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This paper is concerned with the characterization as frames of some sequences in 𝑈-invariant spaces of a separable Hilbert space
H where 𝑈 denotes an unitary operator defined onH; besides, the dual frames having the same form are also found. This general
setting includes, in particular, shift-invariant ormodulation-invariant subspaces in 𝐿2(R), where these frames are intimately related
to the generalized sampling problem. We also deal with some related perturbation problems. In doing so, we need the unitary
operator 𝑈 to belong to a continuous group of unitary operators.

1. Introduction

This paper is concernedwith the study of some special frames
in 𝑈-invariant spaces. Given an unitary operator 𝑈 on a
separable Hilbert space H, we consider closed subspaces
having the form A

𝑎
:= span{𝑈𝑛

𝑎 : 𝑛 ∈ Z}, where 𝑎 denotes
some fixed element inH. In case that the sequence {𝑈𝑛

𝑎}
𝑛∈Z

is a Riesz basis forA
𝑎
, we have

A
𝑎
= {∑

𝑛∈Z

𝛼
𝑛
𝑈
𝑛
𝑎 : {𝛼

𝑛
} ∈ ℓ

2
(Z)} . (1)

Recall that a Riesz basis in a separable Hilbert space is
the image of an orthonormal basis by means of a bounded
invertible operator. Any Riesz basis {𝑥

𝑛
}
𝑛∈Z has a unique

biorthogonal (dual) Riesz basis {𝑦
𝑛
}
𝑛∈Z, that is, ⟨𝑥𝑛, 𝑦𝑚⟩H =

𝛿
𝑛,𝑚

, such that the expansions

𝑥 = ∑

𝑛∈Z

⟨𝑥, 𝑦
𝑛
⟩
H
𝑥
𝑛
= ∑

𝑛∈Z

⟨𝑥, 𝑥
𝑛
⟩
H
𝑦
𝑛 (2)

hold for every 𝑥 ∈ H. We state the definition by considering
the integers setZ as the index set since throughout the paper
most of sequences are indexed in Z. A Riesz sequence in H

is a Riesz basis for its closed span. A necessary and sufficient
condition in order for the sequence {𝑈𝑛

𝑎}
𝑛∈Z to be a Riesz

sequence inH is given inTheorem 3 infra.
Given 𝑠 elements 𝑏

𝑗
, 𝑗 = 1, 2, . . . , 𝑠, in A

𝑎
, a challenging

problem is to characterize the sequence {𝑈𝑟𝑘
𝑏
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 as

a frame (Riesz basis) in A
𝑎
, where 𝑟 ≥ 1 denotes a positive

integer. Besides, another interesting problem is to look for
those dual frames having the same form {𝑈

𝑟𝑘
𝑐
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 for

some 𝑐
𝑗
∈ A

𝑎
, 𝑗 = 1, 2, . . . , 𝑠, so that, for any 𝑥 ∈ A

𝑎
the

expansion

𝑥 =

𝑠

∑

𝑗=1

∑

𝑘∈Z

⟨𝑥,𝑈
𝑟𝑘
𝑏
𝑗
⟩𝑈

𝑟𝑘
𝑐
𝑗

in H (3)

holds.
At this point, we give an explanation about the expression

sampling-related frames appearing in the title. Namely, 𝑈-
invariant subspaces inH are natural generalizations of shift-
invariant or modulation-invariant subspaces of 𝐿2(R); there,
the unitary involved operators are, respectively, the transla-
tion operator 𝑇 : 𝑓(𝑡) → 𝑓(𝑡− 1) or the modulation operator
𝑀 : 𝑓(𝑡) → e2𝜋i𝑡𝑓(𝑡). In the shift-invariant subspace
𝑉
2

𝜑
= {∑

𝑛
𝛼
𝑛
𝜑(𝑡 − 𝑛) : {𝛼

𝑛
} ∈ ℓ

2
(Z)} ⊂ 𝐿

2
(R) generated
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by 𝜑 ∈ 𝐿
2
(R), for any 𝑓 ∈ 𝑉

2

𝜑
, the inner products {⟨𝑥,

𝑈
𝑟𝑘
𝑏
𝑗
⟩}
𝑘∈Z;𝑗=1,2,...,𝑠 are

∫

∞

−∞

𝑓 (𝑡) 𝑏
𝑗
(𝑡 − 𝑟𝑘)𝑑𝑡 = (𝑓 ∗ ℎ

𝑗
) (𝑟𝑘) ,

𝑘 ∈ Z, 𝑗 = 1, 2, . . . , 𝑠,

(4)

where ℎ
𝑗
(𝑡) := 𝑏

𝑗
(−𝑡) for each 𝑗 = 1, 2, . . . , 𝑠. Thus, the

above inner products are nothing but samples of some filtered
versions 𝑓 ∗ ℎ

𝑗
of the function 𝑓 itself; this is precisely the

generalized sampling problem in the shift-invariant space
𝑉
2

𝜑
. Mathematically, it consists of the stable recovery of any

𝑓 ∈ 𝑉
2

𝜑
from the above sequence of samples, that is, to obtain

sampling formulas in 𝑉
2

𝜑
having the following form:

𝑓 (𝑡) =

𝑠

∑

𝑗=1

∑

𝑘∈Z

(𝑓 ∗ ℎ
𝑗
) (𝑟𝑘) 𝑆

𝑗
(𝑡 − 𝑟𝑘) , 𝑡 ∈ R, (5)

such that the sequence of reconstruction functions {𝑆
𝑗
(⋅ −

𝑟𝑘)}
𝑘∈Z;𝑗=1,2,...,𝑠 is a frame for the shift-invariant space 𝑉2

𝜑
. As

a consequence, expansions (3) and (5) have the same nature.
Recall that a sequence {𝑥

𝑛
}
𝑛∈Z is a frame for a separable

Hilbert space H if there exist constants 𝐴, 𝐵 > 0 (frame
bounds), such that

𝐴‖𝑥‖
2
≤ ∑

𝑛∈Z

⟨𝑥, 𝑥𝑛⟩


2

≤ 𝐵‖𝑥‖
2

∀𝑥 ∈ H. (6)

A sequence {𝑥
𝑛
}
𝑛∈Z in H satisfying only the right hand

inequality above is said to be a Bessel sequence for H. Given
a frame {𝑥

𝑛
}
𝑛∈Z for H, the representation property of any

vector 𝑥 ∈ H as a series 𝑥 = ∑
𝑛∈Z 𝑐

𝑛
𝑥
𝑛
is retained, but,

unlike the case of Riesz bases (exact frames), the uniqueness
of this representation (for overcomplete frames) is sacrificed.
Suitable frame coefficients 𝑐

𝑛
which depend continuously and

linearly on 𝑥 are obtained by using the dual frames {𝑦
𝑛
}
𝑛∈Z

of {𝑥
𝑛
}
𝑛∈Z; that is, {𝑦𝑛}𝑛∈Z is another frame for H such that

𝑥 = ∑
𝑛∈Z⟨𝑥, 𝑦𝑛⟩𝑥𝑛 = ∑

𝑛∈Z⟨𝑥, 𝑥𝑛⟩𝑦𝑛 for each 𝑥 ∈ H. For
more details on the frame theory see [1].

Sampling in shift-invariant spaces of 𝐿
2
(R) has been

profusely treated in the mathematical literature (see, for
instance, [2–13]).

The existence of expansions like (3) in 𝑈-invariant sub-
spaces was treated for the first time in [14]; see also [15, 16].
Following similar techniques to those in [14], we give, in
Section 2, a complete characterization in A

𝑎
of sequences

having the form {𝑈
𝑟𝑘
𝑏
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 where 𝑏𝑗 ∈ A

𝑎
for each

𝑗 = 1, 2, . . . , 𝑠. In other words, we carry out the study of
the completeness, Bessel, frame, or Riesz basis properties of
the sequence {𝑈

𝑟𝑘
𝑏
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠. Whenever it is a frame for

A
𝑎
, we find a family of dual frames having the same form

{𝑈
𝑟𝑘
𝑐
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 for some 𝑐

𝑗
∈ A

𝑎
, 𝑗 = 1, 2, . . . , 𝑠. In

Section 4, we also discuss the case where some 𝑏
𝑗

∉ A
𝑎
;

although the sequence {𝑈
𝑟𝑘
𝑏
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 is not contained

in A
𝑎
, something can be said in the light of the theory of

pseudoframes (see [17, 18]).

All the obtained results in Section 2 involve the discrete
group of unitary operators {𝑈

𝑛
}
𝑛∈Z which is completely

determined by 𝑈. If we want to deal with something similar
to the time-jitter error version of (5), that is, the recovery
of any 𝑓 ∈ 𝑉

2

𝜑
from a perturbed sequence of samples

{(𝑓 ∗ ℎ
𝑗
)(𝑟𝑘 + 𝜖

𝑘𝑗
)}
𝑘∈Z;𝑗=1,2,...,𝑠 with errors 𝜖

𝑘𝑗
∈ R, then

the availability of a continuous group of unitary operators
{𝑈

𝑡
}
𝑡∈R containing, in particular, the operator 𝑈 (say for

instance 𝑈 = 𝑈
1) becomes essential. In Section 3, after

a brief on groups of unitary operators, we deal with two
types of perturbation problems. The first one concerns the
study of sequences as {𝑈𝑟𝑘+𝜖𝑘𝑗𝑏

𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 in H, for small

enough error sequence 𝜖 := {𝜖
𝑘𝑗
}ℓ
2-norm, the sequence

is a Riesz sequence in H. The second one goes into the
recovery of any 𝑥 ∈ A

𝑎
from the perturbed sequence of inner

products {⟨𝑥, 𝑈𝑟𝑘+𝜖𝑘𝑗𝑏
𝑗
⟩
H
}
𝑘∈Z;𝑗=1,2,...,𝑠, for small enough errors

𝜖
𝑚𝑗
, there exists a frame expansion for 𝑥 ∈ A

𝑎
having the

inner products {⟨𝑥, 𝑈𝑟𝑘+𝜖𝑘𝑗𝑏
𝑗
⟩
H
}
𝑘∈Z;𝑗=1,2,...,𝑠 as coefficients.

2. 𝑈-Invariant Subspaces

In a Hilbert space H, the 𝑈-invariant subspaces are inti-
mately related to stationary sequences.

2.1. Some Preliminaries on Stationary Sequences. A sequence
s = {𝑠

𝑘
}
𝑘∈Z in a separable Hilbert space H is said to be

stationary if

⟨𝑠
𝑚+𝑘

, 𝑠
𝑛+𝑘

⟩
H

= ⟨𝑠
𝑚
, 𝑠
𝑛
⟩
H

∀𝑚, 𝑛, 𝑘 ∈ Z. (7)

The function 𝑅s(𝑘) := ⟨𝑠
𝑘
, 𝑠
0
⟩H, for every 𝑘 ∈ Z, is called

the autocovariance function of the sequence s. Moreover, two
stationary sequences s = {𝑠

𝑘
}
𝑘∈Z and w = {𝑤

𝑘
}
𝑘∈Z are said to

be stationary correlated if

⟨𝑠
𝑚+𝑘

, 𝑤
𝑛+𝑘

⟩
H

= ⟨𝑠
𝑚
, 𝑤

𝑛
⟩
H

∀𝑚, 𝑛, 𝑘 ∈ Z, (8)

and 𝑅s,w(𝑘) := ⟨𝑠
𝑘
, 𝑤

0
⟩H, for every 𝑘 ∈ Z defines the

corresponding cross-covariance function.The following result
is a well-known characterization of stationary sequences (see
[19]).

Lemma 1. To every stationary sequence s = {𝑠
𝑛
}
𝑛∈Z in a

Hilbert space H there exists a unique unitary operator 𝑈 :

H → H and 𝑠 ∈ H such that 𝑠
𝑛
= 𝑈

𝑛
𝑠 for all 𝑛 ∈ Z.

Conversely, every pair (𝑈, 𝑠) of a unitary operator 𝑈 and an
𝑠 ∈ H defines by 𝑠

𝑛
= 𝑈

𝑛
𝑠, 𝑛 ∈ Z, a stationary sequence

s = {𝑠
𝑛
}
𝑛∈Z inH.

Moreover, two stationary sequence s and w are stationary
correlated if and only if they are generated by the same unitary
operator𝑈; that is, 𝑠

𝑛
= 𝑈

𝑛
𝑠 and𝑤

𝑛
= 𝑈

𝑛
𝑤 for some 𝑠, 𝑤 ∈ H.

The autocovariance 𝑅s and the cross-covariance 𝑅s,w
functions admit a spectral representation which is related
to the integral representation of the unitary operator 𝑈 (see
[19]).
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Theorem 2. For every stationary sequence s = {𝑠
𝑛
}
𝑛∈Z in

a Hilbert space H, the autocovariance function 𝑅s admits a
spectral representation

𝑅s (𝑘) = ⟨𝑠
𝑘
, 𝑠
0
⟩
H

=
1

2𝜋
∫

𝜋

−𝜋

ei𝑘𝜃𝑑𝜇s (𝜃) , 𝑘 ∈ Z, (9)

in the form of an integral with respect to a (positive) spectral
measure 𝜇s.

