑥

𝑇

(𝑡) (𝜀
−1

𝜉𝑃
𝑖
𝐸 − 𝑙�̃�

2
)

× 𝑓 (𝑥 (𝑡)) + 𝑥
𝑇

(𝑡)

𝑁

∑

𝑗=1

𝑞
𝑖𝑗
𝑃

𝑗
𝑥 (𝑡)

+ ℎ
𝑇

(𝑡) 𝑃
𝑖
ℎ (𝑡) −

𝑚

∑

𝑖=1

(1 −
𝑖

𝑚
𝜇)𝑥

𝑇

× (𝑡 − 𝛼
𝑖
(𝑡)) 𝑄

𝑖
𝑥 (𝑡 − 𝛼

𝑖
(𝑡))

+

𝑚

∑

𝑖=1

𝑥
𝑇

(𝑡) 𝑄
𝑖
𝑥 (𝑡) + 𝛾

𝑇

(𝑡)𝑊𝛾 (𝑡)

− 𝛾
𝑇

(𝑡 − ℎ)𝑊𝛾 (𝑡 − ℎ)

+ 𝑓
𝑇

(𝑥 (𝑡)) (𝑅 − 𝑙𝐼) 𝑓 (𝑥 (𝑡))

+ ℎ (𝑑 − ℎ) 𝑦
𝑇

(𝑡) 𝑋
1
𝑦 (𝑡) − (1 − 𝜇) 𝑓

𝑇

× (𝑥 (𝑡 − 𝑑 (𝑡))) 𝑅𝑓 (𝑥 (𝑡 − 𝑑 (𝑡)))

+ (𝑑 − ℎ)𝑚
𝑇

(𝑡) 𝑋
1
𝑚(𝑡) + 𝜎𝑑𝑦

𝑇

(𝑡) 𝑋
2
𝑦 (𝑡)

+ 𝑑𝑚
𝑇

(𝑡) 𝑋
2
𝑚(𝑡)

−

𝑀

∑

𝑘=2

(∫

𝑡−(𝑘−1)ℎ

𝑡−𝑘ℎ

𝑦 (𝑠) 𝑑𝑠)

𝑇

𝑋
1

× (∫

𝑡−(𝑘−1)ℎ

𝑡−𝑘ℎ

𝑦 (𝑠) 𝑑𝑠)

−

𝑀

∑

𝑘=2

(∫

𝑡−(𝑘−1)ℎ

𝑡−𝑘ℎ

𝑚(𝑠) 𝑑𝜔 (𝑠))

𝑇

𝑋
1

× (∫

𝑡−(𝑘−1)ℎ

𝑡−𝑘ℎ

𝑚(𝑠) 𝑑𝜔 (𝑠))

−

𝑚

∑

𝑖=1

(∫

𝑡−𝛼
𝑖−1

(𝑡)

𝑡−𝛼
𝑖
(𝑡)

𝑦 (𝑠) 𝑑𝑠)

𝑇

𝑋
2

× (∫

𝑡−𝛼
𝑖−1

(𝑡)

𝑡−𝛼
𝑖
(𝑡)

𝑦 (𝑠) 𝑑𝑠)

−
1

𝑚
(∫

𝑡−𝑑(𝑡)

𝑡−𝑑

𝑦 (𝑠) 𝑑𝑠)

𝑇

𝑋
2

× (∫

𝑡−𝑑(𝑡)

𝑡−𝑑

𝑦 (𝑠) 𝑑𝑠)

−

𝑚

∑

𝑖=1

(∫

𝑡−𝛼
𝑖−1

(𝑡)

𝑡−𝛼
𝑖
(𝑡)

𝑚(𝑠) 𝑑𝜔 (𝑠))

𝑇

𝑋
2

× (∫

𝑡−𝛼
𝑖−1

(𝑡)

𝑡−𝛼
𝑖
(𝑡)

𝑚(𝑠) 𝑑𝜔 (𝑠))

−
1

𝑚
(∫

𝑡−𝑑(𝑡)

𝑡−𝑑

𝑚(𝑠) 𝑑𝜔 (𝑠))

𝑇

𝑋
2

×(∫

𝑡−𝑑(𝑡)

𝑡−𝑑

𝑚(𝑠) 𝑑𝜔 (𝑠))}

= 𝐸{𝜉
𝑇

(𝑡) (
Ξ

1
+ Ξ

2
+ Ξ

3
0

∗ Ξ
4

) 𝜉 (𝑡)} ,

(23)
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where

𝜉 (𝑡) = (𝜁
𝑇

1
(𝑡) 𝜁

𝑇

2
(𝑡) 𝑓

𝑇

(𝑥 (𝑡)) 𝑓
𝑇

(𝑥 (𝑡 − 𝑑 (𝑡))) 𝜁
𝑇

(𝑡))

𝑇

,

𝜁
1
(𝑡) = (𝑥

𝑇

(𝑡) 𝑥
𝑇

(𝑡 − 𝛼
1

(𝑡)) ⋅ ⋅ ⋅ 𝑥
𝑇

(𝑡 − 𝛼
𝑚

(𝑡)))
𝑇

,

𝜁
2
(𝑡) = (𝑥

𝑇

(𝑡 − 𝑑) 𝑥
𝑇

(𝑡 − (𝑀 − 1) ℎ) ⋅ ⋅ ⋅ 𝑥
𝑇

(𝑡 − ℎ))
𝑇

,

𝜁 (𝑡)

= (𝛿
1

⋅ ⋅ ⋅ 𝛿
𝑚

∫

𝑡−𝑑(𝑡)

𝑡−𝑑

𝑦
𝑇

(𝑠) 𝑑𝑠 + ∫

𝑡−𝑑(𝑡)

𝑡−𝑑

𝑚
𝑇

(𝑠) 𝑑𝜔 (𝑠) 𝜃
𝑀−1

𝜃
1
)

𝑇

,

𝛿
𝑘

= ∫

𝑡−𝛼
𝑘−1

(𝑡)

𝑡−𝛼
𝑘

(𝑡)
𝑦

𝑇

(𝑠) 𝑑𝑠 + ∫

𝑡−𝛼
𝑘−1

(𝑡)

𝑡−𝛼
𝑘

(𝑡)

𝑚
𝑇

(𝑠) 𝑑𝜔 (𝑠) ,

(𝑘 = 1, . . . , 𝑚) ,

𝜃
𝑘

= ∫

𝑡−𝑘ℎ

𝑡−(𝑘+1)ℎ
𝑦

𝑇

(𝑠) 𝑑𝑠 + ∫

𝑡−𝑘ℎ

𝑡−(𝑘+1)ℎ

𝑚
𝑇

(𝑠) 𝑑𝜔 (𝑠) ,

(𝑘 = 1, . . . , 𝑀 − 1) .

(24)

In addition, it follows from the Newton-Leibniz formula that

𝑥 (𝑡) − 𝑥 (𝑡 − 𝛼
1
(𝑡)) − ∫

𝑡

𝑡−𝛼
1
(𝑡)

𝑦 (𝑠) 𝑑𝑠

− ∫

𝑡

𝑡−𝛼
1
(𝑡)

𝑚(𝑠) 𝑑𝜔 (𝑠) = 0,

...

𝑥 (𝑡 − 𝛼
𝑚−1
(𝑡)) − 𝑥 (𝑡 − 𝛼

𝑚
(𝑡)) − ∫

𝑡−𝛼
𝑚−1

(𝑡)

𝑡−𝛼
𝑚

(𝑡)

𝑦 (𝑠) 𝑑𝑠

− ∫

𝑡−𝛼
𝑚−1

(𝑡)

𝑡−𝛼
𝑚

(𝑡)

𝑚(𝑠) 𝑑𝜔 (𝑠) = 0,

𝑥 (𝑡 − 𝛼
𝑚
(𝑡)) − 𝑥 (𝑡 − 𝑑) − ∫

𝑡−𝛼
𝑚

(𝑡)

𝑡−𝑑

𝑦 (𝑠) 𝑑𝑠

− ∫

𝑡−𝛼
𝑚

(𝑡)

𝑡−𝑑

𝑚(𝑠) 𝑑𝜔 (𝑠) = 0,

𝑥 (𝑡 − 𝑑) − 𝑥 (𝑡 − (𝑀 − 1) ℎ) + ∫

𝑡−(𝑀−1)ℎ

𝑡−𝑑

𝑦 (𝑠) 𝑑𝑠

+ ∫

𝑡−(𝑀−1)ℎ

𝑡−𝑑

𝑚(𝑠) 𝑑𝜔 (𝑠) = 0,

...