For every two stationary correlated sequences s = {𝑠
𝑛
}
𝑛∈Z,

w = {𝑤
𝑛
}
𝑛∈Z in a Hilbert space H, the cross-covariance

function admits a spectral representation

𝑅s,w (𝑘) = ⟨𝑠
𝑘
, 𝑤

0
⟩
H

=
1

2𝜋
∫

𝜋

−𝜋

ei𝑘𝜃𝑑𝜇s,w (𝜃) , 𝑘 ∈ Z, (10)

in the form of an integral with respect to a (complex) spectral
measure 𝜇s,w.

2.1.1. The 𝑈-Invariant Subspace A
𝑎
. For a fixed 𝑎 ∈ H, we

consider the subspace of H given by A
𝑎
:= span{𝑈𝑛

𝑎, 𝑛 ∈

Z}. In case that the sequence {𝑈𝑛
𝑎}
𝑛∈Z is a Riesz sequence in

H, we have

A
𝑎
= {∑

𝑛∈Z

𝛼
𝑛
𝑈
𝑛
𝑎 : {𝛼

𝑛
} ∈ ℓ

2
(Z)} . (11)

A necessary and sufficient condition in order for the
sequence a = {𝑈

𝑛
𝑎}
𝑛∈Z to be a Riesz sequence in H can be

stated in terms of the Lebesgue decomposition of the spectral
measure 𝜇a into an absolute and a singular part as 𝑑𝜇a(𝜃) =
𝜙a(e

i𝜃
)𝑑𝜃 + 𝑑𝜇

𝑠

a(𝜃).

Theorem3. Let a := {𝑈
𝑛
𝑎}
𝑛∈Z be a sequence obtained from an

unitary operator in a separable Hilbert space H with spectral
measure 𝑑𝜇a(𝜃) = 𝜙a(e

i𝜃
)𝑑𝜃+𝑑𝜇

𝑠

a(𝜃), and letA𝑎
be the closed

subspace spanned by a. Then, a is a Riesz basis for A
𝑎
if and

only if 𝜇𝑠a ≡ 0 and

0 < 𝐴a := ess inf
𝜁∈T

𝜙a (𝜁) ≤ 𝐵a := ess sup
𝜁∈T

𝜙a (𝜁) < ∞, (12)

where T := {ei𝜃 : 𝜃 ∈ [−𝜋, 𝜋)}.

Proof. For a fixed ℓ
2-sequence 𝑐 := {𝑐

𝑛
}
𝑛∈Z, we have



∑

𝑘∈Z

𝑐
𝑘
𝑈
𝑘
𝑎



2

= ∑

𝑚∈Z

∑

𝑛∈Z

𝑐
𝑚
𝑐
𝑛
⟨𝑈

𝑚
𝑎, 𝑈

𝑛
𝑎⟩

= ∑

𝑚∈Z

∑

𝑛∈Z

𝑐
𝑚
𝑐
𝑛

1

2𝜋
∫

𝜋

−𝜋

ei(𝑚−𝑛)𝜃𝑑𝜇a (𝜃)

=
1

2𝜋
∫

𝜋

−𝜋

∑

𝑚∈Z

∑

𝑛∈Z

𝑐
𝑚
𝑐
𝑛
ei(𝑚−𝑛)𝜃𝑑𝜇a (𝜃)

=
1

2𝜋
∫

𝜋

−𝜋



∑

𝑘∈Z

𝑐
𝑘
ei𝑘𝜃



2

𝑑𝜇a (𝜃) ,

(13)

if 𝜇a is not absolutely continuous with respect to Lebesgue
measure 𝜆, Lemma 4 below implies that there exists

a bounded sequence {𝑐
𝑁
}
∞

𝑁=1
⊂ ℓ

2
(Z) such that

‖∑
𝑘∈Z 𝑐

𝑁

𝑘
𝑈
𝑘
𝑎‖

2

tends to infinity with 𝑁, so a cannot
be a Bessel sequence, therefore, not a Riesz basis. Assume
now that 𝜇𝑠a ≡ 0 and a is a Riesz basis, this implies that there
exists 𝐵 < ∞ such that



∑

𝑘∈Z

𝑐
𝑘
𝑈
𝑘
𝑎



2

≤ 𝐵‖𝑐‖
2

ℓ
2 (14)

for all 𝑐 = {𝑐
𝑘
}
𝑘∈Z ∈ ℓ

2
(Z). Let Ω

𝑛
:= {𝜁 ∈ T : 𝜙a(𝜁) ≥ 𝑛},

assume that 𝐵a = ∞, this implies that 𝜆(Ω
𝑛
) > 0 for all 𝑛.

Now, (13), (14), and Parseval’s theorem imply that

1

2𝜋
∫

𝜋

−𝜋



∑

𝑘∈Z

𝑐
𝑘
ei𝑘𝜃



2

𝜙a (e
i𝜃
) 𝑑𝜃 ≤

𝐵

2𝜋
∫

𝜋

−𝜋



∑

𝑘∈Z

𝑐
𝑘
ei𝑘𝜃



2

𝑑𝜃 (15)

for all 𝑐 = {𝑐
𝑘
}
𝑘∈Z ∈ ℓ

2
(Z). Introducing the Fourier expansion

of the characteristic function 𝜒
Ω𝑛

∈ 𝐿
2
(−𝜋, 𝜋) in (15), we

obtain 𝑛 ≤ 𝐵 for all 𝑛, which contradicts 𝐵 < ∞; thus, the
assumption 𝐵a = ∞ is false. In a similar way, it can be proved
that 0 < 𝐴a.

For the sufficient condition, assume now that 𝜇𝑠a ≡ 0;
then, (13) implies that



∑

𝑘∈Z

𝑐
𝑘
𝑈
𝑘
𝑎



2

=
1

2𝜋
∫

𝜋

−𝜋



∑

𝑘∈Z

𝑐
𝑘
ei𝑘𝜃



2

𝜙a (e
i𝜃
) 𝑑𝜃, (16)

if, in addition, condition (12) is satisfied, we get

𝐴a
2𝜋

∫

𝜋

−𝜋



∑

𝑘∈Z

𝑐
𝑘
ei𝑘𝜃



2

𝑑𝜃 ≤



∑

𝑘∈Z

𝑐
𝑘
𝑈
𝑘
𝑎



2

≤
𝐵a
2𝜋

∫

𝜋

−𝜋



∑

𝑘∈Z

𝑐
𝑘
ei𝑘𝜃



2

𝑑𝜃,

(17)

which implies that

𝐴a‖𝑐‖
2

ℓ
2 ≤



∑

𝑘∈Z

𝑐
𝑘
𝑈
𝑘
𝑎



2

≤ 𝐵a‖𝑐‖
2

ℓ
2 for each 𝑐 ∈ ℓ

2
(Z) .

(18)

Therefore, the sequence a is a Riesz basis forA
𝑎
.

Lemma 4. Let 𝜇 be a finite positive measure on (−𝜋, 𝜋) which
is not absolutely continuous with respect to Lebesgue measure
𝜆.Then, there exists a bounded sequence {𝑐𝑁}∞

𝑁=1
⊂ ℓ

2
(Z) such

that

lim
𝑁→∞



∑

𝑘

𝑐
𝑁

𝑘
ei𝑘𝜃



2

𝐿
2
𝜇
(−𝜋,𝜋)

= ∞. (19)

Proof. If the measure 𝜇 is not absolutely continuous with
respect to Lebesgue measure, then 𝜇(𝑀) > 0 for a Lebesgue
measurable set𝑀 ⊂ (−𝜋, 𝜋) of Lebesgue measure zero. Thus,
there exists a Borel set 𝐵 of Lebesgue measure zero such
that 𝑀 ⊂ 𝐵 ⊂ (−𝜋, 𝜋). In fact, the set 𝐵 is an intersection
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of a countable collection of open sets (see [20, page 63]).
Therefore, 𝜇(𝐵) > 0 and 𝜆(𝐵) = 0. On the other hand, every
finite Borel measure on (−𝜋, 𝜋) is inner regular (see [20, page
340]); that is,

𝜇 (𝐵) = sup {𝜇 (𝐶) : 𝐶 ⊂ 𝐵, 𝐶 compact} , (20)

then there exists a compact set 𝐶 ⊂ (−𝜋, 𝜋) such that

𝜇 (𝐶) > 0, 𝜆 (𝐶) = 0. (21)

For any 𝜀 > 0, there exists a sequence of disjoint open
intervals 𝐼

𝑗
⊂ (−𝜋, 𝜋) such that

𝐶 ⊂

∞

⋃

𝑗=1

𝐼
𝑗
,

∞

∑

𝑗=1

𝜆 (𝐼
𝑗
) ≤ 𝜆 (𝐶) + 𝜀 = 𝜀, (22)

(see [20, pages 58 and 42]). Since 𝐶 is compact, we may take
the sequence to be finite. Hence, for every𝑁 ∈ N, there exist
open disjoint intervals 𝐼𝑁

1
, 𝐼
𝑁

2
, . . . , 𝐼

𝑁

𝑖𝑁
in (−𝜋, 𝜋) such that

𝐶 ⊂

𝑖𝑁

⋃

𝑖=1

𝐼
𝑁

𝑖
,

𝑖𝑁

∑

𝑖=1

𝜆 (𝐼
𝑁

𝑖
) ≤

1

3𝑁
. (23)

Besides, ∑𝑖𝑁

𝑖=1
𝜇(𝐼

𝑁

𝑖
) ≥ 𝜇(𝐶).

Consider the function 𝑔
𝑁

: (−𝜋, 𝜋) → R, where 𝑔
𝑁

=

2
𝑁/2

𝜒
⋃
𝑖𝑁

𝑖=1
𝐼
𝑁

𝑖

, that satisfies

𝑔𝑁


2

2
= 2

𝑁

𝑖𝑁

∑

𝑖=1

𝜆 (𝐼
𝑁

𝑖
) ≤

2
𝑁

3𝑁
< 1. (24)

We modify and extend each 𝑔
𝑁
to obtain a 2𝜋-periodic

function 𝑓
𝑁

: R → R such that 𝑓
𝑁
and its derivative are

continuous on R, ‖𝑓
𝑁
‖
2

2
≤ 1 and 𝑓

𝑁
(𝜃) = 𝑔

𝑁
(𝜃) for every

𝜃 ∈ ⋃
𝑖𝑁

𝑖=1
𝐼
𝑁

𝑖
. Let ∑

𝑘
𝑐
𝑁

𝑘
ei𝑘𝜃 be the Fourier series of 𝑓

𝑁
. First,

by using Parseval’s identity, we have


𝑐
𝑁

𝑘



2

ℓ
2
=

1

2𝜋

𝑓𝑁


2

2
≤

1

2𝜋
for every 𝑁 ∈ N, (25)

so that {𝑐𝑁}∞
𝑁=1

is a bounded sequence in ℓ
2
(Z). Besides,

the regularity of each 𝑓
𝑁

ensures that each Fourier series
converges uniformly to 𝑓

𝑁
. Therefore, each series ∑

𝑘
𝑐
𝑁

𝑘
ei𝑘𝜃

converges to 𝑓
𝑁
in 𝐿

2

𝜇
(−𝜋, 𝜋) and consequently,



∑

𝑘

𝑐
𝑁

𝑘
ei𝑘𝜃



2

𝐿
2
𝜇
(−𝜋,𝜋)

= ∫

𝜋

−𝜋

𝑓𝑁


2

𝑑𝜇 ≥ ∫

𝜋

−𝜋

𝑔𝑁


2

𝑑𝜇

= 2
𝑁

𝑖𝑁

∑

𝑖=1

𝜇 (𝐼
𝑁

𝑖
) ≥ 2

𝑁
𝜇 (𝐶) ,

(26)

from which we obtain the desired result.

The proof of Theorem 3 is similar to that of Theorem
6 in [16], except we do not exclude the case in which the
singular measure is atomless. Recently, we have been aware
that Theorem 3 was exposed in [21].

2.2. Studying the Sequence {𝑈𝑟𝑘
𝑏
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 inA

𝑎
. For 𝑏

𝑗
∈

A
𝑎
, 𝑗 = 1, 2, . . . , 𝑠, consider the sequence {𝑈𝑟𝑘

𝑏
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠.

For every 𝑗 = 1, 2, . . . , 𝑠, the spectral measure 𝜇a,b𝑗 in the
integral representation of the cross-covariance function of the
sequences a := {𝑈

𝑘
𝑎}
𝑘∈Z and b

𝑗
:= {𝑈

𝑘
𝑏
𝑗
}
𝑘∈Z has no singular

part. Indeed, according to Theorem 3, the spectral measure
associated with the autocovariance function of the sequence
{𝑈

𝑘
𝑎}
𝑘∈Z has no singular part; then by using the Cauchy-

Schwarz type inequality in [22, page 125] we get the result. In
the sequel, we will use the abridged notation 𝑏

𝑘,𝑗
:= 𝑈

𝑟𝑘
𝑏
𝑗
; our

goal in this section is to study the sequence {𝑏
𝑘,𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 in

A
𝑎
in terms of an 𝑠 × 𝑟 matrix Ψa,b(e

i𝜃
) which is introduced

below. For the sake of completeness, we include some needed
calculations which appear in [14].

First of all, we have

⟨𝑈
𝑘
𝑎, 𝑏

𝑛,𝑗
⟩ =

1

2𝜋
∫

𝜋

−𝜋

ei(𝑘−𝑟𝑛)𝜃𝜙a,b𝑗 (e
i𝜃
) 𝑑𝜃, (27)

where 𝜙a,b𝑗 stands for the cross spectral density of the station-
ary correlated sequences a := {𝑈

𝑘
𝑎}
𝑘∈Z and b

𝑗
:= {𝑈

𝑘
𝑏
𝑗
}
𝑘∈Z.

Define

Φa,b (e
i𝜃
) := (𝜙a,b1 (e

i𝜃
) , 𝜙a,b2 (e

i𝜃
) , . . . , 𝜙a,b𝑠 (e

i𝜃
))

⊤

. (28)

Inwhat follows, wewill use the left-shift operator 𝑆defined
as

𝑆: 𝐿
2
(T) → 𝐿

2
(T)

∑

𝑘∈Z

𝑎
𝑘
ei𝑘𝜃 → ∑

𝑘∈Z

𝑎
𝑘+1

ei𝑘𝜃,
(29)

or equivalently, by (𝑆𝑓)(ei𝜃) = 𝑓(ei𝜃)e−i𝜃, where T := {ei𝜃 :

𝜃 ∈ [−𝜋, 𝜋)} denotes the unidimensional torus. Also, we will
consider the decimation operator 𝐷

𝑟
, 𝑟 is a positive integer,

defined as

𝐷
𝑟
: 𝐿

2
(T) → 𝐿

2
(T)

∑

𝑘∈Z

𝑎
𝑘
ei𝑘𝜃 → ∑

𝑘∈Z

𝑎
𝑟𝑘
ei𝑘𝜃,

(30)

which can equivalently be written as

(𝐷
𝑟
𝑓) (ei𝜃) = 1

𝑟

𝑟−1

∑

𝑘=0

𝑓 (ei((𝜃+2𝑘𝜋)/𝑟)) . (31)

For each 𝑙 = 0, 1, . . . , 𝑟−1, set the 𝑠×1matrix of functions
on the torus T as follows:

Ψ
𝑙

a,b (e
i𝜃
) := (𝐷

𝑟
𝑆
−𝑙
Φa,b) (e

i𝜃
) , (32)

and define the 𝑠 × 𝑟 matrix of functions on the torus T as
follows:

Ψa,b (e
i𝜃
) := (Ψ

0

a,b (e
i𝜃
)Ψ

1

a,b (e
i𝜃
) ⋅ ⋅ ⋅Ψ

𝑟−1

a,b (ei𝜃)) . (33)

It is worth to mention that the matrix Ψa,b was explicitly
computed in [14] for the translation and modulation cases in
𝐿
2
(R).
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Next, for any 𝑥 ∈ A
𝑎
, we obtain an expression for the

inner products 𝛼
𝑛,𝑗

:= ⟨𝑥, 𝑈
𝑟𝑛
𝑏
𝑗
⟩, 𝑛 ∈ Z and 𝑗 = 1, 2, . . . , 𝑠.

Indeed, writing 𝑥 = ∑
𝑘∈Z 𝑥

𝑘
𝑈
𝑘
𝑎 where {𝑥

𝑘
}
𝑘∈Z ∈ ℓ

2
(Z), we

have

𝛼
𝑛,𝑗

= ⟨𝑥,𝑈
𝑟𝑛
𝑏
𝑗
⟩ = ∑

𝑘∈Z

𝑥
𝑘
⟨𝑈

𝑘
𝑎, 𝑈

𝑟𝑛
𝑏
𝑗
⟩

= ∑

𝑘∈Z

𝑥
𝑘

1

2𝜋
∫

𝜋

−𝜋

ei(𝑘−𝑟𝑛)𝜃𝜙a,b𝑗 (e
i𝜃
) 𝑑𝜃

=
1

2𝜋
∫

𝜋

−𝜋

∑

𝑘∈Z

𝑥
𝑘
ei𝑘𝜃𝜙a,b𝑗 (e

i𝜃
) e−i𝑟𝑛𝜃𝑑𝜃,

(34)

that is,

𝛼
𝑛
:= (𝛼

𝑛,1
, 𝛼

𝑛,2
, . . . , 𝛼

𝑛,𝑠
)
⊤

=
1

2𝜋
∫

𝜋

−𝜋

Φa,b (e
i𝜃
)𝑋 (ei𝜃) e−i𝑟𝑛𝜃𝑑𝜃,

(35)

where𝑋(ei𝜃) := ∑
𝑘∈Z 𝑥

𝑘
ei𝑘𝜃.

Now, for 𝑙 = 0, 1, . . . , 𝑟 − 1, define the sequence 𝑥(𝑙) :=

{𝑥
(𝑙)

𝑘
:= 𝑥

𝑘𝑟+𝑙
}
𝑘∈Z. Thus, we can write

𝑋(ei𝜃) =
𝑟−1

∑

𝑙=0

∑

𝑘∈Z

𝑥
𝑘𝑟+𝑙

ei(𝑘𝑟+𝑙)𝜃 =
𝑟−1

∑

𝑙=0

𝑋
(𝑙)
(ei𝑟𝜃) ei𝑙𝜃, (36)

where𝑋(𝑙)
(ei𝜃) = ∑

𝑘∈Z 𝑥
(𝑙)

𝑘
ei𝑘𝜃.

Using (36) in (35), we obtain

𝛼
𝑛
=

𝑟−1

∑

𝑙=0

1

2𝜋
∫

𝜋

−𝜋

Φa,b (e
i𝜃
)𝑋

(𝑙)
(ei𝑟𝜃) ei𝑙𝜃e−i𝑟𝑛𝜃𝑑𝜃. (37)

After some easy calculations, we get

𝛼
𝑛
=

𝑟−1

∑

𝑙=0

1

2𝜋
∫

𝜋

−𝜋

𝑆
−𝑙
Φa,b (e

i𝜃
)𝑋

(𝑙)
(ei𝑟𝜃) e−i𝑟𝑛𝜃𝑑𝜃

=

𝑟−1

∑

𝑙=0

1

2𝜋
∫

𝑟𝜋

−𝑟𝜋

𝑆
−𝑙
Φa,b (e

i(𝜃/𝑟)
)

𝑟
𝑋
(𝑙)
(ei𝜃) e−i𝑛𝜃𝑑𝜃

=

𝑟−1

∑

𝑙=0

𝑟−1

∑

𝑘=0

∫

2𝜋(𝑘+1)

2𝜋𝑘

𝑆
−𝑙
Φa,b (e

i(𝜃/𝑟)
)

2𝜋𝑟
𝑋
(𝑙)
(ei𝜃) e−i𝑛𝜃𝑑𝜃

= ∫

2𝜋

0

𝑟−1

∑

𝑙=0

𝑟−1

∑

𝑘=0

𝑆
−𝑙
Φa,b (e

i((𝜃+2𝜋𝑘)/𝑟)
)

2𝜋𝑟
𝑋
(𝑙)
(ei𝜃) e−i𝑛𝜃𝑑𝜃

=
1

2𝜋
∫

𝜋

−𝜋

𝑟−1

∑

𝑙=0

(𝐷
𝑟
𝑆
−𝑙
Φa,b) (e

i𝜃
)𝑋

(𝑙)
(ei𝜃) e−i𝑛𝜃𝑑𝜃.

(38)

Defining C(ei𝜃) := ∑
𝑘∈Z 𝛼𝑘e

i𝑘𝜃, (38) implies that

C (ei𝜃) =
𝑟−1

∑

𝑙=0

(𝐷
𝑟
𝑆
−𝑙
Φa,b) (e

i𝜃
)𝑋

(𝑙)
(ei𝜃) , (39)

which can be written in matrix form as

C (ei𝜃)

= (∑

𝑘∈Z

𝛼
𝑘,1
ei𝑘𝜃, ∑

𝑘∈Z

𝛼
𝑘,2
ei𝑘𝜃, . . . , ∑

𝑘∈Z

𝛼
𝑘,𝑠
ei𝑘𝜃)

⊤

= Ψa,b (e
i𝜃
) (𝑋

(0)
(ei𝜃) , 𝑋(1)

(ei𝜃) , . . . , 𝑋(𝑟−1)
(ei𝜃))

⊤

= Ψa,b (e
i𝜃
) X̃ (ei𝜃)

= (𝐿
Ψa,b

X̃) (ei𝜃) ,
(40)

where 𝐿
Ψa,b

: 𝐿
2

𝑟
(T) → 𝐿

2

𝑠
(T) denotes the multiplication

operator byΨa,b and

X̃ (ei𝜃) := (𝑋
(0)

(ei𝜃) , 𝑋(1)
(ei𝜃) , . . . , 𝑋(𝑟−1)

(ei𝜃))
⊤

.

(41)

By 𝐿
2

𝑟
(T) (resp., 𝐿2

𝑠
(T)), we denote the product space

𝐿
2
(T) × ⋅ ⋅ ⋅ × 𝐿

2
(T) for 𝑟 times (resp., 𝑠 times). Besides,


Ψa,bX̃



2

𝐿
2
𝑠
(T)

=
1

2𝜋
∫

𝜋

−𝜋

⟨Ψa,b (e
i𝜃
) X̃ (ei𝜃) ,Ψa,b (e

i𝜃
) X̃ (ei𝜃)⟩

C𝑟
𝑑𝜃

=
1

2𝜋
∫

𝜋

−𝜋

⟨Ψ
∗

a,b (e
i𝜃
)Ψa,b (e

i𝜃
) X̃ (ei𝜃) , X̃ (ei𝜃)⟩

C𝑟
𝑑𝜃.

(42)

The above calculations let us prove the following result.

Theorem 5. Let 𝑏
𝑗
∈ A

𝑎
for 𝑗 = 1, 2, . . . , 𝑠 and let Ψa,b be

the associated matrix given in (33). Then, the following results
hold.

(a) The sequence {𝑈𝑟𝑘
𝑏
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 is a complete system in

A
𝑎
if and only if the rank of the matrixΨa,b(𝜁) is 𝑟 a.e.

𝜁 in T .
(b) The sequence {𝑈𝑟𝑘

𝑏
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 is a Bessel sequence for

A
𝑎
if and only if there exists a constant 𝐵 < ∞ such

that
Ψ
∗

a,b (𝜁)Ψa,b (𝜁) ≤ 𝐵I
𝑟

𝑎.𝑒. 𝜁 𝑖𝑛 T . (43)

(c) The sequence {𝑈𝑟𝑘
𝑏
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 is a frame forA

𝑎
if and

only if there exist constants 0 < 𝐴 ≤ 𝐵 < ∞ such that

𝐴I
𝑟
≤ Ψ

∗

a,b (𝜁)Ψa,b (𝜁) ≤ 𝐵I
𝑟

𝑎.𝑒. 𝜁 𝑖𝑛 T . (44)

(d) The sequence {𝑈𝑟𝑘
𝑏
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 is a Riesz basis forA𝑎

if and only if it is a frame and 𝑠 = 𝑟.

Proof. To prove (a), assume that there exists a setΩ ⊆ T with
positive measure such that rank[Ψa,b(𝜁)] < 𝑟 for each 𝜁 ∈ Ω.
Then, there exists a measurable function V(𝜁), 𝜁 ∈ Ω, such
that Ψa,b(𝜁)V(𝜁) = 0 and ‖V(𝜁)‖

𝐿
2
𝑟
(T) = 1 in Ω. This function
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can be constructed as in [23, Lemma 2.4]. Define Ṽ ∈ 𝐿
2

𝑟
(T)

such that Ṽ(𝜁) = V(𝜁) if 𝜁 ∈ Ω, and Ṽ(𝜁) = 0 if 𝜁 ∈ T \ Ω.
Hence, from (40), we obtain that the system is not complete.
Conversely, if the system is not complete, by using (40), we
obtain a Ṽ(𝜁) different from 0 in a set with positive measure
such that Ψa,b(𝜁)Ṽ(𝜁) = 0. Thus, rankΨa,b(𝜁) < 𝑟 on a set
with positive measure.