𝑥 (𝑡 − 2ℎ) − 𝑥 (𝑡 − ℎ) + ∫

𝑡−ℎ

𝑡−2ℎ

𝑦 (𝑠) 𝑑𝑠

+ ∫

𝑡−ℎ

𝑡−2ℎ

𝑚(𝑠) 𝑑𝜔 (𝑠) = 0

(25)

which are equivalent to

𝐵𝜉 (𝑡) = (𝐽
𝑚+1
(𝐼

𝑛
) 𝐹) 𝜉 (𝑡)

= (

𝐼
𝑛
−𝐼

𝑛
0 ⋅ ⋅ ⋅ 0 0 0 −𝐼

𝑛
0 ⋅ ⋅ ⋅ 0

0 𝐼
𝑛
−𝐼

𝑛
⋅ ⋅ ⋅ 0 0 0 0 −𝐼

𝑛
⋅ ⋅ ⋅ 0

...
... d d

...
...

...
...

... d
...

0 0 ⋅ ⋅ ⋅ 𝐼
𝑛
−𝐼

𝑛
0 0 0 0 ⋅ ⋅ ⋅ −𝐼

𝑛

)𝜉(𝑡)

= 0.

(26)

The full column rank matrix representation of the right
orthogonal complement of 𝐵 is denoted by 𝐵⊥, and Lemma 6
offers a computation method with 𝑍 = 𝐼

𝑛
, 𝐵⊥

= col
{−∑

𝐾

𝑗=1
𝐹

𝑗
, −∑

𝐾

𝑗=2
𝐹

𝑗
, . . . , −𝐹

𝐾
, 𝐼

𝑚
}. According to Lemma 7,

𝐸{L𝑉(𝑥(𝑡), 𝑡, 𝑖)} is negative as long as

𝜉
𝑇

(𝑡) (𝐵
⊥

𝐵 − (
Ξ

1
+ Ξ

2
+ Ξ

3
0

∗ Ξ
4

)) 𝜉 (𝑡) > 0 (27)

holds, which, in other words, can be expressed as (13). Hence,
the stochastic system (8) is asymptotical stable in the mean
square, and it completes the proof.

Remark 10. The delay-partitioning projection technique
employed in this paper constitutes the major improvement
from most existing results in the literature. Firstly, it should
be pointed out that such technique is very rational. The
reasons are twofold. (1)The properties of subinterval delays
may be sharply different in many practical situations. Thus,
it is not reasonable to combine them together. (2) When
𝑑(𝑡) reaches its upper bound, we do not necessarily have
every subinterval delay reaches its maximum at the same
time. That is to say, if we use an upper bound to bound
the delay 𝑑(𝑡) we have to use the sum of the maxima
of subinterval delays; however, 𝑑(𝑡) does not achieve this
maximum value usually. Therefore, by adopting the delay-
partitioning projection approach, less conservative condi-
tions can be proposed. Secondly, in [46], the central point
of variation of the delay was introduced to study the stability
for time-delay systems, which is called the DCP method. As
an extension of the method, we divide the delay into several
subintervals which permits employing one slightly different
function for different subintervals. This treatment makes us
utilize more information on the time delay and thus may
present better criteria with less conservatism. Thirdly, two
different partitions are made to deal with the time-varying
delay in this paper, which are different from the approach
in [43]. The parameters 𝑚 and 𝑀 refer to the number of
delay partitioning, and it indicates that the solution can be
searched in a wider space, which leads to the reduction of
conservatism. Finally, using the similar analysis method of
[7], it is easy to verify that the conservatism of the conditions
is a nonincreasing function of the number of delay partitions.
However, as we all know, the computational complexity will
be increased as the partitioning becomes thinner. Therefore,
the delay-partitioning projection approach can provide the
flexibility that allows us to trade off between complexity and
performance of the stability analysis.
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We now consider that the time-varying delay is nondiffer-
entiable or the bound of the delay is unknown, which means
that the restriction on the delay is removed. For this goal, we
modify the Lyapunov-Krasovskii functional as

�̂� (𝑥 (𝑡) , 𝑡, 𝑖) = 𝑥
𝑇

(𝑡) 𝑃
𝑖
𝑥 (𝑡) + ∫

𝑡

𝑡−ℎ

𝛾
𝑇

(𝑠)𝑊𝛾 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝑑

𝑓
𝑇

(𝑥 (𝑠)) 𝑅𝑓 (𝑥 (𝑠)) 𝑑𝑠

+ ℎ∫

−ℎ

−𝑑

∫

𝑡

𝑡+𝜃

𝑦
𝑇

(𝑠)𝑋
1
𝑦 (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

−ℎ

−𝑑

∫

𝑡

𝑡+𝜃

𝑚
𝑇

(𝑠)𝑋
1
𝑚(𝑠) 𝑑𝑠 𝑑𝜃

+ 𝜎∫

0

−𝑑

∫

𝑡

𝑡+𝜃

𝑦
𝑇

(𝑠)𝑋
2
𝑦 (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

0

−𝑑

∫

𝑡

𝑡+𝜃

𝑚
𝑇

(𝑠)𝑋
2
𝑚(𝑠) 𝑑𝑠 𝑑𝜃.