To prove (b), we keep in mind that {𝑈𝑘
𝑎}
𝑘∈Z is a Riesz

basis for A
𝑎
, the mapping 𝑇 : ℓ

2
(Z) → A

𝑎
, given by

𝑇{𝑥
𝑘
}
𝑘∈Z = 𝑥 = ∑

𝑘∈Z 𝑥
𝑘
𝑈
𝑘
𝑎 is bijective and there exist two

constants 0 < 𝑚
𝑎
≤ 𝑀

𝑎
< ∞ such that

𝑚
𝑎

{𝑥𝑘}


2

ℓ
2 ≤

𝑇 {𝑥
𝑘
}


2

H
≤ 𝑀

𝑎

{𝑥𝑘}


2

ℓ
2 . (45)

Assume first that (43) is satisfied. It follows from (40) and
(42) that


Ψa,bX̃



2

𝐿
2
𝑠
(T)

≤ 𝐵

X̃

2

𝐿
2
𝑟
(T)
. (46)

By construction ‖Ψa,bX̃‖
2

𝐿
2
𝑠
(T)

= ∑
𝑠

𝑗=1
∑
𝑘∈Z |⟨𝑥, 𝑏

𝑘,𝑗
⟩|
2 and

‖X̃‖2
𝐿
2
𝑟
(T) = ‖{𝑥

𝑘
}
𝑘∈Z‖

2

ℓ
2 , using (45), it follows from (46) that

𝑠

∑

𝑗=1

∑

𝑘∈Z


⟨𝑥, 𝑏

𝑘,𝑗
⟩


2

≤
𝐵

𝑚
𝑎

‖𝑥‖
2

H. (47)

Conversely, assume that {𝑏
𝑘𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 is a Bessel sequence

forA
𝑎
, then there exists 0 < 𝐵


< ∞ such that

𝑠

∑

𝑗=1

∑

𝑘∈Z


⟨𝑥, 𝑏

𝑘,𝑗
⟩


2

≤ 𝐵

‖𝑥‖

2

H. (48)

Using (45), this implies that


Ψa,bX̃



2

𝐿
2
𝑠
(T)

≤ 𝐵

𝑀

𝑎


X̃

2

𝐿
2
𝑟
(T)

(49)

for all X̃ ∈ 𝐿
2

𝑟
(T). Inserting the right hand side of (42) for

‖Ψa,bX̃‖
2

𝐿
2
𝑠
(T)
, it is straightforward to see that (43) holds with

𝐵 = 𝐵

𝑀

𝑎
. The proof of (c) is completed proceeding as in (b).

To prove (d), consider the following mapping:

𝑆: A
𝑎
→ ℓ

2

𝑠
(Z)

𝑥 → {⟨𝑥, 𝑏
𝑘,𝑗
⟩}

𝑘∈Z;𝑗=1,2,...,𝑠
.

(50)

According to (40), the mapping 𝑆 is isometric equivalent
to 𝐿

Ψa,b
, and assuming that {𝑏

𝑘,𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 is a frame, it is a

Riesz basis if and only if 𝑆 is surjective.
First, if {𝑏

𝑘,𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 is a Riesz basis, then it is a

frame and 𝑆 is surjective. Applying (a) yields that 𝐿
Ψa,b

is
bijective, and therefore 𝐿

∗

Ψa,b
= 𝐿

Ψ
∗

a,b
is bijective. Hence,

rank[Ψa,b(𝜁)Ψ
∗

a,b(𝜁)] is 𝑠 for almost every 𝜁 in T , so

𝑟 = rank [Ψ∗a,b (𝜁)Ψa,b (𝜁)] = rank [Ψa,b (𝜁)Ψ
∗

a,b (𝜁)] = 𝑠,

(51)

and finally 𝑠 = 𝑟.

Conversely, if {𝑏
𝑘,𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 is a frame and 𝑠 = 𝑟, (a)

implies that Ψa,b(𝜁) is invertible for almost every 𝜁 in T ,
which implies that 𝐿

Ψa,b
is surjective; then 𝑆 is surjective and

{𝑏
𝑘,𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 is a Riesz basis.

The following lemma will allow us to restate Theorem 5.

Lemma 6. Let G(𝜁) be an 𝑠 × 𝑟 matrix with entries in 𝐿
2
(T),

and consider the following constants:

𝐴G := ess inf
𝜁∈T

𝜆min [G
∗
(𝜁)G (𝜁)] ,

𝐵G := ess sup
𝜁∈T

𝜆max [𝐺
∗
(𝜁)G (𝜁)] ,

(52)

where 𝜆min (resp., 𝜆max) denotes the smallest (resp., the largest)
eigenvalue of the positive semidefinite matrix G∗

(𝜁)G(𝜁).
Then,

(a) the matrix G(𝜁) has essentially bounded entries on T if
and only if 𝐵G < ∞;

(b) there exist constants 0 < 𝐴 ≤ 𝐵 < ∞ such that 𝐴I
𝑟
≤

G∗
(𝜁)G(𝜁) ≤ 𝐵I

𝑟
, a.e., 𝜁 ∈ T if and only if 0 < 𝐴G ≤

𝐵G < ∞.

Proof. The first part of lemma follows from that
𝜆max[G∗

(𝜁)G(𝜁)] = ‖G(𝜁)‖2
2
, and

max
𝑖,𝑗


𝑎
𝑖𝑗


≤ ‖A‖

2
≤ √𝑚𝑛max

𝑖,𝑗


𝑎
𝑖𝑗



for any matrix A = [𝑎
𝑖𝑗
] 𝑖=1,2...,𝑚
𝑗=1,2...,𝑛

,

(53)

where ‖A‖
2
denotes the spectral norm of the matrix A (see,

for instance, [24]).
Now, we prove the second part of the lemma. Since

G∗
(𝜁)G(𝜁) ≤ 𝐵I

𝑟
means that ⟨𝐵𝑥 − G∗

(𝜁)G(𝜁)𝑥, 𝑥⟩ ≥ 0 for
all 𝑥 ∈ C𝑟, in particular, taking an eigenvector 𝑥 associated
with the largest eigenvalue 𝜆max of G∗

(𝜁)G(𝜁) such that
‖𝑥‖ = 1, one has that 𝐵 ≥ 𝜆max(G∗

(𝜁)G(𝜁)). Hence,
𝐵 ≥ ess sup

𝜁∈T𝜆max[G∗
(𝜁)G(𝜁)]. In a similar way, 𝐴I

𝑟
≤

G∗
(𝜁)G(𝜁) implies that 𝐴 ≤ ess inf

𝜁∈T𝜆min[G∗
(𝜁)G(𝜁)].

Conversely, Rayleigh-Ritz theorem [24, page 176] yields
that

𝜆max [G
∗
(𝜁)G (𝜁)] = max

𝑥∈C𝑟

𝑥
∗G∗

(𝜁)G (𝜁)

𝑥∗𝑥

= max
𝑥∈C𝑟

⟨G∗
(𝜁)G (𝜁) 𝑥, 𝑥⟩

⟨𝑥, 𝑥⟩
.

(54)

Thus, ess sup
𝜁∈T𝜆max[G∗

(𝜁)G(𝜁)] = 𝐵G implies that

max
𝑥∈C𝑟

⟨G∗
(𝜁)G (𝜁) 𝑥, 𝑥⟩

⟨𝑥, 𝑥⟩
≤ 𝐵G, a.e. 𝜁 ∈ T . (55)

In other words, 𝐵GI𝑟 ≥ G∗
(𝜁)G(𝜁); analogously,

G∗
(𝜁)G(𝜁) ≥ 𝐴GI𝑟.
It is easy to deduce from the proof that 𝐴G and 𝐵G are

the optimal constants 𝐴 > 0 and 𝐵 < ∞ satisfying the
inequalities 𝐴I

𝑟
≤ G∗

(𝜁)G(𝜁) ≤ 𝐵I
𝑟
, a.e., 𝜁 ∈ T .
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As a consequence of Lemma 6, statements (b) and (c) in
Theorem 5 can be restated in terms of the following constants:

𝐴
Ψ
:= ess inf

𝜁∈T
𝜆min [Ψ

∗

a,b (𝜁)Ψa,b (𝜁)] ;

𝐵
Ψ
:= ess sup

𝜁∈T

𝜆max [Ψ
∗

a,b (𝜁)Ψa,b (𝜁)] ,
(56)

as follows.

Theorem 7. Let 𝑏
𝑗
∈ A

𝑎
for 𝑗 = 1, 2, . . . , 𝑠, and let Ψa,b be the

associated matrix given in (33) and its related constants (56).
Then, the following results hold.

(i) The sequence {𝑈𝑟𝑘
𝑏
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 is a Bessel sequence for

A
𝑎
if and only if the constant 𝐵

Ψ
< ∞.

(ii) The sequence {𝑈𝑟𝑘
𝑏
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 is a frame forA

𝑎
if and

only if the constants 𝐴
Ψ
and 𝐵

Ψ
satisfy 0 < 𝐴

Ψ
≤

𝐵
Ψ
< ∞. In this case,𝐴

Ψ
and𝐵

Ψ
are the optimal frame

bounds for {𝑈𝑟𝑘
𝑏
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠.

2.3.The Frame Expansion. Define the 𝑟×𝑠matrix of functions
on the torus T as follows:

Γ (ei𝜃) := ∑

𝑘∈Z

Γ
𝑘
ei𝑘𝜃 = [Ψ

∗

a,b (e
i𝜃
)Ψa,b (e

i𝜃
)]
−1

Ψ
∗

a,b (e
i𝜃
) .

(57)

The following expansion involving the inner products 𝛼
𝑛,𝑗

=

⟨𝑥, 𝑈
𝑟𝑛
𝑏
𝑗
⟩ of 𝑥 ∈ A

𝑎
holds.

Lemma 8. Assume that the matrix Ψa,b(𝜁) has essentially
bounded entries on T . For any 𝑥 = ∑

𝑘∈Z 𝑥
𝑘
𝑈
𝑘
𝑎 ∈ A

𝑎
, one

has

x̃n = ∑

𝑘∈Z

Γ
𝑘
𝛼
𝑛−𝑘

, (58)

where x̃n denotes the 𝑛th Fourier coefficient of the function
X̃(ei𝜃) defined in (41), and the sequence {𝛼

𝑛
}
𝑛∈Z is given in (35).

Proof. Indeed,

x̃n =
1

2𝜋
∫

𝜋

−𝜋

X̃ (ei𝜃) e−i𝑛𝜃𝑑𝜃

=
1

2𝜋
∫

𝜋

−𝜋

(∑

𝑘∈Z

Γ
𝑘
ei𝑘𝜃)Ψa,b (e

i𝜃
) X̃ (ei𝜃) e−i𝑛𝜃𝑑𝜃

= ∑

𝑘∈Z

Γ
𝑘

1

2𝜋
∫

𝜋

−𝜋

Ψa,b (e
i𝜃
) X̃ (ei𝜃) e−i(𝑛−𝑘)𝜃𝑑𝜃

= ∑

𝑘∈Z

Γ
𝑘
𝛼
𝑛−𝑘

.

(59)

At this point, we are ready to prove the following expan-
sion result.

Theorem 9. Let 𝑏
𝑗
∈ A

𝑎
for 𝑗 = 1, 2, . . . , 𝑠, and assume that

the associatedmatrixΨa,b given in (33) has essentially bounded
entries on T , that is, 𝐵

Ψ
< ∞. The following statements are

equivalent.
(i) The constant 𝐴

Ψ
> 0.

(ii) There exist 𝑐
𝑗

∈ A
𝑎
, 𝑗 = 1, 2, . . . , 𝑠, such that the

sequence {𝑈𝑟𝑘
𝑐
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 is a frame forA

𝑎
, yielding,

for any 𝑥 ∈ A
𝑎
, the following expansion:

𝑥 =

𝑠

∑

𝑗=1

∑

𝑘∈Z

⟨𝑥,𝑈
𝑟𝑘
𝑏
𝑗
⟩𝑈

𝑟𝑘
𝑐
𝑗

𝑖𝑛 H. (60)

In case the equivalent conditions hold, {𝑈𝑟𝑘
𝑏
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠

and {𝑈𝑟𝑘
𝑐
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 form a pair of dual frames inA

𝑎
.

Proof. First, we prove that (i) implies (ii). Observe that
𝑥 = ∑

𝑘∈Z 𝑥
𝑘
𝑈
𝑘
𝑎 can be written as ∑

𝑛∈Z x̃⊤n ãn where ãn =

(𝑈
𝑛𝑟
𝑎, 𝑈

𝑛𝑟+1
𝑎, . . . , 𝑈

𝑛𝑟+𝑟−1
𝑎)
⊤. Next,

𝑥 = ∑

𝑛∈Z

x̃⊤n ãn = ∑

𝑛∈Z

(∑

𝑘∈Z

Γ
𝑘
𝛼
𝑛−𝑘

)

⊤

ãn

= ∑

𝑛∈Z

∑

𝑘∈Z

𝛼
⊤

𝑛−𝑘
Γ
⊤

𝑘
ãn = ∑

𝑛∈Z

∑

𝑘∈Z

𝛼
⊤

𝑛
Γ
⊤

𝑘
ãn+k

= ∑

𝑛∈Z

𝛼
⊤

𝑛
(∑

𝑘∈Z

Γ
⊤

𝑘
ãn+k) .

(61)

For 𝑙 ∈ Z and 𝑗 = 1, 2, . . . , 𝑠 define 𝑐
𝑙,𝑗

:= 𝑈
𝑟𝑙
𝑐
𝑗
, where (𝑐

1
, 𝑐
2
,

. . . , 𝑐
𝑠
)
⊤
= ∑

𝑘∈Z Γ
⊤

𝑘
ãk, and 𝑏

𝑙,𝑗
:= 𝑈

𝑟𝑙
𝑏
𝑗
. Then, (61) implies

𝑥 = ∑

𝑛∈Z

𝛼
⊤

𝑛
(∑

𝑘∈Z

Γ
⊤

𝑘
ãn+k)

= ∑

𝑛∈Z

𝛼
⊤

𝑛
𝑈
𝑛𝑟
(∑

𝑘∈Z

Γ
⊤

𝑘
ãk)

=

𝑠

∑

𝑙=1

∑

𝑛∈Z

⟨𝑥, 𝑏
𝑛,𝑙
⟩ 𝑐

𝑛,𝑙
in H.

(62)

In order to be allowed to use [1, Lemma 5.6.2], we have
to prove that the above constructed sequence {𝑐

𝑘,𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠

is a Bessel sequence for A
𝑎
. To this end, we compute the

corresponding Ψa,c matrix for c := {𝑐
𝑘,𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠. Setting

[Γ
⊤

𝑘
]
𝑖𝑗
= 𝑎

𝑘

𝑖𝑗
, we obtain

⟨𝑈
𝑘
𝑎, 𝑐

𝑛,𝑗
⟩

= ∑

𝑙∈Z

𝑟

∑

𝑖=1

⟨𝑈
𝑘
𝑎, 𝑈

𝑛𝑟
(𝑎

𝑙

𝑗𝑖
𝑈
𝑙𝑟+𝑖𝑟+𝑖−1

𝑎)⟩

= ∑

𝑙∈Z

𝑟

∑

𝑖=1

𝑎
𝑙

𝑗𝑖
⟨𝑈

𝑘−𝑛𝑟−𝑙𝑟−𝑖+1
𝑎, 𝑎⟩

= ∑

𝑙∈Z

𝑟

∑

𝑖=1

𝑎
𝑙

𝑗𝑖

1

2𝜋
∫

𝜋

−𝜋

ei(𝑘−𝑛𝑟−𝑙𝑟−𝑖+1)𝜃𝜙a (e
i𝜃
) 𝑑𝜃.

(63)
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Now,

(

⟨𝑈
𝑘
𝑎, 𝑐

𝑛,1
⟩

⟨𝑈
𝑘
𝑎, 𝑐

𝑛,2
⟩

...
⟨𝑈

𝑘
𝑎, 𝑐

𝑛,𝑠
⟩

)

= ∑

𝑙∈Z

Γ

⊤

𝑙

(
(
(
(

(

1

2𝜋
∫

𝜋

−𝜋

ei(𝑘−𝑛𝑟−𝑙𝑟)𝜃𝜙a (e
i𝜃
) 𝑑𝜃

1

2𝜋
∫

𝜋

−𝜋

ei(𝑘−𝑛𝑟−𝑙𝑟−1)𝜃𝜙a (e
i𝜃
) 𝑑𝜃

...
1

2𝜋
∫

𝜋

−𝜋

ei(𝑘−𝑛𝑟−𝑙𝑟−𝑟+1)𝜃𝜙a (e
i𝜃
) 𝑑𝜃

)
)
)
)

)

=
1

2𝜋
∫

𝜋

−𝜋

∑

𝑙∈Z

Γ

⊤

𝑙
e−i𝑙𝑟𝜃(

ei(𝑘−𝑛𝑟)𝜃

ei(𝑘−𝑛𝑟−1)𝜃
...

ei(𝑘−𝑛𝑟−𝑟+1)𝜃

)𝜙a (e
i𝜃
) 𝑑𝜃

=
1

2𝜋
∫

𝜋

−𝜋

ei(𝑘−𝑛𝑟)𝜃Γ∗ (ei𝑟𝜃) ẽ (ei𝜃) 𝜙a (e
i𝜃
) 𝑑𝜃,

(64)

where ẽ(ei𝜃) := (1, e−i𝜃, . . . , e−i(𝑟−1)𝜃)⊤. Hence, we have de-
duced that

Φa,c (e
i𝜃
) = Γ

∗
(ei𝑟𝜃) ẽ (ei𝜃) 𝜙a (e

i𝜃
) . (65)

Therefore, for 𝑙 = 0, 1, . . . , 𝑟 − 1, we have

Ψ
𝑙

a,c (e
i𝜃
) := 𝐷

𝑟
𝑆
−𝑙
[Γ

∗
(ei𝑟𝜃) ẽ (ei𝜃) 𝜙a (e

i𝜃
)] , (66)

and consequently, the 𝑠 × 𝑟 matrix Ψa,c(e
i𝜃
) :=

(Ψ
0

a,c(e
i𝜃
),Ψ

1

a,c(e
i𝜃
), . . . ,Ψ

𝑟−1

a,c (e
i𝜃
)) can be written as

Ψa,c (e
i𝜃
) = 𝐷

𝑟
[𝜙a (e

i𝜃
) Γ

∗
(ei𝑟𝜃) Ẽ (ei𝜃)] , (67)

where

Ẽ (ei𝜃) := (

1 ei𝜃 ⋅ ⋅ ⋅ ei(𝑟−1)𝜃

e−i𝜃 1 ⋅ ⋅ ⋅ ei(𝑟−2)𝜃
...

... d
...

e−i(𝑟−1)𝜃 e−i(𝑟−2)𝜃 ⋅ ⋅ ⋅ 1

) . (68)

As a consequence of Theorem 7, the proof ends if we
prove that the matrix Ψa,c(e

i𝜃
) has essentially bounded

entries. Clearly, the decimation operator 𝐷
𝑟
sends bounded

functions into bounded functions;Theorem 3 implies that 𝜙a
is bounded so, taking into account (67), it remains to check
that the matrix Γ∗(ei𝑟𝜃) has essentially bounded entries.

Now, Γ∗(ei𝑟𝜃) = Ψa,b(e
i𝑟𝜃
)[Ψ

∗

a,b(e
i𝑟𝜃
)Ψa,b(e

i𝑟𝜃
)]
−1, the

lower bound condition (c) inTheorem 5 and Lemma 6 imply
that [Ψ∗a,b(e

i𝑟𝜃
)Ψa,b(e

i𝑟𝜃
)]
−1 has bounded entries, and there-

fore the matrix Γ∗(ei𝑟𝜃) has bounded entries. We have shown
that Ψa,c(e

i𝜃
) has bounded entries; then Theorem 7, part (a)

and Lemma 6 guarantee that the sequence {𝑐
𝑘,𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 is

a Bessel sequence; then, the sequences {𝑏
𝑘,𝑗
}
𝑘∈Z,𝑗=1,2,...,𝑠 and

{𝑐
𝑘,𝑗
}
𝑘∈Z,𝑗=1,2,...,𝑠 form a pair of dual frames in A

𝑎
(see [1,

Lemma 5.6.2]).
Finally, condition (ii) implies condition (i). According to

[1, Lemma 5.6.2], the sequence {𝑈𝑟𝑘
𝑏
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 is a frame

for A
𝑎
since it is a Bessel sequence and the expansion in (ii)

holds. By usingTheorem 7 we obtain that 𝐴
Ψ
> 0.

It is worth to observe that the analysis done inTheorem 9
provides a whole family of dual frames for the sequence
{𝑈

𝑟𝑘
𝑏
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠. In fact, everything works if we replace

Γ(ei𝜃) in (57) by any matrix of the following form:

ΓU (e
i𝜃
) := Ψ

†

a,b (e
i𝜃
) + U (ei𝜃) [I

𝑠
−Ψa,b (e

i𝜃
)Ψ

†

a,b (e
i𝜃
)] ,

(69)

where U(ei𝜃) is any 𝑟 × 𝑠 matrix with entries in 𝐿
∞
(T),

andΨ†a,b denotes the Moore-Penrose left-inverseΨ†a,b(e
i𝜃
) :=

[Ψ
∗

a,b(e
i𝜃
)Ψa,b(e

i𝜃
)]
−1
Ψ
∗

a,b(e
i𝜃
). Note that we need essentially

bounded entries in thematrix ΓU(e
i𝜃
) since themultiplication

operator 𝑀
𝐹

: 𝑓 → 𝐹𝑓 in 𝐿
2
(T) is well-defined (and

consequently bounded) if and only if 𝐹 ∈ 𝐿
∞
(T).

Notice that if 𝑠 = 𝑟, we have Ψ†a,b = Ψ
−1

a,b which implies a
unique ΓU, and we are in the presence of a pair of dual Riesz
bases. In fact, the following result holds.

Corollary 10. Let 𝑏
𝑗
∈ A

𝑎
for 𝑗 = 1, 2, . . . , 𝑟; that is, 𝑟 = 𝑠 in

Theorem 9. Assume that the square matrix Ψa,b given in (33)
has entries essentially bounded on T , that is, 𝐵

Ψ
< ∞. The

following statements are equivalent.
(a) The constant 𝐴

Ψ
> 0.

(b) There exists a Riesz basis {𝐶
𝑘,𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 such that for

any 𝑥 ∈ A
𝑎
, the expansion

𝑥 =

𝑠

∑

𝑗=1

∑

𝑘∈Z

⟨𝑥,𝑈
𝑟𝑘
𝑏
𝑗
⟩𝐶

𝑘,𝑗
𝑖𝑛 H (70)

holds.
In case the equivalent conditions are satisfied, necessarily,

there exist 𝑐
𝑗
∈ A

𝑎
, 𝑗 = 1, 2, . . . , 𝑟, such that 𝐶

𝑘,𝑗
= 𝑈

𝑟𝑘
𝑐
𝑗

for 𝑘 ∈ Z and 𝑗 = 1, 2, . . . , 𝑟. Moreover, the sequences
{𝑈

𝑟𝑘
𝑐
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 and {𝑈

𝑟𝑘
𝑏
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 are dual Riesz bases

in A
𝑎
, and the interpolation property ⟨𝑐

𝑗
, 𝑈

𝑟𝑘
𝑏
𝑗
⟩ = 𝛿

𝑗,𝑗
𝛿
𝑘,0
,

where 𝑘 ∈ Z and 𝑗, 𝑗 = 1, 2, . . . , 𝑟, holds.

Proof. To prove (a) ⇒ (b), we use Theorem 9; whenever 0 <

𝐴
Ψ
≤ 𝐵
Ψ
< ∞, there exist 𝑐

𝑗
∈ A

𝑎
, 𝑗 = 1, 2, . . . , 𝑠, such that

the sequence {𝑈𝑟𝑘
𝑐
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 is a frame forA

𝑎
and for any

𝑥 ∈ A
𝑎
, the expansion

𝑥 =

𝑠

∑

𝑗=1

∑

𝑘∈Z

⟨𝑥,𝑈
𝑟𝑘
𝑏
𝑗
⟩𝑈

𝑟𝑘
𝑐
𝑗

in H, (71)

holds. Actually, from Theorem 5, we get that 𝑟 = 𝑠 implies
that {𝑈

𝑟𝑘
𝑏
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 is a Riesz basis, and consequently,

{𝑈
𝑟𝑘
𝑐
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 is indeed its dual Riesz basis.
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The converse follows easily from the fact that if
{𝐶

𝑘,𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 is a Riesz basis, then (b) implies that

{𝑈
𝑟𝑘
𝑏
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 is its dual Riesz basis; hence, Theorem 5

provides𝐴
Ψ
> 0. The interpolation property comes out from

the biorthogonal condition of a pair of dual Riesz bases.

Closing this section it is worth to mention that the results
stated and proved in Sections 2.2 and 2.3 mathematically
enrich some of the remarkable results concerning regular
sampling contained in the interesting [14]. Here, we have
assumed only one generator 𝑎 ∈ H and that 𝑏

𝑗
∈ A

𝑎
for

all 𝑗 = 1, 2, . . . , 𝑠. If 𝑏
𝑗
∉ A

𝑎
for some 𝑗, see the additional

remarks in Section 4. The case of several generators 𝑎
𝑙
∈ H,

𝑙 = 1, 2, . . . , 𝐿, can be essentially treated in the same way.