(28)

The proof can then be derived by following a similar line of
arguments as that inTheorem 9. Besides,𝑓(𝑥(𝑡−𝑑(𝑡))) in 𝜉(𝑡)
will turn out to be 𝑓(𝑥(𝑡 − 𝑑)).

Theorem 11. For given constant 𝑑 and two positive integers𝑚
and𝑀, the stochastic system (8) is mean square asymptotically
stable if there exist matrices 𝑃

𝑖
> 0, 𝑅 > 0, 𝑋

1
> 0, 𝑋

2
> 0,

and

𝑊 = 𝑊
𝑇

= (

𝑊
11
⋅ ⋅ ⋅ 𝑊

1𝑀

... d
...

𝑊
𝑇

1𝑀
⋅ ⋅ ⋅ 𝑊

𝑀𝑀

) > 0, (29)

and positive scalar 𝑙 > 0 such that the following LMI holds:

𝐵
⊥𝑇

(

Ξ̂
1
+ Ξ

2
+ Ξ

3
0

∗ Ξ̂
4

)𝐵
⊥

< 0, (30)

where

Ξ̂
1
=

(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

Ω̂
1
0 ⋅ ⋅ ⋅ 𝜀

−1

𝑃
𝑖
𝐵

𝑖
0 𝑊

1𝑀
⋅ ⋅ ⋅ 𝑊

12
Δ

1

∗ 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0

...
... d

...
...

... d
...

...
∗ ∗ ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0

∗ ∗ ⋅ ⋅ ⋅ ∗ Γ
𝑀+1

−𝑊
𝑇

(𝑀−1)𝑀
⋅ ⋅ ⋅ −𝑊

𝑇

1𝑀
0

∗ ∗ ⋅ ⋅ ⋅ ∗ ∗ Γ
𝑀

⋅ ⋅ ⋅ 𝑊
𝑇

2𝑀
−𝑊

𝑇

1(𝑀−1)
0

...
... d

...
...

... d
...

...
∗ ∗ ⋅ ⋅ ⋅ ∗ ∗ ∗ ⋅ ⋅ ⋅ Γ

2
0

∗ ∗ ⋅ ⋅ ⋅ ∗ ∗ ∗ ⋅ ⋅ ⋅ ∗ Δ
2

)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

,

Ω̂
1
= −2𝜀

−1

𝑃
𝑖
𝐴

𝑖
+

𝑁

∑

𝑗=1

𝑞
𝑖𝑗
𝑃

𝑗
+𝑊

11
− 𝑙�̃�

1
, Ξ̂

4
= diag {−𝑅, −𝑋

2
, . . . , −𝑋

2
, −𝑚

−1

𝑋
2
, −𝑋

1
, . . . , −𝑋

1
} ,

(31)

and 𝐵⊥, Δ
1
, Δ

2
, Γ

𝑘
, Ξ

2
, Ξ

3
, �̃�

1
, �̃�

2
are the same as in

Theorem 9.

Remark 12. Obviously, the delay rate is not specified in
Theorem 11, which includes the constant time delay as a
special case.Therefore,Theorem 11 is applicable to the special
case to derive some results.

Remark 13. In previous work as [47], the authors have
investigated the stability of neutral type neural networks with
discrete and distributed delays. The reason why we do not
take these neural networks into account is to make our idea
more lucid and to avoid complicated notations. However, it is
not difficult to extend our results to the neutral type neural
networks with mixed time-varying delays. The results will
appear in our following study.