3. Some Perturbation Results

In Section 2, we have only used the discrete group of unitary
operators {𝑈

𝑛
}
𝑛∈Z which is completely determined by the

unitary operator 𝑈. In order to carry out the study of some
perturbation results stated below, we need the availability
of a continuous group of unitary operators {𝑈

𝑡
}
𝑡∈R which

includes the unitary operator 𝑈, say, for instance, that 𝑈 :=

𝑈
1.

3.1. On Continuous Groups of Unitary Operators. Let {𝑈𝑡
}
𝑡∈R

denote a continuous group of unitary operators inH such that
𝑈 := 𝑈

1. Recall that {𝑈𝑡
}
𝑡∈R is a family of unitary operators

inH satisfying (see [25, vol. 2; page 29]) the following:

(1) 𝑈𝑡
𝑈
𝑡


= 𝑈
𝑡+𝑡


,
(2) 𝑈0

= 𝐼H,
(3) ⟨𝑈𝑡

𝑥, 𝑦⟩H is a continuous function of 𝑡 for any 𝑥, 𝑦 ∈

H.

Note that (𝑈𝑡
)
−1

= 𝑈
−𝑡, and since (𝑈𝑡

)
∗
= (𝑈

𝑡
)
−1, we have

(𝑈
𝑡
)
∗
= 𝑈

−𝑡.
Classical Stone’s theorem [26] assures us the existence

of a self-adjoint operator 𝑇 (possibly unbounded) such that
𝑈
𝑡
≡ ei𝑡𝑇. This self-adjoint operator 𝑇, defined on the dense

domain ofH as follows:

𝐷
𝑇
:= {𝑥 ∈ H such that ∫

∞

−∞

𝑤
2
𝑑
𝐸𝑤𝑥



2

< ∞} , (72)

admits the spectral representation 𝑇 = ∫
∞

−∞
𝑤𝑑𝐸

𝑤
which

means that

⟨𝑇𝑥, 𝑦⟩ = ∫

∞

−∞

𝑤𝑑 ⟨𝐸
𝑤
𝑥, 𝑦⟩ for any 𝑥 ∈ 𝐷

𝑇
, 𝑦 ∈ H,

(73)

where {𝐸
𝑤
}
𝑤∈R is the corresponding resolution of the identity,

that is, a one-parameter family of projection operators 𝐸
𝑤
in

H such that

(i) 𝐸
−∞

:= lim
𝑤→−∞

𝐸
𝑤

= 𝑂H, 𝐸
∞

:= lim
𝑤→∞

𝐸
𝑤

=

𝐼H,
(ii) 𝐸

𝑤
− = 𝐸

𝑤
for every −∞ < 𝑤 < ∞,

(iii) 𝐸
𝑢
𝐸V = 𝐸

𝑤
where 𝑤 = min{𝑢, V}.

Recall that ‖𝐸
𝑤
𝑥‖

2 and ⟨𝐸
𝑤
𝑥, 𝑦⟩, as functions of 𝑤, have

bounded variation and define, respectively, a positive and a
complex Borel measure on R.

Furthermore, for any 𝑥 ∈ 𝐷
𝑇
, we have that lim

𝑡→0
((𝑈

𝑡
𝑥−

𝑥)/𝑡) = i𝑇𝑥 and the operator i𝑇 is said to be the infinitesimal
generator of the group {𝑈

𝑡
}
𝑡∈R. For each 𝑥 ∈ 𝐷

𝑇
, 𝑈𝑡

𝑥 is a
continuous differentiable function of 𝑡. Notice that, whenever
the self-adjoint operator 𝑇 is bounded, 𝐷

𝑇
= H and ei𝑡𝑇 can

be defined as the usual exponential series; in any case, 𝑈𝑡
≡

ei𝑡𝑇 means that

⟨𝑈
𝑡
𝑥, 𝑦⟩ = ∫

∞

−∞

ei𝑤𝑡𝑑 ⟨𝐸
𝑤
𝑥, 𝑦⟩ , 𝑡 ∈ R, (74)

where 𝑥 ∈ 𝐷
𝑇
and 𝑦 ∈ H. A comment on the continuity

of a group of unitary operators is in order: The group is said
to be strongly continuous if, for each 𝑥 ∈ H and 𝑡

0
∈ R,

𝑈
𝑡
𝑥 → 𝑈

𝑡0𝑥 as 𝑡 → 𝑡
0
. If H is a separable Hilbert space,

strong continuity can be deduced from continuity and even
from weak measurability; that is, ⟨𝑈𝑡

𝑥, 𝑦⟩H is a Lebesgue
measurable function of 𝑡 for any 𝑥, 𝑦 ∈ H.

The following result taken from [25, vol. 2; page 24] will
be used later. For 𝑥 ∈ 𝐷

𝑇
and 𝑦 ∈ H, the inequality



∫

∞

−∞

𝜑 (𝑤) 𝑑 ⟨𝐸
𝑤
𝑥, 𝑦⟩



≤
𝑦

√∫

∞

−∞

𝜑 (𝑤)


2

𝑑 ⟨𝐸
𝑤
𝑥, 𝑥⟩,

(75)

holds, where 𝜑 is a real or complex function which is contin-
uous in R with the possible exception of a finite number of
points.

For the details on the theory of continuous groups of
unitary operators, see [22, 25, 27, 28].

3.2. Studying the Perturbed Sequence {𝑈
𝑟𝑘+𝜖𝑘𝑗𝑏

𝑗
}
𝑘∈Z;𝑗=1,2,...𝑠

.
Given an error sequence 𝜖 := {𝜖

𝑘𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠, consider

the corresponding perturbed sequence {𝑈𝑟𝑘+𝜖𝑘𝑗𝑏
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠

.
Consider the following perturbation result (see [1, page 354]
for the proof).

Lemma 11. Let {𝑥
𝑛
}
∞

𝑛=1
be a frame for theHilbert spaceHwith

frame bounds𝐴, 𝐵, and let {𝑦
𝑛
}
∞

𝑛=1
be a sequence inH. If there

exists a constant 𝑅 < 𝐴 such that
∞

∑

𝑛=1

⟨𝑥𝑛 − 𝑦
𝑛
, 𝑥⟩



2

≤ 𝑅‖𝑥‖
2

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ∈ H, (76)

then, the sequence {𝑦
𝑛
}
∞

𝑛=1
is also a frame for H with bounds

𝐴(1 − √𝑅/𝐴)
2 and 𝐵(1 + √𝑅/𝐵)

2. If {𝑥
𝑛
}
∞

𝑛=1
is a Riesz basis,

then {𝑦
𝑛
}
∞

𝑛=1
is a Riesz basis.

Note that it cannot be directly applied to the sequences
{𝑈

𝑟𝑘
𝑏
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 and {𝑈

𝑟𝑘+𝜖𝑘𝑗𝑏
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 since the first one

is not a frame for the entireHilbert spaceH, and its perturbed
sequence does not necessarily belong to the subspace A

𝑎
.

However, something can be said in case {𝑈𝑟𝑘
𝑏
𝑗
}
𝑘∈Z;𝑗=1,2,...𝑟 is

a Riesz sequence inH.
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Theorem 12. Assume that for some 𝑏
𝑗

∈ 𝐷
𝑇
; that is,

∫
∞

−∞
𝑤
2
𝑑‖𝐸

𝑤
𝑏
𝑗
‖
2

< ∞ for each 1 ≤ 𝑗 ≤ 𝑟, the sequence
{𝑈

𝑘𝑟
𝑏
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑟 is a Riesz basis for A

𝑎
with Riesz bounds

0 < 𝐴
Ψ

≤ 𝐵
Ψ

< ∞. For a sequence 𝜖 := {𝜖
𝑘𝑗
}
𝑘∈Z,𝑗=1,2,...,𝑟 of

errors, let 𝑅 be the constant given by

𝑅 := ‖𝜖‖
2 max
𝑗=1,2,...,𝑟

{∫

∞

−∞

𝑤
2
𝑑

𝐸
𝑤
𝑏
𝑗



2

} , (77)

where ‖𝜖‖ denotes the ℓ2
𝑟
-norm of the sequence 𝜖.

If 𝑅 < 𝐴
Ψ
, then the sequence {𝑈𝑘𝑟+𝜖𝑘𝑗𝑏

𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑟 is a

Riesz sequence inH with Riesz bounds 𝐴
Ψ
(1 −√𝑅/𝐴

Ψ
)
2 and

𝐵
Ψ
(1 + √𝑅/𝐵

Ψ
)
2.

Proof. By using (75), we have


⟨𝑥, 𝑈

𝑘𝑟
𝑏
𝑗
− 𝑈

𝑘𝑟+𝜖𝑘𝑗𝑏
𝑗
⟩


=



∫

∞

−∞

e−i𝑘𝑟𝑤𝑑 ⟨𝐸
𝑤
𝑥, 𝑏

𝑗
⟩ − ∫

∞

−∞

e−i𝑘𝑟𝑤−i𝜖𝑘𝑗𝑤𝑑 ⟨𝐸
𝑤
𝑥, 𝑏

𝑗
⟩



=



∫

∞

−∞

e−i𝑘𝑟𝑤 (1 − e−i𝜖𝑘𝑗𝑤) 𝑑 ⟨𝐸
𝑤
𝑥, 𝑏

𝑗
⟩



=



∫

∞

−∞

ei𝑘𝑟𝑤 (1 − ei𝜖𝑘𝑗𝑤) 𝑑 ⟨𝐸
𝑤
𝑏
𝑗
, 𝑥⟩



≤ ‖𝑥‖√∫

∞

−∞

1 − ei𝜖𝑘𝑗𝑤
2

𝑑

𝐸
𝑤
𝑏
𝑗



2

≤ ‖𝑥‖√∫

∞

−∞

𝑤2

𝜖
𝑘𝑗



2

𝑑

𝐸
𝑤
𝑏
𝑗



2

=

𝜖
𝑘𝑗


‖𝑥‖√∫

∞

−∞

𝑤2𝑑

𝐸
𝑤
𝑏
𝑗



2

.

(78)

Hence,

𝑟

∑

𝑗=1

∑

𝑘∈Z


⟨𝑥, 𝑈

𝑘𝑟
𝑏
𝑗
− 𝑈

𝑘𝑟+𝜖𝑘𝑗𝑏
𝑗
⟩


2

≤ ‖𝑥‖
2

𝑟

∑

𝑗=1

∑

𝑘∈Z

(∫

∞

−∞

𝑤
2
𝑑

𝐸
𝑤
𝑏
𝑗



2

)

𝜖
𝑘𝑗



2

≤ ‖𝑥‖
2 max
𝑗=1,2,...,𝑟

{∫

∞

−∞

𝑤
2
𝑑

𝐸
𝑤
𝑏
𝑗



2

}

𝑟

∑

𝑗=1

∑

𝑘∈Z


𝜖
𝑘𝑗



2

.

(79)

Hence, Lemma 11 andTheorem 15.3.2 in [1, page 356] give the
desired results.

3.3. On the Perturbed Frame Expansion. Next, we deal with
the problem of the recovery of any 𝑥 ∈ A

𝑎
in a stable way

from the following perturbed sequence:

{⟨𝑥, 𝑈
𝑟𝑚+𝜖𝑚𝑗𝑏

𝑗
⟩
H
}
𝑚∈Z;𝑗=1,2,...,𝑠

, (80)

where 𝜖 := {𝜖
𝑚𝑗
}
𝑚∈Z;𝑗=1,2,...,𝑠 denotes a sequence of real

errors. In order to face this problem, we propose a possible
strategy. Let T

𝑈,𝑎
: 𝐿

2
(0, 1) → A

𝑎
be the isomorphism

which maps the orthonormal basis {e2𝜋i𝑛𝑤}
𝑛∈Z onto the Riesz

basis {𝑈𝑛
𝑎}
𝑛∈Z forA

𝑎
. In other words,

T
𝑈,𝑎

: 𝐿
2
(0, 1) → A

𝑎

∑

𝑛∈Z

𝛼
𝑛
e2𝜋i𝑛𝑤 → 𝑥 = ∑

𝑛∈Z

𝛼
𝑛
𝑈
𝑛
𝑎.

(81)

Thus,

⟨𝑥,𝑈
𝑡
𝑏
𝑗
⟩
H

= ⟨∑

𝑛∈Z

𝛼
𝑛
𝑈
𝑛
𝑎, 𝑈

𝑡
𝑏
𝑗
⟩

H

= ∑

𝑛∈Z

𝛼
𝑛
⟨𝑈𝑡𝑏

𝑗
, 𝑈𝑛𝑎⟩

H

= ⟨𝐹, ∑

𝑛∈Z

⟨𝑈
𝑡
𝑏
𝑗
, 𝑈

𝑛
𝑎⟩

H
e2𝜋i𝑛𝑤⟩

𝐿
2
(0,1)

= ⟨𝐹,𝐾
𝑡

𝑗
⟩
𝐿
2
(0,1)

,

(82)

where T
𝑈,𝑎

𝐹 = 𝑥, and the function 𝐾
𝑡

𝑗
(𝑤) := ∑

𝑛∈Z⟨𝑈
𝑡
𝑏
𝑗
,

𝑈
𝑛
𝑎⟩He2𝜋i𝑛𝑤 belongs to 𝐿

2
(0, 1) since the sequence {⟨𝑈

𝑡
𝑏,

𝑈
𝑛
𝑎⟩H}

𝑛∈Z belongs to ℓ2(Z) for each 𝑡 ∈ R.
Hence, for any𝑥 ∈ A

𝑎
, we have the following expressions:

⟨𝑥,𝑈
𝑟𝑚
𝑏
𝑗
⟩
H

= ⟨𝐹, 𝑔
𝑗
(𝑤)e2𝜋i𝑟𝑚𝑤⟩

𝐿
2
(0,1)

,

⟨𝑥, 𝑈
𝑟𝑚+𝜖𝑚𝑗𝑏

𝑗
⟩
H

= ⟨𝐹, 𝑔
𝑚,𝑗

(𝑤)e2𝜋i𝑟𝑚𝑤⟩
𝐿
2
(0,1)

,

(83)

where the functions

𝑔
𝑗
(𝑤) := ∑

𝑘∈Z

⟨𝑎, 𝑈
𝑘
𝑏
𝑗
⟩
H
e2𝜋i𝑘𝑤,

𝑔
𝑚,𝑗

(𝑤) := ∑

𝑘∈Z

⟨𝑎, 𝑈
𝑘+𝜖𝑚𝑗𝑏

𝑗
⟩
H
e2𝜋i𝑘𝑤

(84)

belong to 𝐿
2
(0, 1). Therefore, we can see the sequence

{𝑔
𝑚,𝑗

(𝑤)e2𝜋i𝑟𝑚𝑤}
𝑚∈Z;𝑗=1,2,...,𝑠 as a perturbation of the sequence

{𝑔
𝑗
(𝑤)e2𝜋i𝑟𝑚𝑤}

𝑚∈Z;𝑗=1,2,...,𝑠. From [6, Lemma 3], we know that
this sequence is a frame for 𝐿2(0, 1) if and only if 0 < 𝛼G ≤

𝛽G < ∞ where the constants 𝛼G and 𝛽G are given by

𝛼G := ess inf
𝑤∈(0,1/𝑟)

𝜆min [G
∗
(𝑤)G (𝑤)] ,

𝛽G := ess sup
𝑤∈(0,1/𝑟)

𝜆max [G
∗
(𝑤)G (𝑤)] ,

(85)

and G(𝑤) is the 𝑠 × 𝑟matrix

G (𝑤) := [𝑔
𝑗
(𝑤 +

𝑘 − 1

𝑟
)]

𝑗=1,2,...,𝑠

𝑘=1,2,...,𝑟

. (86)

Besides, the optimal frame bounds for
{𝑔

𝑗
(𝑤)e2𝜋i𝑟𝑚𝑤}

𝑚∈Z;𝑗=1,2,...,𝑠 are 𝛼G/𝑟 and 𝛽G/𝑟.
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Given an error sequence 𝜖 := {𝜖
𝑚𝑗
}
𝑚∈Z;𝑗=1,2,...,𝑠, we define

𝑑
(𝑗)

𝑚,𝑘
:= ⟨𝑎, 𝑈

𝑟𝑚−𝑘+𝜖𝑚𝑗𝑏
𝑗
⟩ − ⟨𝑎, 𝑈

𝑟𝑚−𝑘
𝑏
𝑗
⟩ . (87)

For any sequence 𝑐 = {𝑐
𝑘
}
𝑘∈Z ∈ ℓ

2
(Z), we have

𝑠

∑

𝑗=1

∑

𝑚∈Z



∑

𝑘∈Z

𝑑
(𝑗)

𝑚,𝑘
𝑐
𝑘



2

≤

𝑠

∑

𝑗=1

∑

𝑚∈Z

∑

𝑙,𝑘∈Z


𝑑
(𝑗)

𝑚,𝑙
𝑐
𝑙
𝑑
(𝑗)

𝑚,𝑘
𝑐
𝑘



=

𝑠

∑

𝑗=1

∑

𝑙,𝑘∈Z

𝑐𝑙

𝑐𝑘
 ∑

𝑚∈Z


𝑑
(𝑗)

𝑚,𝑙
𝑑
(𝑗)

𝑚,𝑘



≤

𝑠

∑

𝑗=1

∑

𝑙,𝑘∈Z

𝑐𝑙


2

+
𝑐𝑘


2

2
∑

𝑚∈Z


𝑑
(𝑗)

𝑚,𝑙
𝑑
(𝑗)

𝑚,𝑘



=

𝑠

∑

𝑗=1

∑

𝑙∈Z

𝑐𝑙


2

∑

𝑘,𝑚∈Z


𝑑
(𝑗)

𝑚,𝑙
𝑑
(𝑗)

𝑚,𝑘


.

(88)

Now, for |𝛾| < 1/2, define the following functions:

𝑀
𝑎,𝑏𝑗

(𝛾) := ∑

𝑘∈Z

max
𝑡∈[−𝛾,𝛾]


⟨𝑎, 𝑈

𝑘+𝑡
𝑏
𝑗
⟩ − ⟨𝑎, 𝑈

𝑘
𝑏
𝑗
⟩

,

𝑁
𝑎,𝑏𝑗

(𝛾)

:= max
𝑘=0,1,...,𝑟−1

∑

𝑚∈Z

max
𝑡∈[−𝛾,𝛾]


⟨𝑎, 𝑈

𝑟𝑚+𝑘+𝑡
𝑏
𝑗
⟩ − ⟨𝑎, 𝑈

𝑟𝑚+𝑘
𝑏
𝑗
⟩

.

(89)

Notice that𝑁
𝑎,𝑏𝑗

(𝛾) ≤ 𝑀
𝑎,𝑏𝑗

(𝛾) and for 𝑟 = 1, the equality
holds. Moreover, assuming that the continuous functions
𝜑
𝑗
(𝑡) := ⟨𝑎, 𝑈

𝑡
𝑏
𝑗
⟩, 𝑗 = 1, 2, . . . , 𝑠, satisfy a decay condition

as 𝜑
𝑗
(𝑡) = 𝑂(|𝑡|

−(1+𝜂𝑗)) when |𝑡| → ∞ for some 𝜂
𝑗
> 0, we

may deduce that the functions 𝑁
𝑎,𝑏𝑗

(𝛾) and 𝑀
𝑎,𝑏𝑗

(𝛾) are
continuous near to 0.

Theorem 13. Assume that for the functions 𝑔
𝑗
, 𝑗 = 1, 2, . . . , 𝑠,

given in (84) one has 0 < 𝛼G ≤ 𝛽G < ∞. For an error sequence
𝜖 := {𝜖

𝑚𝑗
}
𝑚∈Z;𝑗=1,...,𝑠, define the constant 𝛾𝑗 := sup

𝑚∈Z|𝜖𝑚𝑗| for
each 𝑗 = 1, 2, . . . , 𝑠. Then the following condition:

𝑠

∑

𝑗=1

𝑀
𝑎,𝑏𝑗

(𝛾
𝑗
)𝑁

𝑎,𝑏𝑗
(𝛾
𝑗
) <

𝛼G

𝑟
(90)

implies that there exists a frame {𝐶𝜖
𝑚,𝑗

}
𝑚∈Z;𝑗=1,2,...,𝑠 forA𝑎

such
that, for any 𝑥 ∈ A

𝑎
, the following sampling expansion:

𝑥 =

𝑠

∑

𝑗=1

∑

𝑚∈Z

⟨𝑥, 𝑈
𝑟𝑚+𝜖𝑚𝑗𝑏

𝑗
⟩H𝐶
𝜖

𝑚,𝑗
𝑖𝑛 H (91)

holds. Moreover, when 𝑟 = 𝑠, the sequence {𝐶𝜖
𝑚,𝑗

}
𝑚∈Z;𝑗=1,2,...,𝑠

is a Riesz basis for A
𝑎
, and the interpolation property

⟨𝐶
𝜖

𝑛,𝑙
, 𝑈

𝑟𝑚+𝜖𝑚𝑗𝑏
𝑗
⟩H = 𝛿

𝑙,𝑗
𝛿
𝑛,𝑚

holds.

Proof. The sequence {𝑔
𝑗
(𝑤)e2𝜋i𝑟𝑚𝑤}

𝑚∈Z;𝑗=1,2,...,𝑠 is a frame
(a Riesz basis if 𝑟 = 𝑠) for 𝐿2(0, 1) with frame (Riesz) bounds
𝛼G and 𝛽G. For any 𝐹(𝑤) = ∑

𝑙∈Z 𝑎
𝑙
e2𝜋i𝑙𝑤 in 𝐿

2
(0, 1), we have

∑

𝑚∈Z

𝑠

∑

𝑗=1


⟨𝑔

𝑚,𝑗
(⋅)e2𝜋i𝑟𝑚⋅ − 𝑔

𝑗
(⋅)e2𝜋i𝑟𝑚⋅, 𝐹 (⋅)⟩

𝐿
2
(0,1)



2

= ∑

𝑚∈Z

𝑠

∑

𝑗=1



⟨∑

𝑘∈Z

(⟨𝑎, 𝑈
𝑘+𝜖𝑚𝑗𝑏

𝑗
⟩

− ⟨𝑎, 𝑈𝑘𝑏
𝑗
⟩) e2𝜋i(𝑟𝑚−𝑘)⋅, 𝐹 (⋅)⟩

𝐿
2
(0,1)



2

= ∑

𝑚∈Z

𝑠

∑

𝑗=1



⟨∑

𝑘∈Z

(⟨𝑎, 𝑈
𝑟𝑚−𝑘+𝜖𝑚𝑗𝑏

𝑗
⟩

− ⟨𝑎, 𝑈𝑟𝑚−𝑘𝑏
𝑗
⟩) e2𝜋i𝑘⋅, 𝐹 (⋅)⟩

𝐿
2
(0,1)



2

= ∑

𝑚∈Z

𝑠

∑

𝑗=1



∑

𝑘∈Z

(⟨𝑎, 𝑈
𝑟𝑚−𝑘+𝜖𝑚𝑗𝑏

𝑗
⟩ − ⟨𝑎, 𝑈𝑟𝑚−𝑘𝑏

𝑗
⟩) 𝑎

𝑘



2

=

𝑠

∑

𝑗=1

∑

𝑚∈Z



∑

𝑘∈Z

𝑑
(𝑗)

𝑚,𝑘
𝑎
𝑘



2

.

(92)

From (88) and the definition of the functions 𝑀
𝑎,𝑏𝑗

and
𝑁
𝑎,𝑏𝑗

, we obtain

∑

𝑚∈Z

𝑠

∑

𝑗=1


⟨𝑔

𝑚,𝑗
(⋅)e2𝜋i𝑟𝑚⋅ − 𝑔

𝑗
(⋅)e2𝜋i𝑟𝑚⋅, 𝐹 (⋅)⟩

𝐿
2
(0,1)



2

≤

𝑠

∑

𝑗=1

𝑀
𝑎,𝑏𝑗

(𝛾
𝑗
)𝑁

𝑎,𝑏𝑗
(𝛾
𝑗
)

{𝑎
𝑙
}
𝑙∈Z



2

≤

𝑠

∑

𝑗=1

𝑀
𝑎,𝑏𝑗

(𝛾
𝑗
)𝑁

𝑎,𝑏𝑗
(𝛾
𝑗
) ‖𝐹‖

2

𝐿
2
(0,1)

.

(93)

By using Lemma 11, we obtain that the sequence
{𝑔

𝑚,𝑗
(𝑤)e2𝜋i𝑟𝑚𝑤}

𝑚∈Z;𝑗=1,2,...,𝑠 is a frame for 𝐿
2
(0, 1) (a Riesz

basis if 𝑟 = 𝑠). Let {ℎ𝜖
𝑚,𝑗

}
𝑚∈Z;𝑗=1,2,...,𝑠 be its canonical dual

frame. Hence, for any 𝐹 ∈ 𝐿
2
(0, 1),

𝐹 = ∑

𝑚∈Z

𝑠

∑

𝑗=1

⟨𝐹 (⋅) , 𝑔
𝑚,𝑗

(⋅) e2𝜋i𝑟𝑚⋅⟩
𝐿
2
(0,1)

ℎ
𝜖

𝑚,𝑗

= ∑

𝑚∈Z

𝑠

∑

𝑗=1

⟨𝑥,𝑈
𝑟𝑚+𝜖𝑚𝑗𝑏

𝑗
⟩
H
ℎ
𝜖

𝑚,𝑗
.