4. A Numerical Example

One illustrative example is presented to show the effective-
ness of the theoretical results. For simplicity, the system (8)
with Markovian switching between two modes is taken into
consideration. In addition, the state vector of each node is of
dimension two. In other words, 𝑁 = 2, 𝑛 = 2. The mode
switching is governed by the rate matrix ( −0.4 0.4

0.3 −0.3
), and the

other parameters are assumed as

𝐴
1
= (
3.3 0

0 3.4
) , 𝐴

2
= (
4.4 0

0 4.5
) ,

𝐵
1
= (
−0.3 −0.6

−0.5 0.5
) , 𝐵

2
= (
−2.2 −0.5

−1.2 1.2
) ,
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𝐸 = (
−1 0

0 −0.1
) , 𝐶

1
= (
0.1 0.2

0.1 0.5
) ,

𝐶
2
= (
0.5 1

0.2 0.1
) , 𝐷

1
= (

0.1 −0.2

−0.5 0.4
) ,

𝐷
2
= (

0.2 −0.5

−0.1 0.2
) ,

𝜉 = 0.56, 𝜀 = 1, 𝑑 (𝑡) = 0.8 + 0.5 sin 𝑡𝜋
2

(𝑡 ∈ 𝑍) .

(32)

The sector-bounded nonlinear function 𝑓(𝑥(𝑡)) is given as
follows:

𝑓 (𝑥 (𝑡))

=

1

2

(

0.3 (𝑥
1

(𝑡) + 𝑥
2

(𝑡))

1 + 𝑥
2

1
(𝑡) + 𝑥

2

2
(𝑡)

+ 0.1𝑥
1

(𝑡) + 0.1𝑥
2

(𝑡) 0.3𝑥
1

(𝑡) + 0.3𝑥
2

(𝑡))

𝑇

,

(33)

which can be bounded by

𝐾
1
= (
0.2 0.1

0 0.2
) , 𝐾

2
= (
−0.1 0

−0.1 0.1
) . (34)

We choose the parameters 𝑚 = 2 and 𝑀 = 2. It is easy to
know 𝑑 = 1.3 and 𝜇 = 0.5.

By using Matlab LMI control toolbox, we can find the
feasible solution of the LMI (13) as follows:

𝑃
1
= (

1.8392 −0.8471

−0.8471 4.5444
) ,

𝑃
2
= (

2.0534 −0.5930

−0.5930 3.9335
) ,

𝑄
1
= (

0.4422 −0.3769

−0.3769 1.8266
) ,

𝑄
2
= (

7.6178 −2.8997

−2.8997 11.9753
) ,

𝑋
1
= (

0.0594 −0.1562

−0.1562 0.4677
) ,

𝑋
2
= (

0.0663 −0.1841

−0.1841 0.5600
) ,

𝑅 = (
0.2487 −0.0084

−0.0084 0.5947
) ,

𝑊
11
= (

1.1837 −0.4007

−0.4007 3.6472
) ,

𝑊
12
= (

0.0111 −0.1045

−0.1045 0.4755
) ,

𝑊
22
= (

0.7856 −0.4878

−0.4878 2.4023
) .

(35)

The simulation result is shown in Figure 1, which implies that
all the expected system performance requirements are well
achieved.

0 2 4 6 8
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−0.2

−0.1

0

0.1

0.2

0.3

Time, t

St
at
e,
x
(
t
)

x

1

x

2

Figure 1: State development of system (8) with parameters (32).

Remark 14. It is worth pointing out that if Prob{𝜉(𝑡) = 1} = 1,
then the function 𝑓(𝑥(𝑡)) in (8) will be the neuron activation
function. According to Assumption 1, 𝑓(𝑥(𝑡)) satisfies the
sector-bounded condition which is more general than the
Lipschitz condition. Therefore, the stability criteria in [42]
can not apply to our example.

Remark 15. In our example, many factors such as noise per-
turbations,Markovian jump parameters, RONs, and different
time scales are considered and the delay-partitioning projec-
tion approach is employed. Therefore, the results reported
in [9, 23, 38–41] do not hold in our example. Moreover, our
results are expressed by LMIs, which can be easily checked by
using the powerful Matlab LMI Toolbox. Thus, our stability
criteria are more computationally efficient than those given
in [13, 40, 41].

5. Conclusions

In this paper, we have dealt with the mean square asymptotic
stability problem for stochastic Markovian jump neural
networks with different time scales and RONs. By using
new Lyapunov-Krasovskii functionals and delay-partitioning
projection approach, the LMI-based criteria have been devel-
oped to guarantee stability of such systems. It is also shown
that the delay-partitioning projection approach can achieve
the aim of reducing conservativeness. An numerical example
is exploited to illustrate the effectiveness of the theoretical
results.
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