(94)

Applying the isomorphism T
𝑈,𝑎

, one gets (91), where
𝐶
𝜖

𝑚,𝑗
= T

𝑈,𝑎
(ℎ
𝜖

𝑚,𝑗
). Since T

𝑈,𝑎
is an isomorphism between

𝐿
2
(0, 1) andA

𝑎
; the sequence {𝐶𝜖

𝑚,𝑗
}
𝑚∈Z;𝑗=1,2,...,𝑠 is a frame for
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A
𝑎
(a Riesz basis if 𝑟 = 𝑠). The interpolatory property in the

case 𝑟 = 𝑠 follows from the uniqueness of the coefficients with
respect to a Riesz basis.

3.4. A Frame Algorithm in ℓ
2
(Z). Sampling formula (91)

is useless from a practical point of view, it is impossible
to determine the involved frame {𝐶

𝜖

𝑚,𝑗
}
𝑚∈Z;𝑗=1,2,...,𝑠. As a

consequence, in order to recover 𝑥 ∈ A
𝑎
from the sequence

of inner products {⟨𝑥, 𝑈
𝑟𝑚+𝜖𝑚𝑗𝑏

𝑗
⟩H}

𝑚∈Z;𝑗=1,2,...,𝑠, we should
implement a frame algorithm in ℓ

2
(Z). Another possibility

is given in the recent reference [29].
Next we are going to implement a frame algorithm in the

ℓ
2
(Z) setting. To this end, consider the canonical isometry

Ũ : ℓ
2
(Z) → 𝐿

2
(0, 1) such that Ũ𝑐 := ∑

𝑘∈Z

𝑐
𝑘
e2𝜋i𝑘𝑤

for 𝑐 = {𝑐
𝑘
}
𝑘∈Z

∈ ℓ
2
(Z) .

(95)

For 𝑥 = ∑
𝑛∈Z 𝑐

𝑛
𝑈
𝑛
𝑎 ∈ A

𝑎
, denote by F the following

sequence:

F := Ũ
−1
T

−1

𝑈,𝑎
𝑥 = {𝑐

𝑛
}
𝑛∈Z

∈ ℓ
2
(Z) . (96)

The inner products {⟨𝑥, 𝑈𝑟𝑚+𝜖𝑚𝑗𝑏
𝑗
⟩H}

𝑚∈Z;𝑗=1,2,...,𝑠 can be
written as
⟨𝑥,𝑈

𝑟𝑚+𝜖𝑚𝑗𝑏
𝑗
⟩
H

= ⟨T
−1

𝑈,𝑎
𝑥, 𝑔

𝑚,𝑗
(𝑤)e2𝜋i𝑟𝑚𝑤⟩

𝐿
2
(0,1)

= ⟨F ,L
𝑚,𝑗

⟩
ℓ
2
(Z),

(97)

where, for 𝑗 = 1, 2, . . . , 𝑠 and𝑚 ∈ Z,

L
𝑚,𝑗

:= Ũ
−1
(𝑔

𝑚,𝑗
(⋅)e2𝜋i𝑟𝑚⋅)

= Ũ
−1
(∑

𝑘∈Z

⟨𝑎, 𝑈
𝑘+𝜖𝑚𝑗𝑏

𝑗
⟩He2𝜋i𝑘⋅e2𝜋i𝑟𝑚⋅)

= Ũ
−1
(∑

𝑘∈Z

⟨𝑎, 𝑈
𝑘+𝜖𝑚𝑗𝑏

𝑗
⟩
H
e2𝜋i(𝑟𝑚−𝑘)⋅)

= Ũ
−1
(∑

𝑘∈Z

⟨𝑎, 𝑈
𝑟𝑚−𝑘+𝜖𝑚𝑗𝑏

𝑗
⟩
H
e2𝜋i𝑘⋅)

= {⟨𝑎,𝑈
𝑟𝑚−𝑘+𝜖𝑚𝑗𝑏

𝑗
⟩
H
}
𝑘∈Z

.

(98)

The sequence {L
𝑚,𝑗

}
𝑚∈Z;𝑗=1,2,...,𝑠 is a frame for ℓ

2
(Z).

Indeed, assume that the error sequence 𝜖 := {𝜖
𝑚,𝑗

}
𝑚∈Z;𝑗=1,...,𝑠

satisfies the hypothesis of Theorem 13; that is,

𝐾
𝜖
:=

𝑠

∑

𝑗=1

𝑀
𝑎,𝑏𝑗

(𝛾
𝑗
)𝑁

𝑎,𝑏𝑗
(𝛾
𝑗
) <

𝛼G

𝑟
, (99)

where 𝛾
𝑗
:= sup

𝑚∈Z|𝜖𝑚𝑗| for each 𝑗 = 1, 2, . . . , 𝑠. As a conse-
quence, the sequence {𝑔

𝑚,𝑗
(𝑤)e2𝜋i𝑟𝑚𝑤}

𝑚∈Z;𝑗=1,2,...,𝑠 is a frame
for 𝐿2(0, 1) with bounds

𝐴
𝜖
:=

𝛼G

𝑟
(1 − √

𝑟𝐾
𝜖

𝛼G

)

2

, 𝐵
𝜖
:=

𝛽G

𝑟
(1 − √

𝑟𝐾
𝜖

𝛽G

)

2

.

(100)

Since Ũ−1 is an isometry, the sequence {L
𝑚,𝑗

}
𝑚∈Z;𝑗=1,2,...,𝑠 is

a frame for ℓ2(Z) with the same bounds. Hence, the recovery
of the element 𝑥 = T

𝑈,𝑎
(ŨF) ∈ A

𝑎
from the samples

{⟨𝑥, 𝑈
𝑟𝑚+𝜖𝑚𝑗𝑏

𝑗
⟩H}

𝑚∈Z;𝑗=1,2,...,𝑠 is reduced to recover F ∈ ℓ
2
(Z)

from the following sequence:

{⟨F ,L
𝑚,𝑗

⟩
ℓ
2
(Z)

}
𝑚∈Z;𝑗=1,2,...,𝑠

. (101)

In doing so, the classical frame algorithm reads (see,
for instance, [1]), let S be the frame operator in ℓ

2
(Z) of

{L
𝑚,𝑗

}
𝑚∈Z;𝑗=1,2,...,𝑠, and define

F
0
:=

2S

𝐴
𝜖
+ 𝐵
𝜖

F

=
2

𝐴
𝜖
+ 𝐵
𝜖

𝑠

∑

𝑗=1

∑

𝑚∈Z

⟨F ,L
𝑚,𝑗

⟩L
𝑚,𝑗

=
2

𝐴
𝜖
+ 𝐵
𝜖

𝑠

∑

𝑗=1

∑

𝑚∈Z

⟨𝑥,𝑈
𝑟𝑚+𝜖𝑚𝑗𝑏

𝑗
⟩L

𝑚,𝑗
,

(102)

and recursively,

F
𝑘+1

= F
𝑘
+

2S

𝐴
𝜖
+ 𝐵
𝜖

(F − F
𝑘
) for each 𝑘 ∈ N. (103)

Then, the sequence {𝑥
𝑛
}
𝑛∈N in A

𝑎
given by 𝑥

𝑛
:=

∑
𝑘∈Z(F𝑛)𝑘 𝑈

𝑘
𝑎, satisfies

𝑥 − 𝑥
𝑛

H
≤
T𝑈,𝑎


F − F

𝑘

ℓ2(Z)

≤
T𝑈,𝑎

 𝛾
𝑘+1

𝜖
‖F‖ℓ2(Z)

≤
T𝑈,𝑎




T

−1

𝑈,𝑎


𝛾
𝑘+1

𝜖
‖𝑥‖H,

(104)

where 𝛾
𝜖
:= (𝐵
𝜖
− 𝐴

𝜖
)/(𝐵
𝜖
+ 𝐴
𝜖
).

4. Some Additional Remarks

Given 𝑠 vectors 𝑏
𝑗
∈ A

𝑎
, 𝑗 = 1, 2, . . . , 𝑠 with 𝑠 ≥ 𝑟, we have

proved in Section 2 that the sequence {𝑈𝑟𝑘
𝑏
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 is a

frame forA
𝑎
if and only if the constants 𝐴

Ψ
and 𝐵

Ψ
defined

in (56) satisfy 0 < 𝐴
Ψ

≤ 𝐵
Ψ

< ∞. Furthermore, we have
obtained a family of dual frames having the same form. As
it was mentioned in the introduction, now we deal with the
case that some 𝑏

𝑗
∉ A

𝑎
.

(i) We have assumed inTheorems 5 and 7 that 𝑏
𝑗
belongs

to A
𝑎
for each 𝑗 = 1, 2, . . . , 𝑠 since we required

the sequence {𝑈
𝑟𝑘
𝑏
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 to be contained in

A
𝑎
. In case that some 𝑏

𝑗
∉ A

𝑎
, the sequence

{𝑈
𝑟𝑘
𝑏
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 is not necessarily contained inA

𝑎
.

However, a close look into the proof of Theorem 5
shows that whenever 0 < 𝐴

Ψ
≤ 𝐵
Ψ

< ∞, the
following inequalities:

𝐴
Ψ
‖𝑥‖

2
≤

𝑠

∑

𝑗=1

∑

𝑘∈Z


⟨𝑥, 𝑈

𝑟𝑘
𝑏
𝑗
⟩


2

≤ 𝐵
Ψ
‖𝑥‖

2
∀𝑥 ∈ A

𝑎

(105)
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hold, and conversely. Hence, the sequence
{𝑈

𝑟𝑘
𝑏
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 is a pseudoframe for A

𝑎
(see

[17, 18]).

Denoting by𝑃A𝑎 the orthogonal projection ontoA𝑎
, since

for each 𝑥 ∈ A
𝑎
,

⟨𝑥,𝑈
𝑟𝑘
𝑏
𝑗
⟩ = ⟨𝑥, 𝑃A𝑎

(𝑈
𝑟𝑘
𝑏
𝑗
)⟩ , 𝑘 ∈ Z, 𝑗 = 1, 2, . . . , 𝑠.

(106)

Theorems 5 and 7 can be reformulated in terms of
{𝑃A𝑎

(𝑈
𝑟𝑘
𝑏
𝑗
)}
𝑘∈Z;𝑗=1,2,...,𝑠 which is a sequence inA

𝑎
.

(ii) An analysis of the proof of Theorem 9 shows that,
even if not all of the 𝑏

𝑗
belong to A

𝑎
, there exist

𝑐
𝑗

∈ A
𝑎
, 𝑗 = 1, 2, . . . , 𝑠, such that the sequence

{𝑈
𝑟𝑘
𝑐
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 is a frame forA

𝑎
, and the expansion

(60) holds for each 𝑥 ∈ A
𝑎
. Therefore, in case that

some 𝑏
𝑗
∉ A

𝑎
, the sequence {𝑈

𝑟𝑘
𝑏
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 is a

pseudodual frame of the frame {𝑈𝑟𝑘
𝑐
𝑗
}
𝑘∈Z;𝑗=1,2,...,𝑠 for

A
𝑎
(see [17]).

(iii) In Section 3.3, having inmind the isomorphismT
𝑈,𝑎

,
for 𝑥 = T

𝑈,a𝐹 ∈ A
𝑎
, we have obtained the following

expressions:

⟨𝑥,𝑈
𝑟𝑚
𝑏
𝑗
⟩
H

= ⟨𝐹, 𝑔
𝑗
(𝑤)e2𝜋i𝑟𝑚𝑤⟩

𝐿
2
(0,1)

,

where 𝑚 ∈ Z, 𝑗 = 1, 2, . . . , 𝑠.

(107)

Furthermore, we know that the sequence
{𝑔

𝑗
(𝑤)e2𝜋i𝑟𝑚𝑤}

𝑚∈Z;𝑗=1,2,...,𝑠 is a frame for 𝐿
2
(0, 1) if and

only if the constants 𝛼G and 𝛽G given in (85) satisfy
0 < 𝛼G ≤ 𝛽G < ∞; besides, the optimal frame bounds for
{𝑔

𝑗
(𝑤)e2𝜋i𝑟𝑚𝑤}

𝑚∈Z;𝑗=1,2,...,𝑠 are 𝛼G/𝑟 and 𝛽G/𝑟. Hence, we
obtain

𝛼G

𝑟

T𝑈,𝑎



−2

‖𝑥‖
2
≤

𝑠

∑

𝑗=1

∑

𝑘∈Z


⟨𝑥, 𝑈

𝑟𝑘
𝑏
𝑗
⟩


2

≤
𝛽G

𝑟


T

−1

𝑈,𝑎



2

‖𝑥‖
2
, 𝑥 ∈ A

𝑎
.

(108)

As a consequence, since we are dealing with optimal
frame bounds, from (105) and (108), we derive the following
equalities:

𝐴
Ψ
=
𝛼G

𝑟

T𝑈,𝑎



−2

, 𝐵
Ψ
=
𝛽G

𝑟


T

−1

𝑈,𝑎



2

. (109)
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